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Phase transitions in thin mesoscopic superconducting disks
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Phase transitions between different superconducting states and between the superconducting-normal state of
mesoscopic disks are studied by solving the two Ginzburg-Lax@ay equations self-consistently. We limit
ourselves to superconducting states with a fixed angular momentum for disks thinner than the coherence
length. We find that the type of phase transition depends on the disk size, ndwoiglyhe radius and the
thickness. Using an expansion over the eigenfunction of the linearized first GL equation, we develop an
analytical approach that allows us to predict the type of phase transition and find the system characteristics near
the phase transition point. The analytical results are in good agreement with results from our simulation
obtained by using finite-difference techniques to solve the nonlinear GL equations coupled to the three-
dimensional Maxwell equations. A new type of first-order phase transition between different superconducting
states having the same angular momentum is predif&1.63-182@08)05221-7

I. INTRODUCTION H>H,. For 0.4X k<1/\2=0.707, surface superconduc-
tivity exists whenH.<H<H3, but the bulk of the sample
Modern microfabrication techniques enable one to creatstill remains in the normal state. For type-Il superconductors
very small superconducting structures with unique proper{ x> 1/\/5), the Abrikosov vortex lattice is energetically fa-
ties. The behavior of such structures in an external magnetigorable in the rangél . <H<H_,. Since the type of super-
field is strongly influenced by the boundary conditions andconductor is determined by the competition between the
may lead to new superconducting states. In a circular systemmagnetic energy and the condensation energy, one would
the superconducting state is characterized by a definite angexpect that the behavior of mesoscopic superconducting
lar momentum that is similar to the Little-Parks oscillatibns samples that disturb weakly the applied magnetic field will
observed in a thin-film cylinder in the presence of an axialdepend crucially on the size of the sample. Indeed, the ex-
field. The angular momentum is just the number of fluxperimental observations of the magnetization of mesoscopic
quanta trapped by the disk. Transitions between the supetisks performed by Geinet al.” have shown that théype
conducting states with different angular momentum occumnd theorder of the phase transition between the supercon-
when the magnetic field and/or the temperature is changediucting state and the normal state changes with variation of
Such transitions are of first order and are accompanied bshe disk radius and thickness while keeping the supercon-
jumps in the magnetic moment and latent heat. These transitucting material the same. A second-order reversible phase
tions between different superconducting states in multiptransition was observed for small disk radii. With increasing
connected systems were studied by Bezryadin anthe disk radius the transition between the superconducting
co-workers> state and the normal state is followed by a jump in the mag-
In this paper, we study the properties of superconductingetization indicating a first-order transition.
thin-film disks in the presence of a perpendicular magnetic In the present work, we mainly consider the case
field. Previous investigatio®$ were limited to the vicinity ~<0.42, when a macroscopic sample exhibits properties in-
of the phase transition where the Ginzburg-Land&L) herent for a type-I superconductor. Nevertheless, we find that
equations can be linearized, simplifying the problem considihe type of phase transition between the superconducting and
erably. Here we include the nonlinear term and investigatehe normal state is determined by the disk thickness. Further-
the properties of superconducting disks near the phasgore, the superconducting state itself can exhibit first-order
boundary. Although the GL equations were derived to detransitions that are related to different angular momentum
scribe superconductivity near the critical point, later workgiant vortex states.
has found that this theory is valid over a much broader range The paper is organized as follows. In Sec. Il, we present
of magnetic field and temperature. For the system undethe theoretical model and our finite-difference approach to
study we found that the finite thickness of the disk influencessolve the GL equations. The results of a linear analysis of the
the magnetic-field profile, i.e., the magnetic pressure, anfirst GL equation for the order parameter are discussed in
this changes the size of the Meissner effect that is differenSec. IIl. In Sec. IV, we develop an analytical approach,
from the well-studied cylinder geometries. which allows us to treat switching between the different
The type of a superconductor is determined by the valugypes of phase transitions, and we compare these results with
of the GL parametek.® For bulk samples we are dealing those of our numerical calculations. The system characteris-
with a type-l1 superconductor wher<1/y2. When « tics at the first-order transitions, which are found using both
<0.42, the superconducting state with a complete Meissnahe analytical approach and the finite-difference technique,
effect takes place for magnetic fields smaller than the criticabre presented in Sec. V. Section VI is devoted to the behav-
valueH, while the normal state is energetically favorable atior of large disks, in which transitions between different su-
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where the applied magnetic field is uniform and directed
normal to the disk planéi=(0,0H,). Hereé¢ denotes the

=028/ | ] azimuthal directionp is the radial distance from the disk
L=0 1 center, andr=(p,z) is the three-dimensional position in
R/E=3 space.

d/g=1 ] Using dimensionless variables and the London gauge,

divA=0, we rewrite the system of equatiofl—(4) in the
following form:

z/€

(—=iV=A)2T=P(1-|¥?), (6)

.1 R R _
—KzAA=E(‘P*V\I’—\IfV‘I’*)—|\P|2A. 7)

Here the distance is measured in units of the coherence

length é=#/+—2ma, the order parameter ithy= — /8,
the vector potential inci/2eé, k=N\/¢ is the Ginzburg-

4 5 6 Landau parameter, and=c\m/m/4ey, is the penetration
olE length. We measure the magnetic field kh,=c#/2e&?

=k+2H,, whereH.=\—4malp is the critical field. The
FIG. 1. The magnetic-field distribution for an applied magnetic difference between the superconducting and the normal-state

field of Ho=0.5H,. We took the GL parameter=0.28, the disk  Gibbs free energy measured HZV/8w can be expressed
radiusR/¢=3, the disk thicknesd/¢=1, and zero angular momen- through the integral

tum. The shaded area corresponds to a quarter of the disk.

1 R .
perconducting states can take place. Our results are summa- F= vf [2(A=Ag)j—|¥[*]dr, (8)
rized in Sec. VII.

over the disk volume/= wR2d, whereA,=e,Hop/2 is the
Il. MODEL AND NUMERICAL APPROACH external vector potential in the absence of a superconductor

. . . . . ."_ * =
We consider a superconducting disk with radRsand ("e'; Vl"th_ unlf(;rjn. magngtlc flel)d J=[yrvY
thicknessd immersed in an insulator medi@ee Fig. 1, — YV¥*)/2i—|¥[°A] is the dimensionless superconduct-
which, for example, can also be a vacuum, and which idn9 current.. For nonzero tempgigtafethe coherence length
placed in a perpendicular magnetic field. In the present papd? Proportional to (+T/To) and Hep~(1-T/Ty),

we will solve the system of two coupled GL equations where T, is the critical temperature corresponding to the
transition to the normal state at zero magnetic field. This
1 _ 2eA)? scaling allows us to relate the numerical results to the experi-
_( —ihV — _) V=—aV¥-BV¥|V|? (1)  mental measurements performed at nonzero temperature.
2m c We restrict ourselves to thin disks such tiat &. For the
rest there are no other limitations on the disk size. For very
- o . Am. thin disks, the magnetic field is uniformly distributed along
VXVXA= < 2) the z direction. When the disk thickness becomes compa-
rable to the penetration length, the magnetic field is expelled

where the density of the superconducting curreig given  from the disk due to the Meissner effe@ee Fig. 1 The

by field penetrates only a distanaeinside the disk. As a con-
sequence, the longitudinal variation of the vector potential

. ek R R 4e? - becomes rather strong fdi>\. Nevertheless, we found that
J= i (PIVE =WV - m—c|‘1’| A. (3 this does not lead to important longitudinal variations of the

order parameter in disks that are thinner than the coherence
The boundary condition corresponding to zero current denlength® Representing the order parameter as a series over
sity in the insulator media is cosines

