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Dynamic structure factor of vitreous silica from first principles:
Comparison to neutron-inelastic-scattering experiments
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Using a first-principles approach, we study the vibrational properties of vitreous SiO2 which are measured in
neutron-scattering experiments. We adopt a model structure consisting of corner-sharing tetrahedra, which was
previously generated using first-principles molecular dynamics. We calculate the dynamic structure function
S(q,E) as a function of wave vectorq and energyE by taking explicitly into account the correlations between
different atoms as given by the normal modes. The effects of temperature and finite displacements are also
considered. Overall, the agreement with experiment is very good, as illustrated by the comparison for the
density of states. However, the calculated and measuredS(q,E) differ in some cases up to a factor of 2 in
absolute intensity. Nevertheless, the oscillations inS(q,E) describing the correlations between the motions of
the atoms are accurately reproduced. The neutron effective density of states obtained directly fromS(q,E)
yields a good representation of the actual density of states. By introducing a comprehensive scheme, we clarify
the relation between neutron and infrared spectra. In particular, we show that the neutron density of states does
not distinguish between longitudinal and transverse excitations. Other properties such as the mean-square
displacements and the elastic structure factor are also evaluated and found to be in good agreement with
experiment.@S0163-1829~98!04422-1#
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I. INTRODUCTION

Inelastic neutron scattering provides a powerful tool
investigating the dynamics of disordered network-formi
materials.1–5 The key property measured in these expe
ments is the scattering functionS(q,E) in terms of the wave-
vector transferq and energy transferE. In disordered sys-
tems, the wave vectorq is not a good quantum numbe
because of the lack of periodicity and a description of
dynamics in terms of dispersion relations between pho
energies and wave vectors does not apply. However, spe
information pertaining to the vibrational eigenmodes can s
be found in the scattering function. Therefore, in the case
disordered solids, the functionS(q,E) plays a crucial role
when comparing theoretical models of the dynamics w
experiment.

However, theoretical approaches have only rarely
tempted to calculate scattering functions of disorde
materials,6–8 in spite of the increasing data obtained by i
elastic neutron scattering.1–5 This stems mainly from the dif-
ficulties encountered in reproducing accurate vibratio
properties for disordered solids. The uncertainties relate
the choice of a structural model and, even more importan
of reliable interatomic potentials often do not justify pushi
the comparison with experiment beyond that for the vib
tional density of states.9–11

Using a central force model, Sen and Thorpe provided
570163-1829/98/57~22!/14133~8!/$15.00
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theoretical framework for the study of vibrational properti
of disordered network-forming materials.12,13 Most subse-
quent studies were based on molecular-dynamics simulat
with classical interaction potentials. In the case of vitreo
SiO2, an improved generation of such potentials was o
tained by fitting selectedab initio calculations.14,15Although
these potentials yield structural properties which are con
tent with diffraction data, the agreement with experiment
the vibrational density of states is less impressive.9,11 The
accuracy of first-principles approaches in the study of vib
tional properties of crystalline solids has been repeate
established.16–18 Nevertheless, the application of such tec
niques to reproduce such properties for amorphous mate
has remained far less developed. There are however ind
tions that the accuracy of these techniques would be
served when applied to disordered solids, as recently dem
strated by our study of vitreous silica.19,20,23 Using first-
principles molecular dynamics,21,22 we first generated a
model structure with good structural and electron
properties.19 Then, we calculated the corresponding vibr
tional properties from first principles and found good agre
ment with experiment also for the neutron vibrational dens
of states20 and for the infrared absorption spectrum.23

In this paper, we focus on the dynamic structure factor
vitreous silica and calculate within a first-principles sche
various vibrational properties that are directly comparable
data from inelastic neutron scattering.1,2,5 Since the dynamic
14 133 © 1998 The American Physical Society
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14 134 57PASQUARELLO, SARNTHEIN, AND CAR
structure factor depends in a more explicit way on the c
relations between the atoms than the density of states
comparison between theory and experiment is more strin
and examines indirectly the accuracy of the vibratio
eigenmodes. The dynamic structure factor is evaluated in
harmonic approximation assuming one-phonon scatte
events. Debye-Waller and Boson factors are explicitly ma
tained in the formulas to account for the effects of fin
displacements and temperature. In particular, we also ca
late the elastic structure factor which is directly measured
neutron-scattering experiments. Finally, we reconstruct
effective neutron density of states from the dynamic str
ture factor in the same way as it was derived from the
perimental results. We discuss differences between the
tron and the actual density of states, and how these rela
the long wavelength limit probed in optical experiments.
preliminary account of the vibrational density of states w
already reported previously in a concise form.20

