
PHYSICAL REVIEW B 1 JUNE 1998-IVOLUME 57, NUMBER 21
Phase transitions in thin mesoscopic superconducting disks

V. A. Schweigert* and F. M. Peeters†
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Phase transitions between different superconducting states and between the superconducting-normal state of
mesoscopic disks are studied by solving the two Ginzburg-Landau~GL! equations self-consistently. We limit
ourselves to superconducting states with a fixed angular momentum for disks thinner than the coherence
length. We find that the type of phase transition depends on the disk size, namely,both the radius and the
thickness. Using an expansion over the eigenfunction of the linearized first GL equation, we develop an
analytical approach that allows us to predict the type of phase transition and find the system characteristics near
the phase transition point. The analytical results are in good agreement with results from our simulation
obtained by using finite-difference techniques to solve the nonlinear GL equations coupled to the three-
dimensional Maxwell equations. A new type of first-order phase transition between different superconducting
states having the same angular momentum is predicted.@S0163-1829~98!05221-7#
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I. INTRODUCTION

Modern microfabrication techniques enable one to cre
very small superconducting structures with unique prop
ties. The behavior of such structures in an external magn
field is strongly influenced by the boundary conditions a
may lead to new superconducting states. In a circular sys
the superconducting state is characterized by a definite a
lar momentum that is similar to the Little-Parks oscillation1

observed in a thin-film cylinder in the presence of an ax
field. The angular momentum is just the number of fl
quanta trapped by the disk. Transitions between the su
conducting states with different angular momentum oc
when the magnetic field and/or the temperature is chan
Such transitions are of first order and are accompanied
jumps in the magnetic moment and latent heat. These tra
tions between different superconducting states in multi
connected systems were studied by Bezryadin
co-workers.2

In this paper, we study the properties of superconduc
thin-film disks in the presence of a perpendicular magn
field. Previous investigations3,4 were limited to the vicinity
of the phase transition where the Ginzburg-Landau~GL!
equations can be linearized, simplifying the problem cons
erably. Here we include the nonlinear term and investig
the properties of superconducting disks near the ph
boundary. Although the GL equations were derived to
scribe superconductivity near the critical point, later wo
has found that this theory is valid over a much broader ra
of magnetic field and temperature. For the system un
study we found that the finite thickness of the disk influen
the magnetic-field profile, i.e., the magnetic pressure,
this changes the size of the Meissner effect that is differ
from the well-studied cylinder geometries.5

The type of a superconductor is determined by the va
of the GL parameterk.6 For bulk samples we are dealin
with a type-I superconductor whenk,1/A2. When k
,0.42, the superconducting state with a complete Meiss
effect takes place for magnetic fields smaller than the crit
valueHc while the normal state is energetically favorable
570163-1829/98/57~21!/13817~16!/$15.00
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H.Hc . For 0.42,k,1/A250.707, surface superconduc
tivity exists whenHc,H,Hc3, but the bulk of the sample
still remains in the normal state. For type-II superconduct
(k.1/A2), the Abrikosov vortex lattice is energetically fa
vorable in the rangeHc,H,Hc2. Since the type of super
conductor is determined by the competition between
magnetic energy and the condensation energy, one w
expect that the behavior of mesoscopic superconduc
samples that disturb weakly the applied magnetic field w
depend crucially on the size of the sample. Indeed, the
perimental observations of the magnetization of mesosco
disks performed by Geimet al.7 have shown that thetype
and theorder of the phase transition between the superc
ducting state and the normal state changes with variatio
the disk radius and thickness while keeping the superc
ducting material the same. A second-order reversible ph
transition was observed for small disk radii. With increasi
the disk radius the transition between the superconduc
state and the normal state is followed by a jump in the m
netization indicating a first-order transition.

In the present work, we mainly consider the casek
,0.42, when a macroscopic sample exhibits properties
herent for a type-I superconductor. Nevertheless, we find
the type of phase transition between the superconducting
the normal state is determined by the disk thickness. Furt
more, the superconducting state itself can exhibit first-or
transitions that are related to different angular moment
giant vortex states.

The paper is organized as follows. In Sec. II, we pres
the theoretical model and our finite-difference approach
solve the GL equations. The results of a linear analysis of
first GL equation for the order parameter are discussed
Sec. III. In Sec. IV, we develop an analytical approac
which allows us to treat switching between the differe
types of phase transitions, and we compare these results
those of our numerical calculations. The system characte
tics at the first-order transitions, which are found using b
the analytical approach and the finite-difference techniq
are presented in Sec. V. Section VI is devoted to the beh
ior of large disks, in which transitions between different s
13 817 © 1998 The American Physical Society
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13 818 57V. A. SCHWEIGERT AND F. M. PEETERS
perconducting states can take place. Our results are sum
rized in Sec. VII.

II. MODEL AND NUMERICAL APPROACH

We consider a superconducting disk with radiusR and
thicknessd immersed in an insulator media~see Fig. 1!,
which, for example, can also be a vacuum, and which
placed in a perpendicular magnetic field. In the present pa
we will solve the system of two coupled GL equations

1

2m
S 2 i\¹W 2

2eAW

c
D 2

C52aC2bCuCu2, ~1!

¹W 3¹W 3AW 5
4p

c
jW, ~2!

where the density of the superconducting currentjW is given
by

jW5
e\

im
~C* ¹W C2C¹W C* !2

4e2

mc
uCu2AW . ~3!

The boundary condition corresponding to zero current d
sity in the insulator media is

S 2 i\¹W 2
2eAW

c
D U

n

C50, ~4!

where the subscriptn denotes the component normal to t
disk surface. The boundary condition for the vector poten
has to be taken far away from the disk

AW urW→`5 1
2 eWfH0r, ~5!

FIG. 1. The magnetic-field distribution for an applied magne
field of H050.5Hc2. We took the GL parameterk50.28, the disk
radiusR/j53, the disk thicknessd/j51, and zero angular momen
tum. The shaded area corresponds to a quarter of the disk.
a-

is
er

-

l

where the applied magnetic field is uniform and direct
normal to the disk planeHW 5(0,0,H0). HereeWf denotes the
azimuthal direction,r is the radial distance from the dis
center, andrW5(rW ,z) is the three-dimensional position i
space.

Using dimensionless variables and the London gau
divAW 50, we rewrite the system of equations~1!–~4! in the
following form:

~2 i¹W 2AW !2C5C~12uCu2!, ~6!

2k2nAW 5
1

2i
~C* ¹W C2C¹W C* !2uCu2AW . ~7!

Here the distance is measured in units of the cohere
lengthj5\/A22ma, the order parameter inc05A2a/b,
the vector potential inc\/2ej, k5l/j is the Ginzburg-
Landau parameter, andl5cAm/p/4ec0 is the penetration
length. We measure the magnetic field inHc25c\/2ej2

5kA2Hc , whereHc5A24pa/b is the critical field. The
difference between the superconducting and the normal-s
Gibbs free energy measured inHc

2V/8p can be expressed
through the integral

F5
1

VE @2~AW 2AW 0! jW2uCu4#drW, ~8!

over the disk volumeV5pR2d, whereAW 05eWfH0r/2 is the
external vector potential in the absence of a supercondu
~i.e., with uniform magnetic field!, jW5@(C* ¹W C

2C¹W C* )/2i 2uCu2AW # is the dimensionless superconduc
ing current. For nonzero temperatureT, the coherence length
is proportional to (12T/T0)21/2 and Hc2;(12T/T0),
where T0 is the critical temperature corresponding to t
transition to the normal state at zero magnetic field. T
scaling allows us to relate the numerical results to the exp
mental measurements performed at nonzero temperature

