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Reverse Monte Carlo analysis of the structure of glassy carbon using electron-microscopy data
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The reverse Monte CarliRMC) method was utilized in order to obtain three-dimensional atom configura-
tions in glassy carbon using measurements of the static structure provided by electron diffraction. This allowed
the local and medium-range order in glassy carbon formed at heat-treatment temperatures of 1000 and 2500 °C
to be analyzed in detail. In particular, the nature of the graphitelike bonding within the glassy-carbon structure
was investigated as well as the form of disorder that gives rise to the particular features of its static structure
factor. The configurations produced by the RMC method consisted of randomly stacked graphitic basal planes
possessing a buckled nature. It was found that significant nongraphitic regions exist in glassy carbon including
the presence of three- and five-membered rings. These disordered regions decrease in extent as the heat-
treatment temperature increasg30163-18208)06022-9

INTRODUCTION Structure of glassy carbon

) On the basis of high-resolution TEM and diffraction stud-

In recent years several forms of crystalline and noncrySies it has been proposed that the microstructure of glassy
talline carbons have been discovered, testament to the Wiq’%rbon consists of a network of graph|te||ke ribbons contain-
range of chemical bonds that carbon can form. These includmg many microporeé_The ribbons Correspond to the |arge|y
crystalline forms such as fullerenes and carbon nanotubesp?-bonded basal planes that are randomly stacked on top of
and disordered forms such as glassy carbon and amorphowgach other in bundles or fibers of up to 30 A in width and
and diamondlike amorphous carbon. Glassy or vitreoud00 A in length. These ribbons are thought to join in one of
carbort belongs to a class of disordered, largely graphitic
carbons that remain stable against graphitization to tempera-
tures up to 3000 °C. It has a low density compared to graph-
ite and along with other nongraphitizing carbons bears some
resemblance to its precursor polymer. It is produced by py-
rolysis of resins when heated to temperatures between 1000
and 2700 °C. The chemical inertness and high electrical con-
ductivity of glassy carbon have led to its application in the
manufacture of crucibles and electrodes.

In this paper the structure of glassy carbon formed at heat-
treatment temperatures of 1000 and 2500 dénoted as v10
and v25, respectively, in this papdras been investigated in
detail using the reverse Monte CarlBMC) method. The
experimental structure factor of the different forms of glassy
carbon was obtained using electron diffraction in a transmis-
sion electron microscop@ EM). This study of glassy carbon
formed at different temperatures is motivated by the differ-
ences in their structure apparent from high-resolution TEM
images(see Fig. 1 In addition, although several structural
models have been proposed, the exact structural arrange-
ments present in glassy carbon are not well understood.

Apart from their technological importance, disordered
carbons are examples of glasses with significant constraints
on their possible structural topology due to the strong cova-
lent bonding in carbon. A detailed analysis of the structure
that exists in these materials is thus beneficial in developing
general models of network glasses. In this regard, our work
complements the considerably more extensive research on FIG. 1. High-resolution TEM image of v1@a) and v25 (b)
modeling the structure of silicate glasSelso the porous glassy carbon samples. The fringes observed are at a spacing of
structure of glassy carbon makes it an interesting oneapproximately 3.35 A. Note that botta) and (b) are at the same
component model system for porous solids. magnification.
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two ways, either by the overlap of ribbons from different sionally generated structure ensures that the process is un-
fibers or by the merger of the basal planes of different fiberslikely to get trapped into a local minima or is overly depen-
The presence of pores in the network explains the low dendent on the initial choice of starting configuration.

sity of glassy carbon. The diffraction pattern of glassy car- A number of variations of the basic algorithm are pos-
bon reveals that the most intense reflection is that due to th&ble. If it is known that a certain form of bonding exists in
(002 reflection, attributed to scattering from the basal planeshe material, e.g., a predominancesgf bonding in the case

of graphite. The absence of the interi8@1) reflection ob-  of glassy carbon, then a “coordination constraint” can be
served in graphite and othen@1) reflections in the diffrac- employed in the simulation to only generate configurations
tion pattern of glassy carbon is attributed to the lack of corfor which the atoms have the desired bonding. In this case a
rect ABA stacking of the graphitic ribbons. The difference coordination number is set for the atoms as well as the re-
between the two samples examined in this paper is mosjuired fraction of atoms with this given coordination, e.g., in
easily observed by high-resolution TEM for which it can be glassy carbon every carbon atom has three nearest neighbors
seen that the ribbons lengthen considerably as the heatorresponding to 100%p? bonding. An additional term is
treatment temperature is increased, as shown in Fig. 1.  also added to the above error term,

