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Flux-line lattices in artificially layered superconductors
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The flux-line lattice of superconductors has been investigated when there exists a periodicity in the under-
lying system, such as can occur in artificially layered structures. For small fields parallel to the layers the flux
lines enter the sample in sequential rows, with the possibility of jumps in the magnetization as new rows are
created. As the field is increased these discontinuities gradually decrease, but there still exist transitions
between states that are aligned differently to the periodic direction. Increasing the magnitude of the periodic
potential reduces the competition between differently aligned lattices and tends to lock in one particular
alignment. The effect of transitions on the shear modulus is also discussed and related to the experiments of
Theunisseret al. [Phys. Rev. Lett77, 159(1996]. [S0163-182(08)03921-¢

I. INTRODUCTION (BSCCO, and NbCu multilayers showing different field
dependence®1°
The nature of the flux-line lattice in superconductors still  We investigate here the properties of flux lines within an
attracts much interest. For an isotropic system the equilibinfinite system, under the influence of a potential with period

rium lattice is known to be triangular. We will investigate Ly in they direction. We take the applied field to be in the
situations where this may not be the case. In particular wejirection. This infinite system contains a principal region of
shall impose a one-dimensional periodic structure on an ingidth L, and approximates a layered system. In the absence
finite superconductor, and use this periodicity to model amf the potential, it is well known that flux lines form a peri-
underlying potential. This allows us to model, for example,gdic lattice with hexagonal symmetry in an infinite system.
some of the behavior of artificially layered structures whenwith the periodic potential the flux lines may form a lattice
the field is applied parallel to the layers. that is commensurate with the principal region and we inves-
The interplay between the flux-line lattice and an under+tigate rectangular and centered rectangular structures with
lying periodic potential has already been investigated fothis property. The rectangular structure has basis vectors in

many different superconducting systems. These include thighe x andy planes, and the centered rectangular structure,
concentration of B?, Pb/Ge multilayers with a lattice of sub- the basis vectors. For two differem the centered rectangu-
micron holes} superconducting wires with an hexagonal ar-|ar lattice will be the triangular lattice expected in a pure
ray of artificial pins? and spatially modulated Josephson infinite system. These correspond ¢o= /6 and ¢= /3.
junctions? Figures 1a) and Xb) show ¢=u/6 and ¢= /3, respec-
Using London theory, Brongersmet al® modeled the tively. The state with¢= /6 has the base of its equilateral
magnetization of thin Nb-Cu multilayers with the applied triangle aligned perpendicular to the periodic direction. Con-
field almost parallel to the layers. The magnetic inductionversely, in the state witkb= 7/3 the base is aligned parallel
was allowed to change by permitting the size of the systento the periodic direction. We distinguish between these two
to vary while keeping the number of flux lines fixed. As the states by referring to the centered rectangular structure with
applied field was increased, a series of maxima in the magqb: /6 as the lattice aligned parallel to the periodic direc-
netization was observed. This was due to the flux lines reortion (the§/ axig) and the structure witlp= 7/3 as the lattice
ganizing within the sample, where transitions occurred bealigned perpendicular to the periodic direction.
tween states where the flux lines form rows that divide the On minimizing the Gibbs free energy it is found that the
sample into equal parts. This situation has also been investequilibrium lattice usually hag only approximatelyr/6 or
gated by numerically solving the time-dependent Ginzburgr/3, but the above distinction regarding alignments is used.
Landau equations coupled to Maxwell's equations in a ho-The equilibrium lattice is often a competition between these
mogeneous isotropic superconducting thin flls the field  two alignments, and this competition is most readily seen
applied parallel to the film was increased the magnetizatiomvhen the periodic potential is very weak.
also showed a series of maxima. Away from these maxima As the applied field is varied two distinct types of transi-
there was a series of discontinuities in the magnetization asons are observed between some of these different struc-
more flux lines penetrated into the sample. tures. The simplest, type A, transitions just involve the num-
Critical currents also show similar behavior. Discontinui- ber of rows of flux lines within the principal region
ties in the critical current have been observed at specifiincreasing by one, with no realignment of the lattice. Type B
matching fields where the numbers of rows change. The pdransitions occur between states aligned differently to the pe-
sitions of the maxima in the critical currents is sensitive toriodic direction, and during these transitions the number of
the system used, with YB&uO, (YBCO), Bi,S,CaCyOg  rows changes significantly.
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FIG. 1. A multilayered superconducting structure, with the field applied parallel to the layers. The solid circles represent the flux lines,

which form a lattice commensurate with the principal region, a strip of wigth The lattices shown are centered rectangular structures,
whose basis vectors are separated by the angleTle figure showsa) ¢= /6 and(b) ¢= /3.

