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Mechanism of porous-silicon luminescence
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We discuss the discrete spectrum induced by bulges on threadlike mesoscopic objects, using two models, a
continuous hard-wall waveguide and a discrete tight-binding model with two sorts of atomic orbitals. We show
that elongated bulges induce numerous quasibound states. In the discrete model we also evaluate the probabil-
ity of transition between the localized states and extended ones of the ‘‘valence’’ band. We suggest this as a
mechanism governing the porous-silicon luminescence. In addition, the model reproduces the dominance of
nonradiative transitions, blueshift for finer textures, and luminiscence suppression at low temperatures.
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The effect of luminescence of porous silicons has
tracted a lot of attention recently.1 There are various attempt
to explain it, but none of them can be regarded as fu
convincing at present. It is clear that the porous mate
texture plays the decisive role, because first the effect is
sent in the bulk, and second, a refinement of the structur
known to cause a blue shift of the emitted light. In this pap
we intend to discuss one possible quantum mechan
mechanism which employs transitions between the vale
band and a large family of localized states below the c
ductance band; we put emphasis on describing the geom
conditions under which such families may exist.

It has been suggested that quasibound states in small
tallites may play important role.2 It is natural to expect tha
the interior of the porous medium resembles a sort of a
cite cave containing not only loose-end material ‘‘drops’’ b
also other structures; our main hypothesis is thata significant
portion of them are threadlike objects of a varying cro
section. Under this assumption we may employ recent res
on electron bound states in quantum wires which are b
protruded, or coupled laterally to another wire.3–6 The
mechanism behind the existence of these bound states
effective attractive potential induced by the geometric mo
fication of the tube. Our key observation is that if the def
mation extends over a long interval~relative to the tube cros
section!, the wave guide can support numerous bound st
and the discrete spectrum has typical one-dimensional
tures: most eigenvalues are found at the bottom of the s
trum, i.e., away from the continuum. Hence if the variati
of the tube cross section produces protrusions which
rather long than wide, such a tube has many more qu
bound states than other conceivable structures, so the c
sponding radiative transitions are responsible for the m
part of the emitted light.
570163-1829/98/57~3!/1382~4!/$15.00
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Below we shall illustrate this feature on a tube with
single elongated bulge. On the other hand, any mode
porous-silicon luminiscence has to be able to reproduce
other experimentally established properties, notably
dominance of the nonradiative transition mode as well as
frequency and temperature dependence of the effect. For
purpose the free-particle quantum waveguide model is o
simplified, because its continuous spectrum consists o
single band. This motivates us to treat the essentially sa
situation in the tight-binding setting, considering chains
‘‘atoms’’ to which other chains of finite length are lateral
attached. If the atomic orbitals are of two different sorts,
spectrum of an infinite chain can consist of distinguish
bands which would play the role of the valence and cond
tance band, respectively.

Adding a finite chain will cause appearance of bou
states whose distance from the band edges is controlle
the coupling strength between the two chains. Truncating
discrete ‘‘tube,’’ we are able to find the spectrum and t
corresponding eigenfunctions numerically. This will allow
to estimate the rate of transition between the quasibo
states below the conductance band and extended states
valence band. This quantity can be compared to the proba
ity of nonradiative transitions due to a tunneling escape of
electron localized in a bulge to a neighboring bulge or to
bulk from which the treadlike structure spreads.

Let us describe briefly the two models; more details w
be given in a forthcoming paper.7 In the continuous mode
we consider a tube with hard walls which has a const
cross section except for a finite part where it is protrude8

The bulge produces bound states no matter how small it5

but of course, the number of such states and the distribu
of the corresponding energy levels depend substantially
the geometry. For instance, a hard-wall planar strip of a u
1382 © 1998 The American Physical Society
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width with a stub of the same width and lengthl considered
in Ref. 9 has just one bound statel~l ! such thatl(l )
5p22p4l 21O(l 4) for small l and liml →`l(l )
<0.93p2, cf. Refs. 4,10, making the protrusion two-side
we have still one bound state with the eigenvalue wh
cannot be lower than 0.66p2.

On the other hand, elongated bulges produce nume
bound states. As a simple example, consider a boxlike
trusion on a straight planar strip, so the width is 11h on an
interval of a lengthL and 1 otherwise. By a bracketin
argument11 the discrete energy levels are squeezed betw
the eigenvalues of the Laplacian on the rectan
@0,L#3@0,11h# with the Dirichlet condition on the ‘‘paral-
lel’’ boundary and Dirichlet or Neumann, respectively, o
the ‘‘perpendicular’’ one, that is,

S p j

11h D 2

1S p~n21!

