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Dynamic melting and decoupling of the vortex lattice in layered superconductors
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The dynamic phase diagram of vortex lattices driven in disorder is calculated in two and three dimensions.
A modified Lindemann criterion for the fluctuations of the distance of neighboring vortices is used, which
unifies previous analytic approaches to the equilibrium and nonequilibrium phase transitions. The temperature
shifts of the dynamic melting and decoupling transitions are found to scale inversely proportional to large
driving currents. A comparison with two-dimensional simulations shows that this phenomenological approach
can provide a quantitative estimate for the location of these transitions.
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I. INTRODUCTION found to end at a critical poirft For decreasing strength of
disorder the location of the transition moves to higher tem-
The prediction of nonequilibrium phase transitions in peratures and the end point wanders to larger fiéldhere-
driven vortex latticeShas triggered an extensive theoretical fore it seems plausible that with increasing sample purity this
study of periodic structures moving through a random envicritical point continues to be shifted to larger fields and the
ronment, using both analyticaf and numericdP~*° ap- theoretically expected phase diagram, which does not display
proaches. The striking experiments on vortex transficit @ critical point, is recovered. Since it is practically impos-
that motivated and supported theoretical efforts providecbible to obtain pinning-free samples, one might hope to ob-
convincing evidence for a genuine nonequilibrium phaseserve the phase diagram of the ideal pure system by increas-
transition between different driven states of the vortex lating a driving force in a given impure sample. The discussion
tice. Investigations of thé-V curves in NSe samples and Of this scenario is one of the goals of the present paper.
MoGe films®1%?° revealed regimes of plastic and elastic Already in the pure case one has to face the problem of
flow of the vortex lattice separated by a characteristic curnOw to capture the melting transition theoretically. Here a
rent. Neutron-scattering experimefiton the driven vortex ~Phenomenological approach based on the Lindemann crite-
state in NbSe demonstrated a sharp increase in the densitjjon has been used successfifly**This criterion states that
of structural defects of the vortex lattice in a certain currenthe static lattice melts as the mean squared thermal displace-
interval just above the depinning transition. At a larger char/nent of a vortex line becomes equal to a certain fraction of
acteristic current the defect density dropped significantlythe lattice spacing(u®(r,t))=cfaj. The numberc is
suggesting a reordering of the vortex system. called the Lindemann number and is usually of order unity.
To understand the above experiments it is crucial to de@o is the vortex spacing in the direction perpendicular to the
termine how quenched disorder affects the structure of th&agnetic field. In this conventional form the Lindemann cri-
driven vortex system. The central idea of Ref. 1 was thderion would suggest that in two dimensionsvhere
suggestion that disorder, being frozen in the laboratoryu?(r,t))= for all finite temperaturgscrystals would al-
frame, appears as a temporarily fluctuating force in the fram#vays be unstable to thermal fluctuations. Indeed, the long-
of the moving vortices and leads to an increased effectivéange translational order is lost, but a quasi-long-range trans-
temperature of the vortex system. This effective temperatur@tional order and the topological order persist at low
strongly depends on the drift velocity. Thus an equilibriumtemperatures and vanish only above a finite melting tempera-
phase transition of the pure systefiike melting should ture. Since disorder in general reduces long-range order to
have a counterpart in the system driven in a disordered erfiuasi-long-range  order  between two and four
vironment and could be triggered by changing the drive agimensions’~3it is necessary to modify the phenomeno-
constant true temperature. For increasing drift velocities, dislogical criterion for detection of the more subtle loss of to-
order should be more and more washed out and the tempergological order. This is achieved by using a slightly modified
ture of the dynamic transition should approach the transitiogriterion for the relative displacement of two neighboring
temperature of the pure system from below. vortices,
One related question of principal interest is to what extent
disorder-induced features of the equilibrium phase diagram w(b)={([u(r+b,t)—u(r,t)]?). (1)
could be eliminated by applying a driving current. The most
prominent example for such a feature is the first-order meltHere b is a basis vector of the perfect lattice that separates
ing transition of the vortex lattice, which is experimentally the undisplaced vortices. If one naively thinks of the lattice
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as being built by vortices connected by springs, theis a The organization of this paper is as follows. In Sec. Il we
measure for the typical stress of a bdtidpring” ) connect-  outline the perturbative approach for vortex lattices driven
ing neighboring vortices. Such bonds can be expected tthrough disorder and specify the generalized form of the Lin-
“break” for demann criterion. In Sec. Il we evaluate this criterion for
two-dimensional systems and perform a quantitative com-

w(b)~cfaj. (2)  parison of the resulting phase diagram with numerical simu-
d@tions. In Sec. IV we derive consequences for the dynamic