This paper is organized as follows. Section II reca
briefly the characteristics of the model structure used in
work.19 In Sec. III, we describe our approach for obtaini
the vibrational frequencies and eigenmodes and discuss
vibrational density of states. In Sec. IV, we calculate t
mean-square displacements of all the atoms in our model
use this information to calculate the elastic structure fac
Section V is devoted to the comparison of the dynamic str
ture factor with experiment. In Sec. VI, the effective neutr
density of states is derived and the relation between neu
and infrared spectra clarified. The conclusions are given
Sec. VII.

II. MODEL

The model structure of vitreous silica used in the pres
study was previously obtained19 with a quench from the mel
using first-principles molecular dynamics.21,22 The model
contains 72 atoms at the experimental density~2.20 g/cm3)
in a periodically repeated cubic cell, and consists of a che
cally ordered network of corner-sharing tetrahedra. T
atomic positions were fully relaxed within density-function
theory, using the local-density approximation for the e
change and correlation energy.24 Only valence electrons
were explicitly retained in our calculation using pseudop
tentials to account for core-valence interactions. We use
norm-conserving pseudopotential for silicon25 and an ultra-
soft pseudopotential for oxygen.26 The electronic wave func
tions and charge density were described by plane-wave b
sets with cutoffs of 24 and 200 Ry, respectively. The B
louin zone of the cell was sampled only at theG point. A
more extended analysis of the structural properties of
model can be found in Ref. 19, whereas a detailed desc
tion of the method used for the molecular dynamics and
structural relaxations is given in Ref. 22.

III. VIBRATIONAL DENSITY OF STATES

We make use of the vibrational properties calculated
Ref. 20. The dynamical matrix,

Dim, j n5
1

Amimj

]2V

]r im]r j n
, ~1!
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expressed here in terms of the second derivatives of the
energyV with respect to the atomic displacementsr im , was
calculated numerically by taking finite differences of th
atomic forces. In Eq.~1!, the indicesi and j run over the
number of atomsN572, m andn over the Cartesian direc
tionsx, y, andz, andmi is the mass of atomi . By diagonal-
izing the dynamical matrix

(
j n

Dim, j nej n
n 52vn

2eim
n , ~2!

we derive the 3N eigenfrequenciesvn and their correspond
ing normalized eigenmodeseim

n . The normalized vibrationa
density of states

Z~E!5
1

3N(
n

d~E2\vn! ~3!

is shown in Fig. 1, where a Gaussian broadening with st
dard deviations52.5 meV is used.

In Fig. 1, three different decompositions of the density
statesZ(E) allow one to better characterize the vibration
modes. In Fig. 1~a!, the density of states is decomposed a

FIG. 1. Vibrational density of states~solid! and decompositions
A Gaussian broadening withs52.5 meV is used.~a! Partial density
of statesZa(E) for O ~dotted line! and Si ~dash-dotted line!. ~b!
Decomposition of O motion according to rocking~dot-dashed!,
bending~dotted!, and stretching~dashed! directions.~c! Projection
on symmetry-adapted modes of the SiO4 tetrahedra:T2 ~dash-
dotted! andA1 ~dashed!.
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57 14 135DYNAMIC STRUCTURE FACTOR OF VITREOUS SILICA . . .
cording to the weights of the eigenmodes on the two spec
according toZ(E)5(aZa(E), where the partial density o
statesZa(E) is defined by

Za~E!5
1

3N(
i ,a

Na

(
n

uei
nu2d~E2\vn!. ~4!

The sum overi is over all the atoms belonging to the spec
a and ei

n corresponds to the displacement vector of atomi
with Cartesian componentseim

n . Figure 1~a! shows that the
ratio between the oxygen and the silicon weight is rat
close to the concentration ratio throughout the spectrum,
dicating that the motions of the two species are stron
correlated. An important exception to this point is the peak
about 106 meV, which is instead dominated by silicon m
tions.