Reverse Monte Carlo method Xz_(fRMC_ freq)2 )
=
The RMC algorithm has been described in detall ¢ We

elsewheré® in essence it is a computer simulation methodwheﬂ_}f is the required fraction of oroberly coordinated
for producing a set of particle configurations that is ConSiS'atoms ffeq s the frgction of atoms in tﬁe gonl%l uration with
tent with an input experimental static structure facsq). " RMC 9

The resulting configurations can then be subjected to variou@e proper coordination, an. is a weighting factor. v, is

geometrical analyses to reveal information about the shortee"Y small andf e set to 1 then most moves that “break

and intermediate-range order of the studied material that car]ibe bqnds will be rejected. 'I_'hus mOd.e.'S of the structure ofa
not be obtained directly from th8(q) of a disordered ma- material can be prodl_Jced with a specified form of bonding or
terial type of molecular unit.

THe RMC method is a very general method of reproduc- The structures obtained from the RMC method are not

ing the detailed structure of a material based only on th inique (t:Iu_e tg .th?h“m'tedt’ tt\No—tbod3:c n?tur(_a”(])f the mfotr)ma—f
experimental diffraction data. No assumptions concernin lon contained In the Input structure factor. 1 us a number o

the form of interatomic potential are necessary, which distin ossible structural configurations can be fitted to )
data alone. In dense systems, packing constraints are ex-

guishes this approach from conventional computer simula: ) .
tion methods such as molecular-dynamics simulatfons pected to strongly influence the structure and the variety of

The algorithm used in the RMC method is a variation Ofgenerated structures will be limited by the hard-core diam-

the metropolis Monte Carlo method for the calculation of Ster of the atoms. On the other h_and, for Iov_v-den;ny mate-
Is, such as glassy carbon, packing constraints will not play

ensemble averages of thermodynamic properties of a systepr?1 oo T . !
of molecules, e.g., pressure or internal endrgy.a Monte a significant role and the coordination constraints described

Carlo simulation, configurations are chosen so as to produc%brg\ée :rfegggr?zzgyclhnoiggdirf tsota?ﬁ]negtﬁﬁria;zgg?bif ;‘ltsrgc'
a set of configurations with a Boltzmann distribution of en- ' 9 9

ergies. In RMC simulations, the difference between the ex_reqwred, in order to limit the search of configuration space to

perimental and calculatef(q) is the quantity to be mini- likely candidate structures.
mized 2, which is given by
CALCULATION DETAILS

Nex 2
2= P [S(qi)c_s(qiz)exp] ' 1) It is known from electron-energy-loss spectroscopy that
¢ = Texpl di) glassy carbon is nearly 100%@’ bonded’ Hence a perfect
) i graphite crystal was chosen as the starting configuration for
where the subscripts and exp refer to the static structure \ne RMC simulations started with a graphite crystal and
factor from the RMC configurations and experiment, respeCioyes that decreased the coordination number from the
tively. Neyp is the number of experimental data points andgraphite value of 3 were weighted against using a coordina-
Oexp IS @n estimate of the experimental error. tion constraint, as described above.

The simulation starts with an appropriate initial configu-  The number density used in this work is that of crystalline
ration of atoms. An atom is randomly sele_cted a_md moved Yraphite, 2.27 g/chy rather than the much lower density of
random distance. The ne(q) of the conﬁgura;uofl of at-  glassy carbon. The reason for using this density is that the
oms is calculated as well €. If the new erroryy.,,is 16sS  information contained in th&(q) pertains to the scattering
than the old errony3,, i.e., the agreement between the ex-from the graphiticlike ribbons not the micropores. Hence this
perimental and configuratio®(q) is improved by the move, work is only concerned with the structure within the graphi-
then the move is accepted and another move made. If thglike ribbons rather than the overall arrangement of the rib-
error is increased by the move, it is not rejected outright bubons in space. Jenkins and Kawanfunave estimated the
accepted with a probability ekp (x2ew— X20)/2]. The pro-  average pore size of glassy carbon as between 50-100 A. In
cess is then repeated unif oscillates about an equilibrium order to model the ribbon structure and pore network to-
value. This method of minimizing the difference between thegether, scattering data on this length scale would be required,
experimentalS(q) and one calculated from a three dimen- e.g., from low-angle x-ray scattering.
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9.0 improve the fit to the experimental data to be accepted, even
if the coordination number changes frap?, while a small
8.0 value predominantly allows only moves that leave the origi-
nal sp? coordination unchanged.
7.0 Glassy-carbon specimens heat treated to 1000 and
Y 2500 °C were purchased in plate form from Atomergic Che-
o, 50 metals CorporatioiiNew York). According to the manufac-
turer's specifications, the density of the material was
5.0 1.5—1.55 g/crh Specimens suitably thin for TEM were pre-
pared using ultramicrotomy. The specimens were then
4.0 2.16 glee 2.50 glec placed in a Philips 430 TEM operating at 300 kV. Energy-
: filtered electron-diffraction patterns were then collected by
34?).075 0.08 0.085 0.09 0.095 0.1 0.1‘05 0.1 0.1‘15 0.12 0.1‘55 6.13 Scanning the diffraction pattern of each SpeCimen over the

