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Flux-line lattices in artificially layered superconductors

A. M. Thompson and M. A. Moore
Theory Group, Department of Physics, University of Manchester, Manchester M13 9PL, United Kingdom

~Received 25 August 1997!

The flux-line lattice of superconductors has been investigated when there exists a periodicity in the under-
lying system, such as can occur in artificially layered structures. For small fields parallel to the layers the flux
lines enter the sample in sequential rows, with the possibility of jumps in the magnetization as new rows are
created. As the field is increased these discontinuities gradually decrease, but there still exist transitions
between states that are aligned differently to the periodic direction. Increasing the magnitude of the periodic
potential reduces the competition between differently aligned lattices and tends to lock in one particular
alignment. The effect of transitions on the shear modulus is also discussed and related to the experiments of
Theunissenet al. @Phys. Rev. Lett.77, 159 ~1996!#. @S0163-1829~98!03921-6#
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I. INTRODUCTION

The nature of the flux-line lattice in superconductors s
attracts much interest. For an isotropic system the equ
rium lattice is known to be triangular. We will investiga
situations where this may not be the case. In particular
shall impose a one-dimensional periodic structure on an
finite superconductor, and use this periodicity to model
underlying potential. This allows us to model, for examp
some of the behavior of artificially layered structures wh
the field is applied parallel to the layers.

The interplay between the flux-line lattice and an und
lying periodic potential has already been investigated
many different superconducting systems. These include
films with modulated thickness,1 Pb-Bi alloys with periodic
concentration of Bi,2 Pb/Ge multilayers with a lattice of sub
micron holes,3 superconducting wires with an hexagonal a
ray of artificial pins,4 and spatially modulated Josephs
junctions.5

Using London theory, Brongersmaet al.6 modeled the
magnetization of thin Nb-Cu multilayers with the applie
field almost parallel to the layers. The magnetic induct
was allowed to change by permitting the size of the sys
to vary while keeping the number of flux lines fixed. As th
applied field was increased, a series of maxima in the m
netization was observed. This was due to the flux lines re
ganizing within the sample, where transitions occurred
tween states where the flux lines form rows that divide
sample into equal parts. This situation has also been inv
gated by numerically solving the time-dependent Ginzb
Landau equations coupled to Maxwell’s equations in a
mogeneous isotropic superconducting thin film.7 As the field
applied parallel to the film was increased the magnetiza
also showed a series of maxima. Away from these max
there was a series of discontinuities in the magnetization
more flux lines penetrated into the sample.

Critical currents also show similar behavior. Discontinu
ties in the critical current have been observed at spec
matching fields where the numbers of rows change. The
sitions of the maxima in the critical currents is sensitive
the system used, with YBa2CuO7 ~YBCO!, Bi2Sr2CaCu2O8
570163-1829/98/57~21!/13854~7!/$15.00
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~BSCCO!, and NbCu multilayers showing different fiel
dependences.8,9,10

We investigate here the properties of flux lines within
infinite system, under the influence of a potential with peri

Ly in the ŷ direction. We take the applied field to be in theẑ
direction. This infinite system contains a principal region
width Ly and approximates a layered system. In the abse
of the potential, it is well known that flux lines form a per
odic lattice with hexagonal symmetry in an infinite syste
With the periodic potential the flux lines may form a lattic
that is commensurate with the principal region and we inv
tigate rectangular and centered rectangular structures
this property. The rectangular structure has basis vector
the x̂ and ŷ planes, and the centered rectangular structu
shown in Fig. 1, is characterized by the angle 2f between
the basis vectors. For two differentf the centered rectangu
lar lattice will be the triangular lattice expected in a pu
infinite system. These correspond tof5p/6 and f5p/3.
Figures 1~a! and 1~b! show f5p/6 and f5p/3, respec-
tively. The state withf5p/6 has the base of its equilater
triangle aligned perpendicular to the periodic direction. Co
versely, in the state withf5p/3 the base is aligned paralle
to the periodic direction. We distinguish between these t
states by referring to the centered rectangular structure
f5p/6 as the lattice aligned parallel to the periodic dire
tion ~the ŷ axis! and the structure withf5p/3 as the lattice
aligned perpendicular to the periodic direction.

On minimizing the Gibbs free energy it is found that th
equilibrium lattice usually hasf only approximatelyp/6 or
p/3, but the above distinction regarding alignments is us
The equilibrium lattice is often a competition between the
two alignments, and this competition is most readily se
when the periodic potential is very weak.