We restrict ourselves to thin disks such thatd,j. For the
rest there are no other limitations on the disk size. For v
thin disks, the magnetic field is uniformly distributed alon
the z direction. When the disk thickness becomes com
rable to the penetration length, the magnetic field is expe
from the disk due to the Meissner effect~see Fig. 1!. The
field penetrates only a distancel inside the disk. As a con-
sequence, the longitudinal variation of the vector poten
becomes rather strong ford.l. Nevertheless, we found tha
this does not lead to important longitudinal variations of t
order parameter in disks that are thinner than the cohere
length.8 Representing the order parameter as a series
cosines

C~z,rW !5(
k

cos~kpz/d!Ck~rW !, ~9!

which obeys the boundary condition~4! at the disk sides
z56d/2 and using the first GL equation~1!, one can verify
that the longitudinally uniform part of the order parame
C0 gives the main contribution to the expansion~9! for
(pj/d)2@1. Therefore, we may assume that the order
rameter is uniform along thez direction of the disk and av-
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57 13 819PHASE TRANSITIONS IN THIN MESOSCOPIC . . .
erage the first GL equation over the disk thickness. Since
order parameter does not vary in thez direction, both the
superconducting current and the vector potential have nz
component. Then the boundary condition~4! is automatically
fulfilled at the upper and lower sides of the disk.

In the present paper, we solve the equations for a fi
value of the angular momentumL that leads to the orde
parameterC(rW )5F(r) exp (iLf), and consequently both
the vector potential and the superconducting current are
rected alongeWf . In equilibrium the stableL state is the one
that minimizes the free energy. The presentL states are dif-
ferent from the multivortex state that was studied in Ref.
For a fixed angular momentum, Eqs.~6!–~7! can be reduced
to the following form:

2
1

r

]

]r
r

]F

]r
1 K S L

r
2AD 2L F5F~12F2!, ~10!

2k2S ]

]r

1

r

]rA

]r
1

]2A

]z2 D 5S L

r
2ADF2u~r/R!u~2uzu/d!,

~11!

where we defined the functionu(x)51 (x,1), and 0 (x
.1)50; AW 5eWfA; R, d are the dimensionless disk radiu
and thickness, respectively, and the brackets^ & means aver-
aging over the disk thickness^ f (r )&5*2d/2

d/2 f (z,r )dz/d.
The magnetic field created by the superconducting cur

in the disk has aH;1/r 3 dependence similar for a magnet
dipole far away from the disk. Consequently, the condit
~5! for the vector potential taken at infinity is transferred
the boundaries of our finite-difference region

A~z,r5Rs!5 1
2 H0Rs , A~ uzu5ds ,r!5 1

2 H0r,

where Rs ,ds@R,d are the radial and longitudinal sizes
the simulation region. We use typicallyRs ,ds5(5
410) max (d,R), where we checked that an increase of t
size of the simulation region does not change our results
more than a few percent. The boundary conditions for
order parameter

]F

]rU
r5R

50, r
]F

]rU
r50

50, ~12!

correspond to zero current density at the disk surface an
finite value of the first derivative ofF at the disk center.

To solve the system of Eqs.~10!–~11! numerically we
apply a finite-difference representation on the space gridr i ,
zj . The steady-state solution of the GL equations is obtai
using the iteration procedure

h fFi
k2

2

r i 11/2
2 2r i 21/2

2 S r i 11/2

Fi 11
k 2Fi

k

r i 112r i
2r i 21/2

Fi
k2Fi 21

k

r i2r i 21
D

1 K S L

r
2AD 2L

i

Fi
k2Fi

k13~Fi
k21!2Fi

k

5h fFi
k2112~Fi

k21!3, ~13!
e

d

i-

.

nt

e
y
e

a

d

haAj ,i
k 2

2k2

r i 11/22r i 21/2
S r i 11Aj ,i 11

k 2r iAj ,i
k

r i 11
2 2r i

2

2
r iAj ,i

k 2r i 21Aj ,i 21
k

r i
22r i 21

2 D 2
2k2

zj 11/22zj 21/2
S Aj 11,i

k 2Aj ,i
k

zj 112zj

2
Aj ,i

k 2Aj 21,i
k

zj2zj 21
D 2S L

r i
2Aj ,i

k DFi
k5haAi , j

k21 , ~14!

where Aj ,i5A(zj ,r i), Fi5F(r i), r i 11/25(r i 111r i)/2,
zj 11/25(zj 111zj )/2; the upper indexk denotes the iteration
step. The introduction of the iteration parametersh f andha
is a well-known procedure in order to speed up the conv
gency of the iteration procedure. It corresponds to an ar
cial time relaxation of the system to a steady-state with ti
steps 1/h f and 1/ha . To further speed up the iteration con
vergency we expand the nonlinear term (Fi

k)35(Fi
k21)3

13(Fi
k21)2(Fi

k2Fi
k21) in the right-hand side of the first GL

equation. The convergency rate of the above procedure
pends strongly on the magnetic-field strength. For typi
values of the iteration parametersh f52, ha55, an accuracy
of about 1028 is reached after a few hundred iteration ste
Near the bifurcation values of a magnetic field correspond
to phase transitions between the superconducting and
normal state, we observe a critical slowing down and
total number of iteration steps that are needed increase
more than an order of magnitude. Since the size of our sim
lation region exceeds by far those of the disk, we apply n
uniform space grids to diminish the computation time. W
took the space grid uniform inside the disk, and increased
grid spacing exponentially with distance outside the di
This allows us to use almost the same number of grid po
inside and outside the disk. We performed calculations w
a different number of grid points in order to check that o
results are independent of the used space grid.

In general, the nonlinear GL equations have many stea
state solutions. This fact can manifest itself in the expe
mental observation of hysteresis, when the measured ma
tization depends whether one increases or decreases
magnetic field.4 To mimic those real experimental condition
we perform calculations where the magnetic field is slow
increased from a weak value where the disk is in the sup
conducting state, or to decrease the field from a large va
where the disk is in the normal state. As an example
consider the latter case. When we reduce the magnetic
below the critical valueHnuc , which depends on the value o
the angular momentum and the disk radius, the normal s
becomes unstable and transforms to a superconducting
The critical magnetic field can be obtained from the line
ized first GL equation

L̂F50, L̂52
1

r

]

]r
r

]

]r
1~L/r2A0!221. ~15!

The superconducting state starts to develop when the m
mal eigenvalue of the operatorL̂ becomes negative. For th
zero angular momentum state, the normal state transform
the superconducting state with decreasing magnetic field
low the nucleation fieldHnuc . For nonzero angular momen
tum, the superconducting state appears when we cross e
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13 820 57V. A. SCHWEIGERT AND F. M. PEETERS
the lowerHnuc,l or the upperHnuc,u critical magnetic fields
that depends on the disk radius. Since our order paramet
represented on a space grid, we find numerically the eig
functions and eigenvalues of the operatorL̂ using the Housh-
older technique. Starting from the critical magnetic fiel
Hnuc,l or Hnuc,u , we take the initial order parameter to b
equal to the lowest eigenfunction. To avoid artificial nonli
ear effects that could be produced by the initial condition,
choose a small amplitude for this eigenfunction. The init
vector potential is taken equal to the undisturbed magne
field configuration. After finding a steady state, we redu
the applied field by a small value and search for a new
lution. Decreasing slowly the magnetic field, we reach
zero value. Increasing the magnetic field, we start either fr
the lower nucleation field or from the zero magnetic-fie
value, where the superconducting state can exist for a la
disk radius or a small angular momentum.