entrance aperture of a Gatan 666 parallel electron-energy-

loss spectrometer as described elsewh&fhe static struc-
FIG. 2. Equilibrium value ofy? as a function of input number ture factorS(q) was then determined by

density. The horizontal axis is in units of atoms/A

p

I(q)—Nf? 27
In order to test the validity of assuming a number density S(a)= NfZ g 4 )
equal to that of crystalline graphite a number of RMC calcu-
lations were performed using different input number densiwherel(q) is the elastic scattered intensitlyjs the atomic
ties to model theS(q) of our v10 sample. The motivation for Scattering amplitude, arid is a scaling factot' The normal-
this approach is based on the observation tiathas its  izing factor N is obtained by choosing the value Nf that
minimum value at the correct number density of the modele@ives the best fit betweeNf? and I(q) at highg. N is

material® loosely related to the number of atoms in the beam.
The first density used was that of crystalline graphite,

2.27 g/lcnd. The second density corresponded to the actual RESULTS

density of glassy carbon, 1.55 g/énthe third was derived _ _ _

from the position of the002) peak in theS(q) of the v25 Structure factor and pair-correlation function

sample of glassy carbon, 2.16 gfi;naljd the fourth was ata ~ The experimental static structure fact8(q) and pair-
density 10% greater than the crystalline graphite, 2.50 §/cm correlation functiong(r) for the v10 and v25 samples, as
The value of the third density is based on assuming that th@ell as the RMC results are shown in Figs. 3 and 4. The
number density of the basal planes is unchanged in glassygreement between the structure factors is good with signifi-
carbon as compared to graphite and the peak positigh  cant deviations only at low. Details can be found in Table
can be used to estimate the average distance separating the

basal planes whgreqxis distance is &/qgoz- The differences between the experimental and R})

It can be seen in Fig. 2 thaf has a minimum value atthe at low q are to be expected due to the enhancement of un-
number density of crystalline graphite. The stored configuracertainties in the data in this wave-vector range
tions from the RMC simulation at the glassy carbon number<5.00 A~1. The experimentaj(r) exhibits a large negative
density were also analyzed. A highly disconnected networlgip at lowr, which is normally a sign of systematic errors in
was observed with no graphitic nature and many nonbondegd(q).2 In order to obtain an estimate of the best possible
carbon atoms. _ . . agreement between the RMC and experime8{aj)’s, the

The RMC SlmulatlonS Conta|ned 7776 atoms W|th a Start'experimentag(r) for the v25 Sample was set to zero for
ing configuration and the density of crystalline graphite. Theless than the hard core diameter and then Fourier trans-
starting configuration was a graphite crystal. A minimum{ormed toS(q). It is found that the deviations in the result-
distance of approach of 0.85 A was used. A maximum C-Gng g(q) follow the observed deviations between the RMC
bond length of 1.91 A was used. This distance is equal to thg(q) and the experiment&(q) at low q. Differences in the
first minimum in the experimental pair-correlation function. experimentally and RMC generated fitg¢r) are small for

The value ofw, used in this work was 0.0001. This en- poth samples, with the heights of the first few peaks in the

abled the data to be fitted accurately while maintaining thexnc g(r) fits slightly lower than the experimental data.
sp? coordination of most99.2% carbon atoms. The appro-

priateness of this value was tested by performing RMC cal-
culations with two other values, 0.01 and 0.000 01. In the
former case the fit to the experiment&{q) was approxi- The local order in glassy carbon was analyzed by calcu-
mately the same, but the fraction sfp? atoms after equili- lating the distribution of coordination numbers for the first
bration was only 47%. In the latter case the fit to the data wathree neighbor shells and the distribution of bond angles
marginally worse and the percentagesgf coordinated at- within the first neighbor shell. The radii of thi¢h neighbor
oms increased to 99.8%. These results reflect the competitidhell was set equal to the valuergffor theith minima in the
between the two error terms in the acceptance condition, theadial distribution functiong(r;). The radii were the same
first measuring the fit to the data and the secondspe  for both samples and were set at 1.91, 2.74, and 3.28 A, for
coordination. A large value ofv. allows atom moves that the first, second, and third neighbor shells, respectively. The

Nearest-neighbor distribution
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FIG. 3. Structure factors of glassy carbon samp&®s/25 and FIG. 4. Pair-correlation f_unctions of glassy carbon sam@s
(b) v10.  experimental data; ----—---- . RMC modeling $fq). v25 and(b) v10. —, experimental data; --------- , RMC modeling

The horizontal axis is in units of AL of S(q). The horizontal axis is in units of A.