As the applied field is varied two distinct types of trans
tions are observed between some of these different st
tures. The simplest, type A, transitions just involve the nu
ber of rows of flux lines within the principal region
increasing by one, with no realignment of the lattice. Type
transitions occur between states aligned differently to the
riodic direction, and during these transitions the number
rows changes significantly.
13 854 © 1998 The American Physical Society
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FIG. 1. A multilayered superconducting structure, with the field applied parallel to the layers. The solid circles represent the flu
which form a lattice commensurate with the principal region, a strip of widthLy . The lattices shown are centered rectangular structu
whose basis vectors are separated by the angle 2f. The figure shows~a! f5p/6 and~b! f5p/3.
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The periodic potential can be chosen to favor having
flux lines close to either the edges or the center of the p
cipal region. This ensures that one of the alignments of
flux-line lattice is favored over the other. The sequence
transitions therefore can be changed by increasing
strength of the underlying potential.

The model used to investigate the flux-line lattice is d
veloped in Sec. II. The formalism discussed concentrates
the lowest-Landau-level~LLL ! limit in the mean field ap-
proximation. Throughout we shall neglect thermal fluctu
tions. The transitions are also investigated in the Lond
limit. For many of these transitions notable jumps in t
magnetization are observed. This is not the only prope
that can be affected by the periodicity of the system. Some
the consequences of the periodicity are developed in Sec
where we investigate in particular the shear modulusc66. It
‘‘oscillates’’ in a manner similar to that seen in experimen
by Theunissenet al.9

Theunissen et al.9 investigated the properties of
NbN/Nb3Ge bilayer under the influence of an applied cu
rent and magnetic field. A regular array of channels w
etched through the thin NbN top layer into the Nb3Ge. The
NbN layer, with its much higher critical current than th
Nb3Ge layer, effectively acted as a pinning center for t
flux lattice. By measuring the shearing force needed for
flux lines to move along the channels, the shear modulu
the flux-line lattice could be measured. The shear modu
shows a characteristic behaviorc66}b(12b)2 as the field is
increased. In the London limitc66}b, while in the LLL limit
c66}(12b)2. Superimposed on this functional form was a
oscillatory function that reflected the finite nature of th
channel width. While the geometry of our calculations do
not match that in their experiment precisely, it become
better approximation to it as the width of the Nb3Ge chan-
nels is increased relative to the width of the unetched N
rows. In this situation the pinning effect of the NbN rows c
be modeled by a periodic potential which encourages
location of vortices at the channel edges.

II. BASIC FORMALISM

The experiments of Theunissenet al.9 suggest the possi
bility of transitions between different configurations of flu
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lines both in the limit of low magnetic induction where Lo
don theory will be valid, namely, wherec66}b, and at higher
inductions wherec66}(12b)2 when the LLL is more appro-
priate. We investigate the LLL first.

The Ginzburg-Landau free energy is

F@C#5E d3r Fa~T!uC~r !u21
b

2
uC~r !u4

2
1

2m
C~r !* D2C~r !1

1

2m0
B2G , ~1!

whereD25D•D, D52 i\¹22eA, and the magnetic induc
tion B5¹3A. The LLL assumes the magnetic screeni
length is infinite. We will use the Landau gauge whereA
5Bxŷ, and ignore fluctuations in the magnetic field. In t
LLL the order parameter is expanded in the set of eigenfu
tions of D2, using only the degenerate states which have
lowest eigenvalue. In the rectangular geometry these de
erate states are

Cp5expS 2 ipk0y2
1

2l m
2 ~x2pk0l m

2 !2D , ~2!

wherel m is the magnetic lengthl m5(F0 /2pB)1/2 andk0 is
the wave vector in they direction whose value is determine
by the boundary conditions. The general LLL order para
eter is of the formC5Q(p52`

` cpCp , which is periodic in
the y direction over a lengthLy52p/k0. Obviously states
which do not have this high degree of periodicity of th
order parameter at the mean field level could exist fo
layered system. We shall ignore them as even with the
posed periodicity the phase diagram at the mean field lev
extremely rich.9