III. LINEAR ANALYSIS

The nucleation of the superconducting state can be a
lyzed using the linearized first GL equation. A knowledge
the eigenvalues of the operatorL̂ given by Eq.~15! allows
one to find the dependence of the nucleation field on the
radius and the angular momentum. The ground state of
operatorL̂ was discussed by Moshchalkov and co-worker5

To develop a nonlinear approach, which will be conside
in the next section, one has to know the whole spectrum
all the eigenfunctions ofL̂. We will find the excited states o
the operatorL̂ using the Housholder diagonalization tec
nique for our finite-difference representation ofL̂. In this
section, we restrict our discussion to the different grou
states that are of interest in the calculation of the nuclea
field.

It is known,10 that the lowest eigenfunctionsc1 of the
operatorL̂ have the following analytical form:

c15rL exp S 2
H0r2

4 D M S 2N,L11,
H0r2

2 D , ~16!

where M (a,c,y) is the Kummer function. The eigenfunc
tions for the angular momentaL50,1,2 are presented in Fig
2 for four different values of the magnetic fluxF5H0R2

50, 5, 10 and 15 piercing through the disk, measured
units of the flux quantumF05ch/2e. In the limit of large
magnetic fluxF@(11L2)F0 the lowest eigenfunctions ap
proach their asymptotic valuesca5rL exp (2H0r

2/4) that
are shown by the dotted curves in Fig. 2 forF/F0510 and
15 and also forF/F055 in the case ofL50. The position
of the maximum of the order parameterRL;A2L/H0 shifts
away from the disk center with increasing angular mom
tum and decreasing magnetic field.

The lowest eigenvalues ofL̂ are

l15nL /R221, nL5F~112n!, ~17!

where the valuen has to be found from the boundary cond
tion ~12! at the disk radial boundary, which reduces to t
equation
r is
n-

e
l
c-
e
-

s
m

ge

a-
f

sk
he
.
d
d

d
n

n

-

~L2F!M S 2n,L11,
F

2 D2
2nF

L11
M S 2n11,L12,

F

2 D50.

~18!

The dependencies ofnL on the magnetic flux for the ten
lowest angular momentaL50,1, . . . ,9 areshown in Fig. 3.
For small total magnetic flux the state with zero angu
momentum obtains its minimum eigenvalue for zero fl
value and the eigenvalue increases with increasing magn
field. At F5F1'1.92F0 there is a crossing between th

FIG. 2. The lowest eigenfunctions of the linearized first G
equation for different angular momentaL50 ~a!, L51 ~b!, L52
~c!, and different magnetic flux. The dotted curves show
asymptotic behaviorc15rL exp (2Hr2/4) of the eigenfunctions in
the largeF/F0@11L2 magnetic-flux region.

FIG. 3. The magnetic-flux dependency of the lowest eigenval
of the linearized first GL equation for different angular momen
L50, . . . ,9.
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57 13 821PHASE TRANSITIONS IN THIN MESOSCOPIC . . .
eigenvalues belonging to the states withL50 and L51.
Further increasing the magnetic flux, crossings occur atFL ,
which are presented in Table I~second column!.

Within the linear approximation, the time dependence
the order parameter is described by the following equatio

]c

]t
52l1c. ~19!

Therefore, the state with angular momentumL has the larg-
est increment in time when the flux is in the rangeFL,F
,FL11, i.e., whenl1 is smallest~actually l1 is negative
and thus largest in absolute value!. For large radius of the
disk there is a strong degeneracy of the wave functions in
presence of an uniform magnetic field, and, consequently
lowest eigenvalues tend to the same limit valuenL
→F/2F0 and l1→H0 /Hc221 with increasing magnetic
flux ~see Fig. 3!.

The value of the nucleation magnetic fieldHnuc corre-
sponding to the transition from the normal state to the sup
conducting state can be found from the conditionl150.
This gives the region of existence of the superconduc
states for the different angular momenta that is shown in F
4. ForL50 and small disk radius, the superconducting st
can exist up to arbitrarily strong magnetic fields as a me
stable state. For fixed angular momentum, the value of
nucleation field approaches the bulk critical valueHc2 for
sufficiently large disk radius. Because of surface superc
ductivity, the superconducting states can appear aboveHc2

TABLE I. The results of a linear analysis of the first GL equ
tion: FL is the magnetic flux for switching between the states w
angular momentaL21 andL; Rcr andFcr are the minimum radius
for the appearance of the superconducting state and the corres
ing magnetic flux, respectively;Hnuc is the maximum of the uppe
nucleation field;Rmax is the maximum radius corresponding to th
appearence of the superconducting state at zero magnetic field

L FL /F0 Rcr /j Fcr /F0 Hnuc,u /Hc2 Rmax/j

1 1.924 1.319 1.665 2.354 1.840
2 3.392 1.810 3.086 2.133 3.048
3 4.748 2.177 4.416 2.042 4.151
4 6.046 2.482 5.700 1.990 5.112
5 7.307 2.748 6.948 1.955 5.897
6 8.542 2.987 8.174 1.930 6.542
7 9.759 3.207 9.383 1.911 7.093
8 10.96 3.410 10.58 1.896 7.584
9 12.15 3.601 11.76 1.883 8.031

10 13.33 3.781 12.94 1.873 8.446
11 14.49 3.951 14.10 1.864 8.836
12 15.66 4.114 15.26 1.856 9.206
13 16.81 4.271 16.41 1.849 9.559
14 17.96 4.421 17.56 1.843 9.898
15 19.10 4.565 18.70 1.838 10.22
16 20.24 4.705 19.84 1.833 10.54
17 21.38 4.841 20.97 1.829 10.84
18 22.51 4.972 22.09 1.825 11.14
19 23.63 5.100 23.22 1.821 11.43
20 24.76 5.224 24.34 1.818 11.71
f
:

e
ll

r-

g
g.
e
-
e

n-

even for an arbitrarily large disk. The corresponding ma
netic field tends to the valueHc3'1.7Hc2 ~Ref. 6! charac-
teristic for surface conductivity of an infinite system. Not
that states with nonzero angular momentum can only exis
sufficiently large samples. The corresponding critical rad
Rcr and the magnetic fluxfcr are presented in the third an
fourth column of Table I, respectively. Table I gives also t
maximum nucleation field~fifth column! and the radius~six
column! corresponding to this maximum nucleation fiel
above which the superconducting state with given angu
momentum exists in zero magnetic field. The switching b
tween the states with different angular momentum must
accompanied by jumps in the magnetization. The data p
sented in Table I allows us to predict the number of tho
jumps as a function of the disk radius. As an example, Ge
et al.4 observed 19 jumps in the magnetization for an alum
num disk with radius 1.2mm at the temperatureT50.4 K.
From Table I we notice that such a number of jumps cor
sponds toR/j55.145.2 orj'230 nm, which is in approxi-
mate agreement with the estimate of Ref. 4.

IV. SWITCHING BETWEEN FIRST-ORDER
AND SECOND-ORDER PHASE TRANSITIONS

For a given angular momentum, the dimensionless nu
ation magnetic fieldHnuc is completely determined by th
radius of the disk. When the penetration length far exce
the disk size, the magnetic field penetrates unobstructe
into the disk and is practically uniform. In this case, t
transition from the superconducting state to the normal s
with increasing magnetic field must occur without jumps
the magnetization and the first derivative of the free ener
and is consequently not a first-order transition. Then,
critical magnetic field corresponding to the transition fro
the superconducting state to the normal state coincides
the nucleation field at the second-order phase transit
When the disk thickness becomes comparable to the pen

FIG. 4. The nucleation fields as function of the disk radius
different angular momentaL50, . . .,35. The dotted line corre-
sponds to the nucleation fieldHc3'1.7Hc2 for an infinite sample.

nd-
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13 822 57V. A. SCHWEIGERT AND F. M. PEETERS
tion length, the disk exhibits properties characteristic fo
type-I superconductor: jumps in the magnetization and a h
teresis behavior. To find the critical disk thickness cor
sponding to the transition between the different types of
havior, we expand the order parameter over
eigenfunctions of the operatorL̂. We consider situations
where the magnetic field differs weakly from the nucleati
field and thus where the order parameter is small.