In Fig. 1~b!, the oxygen motion is further decompose
according to the three directions which characterize the lo
environment, as customary in this field.27 The peak at lowes
energies~below 70 meV! arises mainly from rocking mo
tions in which the O atoms move perpendicular to the
O-Si planes formed with their nearest-neighbor Si atom
The vibrational density of states between 70 and 120 me
mainly given by O bond-bending motions in the Si-O-
plane, along the bisector of the Si-O-Si angle. The S
stretching motions occurring at higher energy correspon
projections on a direction which is perpendicular to tho
defined by the bending and rocking motions.

The splitting in the high-frequency doublet has been at
origin of a long-standing debate in the literature.20 The split-
ting has alternatively been attributed to two different vib
tions of molecular subunits or interpreted as a longitudin
optic-transverse-optic~LO-TO! effect. In Ref. 20, we solved
this issue in favor of the former assignment. In fact, t
vibrational density of states as obtained with inelastic n
tron experiments is unable to distinguish between transv
and longitudinal excitations, as will be shown in greater d
tail in Sec. VI. For every SiO4 subunit, the four Si-O stretch
ing modes transform upon rotations as a representation o
symmetry groupTd .28 Decomposition in irreducible repre
sentations yields a nondegenerate representationA1 and a
threefold degenerate representationT2. The A1 mode corre-
sponds to an in-phase motion of the four oxygen atoms
wards the central Si atom. In theT2 modes, two oxygen
atoms move closer to the central Si atom, while the other
move away. In order to ensure that the modes do not carr
overall translation, the Si atom is immobile in theA1 mode,
but participates in theT2 modes. In Fig. 1~c!, the density of
states is projected ontoA1 and T2 representations.20 This
analysis shows that the origin of the splitting is associate
the different vibrations in the molecular subunits, the lo
energy component deriving fromT2 modes and the high
energy one fromA1 modes. This assignment is consiste
with the interpretation of infrared measurements,29 with re-
sults from hyper-Raman spectroscopy,30 and with the com-
parison between the spectra of the glass and s
polymorphs.31 It is interesting to note that the peak at 10
meV, which contains a predominant weight of Si motion@see
Fig. 1~a!#, is mostlyT2 and thus results from the Si respon
to the Si-O stretching.
s,
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IV. MEAN-SQUARE DISPLACEMENTS AND ELASTIC
STRUCTURE FACTOR

The mean-square displacement of every atomi ^ui
2& can

be calculated in terms of the vibrational energies and eig
modes:

^ui
2&5(

n

\

2vnmi
uei

nu2@2 n~\vn!11#, ~5!

where the temperature dependence enters through the B
occupation numbern(E)5@exp (E/kBT21)#21. The root
mean-square displacements for oxygen and silicon are g
in Fig. 2. In particular, for the zero-point motion we foun
^uSi

2 &50.005 1660.000 20 Å2 and ^uO
2 &50.010 88

60.001 36 Å2. The ratio of the roots of these values is 0.6
This value precisely corresponds to an average value
various crystalline silica polymorphs which is usually tak
to obtain experimental values for the mean-square displa
ments of the two species separately.32,5 Note that the mean-
square displacements of the individual atoms do not di
much from the average values, as indicated by the sm
standard deviations.

As can be seen from Fig. 2, the calculated values ag
well with experimental values obtained from inelas
neutron-scattering measurements at 50 K.5 In a previous in-
elastic neutron-scattering experiment at 33 K, Price and C
penter measured a mean-square displacement averaged
all the atoms in the sample of^u2&50.007 32 Å2, slightly
lower than the corresponding theoretical value of 0.009
Å 2. By fitting the self scattering at room temperature, Wrig
and Sinclair measured an average mean-square displace
of 0.0121 Å2, significantly smaller than our theoretical valu
of 0.0350 Å2 for room temperature. At present this diffe
ence remains unexplained.

The mean-square displacements can be approximated
formula which does not contain an explicit dependence
the eigenmodes:

FIG. 2. Root mean-square displacements for oxygen~solid! and
silicon atoms~dotted! as a function of temperature. Experiment
values for oxygen~square! and silicon~disc! from recent inelastic
neutron measurements at 50 K are also shown~Ref. 5!.
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^ui
2&>(

n

\

2vnmiN
@2 n~\vn!11#

5
3\2

2mi
E dE

2 n~E!11

E
Z~E!, ~6!

where explicit use was made of the definition of the dens
of states in Eq.~3!. When this formula is used to calcula
the average mean-square displacement for our model v
ous silica, this approximation appears to reproduce the e
average within a couple of percent. This provides suppor
the practice of extracting a value for the mean-square
placement from Eq.~6!,2–4 provided a reasonable estima
for the density of statesZ(E) is known.