In an infinite system, the equilibrium configuration of flu
lines is known to be that of a triangle.11 In our problem the
flux lines are imagined to interact weakly with an underlyi
periodic potential due to the layering. Although we igno
the direct contributions of it to the energy at this point, w
assume that this potential acts to impose the periodicityLy
on the ordered state. Hence, the flux lines form a lattice
is commensurate with the principal region and repeats ov
distancel y , which must be a simple fraction ofLy , i.e., l y
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13 856 57A. M. THOMPSON AND M. A. MOORE
5Ly /Ny , whereNy is an integer equal to the number of row
of flux lines in the principal region. We investigate recta
gular and centered rectangular structures with this prop
as shown in Fig. 2. The flux line lattice with rectangul
symmetry has basis vectorsl15 l yŷ andl25 l xx̂. The centered
rectangular structure, also shown in Fig. 1, has basis vec
l152 l xx̂1 l yŷ/2 andl25 l xx̂1 l yŷ/2, and is characterized b
the angle 2f between these two vectors. The model used
shown for a centered rectangular structure, but is ea
modified for the rectangular lattice.

Within the LLL the mean field lineHc2
is defined by

aB50 where B5Hc2
and aB5a(T)1eB\/m. Using the

linearized expression fora(T), a(T)52a8(12t) thenaB
52a8(12t2b) wheret is the reduced temperatureT/Tc0
andb is the reduced fieldB/Bc0. Tc0 is the mean field tran-
sition temperature whileBc0 is the straight line extrapolation
of Hc2

to zero temperature. The temperature is convenie

represented by the dimensionless parameteraT
5aB(p\Lz /beBkBT)1/2, whereLz is the sample thicknes
along the field direction. Low temperatures are represen
by aT→2` while high temperatures correspond toaT→
1`. The rescaled free energy per flux line is then

Ff lux52
kBTaT

2

2bA~R!
1

B2

2m0
Af luxLz , ~3!

where Af lux5F0 /B is the area per flux line. The rati
R5 l y/2l x , as used by Kleineret al.,11 characterizes the lat
tice. Figure 3 shows the dependence of the Abrikosov
rameter bA on the ratio R, and it should be noted tha
bA(R)5bA(1/R), wherebA5^uCu4&/(^uCu2&2). The square
lattice corresponds toR51 and the minima inbA(R) occur
for the equilateral triangular lattice, withR51/A3 and R
5A3. These two minima correspond to the two alignme
of the flux lattice relative to the periodic direction. The sta
with f5p/6 in Fig. 2~a! corresponds to the minima atR
5A3 and the state withf5p/3 hasR51/A3.

FIG. 2. The flux-line lattices with rectangular and centered re
angular symmetry. These lattices are commensurate with the
cipal region, which is a strip of widthLy . The equilibrium lattice is
predominantly a centered rectangular lattice.
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For a given fieldB, the free energy per unit volume,Fvol ,
depends solely on the parameterR. If we minimizeFvol , the
flux line lattice will be arranged in the configuration th
minimizes bA(R), while keepingB52RNy

2(F0 /Ly
2). For

small fieldsB,F0 /Ly
2 the equilibrium configuration corre

sponds toNy51 as the smallest value ofbA(R) corresponds
to Ny51. As the field is increased there will be transitio
between configurations of differentNy and equalbA . The
transition between statesNy51 andNy52 occurs whenB
54F0 /Ly

2 .
For larger fields the transitions occur between states n

the minima of bA . Most transitions occur between stat
with R'1/A3 but there are a few transitions to and fro
states near the minimum atR5A3. All these transitions oc-
cur for constantB between states of equalbA(R) with a
change inNy .

III. GIBBS FREE ENERGY

To understand the possibilities of transitions between
ferent states at constantH the relevant quantity to minimize
is not the free energy per flux line, but rather the Gibbs f
energy per unit volumeGvol . The Gibbs free energy per flu
line can be written as

Gf lux52
aT

2kBT

2bA
1

1

2m0
~B2m0H !2LZAf lux . ~4!

Rewriting this in terms of the reduced fields the Gibbs fr
energy per flux line becomes

Gf lux5
1

2
aT

2kBTH 2k2S b2h

12t2bD 2

2
1

bA
J , ~5!

whereh5m0H/Bc0. AlthoughaT is the single intensive pa
rameter that characterizes the free energyF, it is necessary
to show the explicit dependence on the average inductionB.
Therefore, sinceGvol5Gf luxB/F0LZ , at constantH andT,

t-
in-

FIG. 3. The dependence ofbA on the ratioR5 l y /2l x . It should
be noted thatbA(R)5bA(1/R).
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57 13 857FLUX-LINE LATTICE S . . .
Gvol~H,T,B!5
1

2
m0Hc

2g~h,t,b!,

g~h,t,b!52k2~b2h!22~12t2b!2/bA , ~6!

whereb is the reduced magnetic fieldb52RNy
2(2pj2/Ly

2)
andj is the coherence length defined through the upper c
cal field Hc2

5A2kHc5F0 /2pj2. The behavior of the sys

tem is therefore controlled byk andb052pj2/Ly
2 .