In order to perform analytical calculations we transfo
the second GL equation~11! into an integral form

A5A01gĜ0~L/r2A!F2, ~20!

with g5d/k2, where the integral operatorĜ0 is defined by
the relation

Ĝ0f 5
1

dE2d/2

d/2

dz1E
0

R

dr1G0~r,r1 ,z,z1!r1f ~z1 ,r1!,

~21!

with the following kernel11

G0~z,z1 ,r,r1!

5
1

4p
E

0

2p

df
cosf

A~z2z1!21r21r1
222rr1 cos~f!

.

~22!

Keeping terms up to fourth order inF, we obtain the follow-
ing solution to the integral equation~20!:

A5A01gĜ0hF22g2Ĝ0F2Ĝ0hF2, ~23!

whereh5L/r2A0. This allows us to reduce the system
GL equations to the single integrodifferential equation

L̂F52F312ghFĜhF22g2@2hFĜF2ĜhF2

1F~ĜhF2!2#. ~24!

In the limit d!j the vector potential changes weakly insi
the disk on the scale of the thickness of the disk. Theref
to simplify our calculations further we assume that we
allowed to interchange the operations of averaging and i
gration. The integral operatorĜ obtained by averagingĜ0

over the longitudinal coordinateĜ5^Ĝ0& has the following
kernel:

G~r,r1!5
1

4p

1

d2
E

2d/2

d/2

dzE
2d/2

d/2

dz1E
0

2p

df

3
cosf

A~z2z1!21r21r1
222rr1 cos~f!

.

~25!

As will be shown below, the order of the phase transition
only determined by the first two terms on the right-hand s
~RHS! of Eq. ~24!. Note, that our assumption

^Ĝ0F2Ĝ0hF2&5ĜF2ĜhF2 and ^(Ĝ0hF2)2&5(ĜhF2)2

will not change the critical disk thickness and can only aff
a
s-
-
-

e

e,
e
e-

s
e

t

the amplitude of the jumps in the order parameter at
first-order phase transition. In the limiting cased→0, the
operatorĜ can be expressed11 in terms of the complete el
liptic integralsK andE,

Ĝ~r,r1![Gel~r,r1!5
1

p~r11r!

~22k2!K~k!22E~k!

k2
,

~26!

with k254rr1 /(r1r1)2. Here it is already possible to mak
some qualitative conclusions about the type of phase tra
tion without solving Eq.~24!. The left linear part of Eq.~24!
was already discussed in the previous section. When the
est eigenvalue of the operatorL̂ becomes negative, the orde
parameter starts to rise exponentially with time. Therefo
the saturation value of the order parameter is determined
the right part of Eq.~24! containing terms proportional to th
cube and fifth power of the order parameter. Note that th
terms, which describe the influence of the distortion of t
magnetic field, are in fact proportional to powers ofgF2

multiplied with F. For thin disks (g!1), the first term on
the RHS of Eq.~24! that suppresses a fast growth of th
order parameter is dominant. In this case one would expe
second-order transition between the normal and super
ducting states, when the order parameter rises smoothly
increasing deviation of the magnetic field from its nucleati
value. In the vicinity of the transition pointul1u!1 the role
of higher fifth-order terms are negligible. Since the integ
operatorĜ is symmetrical and positive definite, the seco
term on the RHS of Eq.~24! promotes the fast growth of th
order parameter. Note, that this term is also proportiona
the cubic power ofF. Increasing the disk thickness, the se
ond term on the RHS of Eq.~24! may become larger than th
first one, resulting in the appearance of finite supercond
tivity for arbitrary small values oful1u. This indicates the
appearance of a first-order phase transition. The value of
order parameter after the transition to the superconduc
state is determined by the higher-order terms in Eq.~24!.

Next we will give a quantitative treatment of the differe
phase transitions and solve Eq.~24!. In order to do so, we
expand the order parameter

F5 (
k51

`

Ckck , ~27!

over the eigenfunctionsck of the operatorL̂, which present a
complete basis, each fulfilling the boundary conditions~12!.
In the neighborhood of the transition point between the
perconducting and the normal states the lowest eigenv
l1 is much smaller than the other eigenvalueslkÞ1. There-
fore, the coefficientsCkÞ1 are controlled by the amplitude
C1 of the leading modek51. Keeping terms up to third
order inC1, we obtain

CkÞ15akC1
3 , ak5

1

lk
~2g^ckhc1uĜhc1

2&2^ckuc1
3&!.

~28!

Here and below, we use the common definition for the m
trix elements
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^ f 1u f 2&5E dr f 1~r! f 2~r!r,

and the orthogonal basis^c i uck&5d ik . Note, that in the limit
k@1 the eigenfunctionsck and eigenvalueslk are mainly
determined by the first term of the operatorL̂. In this case,
the excited states ofL̂ are close to the usual first-order Bess
functions and the corresponding eigenvalueslk rise qua-
dratically with the numberk. Then the coefficientsCk decay
quickly with increasingk. Substituting expansion~27! into
Eq. ~25! and keeping terms up to fifth order inC1, we finally
derive the equation for the unknown coefficientC1. Since all
measured system characteristics are determined by
square of the order parameter, it is more convenient to d
with C5C1

2 that obeys the equation

CS~C!50, S~C!52l11BC2AC2, ~29!

where

B52g^hc1
2uĜhc1

2&2^c1uc1
3&, ~30!

and

A53S g2^c1
2u~Ĝhc1!2&2 (

k52

`
1

lk
~2g^hckuĜhc1

2&

2^ckuc1
3&!2D . ~31!

Since the operatorĜ is positive definite, the first and secon
terms in the expressions~30! and ~31! are positive. As dis-
cussed earlier, the sign of the coefficientB controls the type
of phase transition that is determined by the competition
tween two nonlinear effects:~1! the first cubic term on the
RHS of Eq.~24! suppresses the growth of the order para
eter and gives negative contributions to both coefficientB
and A; ~2! by contrast, the expulsion of the magnetic fie
from the disk promotes the rise of the order parameter
gives positive contributions toB andA.

Equation ~29! has three solutions:C50, which corre-
sponds to the normal state, and

C5~B6AB224Al1!/2A, ~32!

describing the superconducting state. The time variation
the order parameter obeys the following equation:

dC

dt
5CS~C!/2. ~33!

The steady-state solution has to be stable against small
turbations, which gives us the following criterion:S(C)
1CdS(C)/dC,0. The normal state (C50) is stable for
l1.0. The superconducting state@S(C)50# is stable for the
plus sign in front of the square root of Eq.~32!.

Let us consider the transition from the normal state to
superconducting state, when the eigenvaluel1 changes sign
from plus to minus and remains smallul1u!1. The type of
transition varies with the sign of the coefficientB. For B
,0 we are dealing with a second-order transition and
square of the order parameter rises linearly in the vicinity
the nucleation fieldC52l1 /B. In the other caseB.0, we
l

he
al

-

-

d

of

er-

e

e
f

have a first-order transition with a jump in the order para
eter. ForA.0, the order parameter just after the transition
the superconducting state (l150) is given by the relation
C5B/A. For A,0, B.0 we can only predict the existenc
of a first-order transition. To find the size of the jump in th
order parameter one has to take into account higher-o
terms inC and thus consider higher-order terms in the e
pansion~23!.