Once the equilibrium positionsRi and the corresponding
mean-square displacements^ui

2& are known, the elastic struc
ture factor can be derived:33,2

Sel~q!5
1

N(
i j

bibj

^b2&
e2~Wi1Wj ! eiq•~Ri2Rj !, ~7!

wherebi are the neutron-scattering lengths,

^b2&5
1

N(
i

bi
2 , ~8!

and Wi are Debye-Waller factors which for an isotrop
amorphous system are given by

Wi~q!5q2^ui
2&/6. ~9!

We tookbSi54.149 fm for Si atoms andbO55.805 fm for O
atoms.2

The elastic structure factorSel(q), calculated by taking a
spherical average ofSel(q) over the directions ofq, is com-
pared to the experimental one in Fig. 3.5 The theoretical
curve and the experimental data were both obtained fo
temperature of 50 K. The agreement is very good. The
perimental data decay slightly faster withq, as a conse-
quence of the small difference in the average mean-sq
displacements found between theory (^u2&50.010 97 Å2)

FIG. 3. Elastic structure factorSel(q) ~solid! calculated for 50 K
compared to the experimental one~open circles! measured at the
same temperature~Ref. 5!. The dash-dotted curve corresponds
exp(2q2^u2&/3), where^u2&50.010 97 Å2 is the theoretical mean
square displacement averaged over all the atoms. The dashed
shows the same function with the experimental value of^u2&
50.012 63 Å2 ~Ref. 5!.
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and experiment (̂u2&50.012 63 Å2).5 This is illustrated in
Fig. 3 by the corresponding functions exp (22W̄), where

W̄5q2^u2&/6. ~10!

V. NEUTRON-SCATTERING FUNCTION

Since Si and O have negligible incoherent scattering cr
sections, the one-phonon neutron-scattering function is gi
by2,33

S~q,E!5
1

N^b2&
(
i i 8

bibi 8e
2~Wi1Wi 8!eiq–~Ri 82Ri !

3(
n

\
~q–ei

n!* ~q–ei 8
n

!

2~mimi 8!
1/2vn

@n~\vn!11# d~E2\vn!.

~11!

The notation adopted in this work is close to that in Ref. 2,
which we refer for a more detailed formulation of th
neutron-scattering theory.

In Figs. 4 and 5, the calculatedS(q,E), obtained from
S(q,E) by a spherical average over theq directions, is com-
pared to available experimental data from inelastic neut
scattering.1,5 The theoretical calculations were carried out f
a temperature of 0 K.35 There are two sets of experiment
data in the literature. The earliest data were obtained by C
penter and Price at a temperature of 33 K.1 We reproduce
here theS(q,E) for transferred energies of 49.2, 98.5, a
145.7 meV, corresponding to peaks in the neutron densit
states. More recently the neutron-scattering experiment
repeated at a temperature of 50 K with a higher ene
resolution.5 The S(q,E) functions from this experiment ar
also reported in Figs. 4 and 5 for energies of 15, 50, 67, 1
and 133 meV. Whereas the former experimental data
reproduced with their original units, we were unable to d
duce the units forS(q,E) from Ref. 5. The data from the
latter experiment are therefore reproduced with a single
bitrary scaling factor.

In absolute terms, the theoretical curves generally und
estimate the data measured by Carpenter and Price, with
ferences up to a factor of 2. The agreement between the
and experiment is far better when one considers the osc
tions of the scattering function, which are a direct manife
tation of the coherent scattering of atoms. In particular,
correspondence with the more recent data obtained wi
higher energy resolution is remarkable.5 This accord also
provides further support in favor of the structural model f
vitreous silica consisting of a network of corner-sharing t
rahedra.

For comparison, we also give in Figs. 4 and 5 the scat
ing function in the extreme incoherent approximation:2

Si~q,E!5e22W̄
\2q2

2m̄E
@n~E!11# Z~E!, ~12!

where m̄215( imi
21/N. In this approximation, the oscilla

tions in the scattering function disappear. However, the
tensity and the dependence onq are well approximated. The
incoherent approximation presents significant deviatio

rve
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only at E5106 meV, which corresponds to the peak in t
density of states with a predominant contribution of Si m
tion.