In a layered superconductor, where the vortex lines are act . : . d
ally composed of pointlike vortices, not only the melting _phase diagram of three-dimensional systems. Dynamic melt-

transition but also a decoupling transitircan exist. The ng and decoupling transitions are discussed in Sec. V.
evaluation of bond widthsv for different orientationgin-
plane and out-of-planeprovides additional insight into the Il. PERTURBATIVE APPROACH

anisotropy of vortex fluctuations and the location of these We consider a vortex lattice in a steady driven state with

tranimons. . f the Lind o disord velocity v. Vortices are labeled by their ideal positionn
The extensmnrﬁo the Lindemann criterion on disorder-ya comoving frame, whereas their actual position in the

dominated systeni$ enabled the description of disorder- laboratory frame iR(r,t)=r+vt+u(r,t). The dynamics of

e system is governed by the conventional equation for the

In view of the loss of topological order the so-called “en- vortex displacement field=u(r,t),

tanglement” transition from the Bragg glass to the vortex
glass is equivalent to the melting of the pure system. Using
the very same Lindemann criteriof2) with bond widths
averaged over thermal and disorder-induced fluctuations, theherec represents the elastic constafgpecified below for
location of this entanglement transition has been determinethe vortex latticgé and V the lattice gradient. The thermal
recently*>*~° The validity of this criterion has even been noise¢ couples the vortices to a heat bath of temperafure
derived within a self-consistent variational approdt#. The pinning force densitiP™(r,t)= — VV[R(r,t)] is related
For driven vortex systems disorder-induced displacementg the pinning potentiaV/, which is supposed to be Gaussian
were calculated in Ref. 1 within a naive large velocity ex-distributed with a second moment
pansion approach for the two-dimensional vortex lattice, and
the nonequilibrium melting line was found for the case of V(K)V(k")=A(k)8(k+k"), (48
strong disorder. Based on scaling arguments, Balents and
Fisher extended the concept of nonequilibrium phase transi- _ _liee
tions to charge-density wave system&iamarchi and Le Ak)=A0e” 255 (4b)
Doussal focused on the structure of tiigh velocitydriven  The correlations decay on the scale of the coherence length
vortex phase and noticed that it retains some glassy featurgs_, We deﬁnekf = k)2(—|— k)z, as the vector component perpen-

of its static counterpart. The investigations thatgicular to the magnetic field. Equatid8) refers to pointlike
fO”OWed‘L "~ revealed further fundamental features of theVortices in a Sing'e |ayer|1:2) orin a |ayered supercon-

driven phase, in particular, the fact that in a coarse-grainegyctor O =3).

description(i.e., on a large enough spatial soatee main In the absence of disorder the response of the vortex lat-
effect_ of disorder on the drive_n periodic structure can b&ice is different for longitudinal I{) and transverse T))
described as eandom force Besides that, the intrinsic non- modes. Since the vortex lattice is almost incompressible, the
equilibrium nature shows up in Kardar-Parisi-ZhalkPZ)  |ongitudinal modes do not significantly contribute to many
-type nonlinearities and convective terms that describe thghysical properties. However, as we see later on, in a vortex
effective dynamics of the systems &@rge scales. lattice driven through disorder these modes are important
Most of these recent studies have been focused on thgyg have to be retained. The response funcGois deter-

Igrge—scale properties of the system in the r—;lastic approxjmqmned by the elastic constants for compressigp, shear
tion. Based on the properties of the topologically constrame@66 and tilt cyy:

system, it is in principle possible to include topological de-

fects like dislocations and to study the topological stability of

the lattice systematically. In practice, this approach is diffi- Gp(q.w)= 2, GP(q,0)PP4(0), (53
cult to realize, in particular when the transition appears as a P

nUch2u+fp"‘(R)+F— v+, 3

collective effect of the dislocations, as in the example of

o 2 27-1
three-dimensional melting. Encouraged by the success of the GP(a,@) =[—inw+cyql+Casd;] ™", (5b)
Lindemann criterion in capturing the location of the phase

transition in the pure case as well as in the static disordered PT (q)=6, — 9ol o1 ( ):M (50
case, we extend this approach in this paper to the location of apd B QE ' apld qf '

nonequilibrium transitions of the vortex system. Since the

employed Lindemann criterion is a local criterion, disorderwhere p=L,T stands for a polarization witle,=c;1,Cgg,
can be treated perturbatively in the unrenormalized equatiorespectively, andj? = g%+ g5 . Wave vectorg are restricted

of motion (3) below. Thus the large-scale renormalizationsto the first Brillouin zongBZ) of the ideal lattice in contrast
such as KPZ nonlinearities do not enter the phenomenologio k.

cal melting criterion and, within the limits of validity of this To calculate the fluctuations of the distance of neigh-
criterion, do not change the phase boundaries. boring vortices we treat disorder on the lowest level of per-
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turbation theory by approximatin§(R) =f(r +vt+u)~f(r pinning forces. In order to achieve a drift velocityone has
+vt), which is justified as long as(b) < £2. This condition  to apply a driving forcem(v) = v+ F(v) with®
is satisfied in the whole range of intereg(b)scfag if
cLap=¢. This restricts the validity of our approach to high Efr— j ik Kk A(K)G g (K, —V-K) (113
magnetic fields not too much below the upper critical field. @ Ji R AYA T
In this approximation the pinning force can be considered
as an “external” force that does not depend on the response
of the vortex lattice. The combinatiof(r,t)=fP"(r +vt) =%Lkw(v‘k)rp<km(k). (11b
+{(r,t) of this pinning force and the thermal noise has
Gaussian correlations which coincides forD=2 with the early result of Schmid
and Haugef!
(fo(d,0)f5(0",0"))=V ,4(0,0)8(q+q" ) S0+ o), The disordered vortex lattice is characterized by two el-
ementary length scales: the disorder correlation leggihd
the “vortex spacing”a,=®,/B (B is the magnetic induc-

