PHYSICAL REVIEW B VOLUME 57, NUMBER 3 15 JANUARY 1998-I

Mechanism of porous-silicon luminescence
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We discuss the discrete spectrum induced by bulges on threadlike mesoscopic objects, using two models, a
continuous hard-wall waveguide and a discrete tight-binding model with two sorts of atomic orbitals. We show
that elongated bulges induce numerous quasibound states. In the discrete model we also evaluate the probabil-
ity of transition between the localized states and extended ones of the “valence” band. We suggest this as a
mechanism governing the porous-silicon luminescence. In addition, the model reproduces the dominance of
nonradiative transitions, blueshift for finer textures, and luminiscence suppression at low temperatures.
[S0163-182607)03336-5

The effect of luminescence of porous silicons has at- Below we shall illustrate this feature on a tube with a
tracted a lot of attention recentlyThere are various attempts single elongated bulge. On the other hand, any model of
to explain it, but none of them can be regarded as fullyporous-silicon luminiscence has to be able to reproduce the
convincing at present. It is clear that the porous materiabther experimentally established properties, notably the
texture plays the decisive role, because first the effect is aldominance of the nonradiative transition mode as well as the
sent in the bulk, and second, a refinement of the structure fsequency and temperature dependence of the effect. For this
known to cause a blue shift of the emitted light. In this papempurpose the free-particle quantum waveguide model is over-
we intend to discuss one possible quantum mechanicaimplified, because its continuous spectrum consists of a
mechanism which employs transitions between the valencsingle band. This motivates us to treat the essentially same
band and a large family of localized states below the consituation in the tight-binding setting, considering chains of
ductance band; we put emphasis on describing the geometriatoms” to which other chains of finite length are laterally
conditions under which such families may exist. attached. If the atomic orbitals are of two different sorts, the

It has been suggested that quasibound states in small cryspectrum of an infinite chain can consist of distinguished
tallites may play important rolelt is natural to expect that bands which would play the role of the valence and conduc-
the interior of the porous medium resembles a sort of a caltance band, respectively.
cite cave containing not only loose-end material “drops” but  Adding a finite chain will cause appearance of bound
also other structures; our main hypothesis is thaignificant  states whose distance from the band edges is controlled by
portion of them are threadlike objects of a varying crossthe coupling strength between the two chains. Truncating the
section Under this assumption we may employ recent resultsliscrete “tube,” we are able to find the spectrum and the
on electron bound states in quantum wires which are bentorresponding eigenfunctions numerically. This will allow us
protruded, or coupled laterally to another wifé. The to estimate the rate of transition between the quasibound
mechanism behind the existence of these bound states is atates below the conductance band and extended states in the
effective attractive potential induced by the geometric modi-valence band. This quantity can be compared to the probabil-
fication of the tube. Our key observation is that if the defor-ity of nonradiative transitions due to a tunneling escape of an
mation extends over a long inter@élative to the tube cross electron localized in a bulge to a neighboring bulge or to the
sectiorn), the wave guide can support numerous bound statelsulk from which the treadlike structure spreads.
and the discrete spectrum has typical one-dimensional fea- Let us describe briefly the two models; more details will
tures: most eigenvalues are found at the bottom of the spebe given in a forthcoming papérin the continuous model
trum, i.e., away from the continuum. Hence if the variationwe consider a tube with hard walls which has a constant
of the tube cross section produces protrusions which areross section except for a finite part where it is protrutied.
rather long than wide, such a tube has many more quasiFhe bulge produces bound states no matter how smalPit is,
bound states than other conceivable structures, so the correut of course, the number of such states and the distribution
sponding radiative transitions are responsible for the mosbf the corresponding energy levels depend substantially on
part of the emitted light. the geometry. For instance, a hard-wall planar strip of a unit
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genvalues of the Laplacian with the Dirichlet condition in
L2(2,); the corresponding eigenfunctions ang(x,y),
j=1,2,...;y being the transverse variatde The “full”
wave function may be then written in the form
H(x,y)=Z;a;(X) #;(X,y) with the normalization
T2 52 ] ay(x)[Pdx=1.
x The protrusion-induced discrete spectrum is essentially

determined again by the spectrum of the bubble alone; one

Z can employ the bracketing argument closing the bulge at

(@ x=* 3 L by the Dirichlet and Neumann “lid,” respectively.
If we assume now that the bulgel@g and its cross section
changes only slowlwith respect toc the longitudinal deriva-
tives of y; may be neglected and we arrive at a Born-
Oppenheimer-type approximation: the stationary Schro
dinger equation decouples into a family of equations for the

xx xx xx slow motion
XX XX XX XX XX XX XX
N{XX XX XX XX }N+M
x

o —a)(x)+ vj(x)a;(x) =Eaj(x), 2
(b) where the transverse eigenvalues play role of the potentials.
At the same time, if the bulge is long the eigenval&gs of
FIG. 1. The models(a) A tubular guide with a bulge. The the jth equation are determined approximately by the semi-
bound states of an infinite tube change to quasibound when welassical quantization condition
couple it to the bulk(b) The tight-binding model.

width with a stub of the same width and lengfrconsidered fM_(E) VE—vj()dx=nm+u;, ©)

in Ref. 9 has just one bound stax€/) such that\(/) .