To summarize, the type of phase transition changes w
the sign of the coefficientB. The correspondingcritical
thicknessof the disk

d!5
jk2

2

^c1
2uc1

2&

^hc1
2uĜhc1

2&
, ~34!

is found from the conditionB50. A second-order transition
takes place ford,d!, while for d.d! we have a first-order
transition. Equation~34! represents in fact an equation fo
the unknownd! that has to be solved numerically. Fo
k50.28 andL50, . . . ,9 those results are shown in Fig.
for the lower~a! and upper~b! nucleation fields, respectively
For L50 andR<j, the critical disk thickness grows rapidl
with decreasing disk radius. The same behavior is obser
for states with different angular momentum in the vicinity
the critical radiusRcr ~see Table I! corresponding to the ap
pearance of this state. Whereas the critical thickness de
monotonically with increasing disk radius for the low
nucleation field@see Fig. 5~a!#, there is a prominent mini-
mum in the critical thickness for the upper nucleation fie
@Fig. 5~b!#. Note, that this minimum critical thicknessdmin
changes very weakly with the angular momentum that
reached atRmin . We were able to obtain the following fitting
expressions for the minimum radius:

Rmin /j'1.98310.577k2, L50, ~35!

FIG. 5. The critical disk thicknesses as function of the d
radius for the GL parameterk50.28 and different angular moment
L50, . . . ,9 for thelower ~a! and upper nucleation fields~b!, re-
spectively.
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13 824 57V. A. SCHWEIGERT AND F. M. PEETERS
Rmin /j'1.53510.379k211.175AL, LÞ0,

and the minimum thickness

dmin /jk2'2.04912.397k2, L50, ~36!

dmin /jk2'2.145L0.01612.384k2L20.013, LÞ0,

for arbitraryk and consequently for different materials wi
an accuracy of about 0.5% in the rangeL5049.

For a large disk radiusR@A11L2 the critical thickness
approaches its asymptotic valuedas which is independent o
R. We found numerically the following asymptotes:

das /jk254.237112.72k2, L50, ~37!

das /jk254.783118.83k2, LÞ0,

with an accuracy of about 2%. The limit of the large di
radius corresponds in fact to the case of thin films. From
~37! we make the important observation thatthe phase tran-
sition between the superconducting and the normal state
thin (d/j,1) type-II ( k.1/A2) superconductor film is al-
ways a second-order transition.

There are two ways to observe the transition between
different behaviors of mesoscopic disks. First, one can p
pare disks with different sizes. Second, which is a more
egant way, is to observe transitions between the super
ducting and the normal states for the same disk at diffe
temperatures. In this case, the ratiod/R remains constan
while R/j;(12T/T0)1/2 decreases with increasing temper
ture. For this purpose we transform Fig. 5 into Fig. 6, wh
we plot the ratio of the critical thicknesses to the radius
the disk as a function ofR/j for k50.28 andL50, . . . ,9.
As is evident from Fig. 6, increasing the sample temperat
i.e., decreasingR/j;(12T/T0)1/2, one can go from a first-

FIG. 6. The ratio between the critical disk thickness and the d
radius versus disk radius for the GL parameterk50.28 and differ-
ent angular momentaL50, . . . ,9 for thelower ~a! and upper nucle-
ation fields~b!, respectively.
.
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order to a second-order phase transition. Such a behavior
observed in the experiments by Geimet al.4 on an Al disk
with a thickness of d50.15 mm and a radius of
R50.5 mm, i.e., d/R50.3, which forT50.4 K (R/j'1.7
with j(0)5250 nm! exhibited a first-order superconductor
normal transition that forT50.92 K ~i.e., R/j'1) was a
second-order transition that is consistent with Fig. 6.

Next we will try to find an analytical expression for th
critical thicknessd! @Eq. ~34!# at which the system goe
from a type-II behavior (d,d!) to a type-I behavior (d
.d!). First we notice that the kernel of the integral opera
Ĝ decreases weakly with the disk thickness. In the limitk
→0 the critical disk thickness is proportional tok2,

d!5
jk2

2 E
0

R

c1
4~r!rdrS E

0

R

h~r!c1~r!2rdr

3E
0

R

Gel~r,r1!h~r1!c1~r1!2r1dr1D 21

, ~38!

and therefored! in terms ofjk2 increases slowly with the
GL parameterk. We were able to obtain the following fitting
expressions for the critical disk thickness:

d! /dmin522das /dmin

12
das /dmin21

11exp @20.818~R2Rmin!
2/j2#

, R.Rmin

~39!

d! /dmin511a
~R2Rmin!

2

j2

3exp S b~11ck2!
~R2Rmin!

2

j2 D ,

R,Rmin ,

with a50.254, b50.7, c510 for L50, and a50.403
20.029L, b51.1, c54 for LÞ0. From these expression
one can estimate the critical thickness of the disk for diff
ent materials and disk radii with an accuracy of about 6%
the interesting ranged! /j,1 and k<0.42. Note, that for
largek.0.4 andd.d! the main assumption of our analysi
(d/pj)2!1 breaks down and one has to consider the full
problem where the order parameter changes not only in
radial direction but also in the longitudinal one.

Therefore, we also solved the full GL equations nume
cally using our finite-difference method for mesoscopic dis
with different radius and thickness~still in the limit d!j).
Figure 7 shows the dimensionless magnetization

M5
1

4pVHc2
E HsdrW, ~40!

for disks with R/j50.5, 1, 1.5, 2 in the case ofk50.28.
The volume integration in Eq. (40) is performed over t
disk region, whereHs is the z component of the magneti
field created by the superconducting currents in the disk
Fig. 7 we give the results of our full 3D calculation~solid
curve! and the results from the above expansion~dotted

k
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curve!. The thick solid curve presents the magnetization
the lowest energy state. For the considered disk thickn
d/j50.3 the critical value of the disk radius correspondi
to switching between the first-order and the second-or
phase transitions areR/j'1.08, 1.94, 2.40 forL50,1,2,
respectively. Therefore, the transition from the superc
ducting to the normal state is not accompanied by a jump
the magnetization whenR/j50.5,1. Note, that near the criti
cal radius@Fig. 7~b!# the magnetization has a large slope
the transition to the normal state. On the other hand, if
disk radius is just above the critical one@see Fig. 7~d!#, there
is a jump in the magnetization that is rather small in the c
of R/j52 andL51.

The free energy of the superconducting states corresp
ing to the different angular momenta are shown in Fig. 8
d/j50.3,k50.28, andR/j50.5,1,1.5,2. The magnetic-fiel
dependence of the free energy is similar to the one of
eigenvaluesnL ~see Fig. 3!. Notice that the zero angula
momentum state@Fig. 8~a!# has a dimensionless free ener
of 21 at H50 that corresponds to the condensation ene
at zero magnetic field. The equilibrium of the system cor
sponds to the state with minimum Gibbs free energy~thick
curves in Fig. 8! that gives us the rule of switching betwee
states with different angular momentum. Due to the exp
sion of the magnetic field from the disk~see Figs. 9 and 10!