The expression for the incoherent scattering function
also useful to define a generalized density of states in te
of the coherent scattering function:2

G~q,E!5e2W̄
2m̄E

\2q2

1

n~E!11
S~q,E!. ~13!

The oscillations as a function ofq are more pronounced in
G(q,E) than in S(q,E), where they are masked by th
strong q2 exp (22W̄) dependence. In Fig. 6, calculate
G(q,E) for various energiesE are compared to the stati
structure factorS(q) obtained previously for the sam
model.19 At E515 meV, it was found experimentally tha
the phase of the oscillations coincided with that ofS(q), but
that the first sharp diffraction peak~FSDP! had disappeared.5

Our theoretical results confirm this observation. In fact,
sides the disappearance of the FSDP, not only the phas

FIG. 4. Coherent one-phonon dynamic structure factorS(q,E)
calculated at 0 K~solid! for three different values ofE: ~a! E515
meV, ~b! E550 meV, and~c! E567 meV. The dynamic structure
factor Si(q) in the incoherent approximation is also shown~dash-
dotted!. The discs in~b! correspond to inelastic neutron-scatteri
data from Ref. 1 measured at 33 K. The dashed curves corres
to more recent neutron data obtained at 50 K~Ref. 5! and are
reproduced here by scaling the values by a single arbitrary cons
-

s
s

-
but

also the overall shape ofG(q,E) at E515 meV resembles
S(q) very closely. The physical reasons for this resembla
and for the disappearance of the FSDP remain unclear
E550 meV, we found that the oscillation is out of pha
with respect toS(q), in good agreement with the experime
tal observations.5 We also calculatedG(q,E) for E5138
meV andE5146 meV, which correspond to the peak valu
of the high-energy doublet in the density of states. In
attempt to understand the nature of the splitting, the t
components were measured separately, but were not foun
show marked differences.5 This is consistent with the result
in Fig. 6 which show thatG(q,E) at E5138 meV andE
5146 meV differ appreciably only for lowq values.

VI. EFFECTIVE NEUTRON DENSITY OF STATES

The effective neutron density of statesG(E) is obtained
by averaging the generalized density of statesG(q,E) over
q:2

G~E!5

E
q1

q2
dq G~q,E!

q22q1
. ~14!

nd

nt.

FIG. 5. Coherent one-phonon dynamic structure factorS(q,E)
calculated at 0 K~solid! for three different values ofE: ~a! E
5106 meV,~b! E5138 meV, and~c! E5146 meV, which corre-
spond to the principal features in the high-energy part of the sp
trum. Notations as in Fig. 4. The data from Ref. 5 are reprodu
with the same scaling constant as in Fig. 4.
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14 138 57PASQUARELLO, SARNTHEIN, AND CAR
We calculatedG(E) for a temperature of 33 K withq156
Å 21 andq2513 Å21, in the same conditions as in the e
periment of Carpenter and Price.1,2 Very good agreement is
found between theory and experiment as can be seen

FIG. 6. Generalized density of statesG(q,E) calculated at a
temperature of 50 K for various energies and compared to the s
structure factorS(q), previously obtained in Ref. 19 for the sam
model. The open circles in the upper panel are neutron-diffrac
data from Ref. 34.

FIG. 7. Effective neutron density of statesG(E) ~solid! com-
pared to the actual density of statesZ(E) ~dashed!. The experimen-
tal G(E) obtained in Ref. 1 by inelastic neutron scattering is a
shown~discs!. In the same way as in the experiment, the calcula
G(E) is obtained at a temperature of 33 K and by averaging
wave vectorsq between 6 and 13 Å21. We also show the effective
transverse density of statesG'(E) ~dot-dashed! obtained by aver-
aging over the same wave vectors the transverse generalized de
of statesG'(q,E): The longitudinalG(E) ~solid! and the trans-
verseG'(E) ~dot-dashed! are almost indistinguishable on the sca
of the figure.
mFig. 7. The actual density of statesZ(E) is also added for
comparison. For vitreous silica,Z(E) andG(E) do not differ
dramatically. A significant difference is only observed at 1
meV whereG(E) underestimates the actual density of stat
This underestimation is balanced by an overestimat
throughout the rest of the spectrum. The difference betw
Z(E) andG(E) at 106 meV should be related to the wor
agreement between the scattering function and its incohe
approximation at this energy. Note that theG(E) in Fig. 7 is
almost equal to that obtained in Ref. 20, where Deb
Waller factors and Boson factors were omitted. This impl
that the dependence on temperature and finite displacem
is not crucial in the definition ofG(q,E) in Eq. ~13!.