If the applied fieldh is small, the Gibbs energyg(h,t,b)
is dominated by the term (12t2b)2/bA . The minimum free
energy flux line configuration is obtained by being as clo
as possible to havingR51/A3 or R5A3. The range of al-
lowed values ofb is small, and ash is increased there is
series of first order transitions at which the lattice reco
structs. As the lattice undergoes a reconstruction betw
different statesC(Ny ,A3R) there are jumps in the magnet
induction b. Except for the transitionC(1,1)→C(1,3) this
involves a change in the number of ‘‘rows’’ of flux lines an
these reconstructions can be classified into two catego
The simplest involve just an increase in the number of ro
for two states withR'1/A3 or R'A3. Some of these type A
transitions includeC(2,1)→C(3,1) andC(4,1)→C(5,1)
and occur between states with the same alignment to
periodic direction. The other set of transitions involves
change in the alignment of the flux-line lattice. The type
transitions occur between states near the different minim
bA(R) and involve either areductionin the number of rows
combined with a large increase inR or an increasein the
number of rows and a reduction inR. These transitions in-
cludeC(3,1)→C(2,3) andC(4,3)→C(7,1). By putting in
ascending order the values ofKNy

2 whereK51/A3 orA3 we
can see the appropriate sequence of states. This sequen
states looks similar to that in the previous section, but
states possess a smaller range of values ofR. Transitions
occur between states with differentbA , differentb, and dif-
ferentNy ~see Fig. 4!.

For very large applied fields, such that 2k2(b2h)2 is the
dominant term ing(h,t,b), there is a wide range of equilib
rium values ofR that are obtained ash is varied. The lattice
distorts from a triangular lattice to ensureb'h. However,
transitions between states with differentNy still occur, but
these transitions involve very small changes in the magn
induction b. As the applied fieldh is increased there is
smooth crossover between these two limits as the two te

FIG. 4. A representation of howR changes ash increases. The
range of values ofR that minimize the Gibbs free energy is show
within the shaded region.
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in g(h,t,b) compete with each other. This results in the
lowed values ofR spreading out from the two values of 1/A3
andA3.

These transitions can be found by looking at the allow
values ofR that minimize the Gibbs free energy. The tra
sitions corresponding to small fieldsh are between state
defined byR being very close to either 1/A3 or A3. As h
increases, the range of values ofR that minimize the free
energy increases, and this leads to the fractional jump ib
dropping.

The size of the jumps in the magnetic induction asso
ated with these transitions is given in Fig. 5. These jum
increase at smallh as approximatelyh1/2 but decay to zero in
the limit h→1 following the heavy curve in Fig. 5. The inse
describes in detail the initial transitions, showing the poi
lying on or below the start of the heavy line. Within the LL
approximation the flux lines are not excluded from t
sample at smallh as Hc1

50. The flux lines always form a
centered rectangular structure and we only consider beha
for magnetic inductions larger thanBmin . This is the mag-
netic induction that corresponds to a simple triangular latt
with Ny51 andR51/A3. The first point in the inset corre
sponds to the transition between statesC(1,1) andC(1,3).
The subsequent sequence of these centered rectangular
tures is C(2,1), C(3,1), C(2,3), C(4,1), C(5,1) and is
easily predicted to the limith→1. The type A transitions,
such asC(2,1)→C(3,1) ~point 3! and C(4,1)→C(5,1)
~point 6!, lie very close to the heavy line. All the other poin
in the inset describe type B transitions,C(1,1)→C(1,3)
~point 1!, C(1,3)→C(2,1) ~point 2!, C(3,1)→C(2,3)
~point 4!, C(2,3)→C(4,1) ~point 5!, andC(5,1)→C(3,3)
~point 7!. The type B transitions tend to lie well below th
heavy line, and these transitions involve a large change in
number of rows. The heavy line describes the situation w
type A transitions only occur, which can happen when
strength of the potential is increased. This is discussed
Sec. V.