. o ) .. . approximately 117° for both samples, slightly less than the
resulting broad distribution of nearest neighbors is similarjeg] graphitic bond angle of 120°. The peak height is
for both samples and is displayed in Fig. 5.~ gjightly larger in the v25 sample than the v10 sample. The

The most obvious feature of these distributions is theyistribution of bond angles is broad in both samples and is
skew toward; higher coordination numbers, which is morekewed towards lower angles with a very small peak at ap-
pronounced in the case of the v10 sample. The secongsroximately 60°. The standard deviation of the bond-angle
nearest-neighbor distribution is peaked at a coordinatioyjstribution for both samples is equal to approximately 18°.
number of 7 for the v10 sample and 6 for the v25 sampleshe increased broadness in the bond-angle distribution for
and the third-nearest-neighbor distributions are peaked at cgne yv10 sample is most noticeable for large bond angles, i.e.,
ordination numbers of 6 and 5 for the v10 and v25 samplesyreater than 117°. These small differences indicate that the
I‘espec’[lve|y. In comparison, gl’aphlte possesses 6 secon 10 Samp'e may be S“ghﬂy more disordered on an atomic
nearest neighbors and 3 third-nearest neighbors for the SaMighgth scale, but given th§(q)'s for both samples are not

neighbor-shell radii. These neighbors are within the sameiteq perfectly, care should be taken in regarding the differ-
basal plane in graphite at distances of 1.42, 2.46, and 2.84 A ces as significant.

respectively. The value of the coordination numbers for the

second-nearest-neighbor shell is in good agreement with that
to be expected from a disordered graphite network, although
the broadness of the distributions is surprising. We will re- A network definition of nearest neighbors was also used
turn to this point later. The large peak coordination numbeft0 calculate alternative neighbor distributions. An atom is
in the third shell is obviously due to a considerable inclusion ) ) ) ]

of extra third-nearest neighbors that are not of the kind ob- TABLE I. Details of simulation resultsNe, is the number of

Network-neighbor distribution

served in graphite. data points fitted in the experiment®{q).
Sample X? * O exp Nexp % of sp? atoms
Bond-angle distribution
v10 0.0049 99.3
The bond-angle distribution of both samples of glassy cary2s 0.0065 99.2

bon is shown in Fig. 6. It is peaked at a bond angle of
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TABLE II. Normalized fraction of atoms with the sami¢h
nearest-neighbor coordination as in graphite. Graphite has 3 nearest
neighbors, 6 second nearest neighbors, 9 third nearest neighbors,
and 12 fourth nearest neighbors for the network-neighbor definition.

Sample @3,) C(6,2 C(9,3 C(12,9

v25 0.992 0.938 0.812 0.744
v10 0.993 0.934 0.791 0.727

o neighbor shell. Hence the short- and medium-range order of
e the two glassy carbon samples possesses a connectivity very
6 8 10 12 14 16 18 similar to that of graphite, deviations from a graphite net-
work being more noticeable in the case of the v10 sample.
This result is supported by electron-energy-loss carbon
k-edge measurements of glassy carbon and crystalline graph-
ite that show very similar near-edge fine structure indicating
that both contain similar local atomic environmehts.
The pair-correlation function can also be decomposed into
a contribution from the different neighbor shells, denoted as
ogn(r), and is shown in Fig. 7 for the v25 sample and Fig. 8
for the v10 sample. It can be seen that the neigltadr)’s
are broader in the case of the v10 sample.
It can be seen from Fig. 7 that the neighlug(r)’s do
not sum up to the totag(r) for this system. In the case of a
e @ e fully connected network of atoms it would be expected that
e _____ the gn(r)’s do add up to the totagi(r) and this has been
g = successfully tested for a soft-sphere liquid system. The rea-
son this is not the case for our glassy carbon model is that
(b) n there are very few bonds between neighboring basal planes
FIG. 5. Neighbor distributions for first three neighbor shells of and hence atom pairs in different basal planes that contribute