- 2eA
—iiV——
c
which obeys the boundary conditidd) at the disk sides
where the subscript denotes the component normal to the z= +d/2 and using the first GL equatidii), one can verify
disk surface. The boundary condition for the vector potentiathat the longitudinally uniform part of the order parameter
has to be taken far away from the disk ¥, gives the main contribution to the expansi¢® for
) ) (méld)?>1. Therefore, we may assume that the order pa-
Afow= %e¢H0p, (5) rameter is uniform along the direction of the disk and av-

v=0, @ W(z,p)=23 cos(kmZ/d)Wy(p), ©)

n
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erage the first GL equation over the disk thickness. Since the 2,2 / Ak Ak
. . . K K Pi+1Aji+17 PiAi
order parameter does not vary in thedirection, both the 7, A¢, — 5 5
superconducting current and the vector potential have no Pi+12~ pi—1/2\ Pit17Pi
component. Then the boundary conditi@ is automatically K K K K
: - : A —pi A 2k A — A
fulfilled at the upper and lower sides of the disk. PRI T Pi-1R 1) / i+1 Y
In the present paper, we solve the equations for a fixed pi2_pi2_1 Zj 10— zj_l,z\ Zj 1~ Z
value of the angular momentumn that leads to the order ) )
parameter¥ (p)=F(p) exp (L¢), and consequently both _Aj,i_Aj—l,i _ L_Ak. Eko o ak-1 (14)
the vector potential and the superconducting current are di- Zj—2zj_4 pi M) Mty

rected anng§¢. In equilibrium the stablé state is the one
that minimizes the free energy. The preskrgtates are dif-
ferent from the multivortex state that was studied in Ref. 9.
For a fixed angular momentum, Ed§)—(7) can be reduced
to the following form:

where A;i=A(z.p)), Fi=F(pi), pi+12=(pi+1tpi)l2,
Zj 1= (2j+11Z)/2; the upper indek denotes the iteration
step. The introduction of the iteration parametefsand 7,
is a well-known procedure in order to speed up the conver-
gency of the iteration procedure. It corresponds to an artifi-
10 oF L 2 cial time relaxation of the system to a steady-_state_ with time
- —p—+ < (——A) >|:: F(1—F?), (10)  Steps 1#; and 1k, . To further speed up the iteration con-
pdp’ dp vergency we expand the nonlinear terra¥®=(FF~1)3
+3(FX Y2(FX=FK1) in the right-hand side of the first GL
equation. The convergency rate of the above procedure de-
=<——A)F29(P/R) 6(2|z|/d), pends strongly on the magnetic-field strength. For typical
p (11) values of th(-?3 i.teration parameteys=2, 7,=5, an accuracy
of about 10°° is reached after a few hundred iteration steps.
where we defined the functiod(x)=1 (x<1), and 0 & Near the bifurca_lt_ion values of a magnetic field cor_responding
to phase transitions between the superconducting and the
) ) normal state, we observe a critical slowing down and the
anpl thickness, re.:specjuvely, and the db/rzacketmeans aVer™ total number of iteration steps that are needed increases by
aging over the disk thicknes$(r))=JZgf(z,r)dzd. more than an order of magnitude. Since the size of our simu-
_ The magnetic field c3reated by the superconducting currenkyion region exceeds by far those of the disk, we apply non-
in the disk has & ~1/r* dependence similar for a magnetic \,itorm space grids to diminish the computation time. We
dipole far away from the disk. Consequently, the conditiony,qy the space grid uniform inside the disk, and increased the
(5) for the vector poten_tlgl tal_<en at |nf|n|ty is transferred to grid spacing exponentially with distance outside the disk.
the boundaries of our finite-difference region This allows us to use almost the same number of grid points
inside and outside the disk. We performed calculations with
A(z,p=R9=3HoRs, A(|z|=ds,p)=7Hop, a different number of grid points in order to check that our
) o ) results are independent of the used space grid.
where Rs,d;>R,d are the radial and longitudinal sizes of |y general, the nonlinear GL equations have many steady-
the simulation region. We use typicalyRs,ds=(5  state solutions. This fact can manifest itself in the experi-
+10) max @,R), where we checked that an increase of themental observation of hysteresis, when the measured magne-
size of the simulation region does not change our results byzation depends whether one increases or decreases the
more than a few percent. The boundary conditions for thenagnetic field* To mimic those real experimental conditions
order parameter we perform calculations where the magnetic field is slowly
increased from a weak value where the disk is in the super-
conducting state, or to decrease the field from a large value,
where the disk is in the normal state. As an example we
consider the latter case. When we reduce the magnetic field
correspond to zero current density at the disk surface and elow the critical valuéd,,,¢, which depends on the value of
finite value of the first derivative df at the disk center. ~the angular momentum and the disk radius, the normal state
To solve the system of Eq$10)—(11) numerically we becom_e_s unstable gnd_ transforms to a superconductl_ng one.
apply a finite-difference representation on the space grid The c_rmcal magnetic field can be obtained from the linear-
z; . The steady-state solution of the GL equations is obtaineffed first GL equation
using the iteration procedure

2
o 2 1o A
pp dp 972

>1)=0; A=5¢A; R, d are the dimensionless disk radius

JF
dp

dF
1 p ap

p=R

=0, (12
p=0

LF=0, L Lo '9+(|_/ Ap)’—1. (15
FX : ( FlaFf Fi-F, , paplop TP
e P21 P R T The superconducting state starts to develop when the mini-
2 mal eigenvalue of the operatﬁrbecomes negative. For the
+< (_ —A) > Fk— Fk4 3(Fk-1y2pk zero angular momentum state, the normal state transforms to
| | I | . . . . .
i the superconducting state with decreasing magnetic field be-

1 o113 low the nucleation fieldH,,.. For nonzero angular momen-
=mFp "+ 2(F7 )%, (13)  tum, the superconducting state appears when we cross either
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the lowerH, ., or the uppeH ., critical magnetic fields Sl A —

that depends on the disk radius. Since our order parameter is i Te=0 L=0

represented on a space grid, we find numerically the eigen- 4 2: O/Py=5 8
O S 3: /@ =10

functions and eigenvalues of the operaiansing the Housh-

. . " o 4: ©/0 =15
older technique. Starting from the critical magnetic fields

Hnuer OF Hpueu, We take the initial order parameter to be | (a)

' ) . . . g . 0 + } + } t ] ¥ } ¥
equal to the lowest eigenfunction. To avoid artificial nonlin-  (b) L
ear effects that could be produced by the initial condition, we 3r 3 finite radius |
choose a small amplitude for this eigenfunction. The initial Y S\ asymptotic |
vector potential is taken equal to the undisturbed magnetic- = 2 .
field configuration. After finding a steady state, we reduce 1F 1 g

the applied field by a small value and search for a new so-
lution. Decreasing slowly the magnetic field, we reach its
zero value. Increasing the magnetic field, we start either from
the lower nucleation field or from the zero magnetic-field
value, where the superconducting state can exist for a large
disk radius or a small angular momentum.

Ill. LINEAR ANALYSIS

The nucleation of the superconducting state can be ana- _ _ _ _ _
lyzed using the linearized first GL equation. A knowledge of FIG. 2. The lowest eigenfunctions of the linearized first GL

. e ion for different angular momenita=0 (a), L=1 (b), L=2
the eigenvalues of the operatbrgiven by Eq.(15) allows ~ €duation fo :
one to find the dependence of the nucleation field on the disfS: 2nd different magnetic flux. The dotted curves show the
radius and the angular momentum. The ground state of th&>MPttC behaviog, = p~ exp (~Hp%/4) of the eigenfunctions in

~ . t%e larged/®d > 1+ L2 magnetic-flux region.
operatorl was discussed by Moshchalkov and co-worKers.
To develop a nonlinear approach, which will be considered
: . V)
in the next section, one has to know the whole spectrum and(L_q))M( —vL+1—

all the eigenfunctions of . We will find the excited states of 2
the operatorﬁ using the Housholder diagonalization tech-

nique for our finite-difference representation iof In this  The dependencies af, on the magnetic flux for the ten

2vd

+1L+2(I)
TraM|Trrtlreg

M 2

=0.
(18)

section, we restrict our discussion to the different groundowest angular momenta=0,1, . . . ,9 areshown in Fig. 3.
states that are of interest in the calculation of the nucleatiofor small total magnetic flux the state with zero angular
field. momentum obtains its minimum eigenvalue for zero flux
It is known” that the lowest eigenfunctions, of the  value and the eigenvalue increases with increasing magnetic
operatorL have the following analytical form: field. At ®=d;~1.92b, there is a crossing between the
2 2 2 T
= pt exp(—Hop )M(—N,L+1,H0—p), (16) -
4 2 L=5\L=6 \L=7\L=8\ L=9

where M(a,c,y) is the Kummer function. The eigenfunc- 200\ _4
tions for the angular momenta=0,1,2 are presented in Fig. [
2 for four different values of the magnetic fluk=HyR? [
=0, 5, 10 and 15 piercing through the disk, measured in 151
units of the flux quantund,=ch/2e. In the limit of large |
magnetic flux®>(1+L2)®, the lowest eigenfunctions ap-
proach their asymptotic valueg,=p" exp (—Hqp%4) that
are shown by the dotted curves in Fig. 2 fbf®,=10 and

15 and also fob/®y=5 in the case of. =0. The position

of the maximum of the order parameter~2L/H shifts
away from the disk center with increasing angular momen-
tum and decreasing magnetic field. NL=1

The lowest eigenvalues df are - L=0

L=3

10F .