\I’aﬁ(q'w):‘(}&aﬁr%‘f KakpA(K)8(w+Vv-K), tion and®, the flux quantum In the triangular lattice the
actual distance between neighboring vortices in a direction
9=27T. (6)  perpendicular to the magnetic field as= V2/\[3a,. We as-

sumec apg<£&=<a,, which is realistic for high-temperature
The averaging includes the randomness of disorder and thatiperconductors at large fields. For the evaluation of the
of thermal noise. We denote=Q+q with a reciprocal lat-  main formulas(9) and (11), we will retain the reciprocal
tice vector(RLV) Q (being perpendicular to the magnetic |attice structure irQ, but we approximate the BZ as a spheri-

field) and a vector within the BZ. cal cylinder with boundsg®<q*?=4x/a3 and |q,|]<q}
The displacements in response to the total external force= /d for a layer spacingl. This approximation preserves
have correlations the area of the BZ. The nonlocality ofg will be neglected.
T , , We choose the& axis as the direction of the velocity= vX,
Ua(G,@)Ug(q",0") =Capl(q, ) 8(a+0") S+ '), and suppose the vortex lattice to move along one main di-

_ o rection of the hexagonal lattice, which are the directions of
Cap(0,0)=Goy(q.0)¥,5(q,0)Gps( — 0.~ ). (7) minimum energy dissipatioH.
From Eq.(7) we can immediately calculate the bond fluctua-
tions lll. EVALUATION IN D=2

1 The general expressions for bond widtlisand friction

W(b)“f E(Q‘b)zcaa(q,w)- (8)  force F™ are immediately specialized to two dimensions by
@4 settingq,=0. They are evaluated here in order to compare

The thermal and pinning contributions to the force correlatothe location of the dynamic melting transition according to

(6) generate two Corresponding contributions to the bondhe Lindemann criterion with numerical simulations.

width w=w™"+wP" which can be considered as approxi-

mately independent. Th@ermalcontribution has been stud- A. Thermal bond width

ied extensively in the past in order to determine the melting To start with. we consider the contribution of thermal

transition of the vortex lattice in the absence of imp“rities'fluctuations to t'he bond width. By a comparison with the

Here we foc.us our attention on the contribution due to pin'KosterIitz-ThouIess melting thed/we are able to fix the

ning, which is Lindemann numbec, .

Thermal fluctuations lead to a displacement correlation

) 1
WP(b)~ > J 5(a-b)’TP(K)A(K), (9
P.Q “q
cM(qo)=————, (12)
where [,= [d°q/(27)" and we abbreviate (@ nw’+cig?
(k,A\q,)? 1 which implies a bond width
M= q? 72(V-K)2+ (Cogll? +Cag02)?’ 1 T
. . “ (109 W‘“(b)~J 5(9-b)’Ch (q,0)~b?>——. (13

wq 2 4ayCep

(k. -q,)? 1 Here the contribution of longitudinal displacements can be

L —
(k)= safely neglected since, typicallg;>cgs. In D=2 there is

(10b) only one bond lengthh=a. The actual melting temperature

within Kosterlitz-Thouless theof§ (neglecting renormaliza-

Before we proceed to a detailed evaluation of E).in  tion effects is given by
the following sections, we recall the result of lowest-order )
perturbation theory for the macroscopic friction forg& __ BoCes
arising from the collective summation of the microscopic KT ag -

q? 72(v-K)2+ (1902 + 4090 %

(14)
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Inserting this temperature into E€L3) one can estimate the tant and give contributions-v ~2. For wP™, vortices there-

Lindemann parameter fore respond as if they were independent particles. In the
1 case ofw}", there is aqualitativedifference between longi-
2~ ~0.03 (15) tudinal and transverse modes. Transverse modes again give
L - * . . -2 . .
63 only contributions of~v ™4, whereas longitudinal modes

This value is in good agreement with typical values thatgive dominating contributions of orderu " *. Thus at large
L 9 9 i YPIC . . velocitiesy bonds are subject to much stronger fluctuations

empirically describe the melting transition in high- ‘hanx bonds

temperature superconductors. We stick to this value in al For small velocities the elastic interaction dominates the

quantitative considerations below. response of vortices and for > cgs longitudinal modes are
As soon as we have determined the pinning bond widths, b > Cos 'ONG

we can estimate the location of the transition where bdnds ih general negligible compared to the transverse modes. The

. ; o small velocity regime is reached when in the denominator
become unstable according to the Lindemann criteridh 2,22+ c20% of the response functions the first term is tvoi-
+wPn=c2a2 . The transition temperature will be determined 7 2 x4 b yp

b cally small compared to the second one, i.e., below a veloc-

y ity v~§cp/a§n. To the leading order in smadl and &/a,
RLV of all directions contribute equally the the bond widths,

(16)  which diverge~ In (1/v). The anisotropy doesot vanish at

ag small velocities, the prefactor of the logarithmic divergence

dependgin subleading order ig/ag, arising from contribu-

tions of RLV with Q,=0) on the bond orientation. In con-

trast to the high velocity regime, bonds have stronger fluc-

tuations thary bonds at small velocities. These results will

The evaluation of the disorder contributio® to the be discussed in more detail later in Sec. Il E.

bond width is more subtle than the calculation of the friction

force. In particular, since the velocity selects a particular

direction, which is chosen parallel to theaxis, we have to C. Friction force

distinguish bonds pointing parallel to the velocitsalled x In most experiments and simulations the driving force
bondg and bonds that enclose an angle of 60° with the rather than the velocity is the parameter controlling the drift.
axis (called y bondg. Both types of bonds have a length Therefore we wish to express the bond widths as a function
|b|=a. Due to the invariance of Eq9) under a reflection of  of the force and to evaluate the transport characteng)
components ok, one can parametrize the bond width by two from the friction force(11). Since we assume that vortices
coefficients, drift along a basic lattice direction, the friction force is also
. fr .
Diny oy PN 212 1 o ping 212 parallel to v_eloc:|ty_,F_||v||x. Equation(11) can be evaluated

WD) = w3 bi /b + wy by /b 17 analytically in the limits of large and small velocities. In both

These Coeﬁicientwgin andwP™ can be calculated analyti- Cases the main contributions to the sum over RLV’s come

2
4a CGGme

Te=Tkr—
as a function of the bond orientation and of velocity.