The differences between neutron and infrar
spectra36,37,29has given rise to confusion in the literature a
in some cases to erroneous interpretations.20 It is well known
that in the limit of long wavelengths (q→0), which is
probed in optical experiments, important LO-TO splittin
arise because of the long-range nature of the electric fie38

The role of longitudinal and transverse excitations in t
neutron spectrum is less well understood.

In order to clarify the relation between the neutron and
infrared spectra we introduce thetransversegeneralized den-
sity of statesG'(q,E):

tic

n

d
e

sity

FIG. 8. Longitudinal@G(q,E), solid# and transverse dynami
structure factors@G'(q,E), dashed# for different values of the wave
vectorq, in the Si-O stretching regime. The curves are obtained
a temperature of 0 K.
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G'~q,E!5e2W̄
2m̄E

\2

1

n~E!11

1

N^b2&

3
1

2(i i 8l

bibi 8e
2~Wi1Wi 8!eiq–~Ri 82Ri !

3(
n

\
~ q̂l

'
–ei

n!* ~ q̂l
'
–ei 8

n
!

2~mimi 8!
1/2vn

3@n~\vn!11#d~E2\vn!, ~15!

where q̂l
' ~for l51,2) are two unit vectors which are or

thogonal to the direction ofq and to each other. For everyq,
G'(q,E) results from the average over the two transve
directionsq̂l

' . In the following we only considerG'(q,E)
which is obtained as a spherical average over the direct
of q. If one replaces the unit vectorsq̂l

' in Eq. ~15! by the

unit vectorq̂ in the direction ofq and performs the spherica
average over the directions ofq, one recovers the sam
G(q,E) previously defined in Eq.~13!. ThereforeG(q,E)
andG'(q,E) act as the neutron counterparts of the longi
dinal and transverse dielectric response functions defined
De Leeuw and Thorpe.38

In Fig. 8, the generalized density of statesG(q,E) and
G'(q,E) are shown for different values ofq in the part of
the spectrum corresponding to the stretching modes. In
limit of small q,39 the transverse and the longitudinal spec
show peaks at distinct energy positions. This correpond
what is observed in infrared measurements, with the cav
that the infrared intensities are modulated by the dynam
charges rather than by the neutron-scattering lengths.23 In the
limit of large q the distinction betweenG(q,E) and
G'(q,E) vanishes, both spectra showing a double-pe
structure.

The effective neutron density of states is obtained by
eraging wave vectors which are significantly larger th
those probed in infrared experiments. We averagedG'(q,E)
over the same wave-vector range as in the experimen
Carpenter and Price (6,q,13 Å21), obtaining an effective
e

ns

-
by

he
a
to
at
ic

k

v-
n

of

transversedensity of statesG'(E). We included this trans-
verse density in Fig. 7, where it is compared with the~lon-
gitudinal! G(E). The two spectra are hardly distinguishabl
Thus, typical neutron experiments are carried out in a regi
of wave vectors where the differences between longitudi
and transverse excitations have essentially vanished.

VII. CONCLUSIONS

Using a first-principles approach, we calculated a series
vibrational properties of vitreous silica which are direct
measurable by neutron scattering and performed a c
comparison between theory and experiment. In this stu
we adopted a model structure which was previously gen
ated using first-principles molecular dynamics.19 The proper-
ties which we calculated included the mean-square displa
ments, the elastic structure factor, the dynamic struct
factor, and the effective density of states. Overall the agr
ment with experiment was very good. In particular, the e
fective neutron density of states was well reproduced by
theory. However, calculated and measured dynamic struc
factors showed differences in absolute intensity. Nevert
less, the oscillations as a function ofq, which are a specific
feature of the correlations between the atoms, were ac
rately reproduced in our model. Furthermore, this stu
clarified the relation between neutron and infrared spectra
comprehensive scheme was developed which accounts
the appearance of LO and TO excitations in the limit
small wave vectors~as probed in infrared experiments!, and
which shows how the distinction between LO and TO spe
tra vanishes when larger wave vectors are probed~as in typi-
cal neutron measurements!.
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