L=2

N=v /R?—1, v =®(1+2v), (17) O/

where the value has to be found from the boundary condi-  FIG. 3. The magnetic-flux dependency of the lowest eigenvalues

tion (12) at the disk radial boundary, which reduces to theof the linearized first GL equation for different angular momenta
equation L=0,...,9.
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TABLE I. The results of a linear analysis of the first GL equa- 0
tion: @ is the magnetic flux for switching between the states with |
angular momenta —1 andL; R, and®, are the minimum radius \
for the appearance of the superconducting state and the correspond- 25
ing magnetic flux, respectivelf,, . is the maximum of the upper [
nucleation field;R,ay is the maximum radius corresponding to the

appearence of the superconducting state at zero magnetic field. 2.0 7
[ \ s, sE
L ‘I)L/q)o Rcr/g q)cr/q’o Hnuc,u/ch Rmaxlg o 15 I \\ \\\\\\W
> 1.5 NN
1 1924 1319  1.665 2.354 1.840 3 \\\&\\Q&&M
2 3392 1810 3.086 2.133 3.048 ! N Y
[ e
3 4748 2177  4.416 2.042 4.151 10} \\\‘5\‘»\‘—‘\*‘\5‘@\}‘\
4 6.046 2.482 5.700 1.990 5.112 [
5 7.307 2.748 6.948 1.955 5.897 I
6 8.542  2.987 8.174 1.930 6.542 051
7 9.759 3.207 9.383 1911 7.093 i
8 1096 3410 1058 1.896 7.584 N SR TR NI Nt
9 12.15 3.601 11.76 1.883 8.031 Y 2 3 4 5 5 7
10 13.33 3.781 12.94 1.873 8.446 R/E
11 14.49 3.951 14.10 1.864 8.836
12 15.66 4.114 15.26 1.856 9.206 FIG. 4. The nucleation fields as function of the disk radius for
13 16.81 4.271 16.41 1.849 9.559 different angular moment& =0, ...,35. The dotted line corre-
14 17.96 4.421 17.56 1.843 9.898 sponds to the nucleation field.s~1.7H., for an infinite sample.
15  19.10 4565  18.70 1.838 10.22 o , ,
16 20.24 4.705 19.84 1.833 1054 even for an arbitrarily large disk. The corresponding mag-
17 2138 4.841 20.97 1.829 10.84  hetic field tends to the valudl.3~1.7H, (Ref. 6 charac-
18 2251 4.972 2209 1825 11.14 teristic for surface conductivity of an infinite system. Note,
19 23.63 5'100 23'22 1'821 11'43 that states with nonzero angular momentum can only exist in
20 2476 5924 24,34 1818 1171 sufficiently large samples. The corresponding critical radius

R.; and the magnetic flux., are presented in the third and
fourth column of Table I, respectively. Table | gives also the
maximum nucleation fieldfifth column and the radiugsix
column corresponding to this maximum nucleation field,
above which the superconducting state with given angular
fmomentum exists in zero magnetic field. The switching be-
tween the states with different angular momentum must be
accompanied by jumps in the magnetization. The data pre-
oy sented in Table | allows us to predict the number of those
— ==\ (19) jumps as a function of the disk radius. As an example, Geim
at et al* observed 19 jumps in the magnetization for an alumi-
) num disk with radius 1.2um at the temperaturé=0.4 K.
Therefore, the state with angular momentunhas the larg-  From Table | we notice that such a number of jumps corre-
est increment in time when the flux is in the range<® sponds taR/ €= 5.1+ 5.2 or €~ 230 nm, which is in approxi-

and thus largest in absolute valu€or large radius of the

disk there is a strong degeneracy of the wave functions in the
presence of an uniform magnetic field, and, consequently, all
lowest eigenvalues tend to the same limit valug
—®/20, and Aq—Hg/H,—1 with increasing magnetic For a given angular momentum, the dimensionless nucle-
flux (see Fig. 3. ation magnetic fieldH,,. is completely determined by the
The value of the nucleation magnetic fielt},,. corre-  radius of the disk. When the penetration length far exceeds
sponding to the transition from the normal state to the superthe disk size, the magnetic field penetrates unobstructedly
conducting state can be found from the conditiop=0. into the disk and is practically uniform. In this case, the
This gives the region of existence of the superconductingransition from the superconducting state to the normal state
states for the different angular momenta that is shown in Figwith increasing magnetic field must occur without jumps in
4. ForL=0 and small disk radius, the superconducting statehe magnetization and the first derivative of the free energy,
can exist up to arbitrarily strong magnetic fields as a metaand is consequently not a first-order transition. Then, the
stable state. For fixed angular momentum, the value of theritical magnetic field corresponding to the transition from
nucleation field approaches the bulk critical valdg, for  the superconducting state to the normal state coincides with
sufficiently large disk radius. Because of surface supercorthe nucleation field at the second-order phase transition.
ductivity, the superconducting states can appear abbye When the disk thickness becomes comparable to the penetra-

eigenvalues belonging to the states with-0 andL=1.
Further increasing the magnetic flux, crossings occup at
which are presented in Tablgdecond column

Within the linear approximation, the time dependence o
the order parameter is described by the following equation:

IV. SWITCHING BETWEEN FIRST-ORDER
AND SECOND-ORDER PHASE TRANSITIONS
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tion length, the disk exhibits properties characteristic for athe amplitude of the jumps in the order parameter at the
type-I superconductor: jumps in the magnetization and a hydfirst-order phase transition. In the limiting cade-0, the
tel’eSiS behaViOI‘. To fII’Id the Critical d|Sk '[hiCkneSS Corre'operatoré can be expressé{jin terms of the Comp|ete el-
sponding to the transition between the different types of befiptic integralsk andE,

havior, we expand the order parameter over the

eigenfunctions of the operatdr. We consider situations 1 (2—K?)K (k) —2E(k)
where the magnetic field differs weakly from the nucleation G(p,p1)=Ge((p,p1)= :

. . + 2
field and thus where the order parameter is small. m(p1tp) K 26
In order to perform analytical calculations we transform (26)
the second GL equatiofil) into an integral form with k2=4pp,/(p+ p,)2 Here it is already possible to make
- ) some qualitative conclusions about the type of phase transi-
A=Agt yGo(L/p—A)F7, (200 tion without solving Eq(24). The left linear part of Eq(24)
with y=d/x2, where the integral operat@s, is defined by was glready discussed in theA previous sect|on_. When the low-
the relation est eigenvalue of the operatbrbecomes negative, the order

parameter starts to rise exponentially with time. Therefore,
- 1 (a2 R the saturation value of the order parameter is determined by
Gof = af d/2d21j0 dp1Go(p.p1,2,21)paf(z1,p1), the right part of Eq(24) containing terms proportional to the
1) cube and fifth power of the order parameter. Note that those
terms, which describe the influence of the distortion of the

with the following kernet! magnetic field, are in fact proportional to powers @F?
multiplied with F. For thin disks y<1), the first term on
Go(z,21.p.p1) the RHS of Eq.(24) that suppresses a fast growth of the
1 rom cos ¢ order parameter is (_jpminant. In this case one would expect a
—— | de . seco_nd-order transition between the normal and supercon-
47Jo \/(z— 21)2+p2+p;11—2pp1 cos(¢) ducting states, when the order parameter rises smoothly with

increasing deviation of the magnetic field from its nucleation
(22)  value. In the vicinity of the transition poirnh|<1 the role