B. Pinning bond width

cally for small and large velocities: from Q with all possible orientations. Therefore the charac-
teristic velocity separating the large and small velocity re-
a2A, gimes for transverse and longitudinal modes are given by
W' ~ &cgsladn andv ~ &cyy/ajn, respectively. We find
ngn% mapé’ 7
a%agh, | +3\/2w§ . (4wgc6ﬁ) 00 .
L 7TC
32m2gic2, . 23 aZnu F'~> AQ) o~ arctan—s " (193
(1839 p.Q 8mcy x&g U
a’A,
3 ' A
i 4N2méinuey; (18b) 40 for v>écy,/ady,
y 2,2 mE U
a%agl, / J2mé 4mréCeg ~
2442 \1+ 2a In 2 : 3a§A0 5
Upper and lower expressions hold foe-cq,/ay7 and v (2m)7"¢Cos (19b)

<é&cgglady, respectively.

In the limit of large velocities the contributions to leading
order inv and in smallé/a, come only from RLV withQ,  Only for large velocitiesv > £cq,/a37, longitudinal and
=0, since the denominator of the response function becomdsansverse modes contribute equally to the friction force. At
small, 7% 2K+ c3q*= n%2q2+c3g*, and gives the largest velocitiesv < écy;/ag the transverse modes dominate since
weight to smalig, . In the case ofv?" the elastic interaction C1,>Cgg. Note that the friction force enters the large velocity
is negligible above a characteristic velocity~c,/ag7. regime already fom»gcu/agn, whereas the bond widths
Then longitudinal and transverse modes egeiallyimpor-  reach their corresponding regime only 0¥ c,,/ay7.
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FIG. 1. Plot of pinning bond widthsv{™ (full line) and wi" FIG. 2. Plot of friction force(full line) calculated numerically

(long-dashed linecalculated numerically from Eq9) for the pa-  from Eg. (11) for the parameters specified in the text. The dashed
rameters specified in the text. The short-dashed lines represent dine represents the depender@&v)~v ! at highv.
pendencesvP"(v)~v ~1,v 2, which are realized at high.
ing for F>F_.~0.04, where vortices move coherentlf (
D. Numerical evaluation corresponds td, in Ref. 1). The regime of force& <F, is

In order to illustrate the analytic results and to demon-Peyond the validity range of our elastic approach.
strate the capability of the Lindemann approach to provide Figure 4 displays the phase diagram, comparing the result
even aquantitative estimate for the location of dynamic ©f the Lindemann criterion(full line) to the simulation
phase transitions, we perform a numerical evaluation of thédots. Above this transition line all bonds are stable, below
bond width and the friction force from Eq&) and(11). The the transmo.n_ line bonds are broken. In the displayed range of
results are then compared with the simulation data in Ref. 1Small velocitiesx bonds are the least stable. Agreement be-
For this purpose we specify the parameters as follows. I§veen perturbation theory and simulations is given up to a
Ref. 1 the vortex spacing was used as a length scale andff_ictor of the order of unity, Wh_lc_h is still quite favorable in
2de,=2d(®y/4m\)? as an energy scale\ (is the penetra-  VieW of the. concept_ugl simplicity of the Lmdemgnn ap-
tion depth,d is the layer thicknegs The time scale is set by proach anq its sensitivity to changes, e.g., of the Lindemann
n=1. From the melting temperatufig;~0.007 of the pure number. It is worthwhile to state that no fit parameters have
system we findtgg~0.088, according to Eq14). The vortex PN used in our numerical calculation.
interaction chosen in Ref. 1 decays on the penetration length
estimated bya~a. The compression constant is obtained E. Discussion

from ¢y~ (16m\?/a%)ces~ 50ce6.*° We furthermore iden- At this point we pause to discuss some specific properties
tify ¢=r,=0.2 and refer to the data sets with a pinning of our results(189 and(18b) for the bond widths. The first
strengthA=0.006, a number of pinning centeMy,=10",  property is the strong anisotropy at large velocity, where the
and a number of vorticedN,=400. Then the disorder width ofx bonds scales like- 1/v? independent of the elastic
strength is Ag=yy/ag=(N,/N,ag)[ mA(é/ag)®1>~1.42  constants, whereas thebond width scales like~1/cy; .