(@) v25 and(b) v10 sample. ——, nearest neighbors; --------- . sec- to the_totalg(r) will not contribute to the_ networlg(r)’_s as
ond nearest neighbors- ¢ -, third-nearest-neighbor distribution. tN€re is no sequence of bonds connecting these pairs in gen-
eral. Thus thesgy(r)’s predominantly reveal information
regarded as aith-nearest neighbor of another atom if and @bout the structure of the basal planes. Also, the difference
only if the shortest path joining the two atoms via the net-Petween the totag(r) and the sum of the networ§(r)'s
work of bonds involves bonds. The normalized fraction of gives an indication of the contribution of intraplanar dis-
atoms with the same numberof ith nearest neighbors as fances to the totaj(r). o _
graphite C,i) is given in Table Il up to fourth “nearest ~ The connectivity of the two samples is similar and highly
neighbors.” graphitic in nature but the possible distances of.ne|ghbo.rs is
The neighbor distributions are sharply peaked at the cobroader for the v10 sample. A small shoulder in the third-
ordination numbers expected for a perfect graphite crystal.

(@)

Significant deviations only occur beyond the third-nearest-
0.03 2.5
0.025 2
‘% 1.5
0.02 5
@ 0.015 1 ’ "\z/,/" e
m
0.01 0.5
0 ;
0.005 0 1 2 3 4 5 6 7 8
0 v C S r
0 20 40 60 80 100 120 140 160 180 ) . . . o
9 FIG. 7. Pair-correlation function decomposed into contributions
from different neighbor shells for the v25 sample. —, first shell;
FIG. 6. Bond-angle distribution. —, v25 sample; , V10 , second shell¢ - ¢ -, third shell; £3-00-, fourth shell. The

sample. horizontal axis is in units of A.
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FIG. 8. Pair-correlation function decomposed into contributions
from different neighbor shells for the v10 sample. —, first shell;
--------- , second shell; © - ¢ -, third shell; £1-C-line, fourth shell.
The horizontal axis is in units of A.

network-neighborgy(r) at approximately 2.45 A indicates

that some third network nearest neighbors are at secont

nearest-neighbor distances indicating that there is significar

distortion of the hexagonal rings forming the graphitic net-

work. This would also account for the broadness of the con (b)

ventionally defined nearest-neighbor distributions due to the

considerable overlap of the second and third peaks in the FIG. 9. (@) A basal plane from the stored RMC configurations

g(r) of the glassy carbon samples. for the v10 sample viewed down the direction of stacking, i.e., the
c-axis direction. The lightly shaded atoms are in a disordered re-
gion. (b) A side on view of the same basal plane agan

Computer visualization ) . . .
acterized by pairs of three- and five-membered rings and the

A computer visualization of the stored configurations re-preyiously mentioned large holes. These observations will be
veals that the simulated structure consists of graphiticlikgjiscussed later in more detail.

basal planes randomly stacked in theaxis direction. Figure
9(a) shows a typical basal plane from the stored configura-
tions from the modeled v10 sample, a slice parallel to the
c-axis direction and 3.35 A thick. The v25 sample has a The buckled nature of the basal planes was further inves-
similar appearance. The basal planes or ribbons are nonpltigated to elucidate whether this was a necessary feature for
nar exhibiting a buckled form. It can be observed in Figy9 models of glassy carbon. An RMC simulation was performed
that there are a number of large rings or “holes” in the using identical parameters as the previous simulation for the
graphite network. This is a common feature of all planesv25 sample but only allowing the atoms to disorder within
observed, and many of the non-six-membered rings clustgéhe basal plane. It was found that there was a very poor level
around these features. In Figh®a side-on view of the same of agreement with the experiment&{q) and hence we can
plane reveals the buckled nature of the basal planes. Theonclude that basal plane disorder is insufficient to describe
combination of the random stacking of the basal planes anthe structure of glassy carbon and the curvature of the basal
their buckling can be considered sufficient to destroy anyplanes is an integral feature of this material. It may seem
interplanar register and thus nb(1) reflections will be ob- obvious from any TEM image of glassy carbon that the “rib-
served. bons” are curved but the curvature of the ribbons appears in
The broad range of coordination numbers using the radiiarge part to be quite shallow with respect to the length
shell definition can be attributed to the nonplanar form of thescales discussed in this work. Hence our work demonstrates
ribbons. For a set radius, the effect of buckling a perfecthe importance of including the effects of locally strong cur-
planar graphite structure will be to increase the average cosature on any structural model of glassy carbon.
ordination number. Combined with the observed holes, for One of the most significant differences between the two
which the coordination number will be reduced, this leads tcsamples is the height of th@02 peak, attributed to the
the broad nearest-neighbor distributions. stacking of graphitic basal planes. The density variation in
The lightly shaded atoms in Fig. 9 are atoms that are in dhe c-axis direction (the stacking direction of the basal
disordered region. An atom is regarded as in an ordered loc@lane$ was investigated by calculating the pair-correlation
neighborhood if three hexagonal rings pass through the atorfunction in this directiong(z), which corresponds to the
as in graphite. All other atoms are regarded as being in a-axis direction of our simulation cell. It is equal to the pair-
disordered neighborhood. These disordered regions are chamerrelation function averaged over the two other independent

Buckling of basal planes
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TABLE IIl. Values of parameters used to fit breadth distribu-
tions to a double Gaussian, Ed).