L D 2

<l j ,n<S p j

11h D 2

1S pn

L D 2

~1!

for n51,2, . . . . Thediscrete spectrum consists of thosel j ,n
which are belowp2, the bottom of the continuous spectrum
it is clear that with the lowest transverse mode,j 51, such
states exist for anyh.0 as long asL is large enough. More-
over, in the caseL@1 there are numerous bound states, w
most eigenvalues being concentrated in the vicinity
p2(11h)22, or the higher thresholds (p j )2(11h)22, pro-
vided the latter are below the bottom of the continuous sp
trum. These conclusions extend easily to a tube with a s
like bulge in three dimensions.

The fact that elongated bulges produce many bound st
is not restricted to the above simple example; on the o
hand, the eigenvalue distribution depends substantially
the protrusion shape. To get a better understanding, con

a tube whose cross sectionSx is constant foruxu. 1
2 L and

varies smoothly in the interval@2 1
2 L, 1

2 L# @see Fig. 1~a!#.
For a fixedx let n1(x),n2(x)<n3(x)<••• denote the ei-

FIG. 1. The models.~a! A tubular guide with a bulge. The
bound states of an infinite tube change to quasibound when
couple it to the bulk.~b! The tight-binding model.
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genvalues of the Laplacian with the Dirichlet condition
L2(Sx); the corresponding eigenfunctions arex j (x,y),
j 51,2, . . . ; y being the transverse variable~s!. The ‘‘full’’
wave function may be then written in the form
c(x,y)5( jaj (x)c j (x,y) with the normalization
*2L/2

L/2 ( j uaj (x)u2dx51.
The protrusion-induced discrete spectrum is essenti

determined again by the spectrum of the bubble alone;
can employ the bracketing argument closing the bulge

x56 1
2 L by the Dirichlet and Neumann ‘‘lid,’’ respectively

If we assume now that the bulge islong and its cross section
changes only slowlywith respect tox the longitudinal deriva-
tives of x j may be neglected and we arrive at a Bor
Oppenheimer-type approximation: the stationary Sch¨-
dinger equation decouples into a family of equations for
slow motion

2aj9~x!1n j~x!aj~x!5Eaj~x!, ~2!

where the transverse eigenvalues play role of the potent
At the same time, if the bulge is long the eigenvaluesEj ,n of
the j th equation are determined approximately by the se
classical quantization condition

E
M j ~E!

AE2n j~x!dx5np1m j , ~3!

whereM j (E):5$x:n j (x)<E% is the classically allowed re
gion; the explicit value of the Maslov factorm j is not impor-
tant as long as we are interested in the dista
dEj ,n5Ej ,n112Ej ,n between the adjacent energy leve
which determines the density of statesr(E). Expanding the
square root and neglecting the difference betweenM j (Ej ,n)
and M j (Ej ,n11), we find that the latter approaches in th
limit L→` the form

r~E!5
1

2p (
j
E

M j ~E!

dx

AE2n j~x!
; ~4!

recall that we are interested only in the behavior of this fu
tion belown1(L/2), the bottom of the continuous spectrum
where just one or several lowest transverse modes can
M j (E)Þ0” .

Returning to our example of a boxlike bulge on a un
width strip, we find that for largeL the j th mode contribu-
tion to the discrete-spectrum density is

r j~E!5S L

2p D FE2S p j

11h D 2G21/2

, ~5!

with a singularity atEj
min :5(pj/11h)2.

Other shapes may change the form of the distribution; i
more concentrated close to the bottom of the discrete s
trum the closer is the bulge to the cylindrical shape. F
instance, consider the strip of the widthd(x/L), where
d(j):5(11h)(12bj2)1/2 and b is chosen in such a way
thatd(61/2)51. The j th term on the right-hand side~RHS!
of Eq. ~4! is then expressed as

r j~E!5
L~11h!

2pAh~21h!
ESAE2Ej

min

E
D , ~6!

e
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whereEj
min is the same as above andE is the full elliptic

integral of the second kind;12 it has still a peak atE5Ej
min

but less pronounced.
Let us now pass to description of the tight-binding mod

We employ the simplest possible choice for the atomic
ometry as well as for the interactions between orbitals.
considerN parallel chains of atoms forming a strip in th
plane to which we addM finite-length chains which consti
tute a bulge@Fig. 1~b!#. To mimick the band structure of th
semiconductor spectrum, one can choose interactions
tween orbitals~side-diagonal elements of the tight-bindin
Hamiltonian! switching between two valuesa and b in the
horizontal direction; vertically one can choose the sa
structure or simply a single coupling constantc.

If one has an infinite horizontal strip of widthN with no
bulge the corresponding spectrum can be obtained summ
the spectrum of one horizontal infinite chain@i.e., the pair of
intervals (2a2b,b2a) and (a2b,a1b)# and the discrete
spectrum corresponding to a vertical line ofN atoms; the
latter is of course contained in the mentioned intervals if
structure is the same in both directions. The resulting sp
trum still exhibit gaps ifa andb are chosen appropriately; i
general they become narrower with increasingN.