X107°. This is true only for the largest velocities>c,,/a97,
Figure 1 shows the pinning bond widths fobonds(full

line) andy bonds(long-dashed ling The short-dashed lines 0.06

are a guide to the eyes representing an asymptotic deca

~v ™2 for x bonds and~v " for y bonds. This asymptotic 0.05 |

regime is reached only fop=100. At small velocities

=0.01, both bond widths diverge logarithmically. For large 0.04 -

velocities,y bonds have stronger fluctuations thamonds,

as opposed to small velocities. 0.03 -
The friction force obtained from Edq11) is shown in Fig. ‘

2 by the full line. The dashed line displaysva® depen-

dence, which is realized biy™ for v =100. At small veloci- 002 T

ties, v=0.01, F" saturates at a finite value in accordance

with Eq. (19b). The resulting transport characteristi¢F) is 0.01

shown in Fig. 3. The dashed line is the characteristic in the

absence of pinning, which is shifted to the full line by the 0 . . .

presence of disorder. This shift is practically constant in the 0 001 002 003 004 005 006

small velocity regime. The dots represent the simulation data F

of Ref. 1 for the lowest temperaturd € 0.001) considered FIG. 3. Plot of the transport characteristic resulting from Eq.
there. The agreement with the perturbative result is surpriscl), full line, and the simulation data of Ref.(#lashed ling
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025

large-scale correlations of the displacement field. The diver-
gence of the bond width in our approach arises from the
integration over small momentg i.e., from large-scale fluc-
tuations. From a principal point of view our perturbative
treatment of disorder is not valid at the largest scales, where
higher-order effects can no longer be neglected. Therefore
the correctly found divergence of the bond width has to be
considered as a lucky circumstance.

Although the phenomenological Lindemann criterion is
able to capture the position of a given transition, it can nei-
ther prove the existence of a transition nor can it tell us
something about the nature of a transition. In order to ex-
plore the nature of the transition, as well as the nature of the

0 . . . ' phases themselves, it is necessary to address the large-scale
0 0002 0004 0006 0008 001 aspects that are sensitive to the disorder-induced nonequilib-
rium correction to the equation of motidB).”~° Although a

FIG. 4. Plot of critical force for the transition from coherent to two-dimensional(2D) phase transition can be observed in
incoherent vortex motion. The full line is our result from the Lin- the density of lattice defects and, as a consequence, in spe-
demann criterion, the dots are simulation results from Ref. 1. cific features of the transport characterisfi¢? scaling
argument$ and numerical calculations of the structure

whereas fow<c,;/a,7 the isotropy is essentially restored, factor'®** indicate that onlarge length scales free defects
i_e_,y bonds havqua"tativelythe same Ve|0city dependence should eX|St, l.e., that the tOpOlOglcal order of .the.lattlce IS
asx bonds but the prefactors are still different. At laigéhe ~ 10st. However, at present a rigorous characterization of the
physical origin of the anisotropy can be understood in darge-scale properties and examination of the effects of de-
simple picture where vortices are considered as independefficts is still missing. Even if a true phase transitidike
particles. Vortices neighbored in thedirection follow the  “solid-to-fluid”) related to a qualitative change of the large
same paths and are exposed to the same pinning forces. Thggfrelations might be absent in the 2D case, we expect a
experience the same force, but with a delay tifte-a/y.  transition (like “liquid-to-gas”) or at least a pronounced
Even in the absence of vortex interactions such purely timecrossover at the location of the dynamic phase “transition”
shifted forces give rise to bond fluctuations of a finite widthlocated by the Lindemann criterion, which in its generalized
only. Therefore the elastic interaction is irrelevant and theséorm used here probes small-scale correlations. While these
bond fluctuations are independent of elastic constants arféiSPlacement fluctuations on small scales are related to the
decay proportional to Xt)2=v~2. Vortices neighbored in rate of generatlon.of (initially _bound) dlsloqatlon pairs,
directions not parallel to velocity always move on different large-scale fluctuations of the displacement field are relevant
trajectories and are exposed to essentially uncorrelated pif@ decide whether dislocations remaioundin pairs or dis-
ning forces. In the absence of interactions their typical relaSociate into free dislocations that destroy the topological or-
tive distance would increase without limits in the directionder- _ .
perpendicular tov as in a diffusion process. In the lattice It is instructive to draw a comparison between the bond
such a diffusive motion is prevented by the vortex interac-Widths, which we examine here, and the shaking temperature
tions. Since their relative distance fluctuates mainly inythe Tsnintroduced in Ref. 1T, was defined from the correlator
direction, which is almost parallel to their distance, it is the©f the pinning force experienced by a single particle. It is
compression modulus rather than the shear modulus th&perefore independent of elastic constants. If we compare the
confines the bond fluctuations. thermal and disorder contributions to the bond width, the
The anisotropy at large can be related to the anisotropy Iatter_ could be expressed in terms of an effective “bond
of the Larkin domain in the driven lattic® This domain is ~ Shaking temperature”
much longer in the direction parallel to the velocity than in

0.2

0.15

0.1

0.05

2
the other directions, which means that relative displacements Thsi ) = 430066W( b) (20)
grow faster perpendicular tothan parallel tos. Our conclu- T p2 '

sion thaty bonds are less stable tharbonds at large veloci-
ties is in agreement with a smectic structure of the driftingThis bond shaking temperature differs frofg, in several
systent’™® where vortices move in decoupled chainsrespects. First of all it depends on the orientation of the
aligned parallel tov. bonds under consideration. At large velocitieg, and T2