Sample A % o d
v10 0.016 —0.60 0.60 1.20
v25 0.016 —0.53 0.60 1.04

of the basal planes is clearly indicated by these results, as
well as the fact that the buckling of the basal planes is greater
in the v10 sample.

The breadth of the basal planes was also calculated. In
order to achieve this, each atom was assigned to a given
plane based on isposition. In the case of ambiguity, where

0.018 : an atom position is in the minima between two planes, the
0.016 atom is assigned to the plane in which a dominant number of
< its nearest neighbors reside. The mean position of each plane
o oon was then calculated. Using this mean position, the distribu-
Z 0012 tion of thez component of the positions of the atoms in the
Y plane about the mean position was calculated. This distribu-
ﬂ_’} 0.008 tion was averaged over each plane and stored configuration.
2 The breadth distributions for both samples are double
@ 0006 peaked. This clearly reflects the buckling of the planes; most
S 0004 atoms lie in planes above or below the center plane. The
0.002 distributions for both samples can be fitted to a double
0 bz Gaussian of the form
-2 -1.5 -1 -0.5 0 0.5 1 15 2
(b) z distance from centre of mass of basal plane b(z)= Ae[(M—Z)/U]2+Ae—[(M+ d—Z)/U]Z, (4)
0.018 whered is the distance between the peak positions of the
0.016 | Gaussians. A fit to both distributions reveals that the differ-

0.014 L [/ AN ence between the distributions is a decreased separation of
i N \ the two Gaussians for the v25 sampth (vith respect to the
v10 sample, while the variance and height for both samples
\ have nearly identical values. The values used in the fits for
0.008 | ) both samples are given in Table Ill. We can conclude from
0.006 |- these results that the amplitude of the buckling is greater in
A the v10 sample. These results are consistent with a general
picture of the difference between the samples being the de-
gree of curvature of the basal planes.

0.012 -

Normalised Probablity P(z)
o
2
T

0.004

0.002 |

0

2 -1.5 -1 -0.5 0 0.5 1 15 2 . -
(©) z distance from centre of mass of basal plane Ring statistics

FIG. 10. (a) Reduced-pair correlation functiag(z). --0--0O--, In order to inveStiga.te. the medium-range structure of
v25 sample; --------- , v10 sample. The horizontal axis is in units ofglassy Car.bon’ fing statistics were .CaI.CUIated fpr the §tored
A. (b) Breadth distribution for basal planes. ——, v25 RMC configurations, Where_z the definition of a ring is given
sample;--------- , v10 sample. The horizontal axis is in units ofd}. b_y the shortes_t path C“ter'on_ of Franz_bl’éuShortest path
Gaussian fit to breadth distribution for basal planes of v10 sampler.'ngs are resmCte_d to thosg rngs formllng closed paths such
—— Gaussian fit; --------- ,v10 breadth distribution. The horizontal that for every pair of vertices of the ring the shortest path
axis is in units of A. around the network is around the ring. This definition avoids

the counting of compound rings formed by two intersecting
directions in the simulation cell. For both samples the aversings but is not simply restricted to counting only the shortest
age spacing of the planes is 3.35 A in thexis direction  rings in the network.
[Fig. 10@)]. Theg(z) has a sinusoidal form with a period of = The average number of rings passing through the atoms as
3.35 A. The height of the peaks in tlg{z) for the v10  a function of ring size is given in Table IV. The total number
sample is significantly reduced compared to the v25 samplef rings of each type is given in Table V. The dominant
and there is a small maxima between the planes. This magontribution is from six-membered rings emphasizing again
indicate a degree of cross linking of the planes in the v1Ghe graphitic nature of glassy carbon. A small number of
sample, but a calculation of the number of atoms that areings of other sizes were also found. The number of nonhex-
bonded to atoms in more than one plane does not justify thiagonal rings was greater in the v10 sample.
assertion; the fraction of such atoms is very small The bond angles between neighboring atoms in a ring
(<0.1%) and similar for both samples. The nonplanar naturevere also calculated and are displayed in Fig. 11 for the most
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TABLE IV. Average number of rings of sizR passing through each atoW(R). The total number of
rings of a given sizeR in the simulated structure is equal B(R)/R (number of atoms equals 77)76he
factor R in the denominator is to avoid counting the rings more than once.