The periodic potential can be chosen to favor having thdines both in the limit of low magnetic induction where Lon-
flux lines close to either the edges or the center of the prindon theory will be valid, namely, wheggxb, and at higher
cipal region. This ensures that one of the alignments of thénductions wher&ggx (1—b)? when the LLL is more appro-
flux-line lattice is favored over the other. The sequence opriate. We investigate the LLL first.
transitions therefore can be changed by increasing the The Ginzburg-Landau free energy is
strength of the underlying potential.

The model used to investigate the flux-line lattice is de- f[q’]:f 43
veloped in Sec. Il. The formalism discussed concentrates on
the lowest-Landau-levelLLL) limit in the mean field ap-
proximation. Throughout we shall neglect thermal fluctua-
tions. The transitions are also investigated in the London
limit. For many of these transitions notable jumps in the . .
magnetization are observed. This is not the only propert .hereD2=D~D, D=—i#V —2eA, and the magqehc mdug—
that can be affected by the periodicity of the system. Some o on B:.V.XA'. The LLL. assumes the magnetic screening
the consequences of the periodicity are developed in Sec. IVeNgth is infinite. We will use the Landau gauge whére

() P+ 5w

—i\lf(r)*Dz\If(r)Jr iB2 (1)
2m 2/.L0 '

where we investigate in particular the shear modualys It~ =BXxy, and ignore fluctuations in the magnetic field. In the
“oscillates” in a manner similar to that seen in experimentsLLL the order parameter is expanded in the set of eigenfunc-
by Theunisseret al® tions of D2, using only the degenerate states which have the

Theunissen et al® investigated the properties of a lowest eigenvalue. In the rectangular geometry these degen-
NbN/NbsGe bilayer under the influence of an applied cur-€rate states are
rent and magnetic field. A regular array of channels was 1
etched through the thin NbN_ top Iaygr into the }&e. The ‘przexp< —ipkoy — =5 (X— pk0|r2n)2 ' )
NbN layer, with its much higher critical current than the 215,

Nb;Ge layer, effectively acted as a pinning center for the

H : — 1/2 H
flux lattice. By measuring the shearing force needed for th herelp, is the magnetlg Iengthﬂ—(d)O/quB) . andko IS
flux lines to move along the channels, the shear modulus e wave vector in thg direction whose value is determined

the flux-line lattice could be measured. The shear modulu§” the boundary Coﬂd"'oi‘s- The genera-\l LI.‘L ord_er.pa}ram-
shows a characteristic behaviagecb(1—b)? as the field is  Ster 1S Of the form=Q,_ _..c,¥,, which is periodic in
increased. In the London limétggxb, while in the LLL limit e Y direction over a length.,=2/ko. Obviously states
ces(1—b)2. Superimposed on this functional form was anwhlch do not have this high degree of periodicity of their

oscillatory function that reflected the finite nature of theCrder parameter at the mean field level could exist for a
gayered system. We shall ignore them as even with the im-

not match that in their experiment precisely, it becomes eposed periodicity the phase diagram at the mean field level is

: 9
better approximation to it as the width of the Mbe chan- extremel_y F"%h- _— : :
nels is increased relative to the width of the unetched NbN. In an infinite system, the equ[llbruién configuration of flux
rows. In this situation the pinning effect of the NbN rows can IN€S 1S k”OWT' to pe that .Of a triangte.In our problem the_
be modeled by a periodic potential which encourages th ux_lm_es are |m_ag|ned to interact vv_eakly with an unde_rlylng
location of vortices at the channel edges periodic potential due to the layering. Although we ignore
' the direct contributions of it to the energy at this point, we

assume that this potential acts to impose the periodicjty
Il. BASIC FORMALISM . .
on the ordered state. Hence, the flux lines form a lattice that
The experiments of Theunissen al® suggest the possi- is commensurate with the principal region and repeats over a
bility of transitions between different configurations of flux distancel,, which must be a simple fraction &f, i.e., |,
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FIG. 2. The flux-line lattices with rectangular and centered rect- L e R ¥ - S ay -
angular symmetry. These lattices are commensurate with the prin- R

cipal region, which is a strip of width, . The equilibrium lattice is

- ) FIG. 3. The d d the ratioR=1,,/2l, . It shoul
predominantly a centered rectangular lattice. G.3 e dependence @, on the ratio y/2lx It should

be noted thapBs(R) = BA(1/R).