A second distinct feature of the bond fluctuations, thefor y bonds have the dependenee ~* in common. How-
divergence of the bond widths at small velocities, deservegVer they differ in the prefactor, which is independent of the
some explanation. This divergence, which is in generaplastic constants in the former casinceTy, characterizes a
found for D<2, implies that at zero velocity and for arbi- Single particl¢, but contains a prefactor cgg/cy1 in the lat-
trarily weak disorder all bonds are broken and the vortexter case(since T°" characterizes a relative displacement re-
lattice is destroyed, i.e., that the structure factor resemblegponsg T?"is more similar to the coherent shaking tem-
that of a liquid. This result of the Lindemann criterion coin- peratureTS" of Ref. 1, which was found to decayv 2 in
cides surprisingly with that of more elaborate methods, e.g.agreement withT ¢, for x bonds(and eveny bonds in an
renormalization-group method$*® which evaluate the incompressible lattide
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Speaking about effective temperatures, the attribute A. Thermal bond widths

“shaking” should not be taken too literally, since even for . js straightforward to evaluate the bond fluctuations due
v =0 disorder induces bond fluctuations, which are constan, thermal fluctuations and in the absence of disorder. Al-

in time. However, the displacements on small scales 100kg,q,gh purely thermal fluctuations have already been well
like a snapshot of a system without disorder but with a temy, 5 mined within the usual Lindemann appraich’ 2 we

. bsh . . . i K ..
perature increased by™" Since an effective temperature c5icyjate the bond fluctuations in order to gain additional

cannot be defined uniquely in a nonequilibrium situation;sight into the anisotropic nature of the fluctuations. Ne-

anyway, we keep, in the following, the notion of bond fluc- giecting again the contributions of compression modes, we
tuations. Since these fluctuations are related to the fluctugy,g

tions of the Peach-Koehler force acting on dislocations, we

believe that the bond fluctuations are an appropriate measure 2
- . - aT B 2
for the relevance of dislocatiofat least on not too large W;hEWth(ax)% ~— —=arctan —
scales, see discussion abpvEhe order-of-magnitude agree- 4dagCes V2 B
ment on the location of the transition between the Linde- 5
mann criterion and simulation supports this picture. for g>1
4a3dc,
0 “~66
IV. EVALUATION IN 3D ~ 5 (229
TaT
In a layered three-dimensional superconductor the physics g for B<1,

2
is even more rich than in two dimensions: besides the melt- 8\2a3dcss

ing transition, where the structural order of the vortex lattice T 1

gets lost and its elastic moduli get renormalized to zero, an wih=wih(dz)~ 7T 282—2B%rctan: +In(1+ 82)
additional decoupling transition, where the conductivity per- 24d cgg

pendicular to the layers becomes ohmic and the effective

Josephson coupling between the layers gets lost, can occur. Ing for g>1
We evaluate the bond fluctuations for layered superconduct- 12dcge
ors in the driven disordered case and discuss the implications ~ ~ T (220
for the nonequilibrium counterpart of the equilibrium melt- 8dc B for B<1,
ing and decoupling transitions. 66
In bulk superconductors, in particular for anisotropic where
high-temperature superconductors, the elastic properties of
the vortex lattice are somewhat intricate due to the dispersion ceed™® B
of the elastic constantgmainly of c,4 and cy1). For com- B?= = _ (23
pleteness we give the valifé<® Cads? Ber
« A2+ 1+ N2 N is the magnetic field in units of the crossover ffltf
TR T A R Teneg —— e
o (24
€0
C56_4_ag’ (21b) For the transparency of our arguments and for qualitative
purposes we have suppressed the explicit nonlocality of the
Cas= 024 +c, (210 elastic_: constants. The _nonloqality can be restored by using
' effective values of the dispersive elastic const@p13 evalu-
5 %o ated at the length scales that give the largest contributions to
€0 A°Q} the integrals. InD=3, bond fluctuations are always domi-
Car=— 23202 4 \ 202" (219 , i i '
a2 1+9y2\2q? +\2q? nated by small-scale fluctuations, since even in the presence
of disorder and for small velocities one never encounters a
PP divergence arising from large scaldsnlike in D<2).
Cfm:i N S S Therefore we use in our following estimates elastic constants
2a3 y>  \ N2+ y2q¥%+q? evaluated foiq, =q7 and|q,|=q3 . In general this approxi-
mation underestimates the stiffness of the lattice but it is
1 N2q: qualitatively valid as long as the dispersi¢anisotropy of
+—==In| 1+ ———||. (21e - .
)\2q§ 1+)\2qu the elastic constantss not too pronounced.

Let us now locate the lines whevé"=c?a3 for all bond
We define q*=\4mr/ay, q¥=n/d, and e;=(Do/4m\)2.  types a=x,y,z. These lines can be described b,
The tilt modulus is composed of a nonlocal contribution to=T,(B) in the (T,B) plane. To be specific, we consider in
the tilt energy and a “single-vortex” contributicff.We are  the following moderately anisotropic systems wigll<\
interested in the range of not too small fields, wheeea,  (like for YBCO, and even BSCCO lies just at the bondat
and an exponential decay of the elastic constants with theot too small fields §,=<\). For such systems one finds at