=72—m*/?2+0(/% for small / and lim_.\(/) whereM;(E):={x:vj(x)<E} is the classically allowed re-

<0.9372, cf. Refs. 4,10, making the protrusion two-sided, gion; the explicit value of the Maslov factgs; is not impor-

we have still one bound state with the eigenvalue whichfant as long as we are interested in the distance

cannot be lower than 0.66. OEj n»=Ejn+1—Ejn between the adjacent energy levels
On the other hand, elongated bulges produce numeroushich determines the density of stajeE). Expanding the

bound states. As a simple example, consider a boxlike presquare root and neglecting the difference betwig(E; )

trusion on a straight planar strip, so the width is 4 on an ~ and M;(E; 1), we find that the latter approaches in the

interval of a lengthL and 1 otherwise. By a bracketing limit L—c the form

argument! the discrete energy levels are squeezed between

the eigenvalues of the Laplacian on the rectangle 1 dx _
[0,L]X[0,1+ »] with the Dirichlet condition on the “paral- p(E)= 2 E _ — ' 4)
" . . ™7 JIMiE) VE—vi(X)
lel” boundary and Dirichlet or Neumann, respectively, on
the “perpendicular” one, that is, recall that we are interested only in the behavior of this func-

) 5 tion belowr,(L/2), the bottom of the continuous spectrum,
( W_n) i where just one or several lowest transverse modes can have
L M;(E) #0.
Returning to our example of a boxlike bulge on a unit-
width strip, we find that for largé the jth mode contribu-
tion to the discrete-spectrum density is

] 2

1+79

7]

1+79
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L

2 —
+(7T(n 1)

forn=1,2,.... Thediscrete spectrum consists of thosg,
which are belowr?, the bottom of the continuous spectrum;
it is clear that with the lowest transverse mogle;1, such
states exist for anyy>0 as long a4 is large enough. More- L i
over, in the casé>1 there are numerous bound states, with Pj(E):(%M _(1T
most eigenvalues being concentrated in the vicinity of ' d
m(1+7) 2, or the higher thresholdsn()*(1+ 7) 2, pro-  with a singularity atE]"":=(mj/1+ 7)?.
vided the latter are below the bottom of the continuous spec- Other shapes may change the form of the distribution; it is
trum. These conclusions extend easily to a tube with a stepnore concentrated close to the bottom of the discrete spec-
like bulge in three dimensions. trum the closer is the bulge to the cylindrical shape. For
The fact that elongated bulges produce many bound statésstance, consider the strip of the width(x/L), where
is not restricted to the above simple example; on the othed(£):=(1+ 7)(1—b&?)Y? and b is chosen in such a way
hand, the eigenvalue distribution depends substantially othatd(+ 1/2)=1. Thejth term on the right-hand sid®HS)
the protrusion shape. To get a better understanding, considef Eq. (4) is then expressed as

a tube whose cross secti@, is constant fofx|>3L and

' i - _1p 1 i L(1+7p) E-EM™
varies smoothly in the intervdl— 5L, 5L] [see Fig. 13)]. pi(E)= E | 6)
T 2m{p2+ ) E

For a fixedx let v1(X)<v,(X)<w3(x)<--- denote the ei-

21-1/2
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- ; Inserting the values of the constants into E@), the
m mmmmmnﬂ above observation tells us that the transition probability does
) = 5 2 4 not exceed 19s ™% it increases, but not more than one order

of magnitude, whemw runs through the visible spectrum. The
last named property conforms with the experimentally ob-

FIG. 2. The spectrum of the tight-binding model. M=
served shorter lifetime at the blue edge of the specfrum.

where E}“i” is the same as above affidis the full elliptic It is further knowrt that W,(w) exhibits a dramatic de-
integral of the second kintf. it has still a peak aEzEjm'” crease below the room temperature. To explain this effect
but less pronounced. one has to take into account that the final-state probability is

Let us now pass to description of the tight-binding model.determined by the Fermi distribution, and therefore the ma-
We employ the simplest possible choice for the atomic getrix element in Eq. (7) should be multiplied by
ometry as well as for the interactions between orbitals. WePﬁ,M:zl—(eB(EF—uul)—l_ Assuming that the chemical
considerN parallel chains of atoms forming a strip in the potential takes value in the middle of the gap between the
plane to which we add! finite-length chains which consti- two bands, the above factor is of order ef“° at room
tute a bulggFig. 1(b)]. To mimick the band structure of the temperature and the decrement is inversely proportional to
semiconductor spectrum, one can choose interactions bd- the suppression is larger at the blue edge of the spectrum.
tween orbitals(side-diagonal elements of the tight-binding  Other properties of this model also conform with experi-
Hamiltonian switching between two values andb in the  ence for the effect under consideration. Long bulges support
horizontal direction; vertically one can choose the samdnany excited states which is necessary to create a macro-
structure or simply a single coupling constant scopic luminosity output. At the same time, a simple scaling