Keeping terms up to fourth order I, we obtain the follow- of higher fifth-order terms are negligible. Since the integral

ing solution to the integral equatiq@0): operatorG is symmetrical and positive definite, the second
term on the RHS of Eq24) promotes the fast growth of the
A=Ay+ yGonF2— y2GoF2GypF?, (23)  order parameter. Note, that this term is also proportional to

) the cubic power of. Increasing the disk thickness, the sec-
where n=L/p—A,. This allows us to reduce the system of gd term on the RHS of E@24) may become larger than the

GL equations to the single integrodifferential equation first one, resulting in the appearance of finite superconduc-
N 3 A o o AloA o tivity for arbitrary small values of\4|. This indicates the
LF=—F"+2ynFGnF°—y[29FGF°GyF appearance of a first-order phase transition. The value of the

A order parameter after the transition to the superconductin
+F(G7F2)2]. (24) P P g

state is determined by the higher-order terms in @4).

In the limit d< ¢ the vector potential changes weakly inside ~ Next we will give a quantitative treatment of the different
the disk on the scale of the thickness of the disk. ThereforgPhase transitions and solve E@4). In order to do so, we
to simplify our calculations further we assume that we areexpand the order parameter

allowed to interchange the operations of averaging and inte-

gration. The {ntegral opergtcﬁ Aobtalned by averagm@o F=S Cut, 27)
over the longitudinal coordinaté =(G) has the following k=1
kernel:
over the eigenfunctiong, of the operatot., which present a
1 1 rae a2 o complete basis, each fulfilling the boundary conditi¢h).
G(p,p))=—— dzJ dz; | d¢ In the neighborhood of the transition point between the su-
4w §2) -d2  J-d2 0 perconducting and the normal states the lowest eigenvalue
N1 is much smaller than the other eigenvalugs ;. There-
cos ¢ fore, the coefficient$C, ., are controlled by the amplitude
X > . 2 ' C, of the leading modé&=1. Keeping terms up to third
Viz—21)%+p +p1—2pp1 COS(P) order inC,, we obtain

(29)

As will be shown below, the order of the phase transition is Cy.;=a,C3, ak=)\i(2y< | Gy — (| 3)).
only determined by the first two terms on the right-hand side k 28)
(RHS of Eq. (24). Note, that our assumptions
(GoF2GynF?)=GF2G7F% and ((GynF?)?)=(GyF?)?  Here and below, we use the common definition for the ma-
will not change the critical disk thickness and can only affecttrix elements
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1-0_""I""' rrrrrTTrTTTYTT T
filfo)= f dpf f , C ]
(falf2) pf1(p)falp)p e :_(a) x=0.28
and the orthogonal bas{#| ) = 5, . Note, that in the limit : ]
k>1 the eigenfunctiongy, and eigenvalue&, are mainly &po's; 1
determined by the first term of the operatorIn this case, © 04 - L= firstorder ]
the excited states df are close to the usual first-order Bessel g ransition
functions and the corresponding eigenvalugsrise qua- 0.2 F second-order
dratically with the numbek. Then the coefficient€, decay [ transition .
. o . I . : 0.0 b et
quickly with increasingk. Substituting expansiof27) into (b) ]
Eq. (25 and keeping terms up to fifth order @y, we finally o8k first-order
derive the equation for the unknown coeffici&t Since all . transition
measured system characteristics are determined by the up 06 E
square of the order parameter, it is more convenient to deal 3 ;
with C=C? that obeys the equation 04F
CS(C)=0, S(C)=—-\;+BC—AC? (29) 02
[ second-order transition ]
where OOt
o 1 2 3 4 5 & 7
B=2%(ny1|Gnyd) — (¢al¥3), (30) R
and FIG. 5. The critical disk thicknesses as function of the disk

radius for the GL parameter=0.28 and different angular momenta

n 1 R L=0,...,9 for thelower (a) and upper nucleation fieldd), re-
A= 3( 72< ‘ﬁﬂ (G 7]’#1)2> - gz )\_k(27< 7l G 77¢§> spectively.

have a first-order transition with a jump in the order param-
— (i d))?]. (31)  eter. ForA>0, the order parameter just after the transition to
the superconducting stata {=0) is given by the relation

Since the operatd® is positive definite, the first and second C=B/A. ForA<0, B>0 we can only predict the existence

terms in the expressior(80) and (31) are positive. As dis- of a first-order transition. To find thg size of the jump in the
cussed earlier, the sign of the coeffici@tontrols the type Order parameter one has to take into account higher-order
of phase transition that is determined by the competition bet®ms iNC and thus consider higher-order terms in the ex-
tween two nonlinear effects1) the first cubic term on the Pansion(23). N _
RHS of Eq.(24) suppresses the growth of the order param- To'summanze, the 'type of phase transmon.cha.nges with
eter and gives negative contributions to both coefficigts the sign of the coefficienB. The correspondingritical
and A; (2) by contrast, the expulsion of the magnetic field thicknessof the disk
from the disk promotes the rise of the order parameter and
gives positive contributions tB and A.

Equation (29) has three solutionsC=0, which corre-
sponds to the normal state, and

ek (Wl
2 (ny3lGnys)
is found from the conditioB=0. A second-order transition
C=(B=B?—4A\,)/2A, (32 takes place fod<d,, while ford>d, we have a first-order
Orfransition. Equation34) represents in fact an equation for
the unknownd, that has to be solved numerically. For
k=0.28 andL=0, ... ,9those results are shown in Fig. 5
for the lower(a) and uppekb) nucleation fields, respectively.
gt ~Cs0)f2. (33)  ForL=0 andR<¢, the critical disk thickness grows rapidly
with decreasing disk radius. The same behavior is observed
The steady-state solution has to be stable against small pefer states with different angular momentum in the vicinity of
turbations, which gives us the following criterio®(C)  the critical radiusR,, (see Table)l corresponding to the ap-
+Cd§C)/dC<0. The normal stateG=0) is stable for pearance of this state. Whereas the critical thickness decays
N1>0. The superconducting stgt§(C) =0] is stable for the monotonically with increasing disk radius for the lower
plus sign in front of the square root of E(2). nucleation field[see Fig. %a)], there is a prominent mini-
Let us consider the transition from the normal state to themum in the critical thickness for the upper nucleation field
superconducting state, when the eigenvalyehanges sign [Fig. 5b)]. Note, that this minimum critical thicknesk,;,
from plus to minus and remains small;|<1. The type of changes very weakly with the angular momentum that is
transition varies with the sign of the coefficieBt For B reached aR,,;,. We were able to obtain the following fitting
<0 we are dealing with a second-order transition and thexpressions for the minimum radius:
square of the order parameter rises linearly in the vicinity of
the nucleation fieldC=—\,/B. In the other cas&>0, we Rumin/é~1.983+0.57%2, L=0, (35

(39

*

describing the superconducting state. The time variation
the order parameter obeys the following equation:
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0.5 RS RN AR order to a second-order phase transition. Such a behavior was
F (a) ©<0.08 ] observed in the experiments by Ge#hal® on an Al disk
04rp T with a thickness of d=0.15 um and a radius of
cosk ] R=0.5 um, i.e.,d/R=0.3, which forT=0.4 K (R/¢é~1.7
S ] with £(0)=250 nm) exhibited a first-order superconductor to
ook i 3 normal transition that fof=0.92 K (i.e., RIé~1) was a
N irst-order 1 . . . . .
: fransition ] second-order transition that is consistent with Fig. 6.
0.1 F cecond-order Next we will try to find an analytical expression for the
E transition critical thicknessd, [Eg. (34)] at which the system goes
0.0 b T ] from a type-ll behavior d<d,) to a type-l behavior ¢
04 :_( ) ] >d,). First we notice that the kernel of the integral operator
i . ] G decreases weakly with the disk thickness. In the limit
03F 3 —0 the critical disk thickness is proportional ig,
o [ first-order 1
B ook transition ] £k? (R 4 R )
F ] d*:TfO th(p)pdp( JO 7(p)1(p)pdp
01 :-second-order 3
ooz.tr.a.n?'ituio.n...|....|....|....|....|....: fRG 2 d i 38
O Ty T T T e Y X | Geilp:p)7(p1)¥a(pr) padps| - (39)