=L,/N,, whereN, is an integer equal to the number of rows oy g given fieldB, the free energy per unit volume,
of flux lines in the principal region. We mve_stlgat_e reCtan'depends solely on the paramelerif we minimizeF ,,,, the
gular and centered rectangular structures with this propertyj,y |ine lattice will be arranged in the configuration that
as shown in Fig. .2. The flux AIme Iatt|ceAW|th rectangular inimizes BA(R), while keepingB=2RN§(<D0/L§). For
symmetry has basis vectdis=1,y andl,=1,x. The centered  small fieldsB<d,/L? the equilibrium configuration corre-
rectangular structure, also shown in Fig. 1, has basis Vectokhonds toN, =1 as the smallest value @(R) corresponds
l;=—lx+1,y/2 andl,=1,x+1,y/2, and is characterized by to N,=1. As the field is increased there will be transitions
the angle 2 between these two vectors. The model used isetween configurations of differeit, and equalB,. The
shown for a centered rectangular structure, but is easilyransition between stated, =1 andN,=2 occurs wherB
modified for the rectangular lattice. =4d,/L2.

Within the LLL the mean field lineH,, is defined by For larger fields the transitions occur between states near
ag=0 whereB=H., and ag=a(T)+eBA/m. Using the the minima of 85. Most transitions occur between states

linearized expression fox(T), a(T)=—a’(1—t) thenag  With R~ 1/\3 but there are a few transitions to and from
=—a'(1—t—b) wheret is the reduced temperatuféT,, States near the minimum &= V3. All these transitions oc-
andb is the reduced fiel®/B,. T is the mean field tran- cur for constantB between states of equ#la(R) with a
sition temperature whil8, is the straight line extrapolation change inN, .

of H, to zero temperature. The temperature is conveniently

represented by the dimensionless parameter; Ill. GIBBS FREE ENERGY
= ag(7hl,/BeBkT)Y? wherel, is the sample thickness
along the field direction. Low temperatures are represente?
by ar— —o while high temperatures correspond dg—  '¢"
+o. The rescaled free energy per flux line is then

To understand the possibilities of transitions between dif-
ent states at constaHt the relevant quantity to minimize
is not the free energy per flux line, but rather the Gibbs free
energy per unit volumé,,, . The Gibbs free energy per flux
line can be written as

kgTad  B?
Fiux= " 55 707 T 5 Afluxlzs ©)

2BA(R) ~ 2uq a?kgT

2Ba
where A x=®,/B is the area per flux line. The ratio N o ) )
R=1,/2l,, as used by Kleineet al,!* characterizes the lat- Rewriting this in terms of the reduced fields the Gibbs free

tice. Figure 3 shows the dependence of the Abrikosov pa€nergy per flux line becomes
rameter 84 on the ratioR, and it should be noted that ,
1
-1, 5
BA} ©®

1
Gilux=— +—(B—uoH)’L Ak D
flux 2#0( oH) LA ux

Ba(R)=BA(1R), whereB,=(|¥|*)/({|¥]?)?). The square 1, ,[ b—h
lattice corresponds tB=1 and the minima in8,(R) occur gf'UXZE“TkBT 2K 1—t—b
for the equilateral triangular lattice, witR=1/y3 and R

= 3. These two minima correspond to the two alignmentsvhereh= uyH/By. Although a is the single intensive pa-
of the flux lattice relative to the periodic direction. The staterameter that characterizes the free enefgyit is necessary
with ¢==/6 in Fig. Aa) corresponds to the minima &  to show the explicit dependence on the average indu@ion
= /3 and the state witkp= /3 hasR=1/\/3. Therefore, sinc&, = G uxB/PoLz, at constantH andT,
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FIG. 4. A representation of hoR changes ah increases. The
range of values oR that minimize the Gibbs free energy is shown
within the shaded region.
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gUOI(H!TlB): EMngg(h,t,b),

g(h,t,b)=2k*(b—h)?=(1—t—b)?/Ba, (6)
whereb is the reduced magnetic fieli=2RN(27£%/L7)