vortex density can be neglected. q. =9t andq,=q* :*®
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<I>(2) V2 €2 two-dimensional system. In the Lindemann approach melting
Cas™ n , (259  has therefore to be identified with the breaking of in-plane
2(4myagh\)?  4mwy?lag+ w2l d? bonds.
The breaking ofz bonds therefore describes a different
7P transition, which imotrelated to the loss of crystalline order.
Ber~ Wln(ydlf)’ @5D  Two possible transitions have been considered recently: the
decoupling transition and the supersolid transition. The de-
and further on coupling transition of layered superconduct8f$4® de-
scribes the loss of phase coherence in the superconducting
) d<I>S order parameter between different layers and in general does
CLW for B>B not coincide with the melting transition. The location of this
T~ (263 transition can be estimated by a Lindemann-type criterion for
dd3 (B, |2 the phase difference between neighboring layers. Although
2 0 | Zer for B<B ) :
CL(47T)\)2( B ) ers the vortex displacements are the main source of such phase
fluctuations, a Lindemann criterion for phase differences is
2 in general not equivalent to a Lindemann criterion for vortex
c? d®g 2 for B>B,, displacements, since a local vortex displacement leads to a
(4m\)? In(B/B;) nonlocal phase distortion. However, at fields below the
T~ 402 (B (26b  crossover fieldB,,, both types of Lindemann criteria actu-
CE 0 (i) for B<Bg,. ally are equivalent and the decoupling transition is captured
(4m\)%\ B just by breaking ofz bonds?®“8 At large fields the breaking

of z bonds describes the location of the transition from a
The relative strength of fluctuations of in-plane and solid to a supersolid vortex crystal due to a proliferation of
bonds is different for small and large fields. At large fieldsvacancy and interstitial lines in the vortex line crystal.
w'a2 is field independent, whereas/a3~1/InB in-
creases without bounds, i.av<w!. Thus for increasing

fields T, saturates at a constant value, wher€asanishes. B. Pinning bond width
At small fields the situation is reversed>w because After the brief review on the effect of thermal fluctuations
wia2~B andwl/a3~ B2 on bond widths and the possible interpretations of bond

The bond widths provide more information than the typi- breaking, we now focus on our main issue, the contribution
cal displacemen{u?)'? evaluated by the usual Lindemann of pinning to the bond widths and the question of how the
criterion. However, they are related by?)~max@",w).  above equilibrium phase diagram of the pure system evolves
In our Lindemann criterion26) for the different types of into a nonequilibrium phase diagram of the disordered sys-
phase transitions we use the same Lindemann nugjhein  tem.
principle these values might be different, sircéonds and Only very recently has the equilibrium phase diagram of
in-plane bonds are not equivalent from the point of view ofthe disordered systemv 0) received some attentiosee
lattice symmetries. But the use of different Lindemann num-Refs. 34—40 In particular, the breaking of in-plane bonds
bers would lead only to a quantitative shift of the phasehas been used as an indication for the transition from a to-
boundaries, which shall not be our main concern here.  pologically ordered phaséBragg-glass to a topologically

In order to associate the bond widths to possible meltinglisordered phasg@rortex glass For small magnetic fields the
and decoupling transitions, it is worth recalling the main fea-quantitative evaluation of the bond widths turned out to be
tures of these transitions. Since for anisotropjes1 the  quite a subtle issue because of the strong dispersion of the
interaction between vortices in the same layer is muctelastic constants in layered materials and the breakdown of
weaker than the interaction of vortices in different layers,perturbation theory in the low-field regimg<c a,). Since
one might in principle expect the possibility that melting we are eventually interested only in the dynamic effects of
occurs as a two-step process. In a first step the positiondlisorder on the dynamics, we do not attempt to reproduce the
correlations of vortices in different layers could get loststatic results. However, it is worthwhile to point out that in
while the correlations within the layers are preser(@deast D =3 the disorder-induced bond fluctuations ange for all
as quasi-long-range ordeiThis remaining two-dimensional bond types. This finiteness is found even at zero velocity and
order within the layers could then become short ranged at gven if the bond widths are calculated from E8) within
second transition at a higher temperature. However, this sc@aive perturbation theory that overestimates the effect of dis-
nario is probably not realized, as one can conclude from a@rder. For weak enough disorder all bonds are stable and a
analogy to layerecKY models. On symmetry grounds their topologically ordered phase can persist. For low tempera-
phase diagram should be topologically equivalent to that ofures the main effect of weak disorder is to reduce the long-
layered crystals. It was shof/nthat these models have only range translational order to a quasi-long-range order.

a single transition where order is destroyed in all directions. At sufficiently large velocities the perturbative approach,
Although the relative fluctuations between the layers can beEg. (9), can always be used to calculate the shift, of the
come arbitrarily large for weak coupling between the layerspond-breaking temperaturg@g, with respect to the value‘r'sz
which is the case for layered superconductors at large field$y the absence of disorder. For large velocities these tempera-
the transition temperature does not drop below that of théure shifts tend to zero and the use of the lowest-order per-
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turbation theory is justified at least as long as the disorderaZ. Furthermore, we have again used the values of the
contributions to the bond widths satisiy’"< 2. elastic constants foq, =q7 andqg,=q; , wherec;;~4cq

The pinning bond widths show a Complicated VeIOCityQEO/ag, andHsz (D0/27T§2 In terms of these parameters
dependence with several regimes, separated by characterisfia high-velocity regime is restricted byv> e,/a,.
velocities related to the different elastic constants. We focus | this high-velocity regimey bonds are less stable than
here exclusively on the high-velocity regime-cy,/a07 for  ponds over the whole field range. Dynamic melting is thus
which we estimate the pinning contribution to the bondgjways driven by the breaking gf bonds. In the absence of

widths from Eq.(9): disorder, thez bonds were moréless stable than in-plane
bonds for low(high) fields compared t8,,. This relation is
_ a%A, preserved in the driven case, since the bond-breaking tem-
Wi ——————, (27 erature of in-plane bonds is shifted mdkess than that of
S Bragde ol a p p ghesy

the z bonds at low(high) fields. Thus, the topology of the
phase diagram of the driven vortex lattice remains un-