R/ and thereforal, in terms of ék? increases slowly with the

(GL parametek. We were able to obtain the following fitting

FIG. 6. The ratio between the critical disk thickness and the dis " -1 - h
expressions for the critical disk thickness:

radius versus disk radius for the GL parameter0.28 and differ-
ent angular momenta=0, . . . ,9 for thdower (a) and upper nucle-

ation fields(b), respectively. d./0min=2=das/dmin

das/dmin_l
Rpin/ é~1.535+0.379%2+1.175/L, L#0, +2 . R>Ry,
min/€ 5L 1+exp[—0.818 R— Ryin) ¥ £%] mn

and the minimum thickness

(39
Amin/ éx2~2.049+2.397«2, L=0, (36) 2
(R_ Rmin)
d* /dmin=1+a—2
Amin/ Ex2~2.149 00164 2 384¢2 ~0013 | 0, &
for arbitrary k and consequently for different materials with , (R— Rumin)
an accuracy of about 0.5% in the range0+9. xexp| b(l+ck )T :
For a large disk radiug®s \1+L? the critical thickness
approaches its asymptotic valdgs which is independent of R<R..
min»

R. We found numerically the following asymptotes:
with a=0.254, b=0.7, ¢c=10 for L=0, and a=0.403

das/ E62=4.237+12.7%%, L=0, (37  —0.029, b=1.1,c=4 for L#0. From these expressions
one can estimate the critical thickness of the disk for differ-
d.o/Ek®=4.783+18.8%2, L+#0, ent materials and disk radii with an accuracy of about 6% in

the interesting ranged, /¢é<1 and k<0.42. Note, that for
largex>0.4 andd>d, the main assumption of our analysis:

) - (d/7&)2<1 breaks down and one has to consider the full 3D
(37) we make the important obsgrvatlon thiae phase tran- roblem where the order parameter changes not only in the
S|t_|on between the superconducting and the normal ;tate of dial direction but also in the longitudinal one.

thin (d/¢<1) typedl («>1/y2) superconductor film is al- Therefore, we also solved the full GL equations numeri-

ways a second-order transition. . cally using our finite-difference method for mesoscopic disks
There are two ways to observe the transition between gy jitferent radius and thicknegstill in the limit d<¢).

different behaviors of mesoscopic disks. First, one can P igure 7 shows the dimensionless magnetization
pare disks with different sizes. Second, which is a more el-
egant way, is to observe transitions between the supercon- 1 .
ducting and the normal states for the same disk at different M= —f Hddr, (40

. ) 47VH,
temperatures. In this case, the ratdfR remains constant
while R/ &~ (1—T/T,)*2 decreases with increasing tempera-for disks withR/¢=0.5, 1, 1.5, 2 in the case af=0.28.
ture. For this purpose we transform Fig. 5 into Fig. 6, whereThe volume integration in Eq. (40) is performed over the
we plot the ratio of the critical thicknesses to the radius ofdisk region, whereHg is the z component of the magnetic
the disk as a function oR/¢ for k=0.28 andL=0,...,9. field created by the superconducting currents in the disk. In
As is evident from Fig. 6, increasing the sample temperaturesig. 7 we give the results of our full 3D calculatideolid
i.e., decreasingR/é~(1—T/Ty)? one can go from a first- curve and the results from the above expansi@otted

with an accuracy of about 2%. The limit of the large disk
radius corresponds in fact to the case of thin films. From Eq
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FIG. 7. The magnetic-field dependence of the disk magnetiza- FIG. 8. The Gibbs free energy as function of the magnetic field
tion in disks withd/é=0.3, k=0.28, R/E=0.5 (a), R/IE=1 (b),  in disks with d/¢=0.3, k=0.28, R/¢=0.5 (a), R/¢=1 (b), R/¢
R/é=1.5(c), R/é€=2.0 (d) for different allowed angular momenta =1.5(c), R/£=2.0 (d) for different allowed angular momenta in
in the case of increasing magnetic field. The dotted and thick curvethe case of increasing magnetic field. The dotted and thick curves
correspond to results of our approximate approach and the equilitsorrespond to results of our approximate approach and the equilib-
rium state, respectively. The position of the jump in the magnetizafium state, respectively. The free energies for decreasing magnetic
tion for decreasing magnetic field are shown by solid circles for thdield are shown by solid circles for the upper nucleation fields in the
upper nucleation field in the case, when there is a hysteresis behagase, when there is a hysteresis behavior.
1or.

this switching happens at values of the total magnetic flux
curve. The thick solid curve presents the magnetization inthat are larger than those obtained from a linear analysis. For
the lowest energy state. For the considered disk thicknessxample, switching between the states with 0 andL=1
d/¢=0.3 the critical value of the disk radius correspondingoccurs at®/®,~2.16,2.66 forR/¢=1.5,2.0, whereas the
to switching between the first-order and the second-ordeabove linear approach gives, /®,=1.92. For second-order
phase transitions arB/é~1.08, 1.94, 2.40 fol.,=0,1,2, phase transitions the Gibbs free energy increases monotoni-
respectively. Therefore, the transition from the superconeally with magnetic field and becomes zero in the transition
ducting to the normal state is not accompanied by a jump ipoint. For first-order transitions, the free energy is positive
the magnetization wheR/£=0.5,1. Note, that near the criti- just before the transition to the normal state and this super-
cal radius[Fig. 7(b)] the magnetization has a large slope atconducting state is not energetically favorable and conse-
the transition to the normal state. On the other hand, if theqyuently a transition to a different angular momentum state
disk radius is just above the critical ofgee Fig. 7d)], there  occurs in equilibrium before the transition to the normal
is a jJump in the magnetization that is rather small in the casstate. It should be stressed that experimental observations
of RFé=2 andL=1. showing a hysteresis behavior for the magnetization may in-

The free energy of the superconducting states correspondicate that the system stays in a definite metastabétate
ing to the different angular momenta are shown in Fig. 8 forwithout following the minimum energy curve. Magnetization
d/¢€=0.3,xk=0.28, andR/£=0.5,1,1.5,2. The magnetic-field of the superconducting equilibrium state is shown in Fig. 7
dependence of the free energy is similar to the one of théy the thick curves in the casés,d when states with non-
eigenvaluesy; (see Fig. 3 Notice that the zero angular zero angular momentum can have lower endspe Fig. 8.
momentum statgFig. 8a)] has a dimensionless free energy Note, that as a function of the magnetic field the system with
of —1 atH=0 that corresponds to the condensation energy fixed nonzero angular momentum exhibits either diamag-
at zero magnetic field. The equilibrium of the system corre-netic or paramagnetic behavior. We found that the region of
sponds to the state with minimum Gibbs free eneftijck  paramagnetic behavior is energetically unfavorabke Fig.
curves in Fig. 8that gives us the rule of switching between 8). Previously, other theoretical work¥ have addressed the
states with different angular momentum. Due to the expulpossible origins of paramagnetic superconducting behavior.
sion of the magnetic field from the digkee Figs. 9 and 20 The radial distribution of the order parametar and the
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FIG. 9. The spatial distribution of the square of the order pa-
rameter(a) and the magnetic fiel@b) in a disk withd/£=0.3,
=0.28,R/¢=0.8 (a) for different applied magnetic fields.

magnetic fieldb) for d/£€=0.3,x=0.28 are depicted in Figs.
9 and 10 for two different disk radiR/£=0.8 andR/&é=2, FIG. 11. The magnetization as function of increasing magnetic
respectively. For the system with the smaller disk radiugield for disks withd/£=0.5, x=0.28,R/£=0.8 (a), RI§=1.2 (b),
R/£=0.8, we have a second-order phase transition. The of¥/¢=1.6 (¢}, RI¢=2.0(d) and for different allowed angular mo-

der parameter changes rather weakly with distance from thenta. The dotted curves correspond to re_sn_JIts of our approximate
disk center and exhibits an overall decrease with increasingPProach- The vertical arrows show transitions from the normal