FIG. 5. The jumps in the magnetization vary as the applied field
is increased, decaying to zero in the lithit=1; for L,=10\, «
=50. The points indicate the change in the magnetization when the

and¢ is the coherence length defined through the upper critiPotential is very weak. The heavy line is a guide to the eye, whose

cal field He,= J2kH =y /2w &% The behavior of the sys-

tem is therefore controlled by and b0=27-r§2/L§.
If the applied fieldh is small, the Gibbs energy(h,t,b)
is dominated by the term (2t—b)?/8,. The minimum free

physical significance is discussed in the next section.

in g(h,t,b) compete with each other. This results in the al-
lowed values oR spreading out from the two values ofy®

and /3.

energy flux line configuration is obtained by being as close These transitions can be found by looking at the allowed

as possible to having=1/\/3 or R=/3. The range of al-
lowed values ob is small, and a$ is increased there is a

values ofR that minimize the Gibbs free energy. The tran-
sitions corresponding to small fields are between states

series of first order transitions at which the lattice recon-defined byR being very close to either {8 or 3. Ash
structs. As the lattice undergoes a reconstruction betweeincreases, the range of values Rfthat minimize the free

different statesV’ (N, , J3R) there are jumps in the magnetic
inductionb. Except for the transitiont(1,1)—W¥(1,3) this
involves a change in the number of “rows” of flux lines and

energy increases, and this leads to the fractional jumip in
dropping.
The size of the jumps in the magnetic induction associ-

these reconstructions can be classified into two categorieated with these transitions is given in Fig. 5. These jumps
The simplest involve just an increase in the number of rowsncrease at smali as approximately'/? but decay to zero in

for two states witlR~1/,/3 or R~ /3. Some of these type A
transitions include¥ (2,1)—¥(3,1) andW¥(4,1)—¥(5,1)

the limit h— 1 following the heavy curve in Fig. 5. The inset
describes in detail the initial transitions, showing the points

and occur between states with the same alignment to thiying on or below the start of the heavy line. Within the LLL
periodic direction. The other set of transitions involves aapproximation the flux lines are not excluded from the
change in the alignment of the flux-line lattice. The type Bsample at smalh as H¢, =0. The flux lines always form a
transitions occur between states near the different minima ofentered rectangular structure and we only consider behavior

Ba(R) and involve either aeductionin the number of rows
combined with a large increase R or anincreasein the
number of rows and a reduction R. These transitions in-
clude¥(3,1)—¥(2,3) and¥ (4,3)—W¥(7,1). By putting in
ascending order the valuesiNZ whereK = 1/y/3 or /3 we

for magnetic inductions larger thady,;,. This is the mag-

netic induction that corresponds to a simple triangular lattice
with N,=1 and R=1/\/3. The first point in the inset corre-
sponds to the transition between stafegl,1) and¥(1,3).

The subsequent sequence of these centered rectangular struc-

can see the appropriate sequence of states. This sequencewgks isW¥(2,1), ¥(3,1), ¥(2,3), ¥(4,1), ¥(5,1) and is
states looks similar to that in the previous section, but theasily predicted to the limih—1. The type A transitions,

states possess a smaller range of valueR.offransitions
occur between states with differe@y,, differentb, and dif-
ferentN, (see Fig. 4.

For very large applied fields, such thatZb—h)? is the
dominant term irg(h,t,b), there is a wide range of equilib-
rium values ofR that are obtained ds is varied. The lattice
distorts from a triangular lattice to ensube=h. However,
transitions between states with differedy still occur, but

such as¥(2,1)—W¥(3,1) (point 3 and ¥(4,1)—W¥(5,1)
(point 6), lie very close to the heavy line. All the other points
in the inset describe type B transition®,(1,1)— ¥ (1,3)
(point 1), ¥(1,3)—-"(2,1) (point 2, ¥(3,1)—-V¥(2,3)
(point 4), ¥(2,3)—~¥(4,1) (point 5, and¥ (5,1)—¥(3,3)
(point 7). The type B transitions tend to lie well below the
heavy line, and these transitions involve a large change in the
number of rows. The heavy line describes the situation when

these transitions involve very small changes in the magnetitype A transitions only occur, which can happen when the
induction b. As the applied fielch is increased there is a strength of the potential is increased. This is discussed in
smooth crossover between these two limits as the two termSec. V.
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t FIG. 7. The change in the magnetization as a function of the
applied fieldn for L,=10x and«x=50. The upper heavy line shows
FIG. 6. The “melting” transition between states with,=8 the jumps associated with the LLL.
andN,=9 for h=6.9x10"*, By=2x10"°.