FIG. 7. The magnetic-field dependence of the disk magnet
tion in disks with d/j50.3, k50.28, R/j50.5 ~a!, R/j51 ~b!,
R/j51.5 ~c!, R/j52.0 ~d! for different allowed angular moment
in the case of increasing magnetic field. The dotted and thick cu
correspond to results of our approximate approach and the equ
rium state, respectively. The position of the jump in the magnet
tion for decreasing magnetic field are shown by solid circles for
upper nucleation field in the case, when there is a hysteresis be
ior.
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this switching happens at values of the total magnetic fl
that are larger than those obtained from a linear analysis.
example, switching between the states withL50 andL51
occurs atF/F0'2.16,2.66 forR/j51.5,2.0, whereas the
above linear approach givesF1 /F051.92. For second-orde
phase transitions the Gibbs free energy increases mono
cally with magnetic field and becomes zero in the transit
point. For first-order transitions, the free energy is posit
just before the transition to the normal state and this sup
conducting state is not energetically favorable and con
quently a transition to a different angular momentum st
occurs in equilibrium before the transition to the norm
state. It should be stressed that experimental observat
showing a hysteresis behavior for the magnetization may
dicate that the system stays in a definite metastableL state
without following the minimum energy curve. Magnetizatio
of the superconducting equilibrium state is shown in Fig
by the thick curves in the cases~c,d! when states with non-
zero angular momentum can have lower energy~see Fig. 8!.
Note, that as a function of the magnetic field the system w
a fixed nonzero angular momentum exhibits either diam
netic or paramagnetic behavior. We found that the region
paramagnetic behavior is energetically unfavorable~see Fig.
8!. Previously, other theoretical works5,12 have addressed th
possible origins of paramagnetic superconducting behav

The radial distribution of the order parameter~a! and the

a-

es
ib-
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e
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FIG. 8. The Gibbs free energy as function of the magnetic fi
in disks with d/j50.3, k50.28, R/j50.5 ~a!, R/j51 ~b!, R/j
51.5 ~c!, R/j52.0 ~d! for different allowed angular momenta i
the case of increasing magnetic field. The dotted and thick cu
correspond to results of our approximate approach and the equ
rium state, respectively. The free energies for decreasing mag
field are shown by solid circles for the upper nucleation fields in
case, when there is a hysteresis behavior.
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13 826 57V. A. SCHWEIGERT AND F. M. PEETERS
magnetic field~b! for d/j50.3,k50.28 are depicted in Figs
9 and 10 for two different disk radiiR/j50.8 andR/j52,
respectively. For the system with the smaller disk rad
R/j50.8, we have a second-order phase transition. The
der parameter changes rather weakly with distance from
disk center and exhibits an overall decrease with increa
field. The total magnetic flux through the disk and in t
surrounding region should be constant~see Fig. 1!. There-
fore, expulsion of the magnetic field from the disk leads
its enhancement at the disk boundary and the surroun

FIG. 9. The spatial distribution of the square of the order
rameter~a! and the magnetic field~b! in a disk with d/j50.3, k
50.28,R/j50.8 ~a! for different applied magnetic fields.

FIG. 10. The spatial distribution of the square of the order
rameter~a! and the magnetic field~b! in disks with d/j50.3, k
50.28, R/j52.0 ~a! for different applied magnetic fields. Th
dashed curves correspond to the superconducting state just b
the first-order transition to the normal state.
s
r-
e
g

nginsulator media~see Fig. 9!. For R/j52 theL50 state ex-
hibits a first-order transition. In this case, the order param
remains finite just before the transition to the normal st
that occurs atH/Hc2'1.58. Note also that the order param
eter decreases much more near the disk boundary as
pared to the smaller disk~Fig. 9!. Similar results for the
magnetization are shown in Fig. 11 for thicker disks. No
that these thicker disks~see Fig. 11! show a similar pattern
of phase transitions that are qualitatively not different fro
the small disk radius case. But the hysteresis is more pro
nent for thicker disks. The critical field for transition to th
normal state is larger than the nucleation field depicted
the vertical arrows in Fig. 11.

V. SYSTEM CHARACTERISTICS
AT THE FIRST-ORDER TRANSITION

In the immediate vicinity of the transition pointulu!1,
the order parameter of the superconducting state is given
the relation~32! with a plus sign in front of the square roo
At the point where the system transforms from the norm
state to the superconducting state, we havel150 at the
nucleation field and the order parameter equalsCn5B/A. In
the reverse direction, when there is a transition from
superconducting state to the normal one, the solution of
~29! still exists for l,l!5B2/4A. Note, that we conside
analytically only the caseA.0, where our expansion is

-

-

ore

FIG. 11. The magnetization as function of increasing magn
field for disks withd/j50.5, k50.28,R/j50.8 ~a!, R/j51.2 ~b!,
R/j51.6 ~c!, R/j52.0 ~d! and for different allowed angular mo
menta. The dotted curves correspond to results of our approxim
approach. The vertical arrows show transitions from the norm
state to the superconducting state in the case of decreasing mag
field.
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57 13 827PHASE TRANSITIONS IN THIN MESOSCOPIC . . .
valid. The order parameter before the transition to the nor
state isCt5B/2A, which is two times smaller thanCn .
Since our expansion is essentially based on the assum
C!1, analytical results are valid only in the vicinity of sma
B. Consequently, the value of the magnetic fieldHt corre-
sponding to a transition to the normal state differs wea
from the nucleation fieldHn , which allows us to use the
following expansion for the lowest eigenvalue:

l~Ht!5al~Ht2Hn!, al52^c1urhc1&, ~41!

from which we find analytically the critical field

Ht5Hn1
B2

4alA
. ~42!

Note, thatHt.Hnuc,t and Ht,Hnuc,l . Substituting expan-
sion ~27! into Eq.~8! we obtain a compact expression for th
Gibbs free energy at the nucleation pointFn and just before
the transition to the normal stateFt ,

Fn52
2B3

3A2R2
, Ft5

B3

6A2R2
. ~43!

Note, that the superconducting state before the first-o
transition to the normal state is always metastableFt.0.
The absolute values ofFn is four times larger thanFt . Mag-
netization at the nucleation pointMn and before switching to
the normal stateMt have the same sign and differ by a fact
of 2 in absolute value,

Mn5
gB

2pARE0

R

drGel~R,r!hc1
2 , Mt5

1
2 Mn . ~44!

Here we took only the first term of the expansion ofMn ,Mt
in the square of the order parameterC.

The results of our numerical solution of the GL equatio
~solid curves! are presented in Figs. 12, 13, and 14 that c
firm the above analysis~dotted curves! in the range of valid-
ity of our expansionB!A. Figures 12 and 13 show the va
ues of Hn , Ht ~a!; Fn , Ft ~b!; Mn , Mt ~c! for the upper
nucleation field atd/j50.3,k50.28 and for different angu
lar momentaL50 ~Fig. 12! and L52 ~Fig. 13!. The same
characteristics are presented in Fig. 14 for the lower nu
ation field forL52. Note, that for the upper nucleation fie
the system exhibits the usual diamagnetic response
grows with increasing disk thickness and with decreasing
parameterk, whereas there is aparamagnetic Meissner ef
fect for lower nucleation fields. The critical fieldHt , ob-
tained from a full numerical solution of the GL equations,
shown in Fig. 15 for different thicknesses of the superc
ducting disk and for three angular momentaL50,1,2. The
hysteresis behavior that can be characterized by the di
enceuHt2Hnu becomes more prominent with increasing di
thickness, as expected. Note, that there are maxima in
dependencies ofuHt2Hnu on the disk radius, which coin
cides approximately with the minima of the critical dis
thicknesses presented in Fig. 5. According to our analyt
predictions, the hysteresis in the magnetic field disappe
with increasing disk radius for relative small disk thic
nesses. As seen from Fig. 5, the region of first-order tra
tions, i.e., B.0, is obtained for a disk thickness ofd/j
al
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50.3 restricted to the disk radius withRl,R,Ru where a
first-order transition takes place. The system should exhib
second-order transition forR.Ru'3.2,3.8,4.2j for L
50,1,2. Note that the size of the jumps in the free ene
and in the magnetization approach zero when the disk ra
reaches the lower boundaryRl . On the other hand, when th
disk radius approaches the upper limitRu there are still
jumps that indicate anew type of phase transition.

FIG. 12. The critical magnetic field~a! corresponding to the
transition between the superconducting and the normal state
Gibbs free energies~b!, and magnetizations~c! just after the tran-
sition for decreasing~1! and increasing~2! magnetic field. The GL
parameterk50.28 andL50. The dotted curves depict the resul
of our analytical approach.