. . . . ate to the superconducting state in the case of decreasing magnetic
field. Thg total magnetic flux through the Q|sk and in thefield.

surrounding region should be constdeee Fig. 1. There-

fore, expulsion of the magnetic field from the disk leads to.

its enhancement at the disk boundary and the surroundin| _SP'ator_ medigsee F|g_._9. For R/_§=2 thel =0 state ex-
ibits a first-order transition. In this case, the order parameter

remains finite just before the transition to the normal state

1.0 d/&=0.3 - that occurs aH/H,~1.58. Note also that the order param-
0.8' Ri&=2 eter decreases much more near the disk boundary as com-
w | k=028 pared to the smaller diskFig. 9). Similar results for the
206 curITIEOHO/HCZ . magnetization are shown in Fig. 11 for thicker disks. Note
04 ; 85 ] that these thicker disk&ee Fig. 11 show a similar pattern
s 1 of phase transitions that are qualitatively not different from
0.2 4 15 A the small disk radius case. But the hysteresis is more promi-
5 188 nent for thicker disks. The critical field for transition to the

rameter(a) and the magnetic fieldb) in disks with d/¢é=0.3,

prg
FIG. 10. The spatial distribution of the square of the order pa-nucleation field and the order parameter eqa|s-B/A. In

normal state is larger than the nucleation field depicted by
the vertical arrows in Fig. 11.

V. SYSTEM CHARACTERISTICS
AT THE FIRST-ORDER TRANSITION

In the immediate vicinity of the transition poimk|<1,
the order parameter of the superconducting state is given by
the relation(32) with a plus sign in front of the square root.
At the point where the system transforms from the normal
state to the superconducting state, we haye=-0 at the

the reverse direction, when there is a transition from the

=0.28, R/£=2.0 (a) for different applied magnetic fields. The superc_ondu_cting state to the normal one, the solution_ of Eq.
dashed curves correspond to the superconducting state just befdi29) still exists for A<\, =B?/4A. Note, that we consider
the first-order transition to the normal state.

analytically only the caseA>0, where our expansion is



sion(27) into Eq.(8) we obtain a compact expression for the
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valid. The order parameter before the transition to the normal BN SPAARAAASERRRATAS |
state isC,=B/2A, which is two times smaller thac,,. 2%F N0 dre0s 2)‘:;:2?;
Since our expansion is essentially based on the assumption T oo 3
C<1, analytical results are valid only in the vicinity of small 15k 3
B. Consequently, the value of the magnetic field corre- (a)
sponding to a transition to the normal state differs weakly 10 T T T
from the nucleation fieldH,, which allows us to use the 0031 ]
following expansion for the lowest eigenvalue: D000 = 1: field decrease]
o-0.03F 2: field increase
)\(Ht):a)\(Ht_Hn)i aA:_<¢1|P77‘/’1>: (41) 2-0.06-
from which we find analytically the critical field 0.09
0.03
BZ
Hi=H,+ ZaA (42 = 0.02
001+ /,
Note, thatH;>H,.; and H;<H,,. . Substituting expan- ool ; ©)
1.0

Gibbs free energy at the nucleation pokjt and just before
the transition to the normal stakg,

FIG. 12. The critical magnetic fiel§a) corresponding to the
transition between the superconducting and the normal state, the
Gibbs free energiefh), and magnetization€&) just after the tran-
sition for decreasingl) and increasing2) magnetic field. The GL
Note, that the superconducting state before the first-ordgsarametex=0.28 andL=0. The dotted curves depict the results
transition to the normal state is always metastdble-0. of our analytical approach.

The absolute values &, is four times larger thaf&;. Mag-

netization at the nucleation poiht,, and before switchingto =0.3 restricted to the disk radius wifR <R<R, where a

the normal staté1; have the same sign and differ by a factor first-order transition takes place. The system should exhibit a

of 2 in absolute value, second-order transition forR>R,~3.2,3.8,4.Z for L

=0,1,2. Note that the size of the jumps in the free energy
Y R 2 1 and in the magnetization approach zero when the disk radius
M”_ZwARJO dpGe(Rp) 1, Mi=zMn. (49 eaches the lower boundaRy. On the other hand, when the
disk radius approaches the upper linR, there are still
jumps that indicate aew type of phase transition

B3
 BAZR?’

2B3
3A%R?’

n= Fy (43

Here we took only the first term of the expansion\df ,M,
in the square of the order parametr

The results of our numerical solution of the GL equations 0 —
(solid curve$ are presented in Figs. 12, 13, and 14 that con- 18F - L=2 ]
firm the above analysi&lotted curvekin the range of valid- 1%1.6 - d=0.3 ]
ity of our expansiorB<A. Figures 12 and 13 show the val- T 14
ues ofH,,, H; @; F,, F; (b); M,, M, (c) for the upper 121
nucleation field atl/ ¢=0.3, xk=0.28 and for different angu- 1.0F (a)
lar momentaL =0 (Fig. 12 andL=2 (Fig. 13. The same 002 ‘ ‘ ‘ ]
characteristics are presented in Fig. 14 for the lower nucle- % ........
ation field forL=2. Note, that for the upper nucleation field 5 0-00 1 1: field decrease |
the system exhibits the usual diamagnetic response that @0.02 2:field increase
grows with increasing disk thickness and with decreasing GL <.0.04 .
parameterx, whereas there is paramagnetic Meissner ef- (b) : : : : :
fect for lower nucleation fields. The critical fielti;, ob-
tained from a full numerical solution of the GL equations, is 0.02f T
shown in Fig. 15 for different thicknesses of the supercon- '
ducting disk and for three angular momeiita0,1,2. The 0.01F numerical |
hysteresis behavior that can be characterized by the differ- ooo L@ expansion |
ence|H,—H,| becomes more prominent with increasing disk ' 2'5' . 3'0' — -3'5' : '4'0' — '4'5' :
thickness, as expected. Note, that there are maxima in the ' ' R /'§ ' '

dependencies ofH,—H,| on the disk radius, which coin-
cides approximately with the minima of the critical disk

FIG. 13. The critical magnetic fiel§a) corresponding to the

thicknesses presented in Fig. 5. According to our analyticafansition between the superconducting and the normal state for the
predictions, the hysteresis in the magnetic field disappeargpper nucleation field, the Gibbs free enerdies and magnetiza-
with increasing disk radius for relative small disk thick- tions (c) just after the transition for decreasird) and increasing
nesses. As seen from Fig. 5, the region of first-order transi©2) magnetic field forc=0.28,L=2. The dotted curves depict the
tions, i.e.,B>0, is obtained for a disk thickness alff & results of our analytical approach.
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: =2 4 -BC 45
304l ] _§¥( 1 ), (45

] where the square of the order parameters given by Eqg.
. (32) with the plus sign in front of the square root. In order to

z 0 find the magnetization of the disk one has to solve Q).

5 0.021 1 The use of an infinite series instead of expansg®) could

© 0,00}~z . encounter some obstacles due to convergency of such series
8 0.02 for a finite value of the order parameter, when the maximum

1: field decrease

[ (b) 2 fidd moronse eigenvalue of the operatory® nF2 is larger than unity. To
-0.04 pNT/ o R TEIETRE

ey avoid this problem we applied the following trick. Rearrang-

0.000 1 i ing the main term with the vector potential from the RHS to
-0.005 | i the left-hand side of Eq20) and keeping terms up to second
= order inC, we rewrite Eq.(20) in the following form:
-0.010 i
oosk© . T~ ] (1+CyGy)A=yGnF>. (46)
22 23 24 2'5R /§2'6 27 28 29 HereA;=A— A, is the vector potential created by the super-

conducting currents in the disk. In spite of these simplifica-
FIG. 14. The critical magnetic fielda) corresponding to the tions, Eq.(46) represents in fact an integral equation, which

transition between the superconducting and the normal state for tHeas to be solved numerically. The magnetization of the disk

lower nucleation field, the Gibbs free energie$ and magnetiza- given by Eq.(40) can be expressed in terms of the vector

tions () just after the transition for decreasiri) and increasing potential A,=A,(p=R) at the disk boundary = A,/27R.