The low-field behavior using the LLL was dominated by
The transitions can also be observed as the temperaturetide minimum inB(R). It might be thought that using Lon-
varied. For smalN, these “melting” transitions only occur don theory could remove the multiplicity of transitions.
over a very small range of the applied fi¢ld As the range The equilibrium lattice is always a centered rectangular
of allowed values ofR increases the range of field over structure, and the flux lines do not initially enter the principal
which the lattice can be seen to melt also increases. Figure®gion in a single straight row. This is different from a thin
shows the transition between statdq8,=1) and ¥(9, slab geometry, where straight rows of flux lingsctangular
<1). symmetry are frequently the equilibrium structure due to the
The LLL will not be strictly applicable in the limit of surface barrief:'®
small b. The LLL approximation may be valid only in the The flux lines enter as a centered rectangular structure
region wheredAb/oh<0 in Fig. 5. By increasindy, it is ~ With Ny=1, and there is a smooth crossover franil,<1)
possible to shift the maximum iab(h) to smaller values of t0 W(1,>3). The first transition occurs between states
N, but the London theory should be used to investigated th&(1,>3) and ¥(2,<1), and the sequence of structures
properties of the system with small valuesNy. observed is then the same as the LLL limit. At each of the
transitions there is an associated jump in the magnetic induc-
tion, but Fig. 7 shows that these are smaller than in the LLL
IV. LONDON THEORY limit. Again, during the type B transitiondpoint 3,
¥ (3,1)—W¥ (2,3, and point 4¥(2,3—V¥(3,1)] the change in
the magnetization is much smaller than during the type A
transitions [point 2, W¥(2,1)—W¥(3,1), and point 5,

1 w 8 ¥(4,1)—W¥(5,1)] nearby. Therefore, despite the absence of
2_,“02]: J J dri'Vag(ri—rj) dry, ™) the pronounced minimum in the Gibbs free energy the flux-
line lattice shows similar behavior to the LLL limit and the
same sequence of states is observed.

The London free energy is

FLon=

where V,4(r) is the potential defining the local magnetic
inductionB(r)f==,f dr{'V,g(r—r;), the parameterga, 8}
correspond to théx,y,z} components, andli,j} sum over V. NONZERO POTENTIAL
the contributions from all flux lines. We investigate an iso- In the previous Section, the potentia] has not 0n|y been
tropic system, where the Fourier transform of the Londonassumed to be periodic, i.ev(y)=V(y+ L,), but also to
potential for straight flux lines isvaﬁ(k)= 0apS(K)/ (1 only restrict the choice of suitable flux-line lattices. This may
+22k?), N being the London penetration depth. The cutoffbe either an extremely weak potential or one whose contri-
function S(k) = exp(— £€k?) removes the divergences within bution to the total energy is zero. Now we investigate the
London theory due to the absence of the flux line cores. Thequilibrium lattice when the periodic potential does contrib-
use of different cutoffs within London theory has been dis-ute to the overall energy. We define the potential only in the
cussed previousli? principal regionV(y)=V,[cosh@y)—1] where —L,/2<y

We use similar geometries to the previous section and<L,/2 and assume the potential is periodic as described
minimize G, ,n=Fon— B-H with respect to the positions of above. The potential is zero in the center of the principal
the flux lines. Again we assume the flux lines form a latticeregion, but depending on the sign\é§ will either attract or
commensurate with the principal region. repel flux lines form the edges of the principal region. This
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FIG. 8. The changes in the magnetization Ege=\, showing
both the LLL limit (solid squaresand the London limit(open FIG. 10. The shear modulus for the commensurate flux line
circles. lattice with no added potential, showing the oscillatory nature as a

function of the magnetic induction, fdr,= /10 and x=50.
potential then favors states witR= 1/\/3 or those withR

= /3. Assuming that the potential is still weak, we include
just the first order correctiod¥|V(y)|¥) to the ground
state energy.