FIG. 13. The critical magnetic field~a! corresponding to the
transition between the superconducting and the normal state fo
upper nucleation field, the Gibbs free energies~b!, and magnetiza-
tions ~c! just after the transition for decreasing~1! and increasing
~2! magnetic field fork50.28,L52. The dotted curves depict th
results of our analytical approach.
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13 828 57V. A. SCHWEIGERT AND F. M. PEETERS
Strictly speaking, our analytical approach is only valid
the vicinity of the nucleation field. However, it turns out th
the above approach allows us to predict free energies
magnetizations in the whole region of magnetic fields with
good accuracy for the relatively small, i.e.,R<Rmin , radii of
the disk. Substituting expansion~27! in Eq. ~8! we can write
the relation for the Gibbs free energy in the following form

FIG. 14. The critical magnetic field~a! corresponding to the
transition between the superconducting and the normal state fo
lower nucleation field, the Gibbs free energies~b!, and magnetiza-
tions ~c! just after the transition for decreasing~1! and increasing
~2! magnetic fields atk50.28,L52. The dotted curves depict th
results of our analytical approach.

FIG. 15. The critical magnetic field~a! corresponding to the
transition between the superconducting and the normal state fk
50.28 and the different angular momentaL50 ~a!, L51 ~b!, L
52 ~c!. The solid curves show the nucleation field. Other curv
depict the values of the critical magnetic field for the different d
thicknesses in the case when the system goes from the supe
ducting state to the normal state.
nd
a

F5
2

3

C

R2
~4l12BC!, ~45!

where the square of the order parameterC is given by Eq.
~32! with the plus sign in front of the square root. In order
find the magnetization of the disk one has to solve Eq.~20!.
The use of an infinite series instead of expansion~23! could
encounter some obstacles due to convergency of such s
for a finite value of the order parameter, when the maxim
eigenvalue of the operator 2gĜhF2 is larger than unity. To
avoid this problem we applied the following trick. Rearran
ing the main term with the vector potential from the RHS
the left-hand side of Eq.~20! and keeping terms up to secon
order inC, we rewrite Eq.~20! in the following form:

~11CgĜc1
2!As5gĜhF2. ~46!

HereAs5A2A0 is the vector potential created by the supe
conducting currents in the disk. In spite of these simplific
tions, Eq.~46! represents in fact an integral equation, whi
has to be solved numerically. The magnetization of the d
given by Eq.~40! can be expressed in terms of the vec
potential At5As(r5R) at the disk boundaryM5At/2pR.
Therefore, we have only to calculateAt . Assuming an uni-
form field distribution over the diskAs5rAt /R, we can
solve Eq.~46! for the unknown coefficientAt and represent
finally the magnetization

M5
gC

2pRF E
0

R

drG~R,r!hrc1S c11C(
k52

`

akckD G
3S 11

gC

R E
0

R

drG~r,R!r2c1
2D 21

, ~47!

in terms of integrals over the disk, where the coefficientsak
are given by Eq.~28!. The results obtained by using Eq
~45! and ~47!, which are shown in Figs. 7, 8, and 11 by th
dotted curves ford/j50.3 and 0.5 and for different radius o
the disk, correlate well with our numerical results for sm
radius and large angular momentum. This implies that we
allowed to use Eqs.~45! and ~47! in order to estimate the
magnetization of small disks.

VI. PHASE TRANSITION IN LARGE RADIUS DISKS

Large radius disks show new features in their phase tr
sition behavior that cannot be explained in the above sim
model where only the sign of the coefficientB at the nucle-
ation point was considered. This is illustrated in Figs. 16 a
17 where the free energy and magnetization are shown
disks with R/j53.5, k50.28 and two different thicknesse
d/j50.18 ~Fig. 16! and d/j50.3 ~Fig. 17!. The disk with
d/j50.18, is thinner than the critical thickness for all ang
lar momenta in the case of the upper nucleation field@see
Fig. 5~b!#, and therefore exhibits a second-order reversi
transition between the superconducting and the normal s
for increasing magnetic field. As seen from Fig. 5~a!, the
critical thickness for the superconducting state withL53 is
smaller than 0.18j for the lower nucleation field. Indeed, ou
numerical solution of the full GL equations shows a firs
order transition for this state~dotted curves in Fig. 16! in low
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magnetic field. For the thicker diskd/j50.3 and if we con-
sider the upper nucleation field, the phase transition sho
be second order for the zero angular momentum state
first order for the other momenta. For the lower nucleat

FIG. 16. Magnetization~a! and the Gibbs free energy~b! of
states with different angular momentaL50, . . . ,8 as afunction of
the magnetic field ford50.18j, R53.6j, k50.28. Thin and dotted
curves correspond to increasing and decreasing magnetic field
spectively. Thick curves correspond to the equilibrium state
which the free energy is minimal.

FIG. 17. The dependencies of the disk magnetization~a! and the
Gibbs free energy~b! on the magnetic field for a disk withd/j
50.3j, k50.28,R/j53.5 ~a!. Thin and dotted curves correspon
to increasing and decreasing magnetic fields, respectively. T
curves correspond to the equilibrium state with a minimum of f
energy. Inset~c! shows magnetization of the disk for the superco
ducting state with zero angular momentum in decreasing magn
field.
ld
nd
n

field, first-order transitions should be observed forL
53,4,5,6. The results of our numerical calculation confi
these predictions for the case of decreasing magnetic fi
when the system goes from the superconducting state to
normal state~see Fig. 17!. When the magnetic field increase
from its zero value, there are jumps in the free energy a
the magnetization even for the zero angular momentum s
This situation cannot be described in the framework dev
oped in the previous section, where only weak distortions
the magnetic field were allowed in our quasilinear approa
For the present large radius disks large distortions of
magnetic field near the superconducting disk boundary
possible at the transition to the normal state. More interes
behavior of the magnetization is shown in Fig. 17~c! @inset of
Fig. 17~a!# for theL50 state. In accordance to the predictio
of the analytical approach, there is a second-order phase
sition at the nucleation point. But further decreasing t
magnetic field leads to a first-order transition to another
perconducting state. Figure 18 presents the radial distribu
of the order parameter and the magnetic field for this c
d/j50.3, R/j53.5, k50.28, L50. As seen from Fig. 18,
there is a rather large distortion of the magnetic field j
before the transition~compare curves 3 and 4 that are f
H/Hc251.008 and 1.007, respectively!, which is the reason
why our previous analytical approach could not be appli
Note that at this phase transition the contribution of surfa
conductivity at the perimeter of the disk to the supercondu
ing state changes in a discontinuous way. This is furt
illustrated in Fig. 19 where the magnetic-field dependence
the magnetization is shown for different disk radii for th
zero angular momentum state andd/j50.3, k50.28. As is
evident from Fig. 19, a first-order transition between the d
ferent superconducting states occurs in both cases—of
creasing and increasing magnetic field. Note, that the am

re-
r

ck
e
-
tic

FIG. 18. The spatial distribution of the square of the order
rameter~a! and the magnetic field~b! for d/j50.3, k50.28, R/j
53.5,L50, and different applied magnetic fields. Solid and dott
curves correspond to superconducting states before and afte
first-order transition shown in Fig. 17~c!, respectively.
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13 830 57V. A. SCHWEIGERT AND F. M. PEETERS
tude of the jumps in the magnetization weakly changes w
the disk radius and coincides with the data presented in
12. Thus, when the disk radius increases and the value o
coefficientsB becomes negative, we are dealing with a fir
order transition between two superconducting states. Fig
20 shows, that this type of behavior is not peculiar to
state with zero-angular momentum.