FIG. 5. The jumps in the magnetization vary as the applied fi
is increased, decaying to zero in the limith→1; for Ly510l, k
550. The points indicate the change in the magnetization when
potential is very weak. The heavy line is a guide to the eye, wh
physical significance is discussed in the next section.
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13 858 57A. M. THOMPSON AND M. A. MOORE
The transitions can also be observed as the temperatu
varied. For smallNy these ‘‘melting’’ transitions only occur
over a very small range of the applied fieldh. As the range
of allowed values ofR increases the range of field ove
which the lattice can be seen to melt also increases. Figu
shows the transition between statesC(8,>1) and C(9,
<1).

The LLL will not be strictly applicable in the limit of
small b. The LLL approximation may be valid only in th
region where]Db/]h,0 in Fig. 5. By increasingb0 it is
possible to shift the maximum inDb(h) to smaller values of
Ny but the London theory should be used to investigated
properties of the system with small values ofNy .

IV. LONDON THEORY

The London free energy is

FLon5
1

2m0
(
i j

E E dr i
aVab~r i2r j ! dr j

b , ~7!

where Vab(r … is the potential defining the local magnet
inductionB(r )b5( i* dr i

aVab(r2r i), the parameters$a,b%
correspond to the$x,y,z% components, and$ i , j % sum over
the contributions from all flux lines. We investigate an is
tropic system, where the Fourier transform of the Lond
potential for straight flux lines isṼab(k)5dabS(k)/(1
1l2k2), l being the London penetration depth. The cut
function S(k)5exp(2j2k2) removes the divergences withi
London theory due to the absence of the flux line cores.
use of different cutoffs within London theory has been d
cussed previously.12

We use similar geometries to the previous section
minimizeGLon5FLon2B•H with respect to the positions o
the flux lines. Again we assume the flux lines form a latt
commensurate with the principal region.

FIG. 6. The ‘‘melting’’ transition between states withNy58
andNy59 for h56.931024, B05231026.
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The low-field behavior using the LLL was dominated b
the minimum inbA(R). It might be thought that using Lon
don theory could remove the multiplicity of transitions.

The equilibrium lattice is always a centered rectangu
structure, and the flux lines do not initially enter the princip
region in a single straight row. This is different from a th
slab geometry, where straight rows of flux lines~rectangular
symmetry! are frequently the equilibrium structure due to t
surface barrier.6,13

The flux lines enter as a centered rectangular struc
with Ny51, and there is a smooth crossover fromC~1,,1!
to C~1,.3!. The first transition occurs between stat
C~1,.3! and C~2,,1!, and the sequence of structure
observed is then the same as the LLL limit. At each of t
transitions there is an associated jump in the magnetic ind
tion, but Fig. 7 shows that these are smaller than in the L
limit. Again, during the type B transitions@point 3,
C~3,1!→C~2,3!, and point 4,C~2,3!→C~3,1!# the change in
the magnetization is much smaller than during the type
transitions @point 2, C~2,1!→C~3,1!, and point 5,
C~4,1!→C~5,1!# nearby. Therefore, despite the absence
the pronounced minimum in the Gibbs free energy the fl
line lattice shows similar behavior to the LLL limit and th
same sequence of states is observed.

V. NONZERO POTENTIAL

In the previous section, the potential has not only be
assumed to be periodic, i.e.,V(y)5V(y1Ly), but also to
only restrict the choice of suitable flux-line lattices. This m
be either an extremely weak potential or one whose con
bution to the total energy is zero. Now we investigate t
equilibrium lattice when the periodic potential does contr
ute to the overall energy. We define the potential only in
principal region V(y)5V0@cosh(ay)21# where 2Ly/2,y
,Ly/2 and assume the potential is periodic as descri
above. The potential is zero in the center of the princi
region, but depending on the sign ofV0 will either attract or
repel flux lines form the edges of the principal region. Th

FIG. 7. The change in the magnetization as a function of
applied fieldh for Ly510l andk550. The upper heavy line show
the jumps associated with the LLL.
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57 13 859FLUX-LINE LATTICE S . . .
potential then favors states withR51/A3 or those withR
5A3. Assuming that the potential is still weak, we inclu
just the first order correction̂CuV(y)uC& to the ground
state energy.