Sample N(3) N(4) N(5) N(6) N(7) N(8) N(9)
v25 0.039 0.004 0.048 2.67 0.013 0.004 0.032
v10 0.045 0.013 0.053 2.63 0.011 0.020 0.038
graph|’[e “os [N 3.00 oo [N

common rings. The bond-angle distributions for the three-,

five-, and nine-membered rings for the v10 and v25 sample

0.0 : are identical. These rings are the most common after the

: dominant six-membered rings. Significant differences be-

tween the samples only appear in the bond-angle distribution
for the six-membered rings.

The skew in the total bond-angle distribution at small
angles was found to be due to the presence of four- and
five-membered rings with average bond angles of 91° and
105°, respectively. The average bond angle for the nine-
membered rings was 121° and possessed a broad distribution
with a standard deviation of 22°. The small peak at 60° in the
e ' total bond-angle distribution is due to the presence of three-
120 140 160 180 . .

membered rings. The average bond angle for the six-
membered rings was equal to 117° for both samples. This
indicates that the peak in the total bond-angle distribution at
117° is a feature of the dominant six-membered rings while
the broadness of the distribution is in part due to rings of
other sizes. The peak height for the bond-angle distribution
of the six-membered rings was larger and the distribution
narrower for the v25 sample.

The presence of a significant number of three-membered
rings and a lesser number of four-membered rings is an in-
teresting result of this work. Although it may be argued that
these structures would be too strained to be statidnitio
s pos ooy oo " oo T80 and tight-binding molecular-dynamics simulations of amor-
(b) 0 phous carbon have also revealed the presence of three- and
four-membered rings in their simulated structut®¥. This
work can be regarded as complementary to that but that in
which the small rings appear as a necessary structural feature
in order to create a three-dimensional model of glassy carbon
consistent with the diffraction data.

The other most common nonhexagonal rings are five-
membered rings. The existence of these rings is less conten-
tious as they are observed in fullerene forms of carbon. They
can be attributed to positive curvature in the basal planes as
o is the case for fullerenes.

MW A number of models of negatively curved graphitic car-

o a0 100 o 10 o0 180 bon have been proposed that are commonly produced by the

© 0 introduction of seven-membered or larger riffjsThese
rings can maintain bond angles of 120° unlike five-

FIG. 11. (8 Normalized bond-angle distribution for the bond membered rings, and hence strains on the structure are mini-
angles between neighboring atoms in a ring for the v25 sample.
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——, 3-membered rings; --------- , 4-membered rings; -<> -, 5-

membered rings(b) Comparison of normalized bond-angle distri- TABLE V. Total number of rings of for v25 sample, using data
bution for the bond angles between neighboring atoms of the 6in Table Il

membered rings. ——, v25; --------- , v10(c) Comparison of

normalized bond-angle distribution for the bond angles betweerRing size 3 4 5 6 7 8 9
neighboring atoms of the 9-membered rings. —, v25; --------- , Total 101 8 75 3460 14 4 28

v10.
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TABLE VI. Most common ring sequences observédeq (RS 12
is the percentage of atoms that possess a ring sequence RS. Label-
ing system is of the formg,b,c,d...), wherea is the number of 10
three-membered rings passing through an atbrthe number of
four-membered rings, and so on up to nine-membered rings. 8

V25 Py RS V10 PgeqfRS § 5

Ring sequence (%) (%) )
(0003000 81.36 78.24
(0002000 6.57 7.10 2 v
(0001000 1.86 1.87 {
(0011000 1.49 1.49 % 2z a4 & 8 10 12 1a 16 18 2
(1010000 1.47 1.48 ;
(0012000 1.11 1.12
(0002001 1.00 1.31 FIG. 12. Partial pair-correlation function for atoms in disordered

regionsggg(r) for v25 sample. The arrow indicates the valuer of
at whichggg(r) first equals 1. The horizontal axis is in units of A

mized. This is well illustrated in our work if the average _
bond angles of the five- and nine-membered rings are com- Clustering of defects

pared. These “Schwarzite” forms of carbon are predomi- |n order to investigate the influence of the nonhexagonal
nantly symmetric and porous structures that are remarkablyings on the structure of glassy carbon, atoms were labeled as
stable with respect to graphite. Townseetcal."” have gen-  mentioned before as being either ordered or disordered. De-
erated a number of models of amorphous carbon in whichoting an atom as type if it is in an ordered region and type
sp? coordination is maintained in regions of strong local g if it is not, the partial pair-correlation functiong,,(r),
curvature by the introduction of a nonhexagonal rings. Agaﬁ(r)! andgg(r) were calculated for both samples.

model in which a random surface is covered with a graphi- |t can be seen in Fig. 12 that the partig(r) for the
telike carbon network in order to simulatg a random POredisordered atomsygp(r) is initially very large, but the
geometry revealed the presence of many five-, seven-, eighteights of its peaks decay with increasing distance. This be-
and nine-membered rings. These results suggest that thior of a pair-correlation function is a feature of configu-
large rings observed in our simulated structures are indicamtions in which different atom species cluster together. The
tive of negative curvature in regions of the RMC-generatect|ustering of “disordered” atoms is most obvious from a
basal planes. direct visualization of the basal planésig. 9.