The spectrum of an infinite strip of widthN with a finite
number of bulges of widthM has a continuous part identica
with that of the ‘‘unperturbed’’ strip and eigenvalues outsi
of it. The latter are nevertheless contained in the spectrum
a strip of widthN1M . Figure 2 shows the eigenvalue pl
obtained numerically for a chain (N51) of 40 ‘‘atoms’’ and
a bulge of 14 ‘‘atoms,’’a53, b51 ~in the vertical direction
b51!. We can distinguish the eigenvalues in the interv
(24,22) and~2,4! corresponding to the extended states
the ‘‘valence’’ and ‘‘conduction’’ bands, and those outsid
corresponding to states localized mainly on the bulges w
an exponential decay outside. In case of several bulge
may occur that an eigenstate is supported by more than
of them; this happens typically if the system has a symme
Notice that the extended states are not Bloch states due t
lack of translational invariance.

The knowledge of the eigenfunctions makes it possible
compute the radiative transition probability between the
cited bound states living in the bulges and the valence-b
extended states which is given in general by the Fe
golden rule

Wr~v!5
2

3

e2

4pe0\c

v3

c2

1

V (
i , f

d~Ei2Ef2\v!

3U E
L

~eW .rW !c i~rW !c f* ~rW !d3xU2

. ~7!

We have evaluated the matrix element in question. It is n
zero but not large; the value is typically at least 2–3 ord
of magnitude below the upper bound given by the poten
step between the bulge ends.

FIG. 2. The spectrum of the tight-binding model.
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Inserting the values of the constants into Eq.~7!, the
above observation tells us that the transition probability d
not exceed 108 s21; it increases, but not more than one ord
of magnitude, whenv runs through the visible spectrum. Th
last named property conforms with the experimentally o
served shorter lifetime at the blue edge of the spectrum.1

It is further known1 that Wr(v) exhibits a dramatic de-
crease below the room temperature. To explain this ef
one has to take into account that the final-state probabilit
determined by the Fermi distribution, and therefore the m
trix element in Eq. ~7! should be multiplied by
Pb,m :512(eb(EF2m)11)21. Assuming that the chemica
potential takes value in the middle of the gap between
two bands, the above factor is of order ofe240 at room
temperature and the decrement is inversely proportiona
T; the suppression is larger at the blue edge of the spectr

Other properties of this model also conform with expe
ence for the effect under consideration. Long bulges sup
many excited states which is necessary to create a ma
scopic luminosity output. At the same time, a simple scal
argument shows that the distance between the bound s
and the valence band increases as the lateral size of the
and bulges become smaller; hence a finer material tex
results in a blueshift.

Experimental data show a low emmision efficiency
photoluminiscence measured at room temperature. T
strongly suggests that the radiative recombinationWr is
dominated by the nonradiative probabilityWnr which in-
volves the escape of the confined carriers~electrons, holes!
from a bulge into a more extended/less passivated neigh
hood where a nonradiative recombination can occur. He
the emitted intensityI (v);Wr(v)t(v), where the lifetime
t(v)5@Wr(v)1Wnr(v)#21. Independent measurement1

of I (v) andt~v! show thatWnr@Wr andWnr(v)5Aea\v.
In the framework of both our model a decay process rela
to Wnr occurs if the bulged tube is connected to a wider p
of the structure~bulk!. The tunneling probability can be es
timated in the second model from the eigenfunction deca13

Wnr~v!5Im~Ei2Ef !/\5
1

A2me

ARe~Ei2Ef !ucReEi
~L !u2,

~8!

whereL is the tunneling distance. For typical light photo
energies we getWnr;105e2g(E)L, whereg(E) is a function
of the distance between the eigenvalue and the bottom o
‘‘conduction’’ band. We getWnr@Wr at the room tempera
ture as long asL&50 a.u.; for a cooler material and blue
light the dominance is preserved at longer distances.

It is certainly not easy to decide which mechanism is
sponsible for the porous-silicon luminiscence as long as
know little about the actual texture, and it is fully concei
able that the effect comes from conspiracy of different phy
cal processes. On the other hand, it seems to be straigh
ward to check experimentally whether the states discusse
this paper may contribute, since quantum wires with bulg
of appropriate shape can be fabricated. One could,a fortiori,
taylor in this way luminiscent systems emitting light of pr
scribed properties. Moreover, since the mechanism prod
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ing bound states in infinite tubes are similar, the same can
done for quantum wires with numerous bends, or pairs
wires coupled laterally through a long ‘‘window.’’

In conclusion, we have presented a mechanism wh
could be responsible for the porous-silicon luminiscence
lustrating it on two models. Despite the simplifications, th
yield the basic features, i.e., the existence of numerous q
sibound states away of the continuum, the dominance
be
of

ch
il-
y
ua-
of

nonradiative transitions, and the spectral shift associa
with refining the texture.
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