The potential favors the type A transitions between sta
near the same minimum ofbA(R) and the inclusion of this
potential reduces the number of type B transitions. AsV0 is
increased it is then possible to remove transitions betw
the two minima inbA(R) and for transitions to occur be
tween states withR;1/A3 or between states withR;A3. In
a figure analogous to Fig. 4 the allowed values ofR would be
one shaded band or the other and there would be no tra
tions between them.

The repulsive~attractive! potential ensures that the lattic
chooses alignments aligned parallel~perpendicular! to the
periodic direction, i.e., theŷ direction. The jumps in the

FIG. 8. The changes in the magnetization forLy5l, showing
both the LLL limit ~solid squares! and the London limit~open
circles!.

FIG. 9. The changes in the magnetization forLy5A10l show-
ing both the LLL limit ~solid squares! and the London limit~open
circles!.
s

n

si-

magnetic induction follow the heavy curve in Fig. 5. Th
behavior also occurs in the London limit, where the inclusi
of a potential again favors the existence of states per
nently aligned either parallel or perpendicular to they axis.

The behavior in Fig. 5 forLy /l510 is controlled byB0.
Reducing the width of the periodic potential at fixed penet
tion depth l, the maximum inDb(h) moves slightly, to
smallerNy . Figures 8 and 9 show the jumps in the magn
tization for different widths. The LLL~solid squares! and the
London limit ~open circles! are shown together and can b
compared with Figs. 5 and 7. The heavy lines indicate
transitions that occur in the strong potential limit, and
transitions disappear in the limith→1. The behavior is very
similar for the three different widths shown, but increasi
the width increases the number of transitions observed.

The shear modulusc66}]2Fvol /]a2 wherea is the shear
angle. In the LLL limit,Fvol}1/bA . The Abrikosov param-
eter can be written as a sum over all reciprocal lattice vec
Q, bA5(Qexp2Q2/2U2, whereU is the inverse magnetic
length U252p/Aunit , Aunit being the area of the unit cell
This allows direct calculation of the shear modulus for
lattices.

The modulus changes dramatically as the lattice rec
structs. Figure 10 showsc66 in the LLL, where the oscilla-
tions characterize the rearrangement of the flux-line lat
within the channel. This shows more oscillations than
experiments of Theunissenet al.,9 but the introduction of the
~attractive! potential models the experiments more close
This would seem natural if one regards the NbN regions
their experiment as regions where the potential has a
dency to trap vortices since an attractive potential encoura
vortices to be more at the edges of the channel. The size
positions of the transitions that Theunissenet al.9 observed
indicate transitions only withDNy511 and for R;A3.
Therefore, the effects of the interaction of the flux lines w
the underlying periodic potential are likely to be importan

FIG. 10. The shear modulus for the commensurate flux l
lattice with no added potential, showing the oscillatory nature a
function of the magnetic induction, forLy5A10l andk550.
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although the interaction with impurities may hinder exte
sive reconstructions with large changes inNy .

VI. CONCLUSION

For an infinite system it is well known the flux lines form
a periodic lattice with hexagonal symmetry. Once there
competition with an underlying potential this is not necess
ily the situation. The flux lines still favor lattices close to th
ideal lattice, and transitions can be seen between diffe
structures. Using both London theory and the LLL appro
mation we have investigated some of the properties ass
ated with these structures. As the applied field is increa
there are notable jumps in the magnetic induction and, he
in the magnetization and critical current. These transitio
occur in two ways. Type A transitions just involve an i
crease in the number of rows of flux lines in the princip
region. Type B transitions occur between states aligned
allel and perpendicular to the periodic direction. The diffe
ent alignments of the lattice correspond to the two compe
minima in bA(R). Increasing the strength of the period
lv.

v,

ett

n

-

s
r-

nt
-
ci-
d
e,
s

l
r-

-
g

potential ensures that one of these alignments is favored
the other and eventually only type A transitions increas
the number of rows occur. ForV0 less ~greater! than zero,
the potential favors the flux lines being at the edges~center!
and the flux-line lattice is aligned parallel~perpendicular! to
the periodic direction.

The transitions are most easily seen as the applied fie
increased. However, they also occur as the temperatur
varied and the lattice can appear to melt as the temperatu
increased. Also associated with these transitions are cha
in the physical properties of the flux-line lattice, such as
shear modulus. The matching fields and the nature of thec66
indicate that the experiments of Theunissenet al.9 are best
modeled by an attractive potential, which pulls the flux lin
to the edges of the region.
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