_ a2A, changed at large velocity, as one could naively expect. The
g —— (27 high-velocity expansion does not provide evidence for a dy-
4\2mwgdnucey namic shift of the crossover field.
Wavo

pin_

W 1
© o 16V2mER v eiiCag

where we again useth,q¥ 2> c,q% 2.
From Eq.(27) one can immediately draw the important
conclusion thaty and z bonds, for whichwP" decays like

_l . .
v+, are affected by disorder at large velocities much Strong aller thare, (as required by the validity of the perturba-

; pin___ -2 i — H . . . . it
ger thanx bonds withw,"~v . As in D=2, the relative  je approachthe high-velocity regime covers a substantial

strength ofy-bond fluctuations in comparison xebond fluc-  cyrrent range below the depairing current and should be ex-

tuations is in agreement with the prediction of a smecticlike . I ibl | disorder i 2
flow of the vortex lattice - perimentally accessible. As long as disorder is weal (

<1), the location of the dynamic melting and decoupling

. In ongr to extract the net field depgndc_an_ce of the bon("Eransitions is close to the location of the equilibrium transi-
widths, it is important to remember the implicit dependence%on of the pure system, i.eAT,<T

. _4 . .
of the parametersl. Ir) part|cuIaA0~aq ,'smceA is the In this high-velocity regime dynamic melting is always
correlator of the Enznnlng energy den5|t_y in E@). For the driven by the breaking of bonds. The dynamic shifts of
same reasom~a, °, and also all elath'C constants carry ap i melting and decoupling transition temperatures scale
dommapt implicit geld dependencego . Thus _the relative |ixe AT,~v%. This dependence is in agreement with
fluctuationsw})"/ag~a® are essentially field independent, experiment¥ and numerical simulatiofis'5and the original
whereasw}"/ag~wg"/ag~a, * increase for large fields. concept of the shaking temperatdre/e have extended this
To visualize the velocity dependence of the dynamic tranoriginal approach, which was focused on the dynamic re-
sitions, it is instructive to translate the pinning bond widthssponse of a single vortex and on the response of the lattice at
(27) of the driven vortex lattice into shiftAT, of the bond-  large scales, on the fluctuations of bonds. Thereby we were
breaking temperature€6) of the pure system. Frorwt[‘ able to put the characterization of the nonequilibrium transi-
+wP"=c2a2 the bond-breaking temperature is reduced bytions on a common basis with the Lindemann approaches to
AT,= —Tawﬁ"‘/cfag. These shifts are the equilibrium counterparts.
At smaller drive the velocity dependence of the bond
27 1o widths and the temperature shifts will be in general weaker
. €00 B than at high drive. In two dimensions the velocity depen-
AT ~—Ta—— 555 Aol (289

(270 V. DISCUSSION AND CONCLUSIONS

To discuss the actual observability of the high-velocity
regime it is important to compare the above velocity range to
the depairing velocity of Cooper pairs. From the depairing
current(see, e.g., Ref. 42he depairing velocity can be es-
timated as 7,v gepair~ €0/€- Thus even if§ is not much

X477CE§2,7|2U dence becomes logarithmic at small velocities and the cross-
over between different regimes has been calculated numeri-
A cally (see Fig. L In three dimensions there are even more
€0l g dynamic regimes between the asymptotic regimes of zero
ATy~ _TXWv (28b) and large velocity because of the complex elastic properties
TeLE Y of the vortex lattice.
However, from Eq.(28) we can conclude that for weak
meoh B |2 disorder A,<1) the scaling of the high-velocity regime
ATZQ_TZ—<_) (280 should be observable in a considerable velocity range below
lG\/ECEfmv Ber y 9

depairing. In this case, where the temperature shifts are small
. . .. (AT_<T,), it should be possible to observe a dynamic shift

To make.the net field ‘?'epe”‘?'ence of.bond W'dth§ explicitys the phase boundaries experimentally. To the best of our
we have introduced a dimensionless disorder streagtby  knowledge, such dynamic shifts have not yet been reported.
A0=d(§eola§)2A0 and the friction coefficient per lingy, We naturally expect a dynamic shift to be most pronounced
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in the vicinity of the critical point of the melting line since rection than in thex direction. It would be interesting to
the main effect of a driving current is to reduce the effectiveanalyze neutron scattering and Bitter decoration experiments
strength of disorder and this point has been found to be quiten the driven vortex lattice in view of a dynamic shift of the
sensitive to the strength of disorder in equilibridfin par-  |ocation of the(quas)-Bragg peaks.

ticular, the location of the critical point will be shifted to
larger fields by a driving current.

The anisotropy of bond fluctuations found above is con-
sistent with the picture of smectic vortex fldW® due to the
dominant proliferation of dislocations with Burger's vectors The authors gratefully acknowledge useful discussions
parallel to the drift velocity, providing the actual mechanismwith J. Kierfeld, H. Nordborg, and in particular with A. E.
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ropy. In the presence of disorder the vortex system will showunder Contract No. DMR91-20000 Science and Technology
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