(2) magnetic fields ak=0.28,L=2. The dotted curves depict the Therefore, we have only to calculatge. Assuming an uni-

results of our analytical approach. form field distribution over the diskA;=pA;/R, we can

solve Eq.(46) for the unknown coefficienf; and represent

Strictly speaking, our analytical approach is only valid in finally the magnetization

the vicinity of the nucleation field. However, it turns out that

the above approach allows us to predict free energies and ~C

magnetizations in the whole region of magnetic fields with a ~ 2R

good accuracy for the relatively small, i.&s=R,;,, radii of

the disk. Substituting expansid87) in Eq. (8) we can write

the relation for the Gibbs free energy in the following form:

- ”
fo dpG(R,p) npin ¢1+Cg2 a'k‘r/fk”

-1

: (47)

X

yC (R
1+ fo dpG(p,R)p?y5

in terms of integrals over the disk, where the coefficients
are given by Eq(28). The results obtained by using Egs.
(45) and(47), which are shown in Figs. 7, 8, and 11 by the
dotted curves fod/£=0.3 and 0.5 and for different radius of
the disk, correlate well with our numerical results for small
radius and large angular momentum. This implies that we are
allowed to use Eqs(45) and (47) in order to estimate the
magnetization of small disks.

VI. PHASE TRANSITION IN LARGE RADIUS DISKS

Large radius disks show new features in their phase tran-
sition behavior that cannot be explained in the above simple
model where only the sign of the coefficidatat the nucle-
ation point was considered. This is illustrated in Figs. 16 and
17 where the free energy and magnetization are shown for
disks withR/£=3.5, k=0.28 and two different thicknesses
00 Bl W d/¢=0.18 (Fig. 16 andd/¢=0.3 (Fig. 17). The disk with

05 10 15 20 25 3.0 35 40 45 d/£=0.18, is thinner than the critical thickness for all angu-
R/ lar momenta in the case of the upper nucleation fiskke

FIG. 15. The criical magnetic fielda) corresponding to the Fig. 5(.b)], and therefore exhibits a s_econd—order reversible
transition between the superconducting and the normal state for fransition between the superconducting and the normal state
=0.28 and the different angular momenta=0 (a), L=1 (b), L  for increasing magnetic field. As seen from Figa); the
=2 (). The solid curves show the nucleation field. Other curvescritical thickness for the superconducting state With 3 is
depict the values of the critical magnetic field for the different disk Smaller than 0.18for the lower nucleation field. Indeed, our
thicknesses in the case when the system goes from the supercdmdmerical solution of the full GL equations shows a first-
ducting state to the normal state. order transition for this stat@otted curves in Fig. 26n low

*F ()
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FIG. 16. Magnetizationa) and the Gibbs free energip) of
states with different angular momernita=0, . . . ,8 as dunction of
the magnetic field fod=0.1&, R=3.6¢, «=0.28. Thin and dotted FIG. 18. The spatial distribution of the square of the order pa-
curves correspond to increasing and decreasing magnetic fields, "Bmeter(a) and the magnetic fieldb) for d/£=0.3, k=0.28, R/¢
spectively. Thick curves correspond to the equilibrium state for_35 ) —0, and different applied magnetic fields. Solid and dotted
which the free energy is minimal. curves correspond to superconducting states before and after the

first-order transition shown in Fig. 1), respectively.

magnetic field. For the thicker digk/é=0.3 and if we con- ] -
sider the upper nucleation field, the phase transition shoulfiéld, first-order transitions should be observed for
be second order for the zero angular momentum state arid3-4.5,6. The results of our numerical calculation confirm

first order for the other momenta. For the lower nucleatiortn€se predictions for the case of decreasing magnetic field,
when the system goes from the superconducting state to the

normal statdsee Fig. 1. When the magnetic field increases

0-05r (a) 0.008 ‘ ) from its zero value, there are jumps in the free energy and
0.04 |- 0.004 \_L=0 the magnetization even for the zero angular momentum state.
003l This situation cannot be described in the framework devel-
0.0zl oped in the previous section, where only weak distortions of
1 the magnetic field were allowed in our quasilinear approach.
=0.01 For the present large radius disks large distortions of the
0.00 | magnetic field near the superconducting disk boundary are
0.01F possible at the transition to the normal state. More interesting
' behavior of the magnetization is shown in Fig(d7inset of
-0.027 ’b’ A S Fig. 17@)] for theL =0 state. In accordance to the prediction
0.0 (O e s N of the analytical approach, there is a second-order phase tran-

ool sition at the nucleation point. But further decreasing the

=t R/G=3.5 7 magnetic field leads to a first-order transition to another su-
0.4 d&=0.3 perconducting state. Figure 18 presents the radial distribution
S ool k=028 of the order parameter and the magnetic field for this case
g 0 field decrease d/é=0.3, RIE=3.5, k=0.28,L=0. As seen from Fig. 18,
T o8 S field increase 1 there is a rather large distortion of the magnetic field just
ol equlibrium ] before the transitioicompare curves 3 and 4 that are for
r— ‘otsl — '1f0' — '115' — H/H.,=1.008 and 1.007, respectivelywhich is the reason

why our previous analytical approach could not be applied.
Note that at this phase transition the contribution of surface
FIG. 17. The dependencies of the disk magnetizatipand the ~ conductivity at the perimeter of the disk to the superconduct-
Gibbs free energyb) on the magnetic field for a disk witti/¢ NG State changes in a discontinuous way. This is further
=0.3, k=0.28,R/¢=3.5 (a). Thin and dotted curves correspond illustrated in Fig. 19 where the magnetic-field dependence of
to increasing and decreasing magnetic fields, respectively. Thickh€ magnetization is shown for different disk radii for the
curves correspond to the equilibrium state with a minimum of freez€ro angular momentum state atitt=0.3, k=0.28. As is
energy. Insetc) shows magnetization of the disk for the supercon-evident from Fig. 19, a first-order transition between the dif-
ducting state with zero angular momentum in decreasing magnetiterent superconducting states occurs in both cases—of de-
field. creasing and increasing magnetic field. Note, that the ampli-

H/H,,
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0.03[. e i 1 0.03— ' ' '
\ R/E=4.8
0.02f 2/2=3 2 0.02 d/g=0.3 1
= —R/E=8.4
. _ Lo = k=0.28
field decrease
0.01} d/E=0.3 | 0.01+ L=1 .
k=0.2
(a) K 0.28 (a) S K_‘
0.00— ’ ’ 0.00 : : ; :
0.03 1
""""""""""""""""""""" B 2 i St
5
0.021 \ @ -0.05 ]
= &
R/£=3.65 g o1 :
0.01¢ — R/£=3.80] E o015 field increase ;
(b) f|e|d |ncrease oz0l (b) .................. fleld decrease_
0.00—— L ) ) \ ! .
0.95 1.00 1.05 0.85 0.90 0.95 1.00
HH_, H/H,,
~ FIG. 19. Magnetization of a disk in decreasifey and increas- FIG. 20. Magnetization of the disk in decreasifiptted curves
ing (b) magnetic field ford/§=0.3, k=0.28, zero angular momen- and increasingsolid curve$ magnetic field ford/¢=0.3, k=0.28,
tum and different disk radii. L=0, R/¢=4.8.