magnetic induction follow the heavy curve in Fig. 5. This
behavior also occurs in the London limit, where the inclusion

The potential favors the type A transitions between stateg)f a pot_entlal again favors the emstenpe of states perma-
near the same minimum @,(R) and the inclusion of this nently ahgned_ elt.her.parallel or perpe_ndlcular to thaxis.
potential reduces the number of type B transitions \jss The behavior in Fig. 5 fot., /A =10 is controlled byB,.
increased it is then possible to remove transitions betweefeducing the width of the periodic potential at fixed penetra-
the two minima inBa(R) and for transitions to occur be- fon depth, the maximum inAb(h) moves slightly, to
tween states witlR~ 1/\/3 or between states wilR~ 3. In  SmallerN, . Figures 8 and 9 show the jumps in the magne-
a figure analogous to Fig. 4 the allowed valueRafould be tization fqr (_j|fferent Wldths. The LLLsolid squaresand the
one shaded band or the other and there would be no trandondon limit (open circlep are shown together and can be
tions between them. compared with Figs. 5 and 7. The heavy lines indicate the

The repulsive(attractive potential ensures that the lattice transitions that occur in the strong potential limit, and all
chooses alignments aligned parallperpendicular to the  transitions disappear in the lintit— 1. The behavior is very
periodic direction, i.e., the} direction. The jumps in the similar for the three different widths shown, but increasing

the width increases the number of transitions observed.

1672, The shear modulusge 9°F o/ da® wherea is the shear
angle. In the LLL limit,F,,oc1/8,. The Abrikosov param-
Vi eter can be written as a sum over all reciprocal lattice vectors

Q, Ba=Zqexp—Q%2U2 whereU is the inverse magnetic
length U%=27/Anit, Aunit being the area of the unit cell.
This allows direct calculation of the shear modulus for all
lattices.

The modulus changes dramatically as the lattice recon-
structs. Figure 10 showsgg in the LLL, where the oscilla-
tions characterize the rearrangement of the flux-line lattice
within the channel. This shows more oscillations than the
experiments of Theunisset al.® but the introduction of the
(attractive potential models the experiments more closely.
This would seem natural if one regards the NbN regions in
their experiment as regions where the potential has a ten-
dency to trap vortices since an attractive potential encourages
1 vortices to be more at the edges of the channel. The size and

positions of the transitions that Theunissenal® observed

FIG. 9. The changes in the magnetization fige= IO\ show-  indicate transitions only wittAN,=+1 and for R~/3.
ing both the LLL limit (solid squaresand the London limi{open  Therefore, the effects of the interaction of the flux lines with
circles. the underlying periodic potential are likely to be important,
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although the interaction with impurities may hinder exten-potential ensures that one of these alignments is favored over

sive reconstructions with large changesNp. the other and eventually only type A transitions increasing
the number of rows occur. For, less(greatey than zero,
VI]. CONCLUSION the potential favors the flux lines being at the ed@mntej

o . _ and the flux-line lattice is aligned parallg@erpendicularto
For an infinite system it is well known the flux lines form ¢ periodic direction.

a periodic lattice with hexagonal symmetry. Once there iS  The transitions are most easily seen as the applied field is
competition with an underlying potential this is not necessarincreased. However, they also occur as the temperature is
ily the situation. The flux lines still favor lattices close to this yaried and the lattice can appear to melt as the temperature is
ideal lattice, and transitions can be seen between differefficreased. Also associated with these transitions are changes
structures. Using both London theory and the LLL approxXi-in the physical properties of the flux-line lattice, such as the
mation we have investigated some of the properties assoCkhear modulus. The matching fields and the nature ot gge
ated with these structures. As the applied field is increaseghdicate that the experiments of Theunissral® are best

there are notable jumps in the magnetic induction and, hencgygdeled by an attractive potential, which pulls the flux lines
in the magnetization and critical current. These transitiongg the edges of the region.

occur in two ways. Type A transitions just involve an in-
crease in the number of rows of flux lines in the principal
region. Type B transitions occur between states aligned par-
allel and perpendicular to the periodic direction. The differ- It is a pleasure to thank S. Bending for stimulating con-
ent alignments of the lattice correspond to the two competingersations. This work was supported by EPSRC through
minima in BA(R). Increasing the strength of the periodic Grant No. GR/J60681.
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