To understand the physical reason for the appearance
first-order transition between two superconducting states
return to our analytical approach. As noted above, the sig
the coefficientsB and A at the transition point depends o
the disk size and the value of the GL parameterk. The four
possible cases are shown in Fig. 21 forL50,1,2 andk
50.28. The regimes I (B,0, A.0) and II (B.0, A.0)
correspond to second-order and first-order transitions
tween the superconducting and the normal states, res
tively, and have been discussed in the previous section. N
the caseA,0 is of interest to us. When the disk thickness
larger than the critical thickness andB.0, we are dealing
with a first-order transition. ForA,0, the above analytica
approach does not allow us to predict the amplitude of
jumps in the magnetization and the free energy since hig
order terms in the expansion have to be included. Cros
the boundary between regions III (B.0, A,0) and IV (B
,0, A,0), we can apply our approach once again in
vicinity of the point B50. For small negativeB a second-
order transition takes place at the nucleation field. While
order parameterC;l remains rather small, the conditio
B2AC,0 is fulfilled and the superconducting state is sta
relative to weak perturbations. Since the coefficientA is
negative in the region IV, the situation changes radica
with further decreasing of the magnetic field. For some cr
cal value of the magnetic fieldHs , the expression under th
square root in Eq.~32! becomes negative. This means

FIG. 19. Magnetization of a disk in decreasing~a! and increas-
ing ~b! magnetic field ford/j50.3, k50.28, zero angular momen
tum and different disk radii.
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instability of the system and its transition to another sta
Unfortunately, we cannot predict the characteristics of t
new state. But the relationl15B2/A allows us to find the
critical magnetic fieldHs just as we did for the fieldHt ~42!.
Nearby the boundary between the regions III and IV, t
value of Hs calculated from the above approach correla
well with the numerical results forL51,2 as presented in
Fig. 22. For zero-angular momentum andd/j50.3 we have
a more complicated situation, because crossing the boun

FIG. 20. Magnetization of the disk in decreasing~dotted curves!
and increasing~solid curves! magnetic field ford/j50.3, k50.28,
L50, R/j54.8.

FIG. 21. The phase diagram classifying the regions of differ
types of phase transitions fork50.28 and the different angula
momentaL50 ~a!, L51 ~b!, L52 ~c!.
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between regionsB.0 andB,0 the system finds itself in the
region I, whereA.0 and a weak superconducting sta
arises after the transition from the normal state. To und
stand the reason for the appearance of the first-order tra
tion between the superconducting states, we have to con
how the coefficientsA andB depend on the magnetic field
The boundaries of the region I are presented in the inse
Fig. 21~a! for three different values of the magnetic fie
H/Hnuc50.95,0.90,0.85. With decreasing magnetic field
area of region I shrinks. Therefore, the system passes
region with negative values of the coefficientA resulting in
an instability of the weak superconducting state. Unfor
nately, to predict quantitatively the value of the critical fie
corresponding to this transition we must consider high
order terms in the expansion because the coefficienA
changes sign and remains small in absolute value.

The free energy and magnetization of the states with
ferent angular momentum ford/j50.5 andR/j54.8 are
shown in Fig. 23 for increasing and decreasing magn
field. The considered disk thickness is larger than its criti
value and there are prominent jumps in the free energy
magnetization indicating first-order transitions between
superconducting and the normal states. The states witL
50,1 exhibit the most interesting behavior in decreas
magnetic field, when the system goes from the normal s
to the superconducting state. In accordance with the res
of the above analysis, there are weak jumps in the free
ergy and the magnetization at the nucleation field. Furt
decreasing the magnetic field leads to a first-order transi
to another strong superconducting state. Unfortunately,
peculiarities in the phase transition of a disk with large
dius, when the same system exhibits two different adjac
types of transitions, are found for states that are stron
unfavorable. Therefore, the question about the possibility

FIG. 22. The nucleation~1! and the critical~2! magnetic fields
corresponding to the first-order phase transitions between diffe
superconducting states as functions of the radius of the disk
d/j50.3,k50.28 and different angular momentaL50,1,2. Dotted
curves show the results of our analytical calculations.
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observe experimentally this interesting metastable beha
still remains to be investigated.

VII. CONCLUSION

We have presented an analytical approach allowing u
find the critical disk thickness corresponding to switchi
between second-order and first-order phase transitions of
soscopic superconducting disks with thicknesses compar
to the coherence and penetration lengths. We consid
disks made from a type-I superconductor. When the disk s
is relatively small and expulsion of the magnetic field fro
the disk is not that essential, the system exhibits a beha
inherent for type-II superconductors. In this case, the ph
transition between the superconducting state and the no
state are reversible and there are no jumps in the free en
and the magnetization. Thus, we are dealing with seco
order phase transitions in thin disks. When the disk thickn
exceeds some critical value, the system exhibits features
hysteresis behavior and jumps in the free energy and
magnetization, which are characteristic of first-order ph
transitions. We have derived analytical expressions allow
us to find the system characteristics in the vicinity of t
critical disk thickness. The obtained results correlate w
with our full numerical solution of the GL equations that w
performed using finite-difference techniques where the t
Ginzburg-Landau equations were solved. We have fou
that for a large disk radius there are two different steps in
phase transition. The second- or first-order transition
tween the normal and weak superconducting states ca
followed by a new first-order transition between weak a

nt
or

FIG. 23. The magnetization~a! and the Gibbs free energy~b! as
function of the magnetic field for a disk withd/j50.5, k50.28,
R/j54.8 ~a!. Thin solid and dotted curves correspond to increas
and decreasing magnetic fields, respectively. Thick curves co
spond to the equilibrium state with minimum free energy. Inset~c!
shows the magnetization of the disk for the superconducting st
with L50,1 in decreasing magnetic field.
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13 832 57V. A. SCHWEIGERT AND F. M. PEETERS
strong superconducting states with the same angular mom
tum. The present results are derived for circular disks. If t
circular symmetry is broken~see Appendix A! there is a
mixing of the differentL states and the above transition
between the differentL states will be smoothened out.
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APPENDIX A: NUCLEATION FIELD IN ELLIPTICAL
AND RECTANGULAR SAMPLES

The experimentally observed sequences of jumps in
magnetization of large radius disks are transitions betw
different angular momenta that for the axial symmetric ca
are good quantum numbers. Deviations from the axial sy
metry caused by changing the sample shape leads to mi
of states with different angular momentum and, finally, to
removal of the jumps. To treat quantitatively the behavior
a noncircular sample we calculate numerically the low
eigenfunction and eigenvalues of the linearized first G
equation

L̂2DC[~2 i¹W 2AW 0!2C5lC, ~A1!

for samples with different shapes. Representing the oper
L̂2D on a Cartesian space grid, we apply the following ite
tion procedureL̂2DC i5C i 21 allowing us to find the ground
state ofL̂2D . The last equation was solved numerically. W
considered two types of samples:~1! elliptical shaped sys-
tems with different aspect ratiosb51,1.5,2, and~2! rect-
en-
is
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angles with a different aspect ratio~i.e., the ratio of the sides!
b51,1.5,2. Forb51 the first and second cases correspond
samples of circular and square shape, respectively. The
of the samples with different values ofb was kept the same
The nucleation magnetic fields are shown for differe
samples in Fig. 24 and are found from the conditionl51.
Note that jumps in the nucleation field remain in elliptic an
rectangle samples withb51.5 and are removed only in
samples with a larger aspect ratio. As expected, the nu
ation field in elliptical samples with the same area increa
with a reduction of the radius of curvature. This is similar f
the rectangular samples whereHnuc increases withb.

FIG. 24. The upper nucleation field in elliptical~a! and rectan-
gular ~b! shaped samples, whereb denotes the aspect ratio of th
axes.
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