tude of the jumps in the magnetization weakly changes witHnstability of the system and it§ transition to arjo'gher state.
the disk radius and coincides with the data presented in FigJnfortunately, we cannot predict the characteristics of this
12. Thus, when the disk radius increases and the value of tHeW State. But the relation,;=B?/A allows us to find the
coefficientsB becomes negative, we are dealing with a first-cfitical magnetic fielcH; just as we did for the fielt, (42).
order transition between two superconducting states. Figurl€arby the boundary between the regions Ill and 1V, the
20 shows, that this type of behavior is not peculiar to thevalue of Hg calculated from the above approach correlate
state with zero-angular momentum. well with the numerical results fob=1,2 as presented in
To understand the physical reason for the appearance offdd. 22. For zero-angular momentum atitf=0.3 we have
first-order transition between two superconducting states wa more complicated situation, because crossing the boundary
return to our analytical approach. As noted above, the sign of
the coefficientsB and A at the transition point depends on
the disk size and the value of the GL parameteiThe four
possible cases are shown in Fig. 21 1o+0,1,2 and«
=0.28. The regimes IE<0, A>0) and Il (B>0, A>0)
correspond to second-order and first-order transitions be-
tween the superconducting and the normal states, respec-
tively, and have been discussed in the previous section. Now
the caseA<0 is of interest to us. When the disk thickness is
larger than the critical thickness a0, we are dealing
with a first-order transition. FOA<<0, the above analytical
approach does not allow us to predict the amplitude of the
jumps in the magnetization and the free energy since higher-
order terms in the expansion have to be included. Crossing

dg

/e

.8 F 1 :B<0, A>0

the boundary between regions IBf0, A<0) and IV (B E 11 B>0, As0
<0, A<O0), we can apply our approach once again in the up 08 L 111: B>0, A<0
vicinity of the pointB=0. For small negativé8 a second- S 4 p V:B<0 A
order transition takes place at the nucleation field. While the Tl

order parameteC~\ remains rather small, the condition 02F (¢
B—AC<O0 is fulfilled and the superconducting state is stable 0 1' '

relative to weak perturbations. Since the coefficiéntis
negative in the region IV, the situation changes radically
with further decreasing of the magnetic field. For some criti- FIG. 21. The phase diagram classifying the regions of different
cal value of the magnetic field s, the expression under the types of phase transitions for=0.28 and the different angular
square root in Eq(32) becomes negative. This means anmomentaL=0 (a), L=1 (b), L=2 (c).
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[ 120 L=1 L=2 ] 0.06 |
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1.00 ] o002}
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0.95 . 5
o [ -0.02
I I
I L d/E=0.3 0.2
0.90 | -
b k=0.28 0.0
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| numerical o 0.2
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q) . .
[ 1:nucleation field 1 g -0.6 f!eld .decrease
0.80 L 2: transition ] s [T~ e field increase
E ] 0.8¢ equilibrium ]
3.0 35 4.0 4.5 5.0 1.0F (b)
- PYRN T W SR ST W N SR ST S T N ——a
R/E 0.0 0.5 1.0 15 2.0
. . - H/H
FIG. 22. The nucleatiofl) and the critical(2) magnetic fields c2

corresponding to the first-order phase transition; between di_fferent FIG. 23. The magnetizatiofa) and the Gibbs free energp) as
supErcondu_ctlng states as functions of the radius of the disk fof, .00 of the magnetic field for a disk with/¢=0.5, k= 0.28,
d/¢=0.3,,=0.28 and different angulgr momemxlo,l,z, Dotted R/¢=4.8(a). Thin solid and dotted curves correspond to increasing
curves show the results of our analytical calculations. and decreasing magnetic fields, respectively. Thick curves corre-
spond to the equilibrium state with minimum free energy. Irisgt
between regionB>0 andB< 0 the system finds itself in the shows the magnetization of the disk for the superconducting states
region |, whereA>0 and a weak superconducting stateWith L=0,1 in decreasing magnetic field.
arises after the transition from the normal state. To under-
stand the reason for the appearance of the first-order trangtbserve experimentally this interesting metastable behavior
tion between the superconducting states, we have to considgill remains to be investigated.
how the coefficient\ andB depend on the magnetic field.
The boundaries of the region | are presented in the inset of
Fig. 21(a) for three different values of the magnetic field
H/H,,.=0.95,0.90,0.85. With decreasing magnetic field the We have presented an analytical approach allowing us to
area of region | shrinks. Therefore, the system passes to find the critical disk thickness corresponding to switching
region with negative values of the coefficieftresulting in  between second-order and first-order phase transitions of me-
an instability of the weak superconducting state. Unfortu-soscopic superconducting disks with thicknesses comparable
nately, to predict quantitatively the value of the critical field to the coherence and penetration lengths. We considered
corresponding to this transition we must consider higherdisks made from a type-1 superconductor. When the disk size
order terms in the expansion because the coefficknt is relatively small and expulsion of the magnetic field from
changes sign and remains small in absolute value. the disk is not that essential, the system exhibits a behavior
The free energy and magnetization of the states with difinherent for type-1l superconductors. In this case, the phase
ferent angular momentum fal/¢é=0.5 andR/¢=4.8 are transition between the superconducting state and the normal
shown in Fig. 23 for increasing and decreasing magnetistate are reversible and there are no jumps in the free energy
field. The considered disk thickness is larger than its criticabnd the magnetization. Thus, we are dealing with second-
value and there are prominent jumps in the free energy andrder phase transitions in thin disks. When the disk thickness
magnetization indicating first-order transitions between theexceeds some critical value, the system exhibits features like
superconducting and the normal states. The states lwith hysteresis behavior and jumps in the free energy and the
=0,1 exhibit the most interesting behavior in decreasingnagnetization, which are characteristic of first-order phase
magnetic field, when the system goes from the normal stattansitions. We have derived analytical expressions allowing
to the superconducting state. In accordance with the resultss to find the system characteristics in the vicinity of the
of the above analysis, there are weak jumps in the free ereritical disk thickness. The obtained results correlate well
ergy and the magnetization at the nucleation field. Furthewith our full numerical solution of the GL equations that we
decreasing the magnetic field leads to a first-order transitioperformed using finite-difference techniques where the two
to another strong superconducting state. Unfortunately, th&inzburg-Landau equations were solved. We have found
peculiarities in the phase transition of a disk with large ra-that for a large disk radius there are two different steps in the
dius, when the same system exhibits two different adjacerphase transition. The second- or first-order transition be-
types of transitions, are found for states that are stronglyween the normal and weak superconducting states can be
unfavorable. Therefore, the question about the possibility tdollowed by a new first-order transition between weak and

VIl. CONCLUSION
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strong superconducting states with the same angular momen- L L L

tum. The present results are derived for circular disks. If this roN .

circular symmetry is brokerisee Appendix A there is a o | oircle

mixing of the differentL states and the above transitions T gl w7 ellips, p=1.5
T

between the different states will be smoothened out. I AN N ellips, p=2.0
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APPENDIX A: NUCLEATION FIELD IN ELLIPTICAL
AND RECTANGULAR SAMPLES

The experimentally observed sequences of jumps in the
magnetization of large radius disks are transitions between
different angular momenta that for the axial symmetric case
are good quantum numbers. Deviations from the axial sym- F|G. 24. The upper nucleation field in ellipticad) and rectan-

metry caused by changing the sample shape leads to mixingilar (b) shaped samples, whef denotes the aspect ratio of the
of states with different angular momentum and, finally, to aaxes.

removal of the jumps. To treat quantitatively the behavior of

a noncircular sample we calculate numerically the lowestngles with a different aspect rafice., the ratio of the sides

eigenfunction and eigenvalues of the linearized first GLB=1,1.5,2. FoiB=1 the first and second cases correspond to

equation samples of circular and square shape, respectively. The area
R . of the samples with different values gfwas kept the same.
LopW=(—iV-Ag)*¥=\¥, (Al)  The nucleation magnetic fields are shown for different

for samples with different shapes. Representing the operat mples in Fig. 24 and are found from the conditionl.

i C . i v the following i ote that jumps in the nucleation field remain in elliptic and
2p On a Cartesian space grid, we apply the following Itera- o 1angle “samples witiB=1.5 and are removed only in

tion procedurd_,pW'="¥'"* allowing us to find the ground samples with a larger aspect ratio. As expected, the nucle-
state ofL,p . The last equation was solved numerically. We ation field in elliptical samples with the same area increases
considered two types of sampldg) elliptical shaped sys- with a reduction of the radius of curvature. This is similar for
tems with different aspect ratio8=1,1.5,2, and(2) rect- the rectangular samples whetk, . increases withg.
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