If one has an infinite horizontal strip of widti with no ~ argument shows that the distance between the bound states
bulge the corresponding spectrum can be obtained summirnd the valence band increases as the lateral size of the tubes
the spectrum of one horizontal infinite chdire., the pair of and bulges become smaller; hence a finer material texture
intervals (—a—b,b—a) and @—b,a+b)] and the discrete results in a blueshift.
spectrum corresponding to a vertical line Mfatoms; the Experimental data show a low emmision efficiency of
latter is of course contained in the mentioned intervals if thephotoluminiscence measured at room temperature. This
structure is the same in both directions. The resulting specstrongly suggests that the radiative recombinatith is
trum still exhibit gaps ifa andb are chosen appropriately; in dominated by the nonradiative probabilit,, which in-
general they become narrower with increasihg volves the escape of the confined carriggkectrons, holes

The spectrum of an infinite strip of widtN with a finite ~ from a bulge into a more extended/less passivated neighbor-
number of bulges of widtivl has a continuous part identical hood where a nonradiative recombination can occur. Hence
with that of the “unperturbed” strip and eigenvalues outsidethe emitted intensity (w) ~W,(w) 7(w), where the lifetime
of it. The latter are nevertheless contained in the spectrum of(w)=[W,(w) +W,(»)] 1. Independent measurements
a strip of widthN+M. Figure 2 shows the eigenvalue plot of () and (@) show thatW,,>W, andW,, (o) =Ae*"®,
obtained numerically for a chaiN=1) of 40 “atoms” and  In the framework of both our model a decay process related
a bulge of 14 “atoms,”a= 3, b=1 (in the vertical direction to W, occurs if the bulged tube is connected to a wider part
b=1). We can distinguish the eigenvalues in the intervalsof the structurgbulk). The tunneling probability can be es-
(—4,—2) and(2,4) corresponding to the extended states oftimated in the second model from the eigenfunction detay
the “valence” and “conduction” bands, and those outside
corresponding to states localized mainly on the bulges with

an exponential decay outside. In case of several bulges it 1

may occur that an eigenstate is supported by more than ong/,, (w)=Im(E;—E;)/A= VREE;—E¢)|¢re (L)]?,
of them; this happens typically if the system has a symmetry. V2me '
Notice that the extended states are not Bloch states due to the ®

lack of translational invariance.

The knowledge of the eigenfunctions makes it possible tawhere L is the tunneling distance. For typical light photon
compute the radiative transition probability between the exenergies we gatV,,~10°%e~ *®L wherey(E) is a function
cited bound states living in the bulges and the valence-bandf the distance between the eigenvalue and the bottom of the
extended states which is given in general by the Fermi‘conduction” band. We geW,,,>W, at the room tempera-
golden rule ture as long a4 <50 a.u.; for a cooler material and bluer

light the dominance is preserved at longer distances.

It is certainly not easy to decide which mechanism is re-
> 8(E—Ei—fiw) sponsible for the porous-silicon luminiscence as long as we
B know little about the actual texture, and it is fully conceiv-

2 able that the effect comes from conspiracy of different physi-
f (E.1)gi(F) by (F)d®x] . (7)  cal processes. On the other hand, it seems to be straightfor-
A ward to check experimentally whether the states discussed in
We have evaluated the matrix element in question. It is nonthis paper may contribute, since quantum wires with bulges
zero but not large; the value is typically at least 2—3 orderof appropriate shape can be fabricated. One caufdytiori,
of magnitude below the upper bound given by the potentiataylor in this way luminiscent systems emitting light of pre-
step between the bulge ends. scribed properties. Moreover, since the mechanism produc-
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ing bound states in infinite tubes are similar, the same can beonradiative transitions, and the spectral shift associated
done for quantum wires with numerous bends, or pairs ofvith refining the texture.

wires coupled laterally through a long “window.” ~ Enlightening discussions with F. Arnaud d'Avitaya, I.

In conclusion, we have presented a mechanism whicBerpeziet, J. Derrien, and L. Vervoort are gratefully ac-
could be responsible for the porous-silicon luminiscence ilknowledged. P.E. thanks Centre de Physique ofigee,
lustrating it on two models. Despite the simplifications, theyCNRS, where this was work was done for the hospitality
yield the basic features, i.e., the existence of numerous quaxtended to him. The research has been partially supported
sibound states away of the continuum, the dominance dby Grant No. AS CR 148409.
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