The value of 117° for the average bond angle in glassy In order to obtain an estimate of the average size of these
carbon also appears @b initio simulations of amorphous clusters we adopt a measure first suggested by Abraham and
carbon*® Amorphous carbon is dominantp? bonded with  co-workers® in studies of phase separation. Their approach
the remaining atomsp® bonded. It is thought to posses a is to calculate the value afyqe, at which the partia(r)
mixed graphitic and diamondlike structure. Gadlt all® first equals 1 and use this as a measure of the average size of
simulated ana-C structure that was 85%p? bonded for @ cluster. Applying this criteria, it was found that the disor-
which the average bond anglesif® sites was 117°. Thep? ~ dered regions decreasg ip size from ©28tA as theheat-
regions were graphitic in nature tending to lie in buckled{réatment temperature is increased from 1000 to 2500 °C.
planes giving them a finite thickness of about 1 A. Their A comparison of the totay(r) and the partiag(r) from
results are consistent with our observations although the agi€ ordered region for the v25 sample reveals that the peak
proaches are entirely different. This suggests that the sligHt€!gnts are larger for the lattg(r) indicating that the height

reduction in the bond angle of the hexagonal rings may be Qf t'he tot:lg(r) is Teducef' Ey the gxisten?e hOf disdordedred
general feature of buckled graphitic planes. regions. A comparison of the partig(r) of the ordere

Deviations from graphitic order were analyzed by label-€9IONS for both the v10 and v25 sample reveals that the

: : : Rroaderg(r) in the v10 sample is not only due to the in-
ing atoms depending on the type and number of rings of eac . . . .

. ‘creased size of the disorder regions but also the increased
type that they were members of and the results are given N - :

. Ifregularity in the ordered regions.

Table VI. The most common sequence is that observed in
graphite followed by sequences in which there isyamll or
2 hexagonal ring. If an atom has three nearest neighbors then
we expect at least three rings would pass through the atom.
Hence these ring sequences apply to atoms that are also on The local order in glassy carbon was found to be similar
the edge of a large hole. As mentioned earlier, three- antb graphite for both samples, with the v10 sample, formed at
five-membered ring pairs are common as well as pairs o& lower heat-treatment temperature, showing slightly more
five- and six-membered rings. It is interesting that there are ocal disorder as indicated by the broader distribution of
small number of atoms that are part of two six-memberedond angles. This suggests a network model of glassy carbon
rings and one five-membered ring. This is the same locain which local coordination is maintained and disorder arises
environment of a carbon atom ing&; i.e., fullerenes. from variations in bond length and bond angle, as is used to

CONCLUSION
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describe silicate glasses. The increased broadness of the fitetee-dimensional model of glassy carbon consistent with the
peak in theg(r) for the v10 sample and also in the distribu- diffraction data.
tion of bond angles supports this assertion. However, the Strong local curvature of the graphitic basal planes is a
observation of nonhexagonal rings suggests a change in tHeature of both samples studied. This can be seen by a visu-
topology of glassy carbon from that of graphite that alsoalization of the simulated structures, the breadth of the basal
needs to be accounted for. The main difference between thganes, and the presence of nonhexagonal rings. The exis-
local structures of the two samples is not so much an intence of the nonhexagonal rings is a direct consequence of
crease in the degree of local disorder, as suggested by thlee curvature of the basal planessi’ coordination is to be
bond-angle distributions, but the increased number of nonmaintained. The larger number of nonhexagonal rings in the
hexagonal rings in the v10 sample compared to the v2%10 sample and the increased breadth of the basal planes
sample, i.e., the main differences are topological rather thaimdicates that the v10 sample is more strongly buckled than
geometrical. the v25 sample. A general conclusion that can be made is
The existence of three- and four-membered rings in thehat one effect on the structure of glassy carbon of annealing
simulated structures is an interesting result. This work can bat a higher temperatures is to reduce the degree of buckling
regarded as complementarydb initio simulations of amor-  of the planes. The smaller height of tt@02) peak in the v10
phous carbon but only those in which the smaller rings apsample compared to the v25 sample is thus due to the in-
pear as a necessary structural feature in order to createcaeased buckling of the basal planes.
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