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Dynamic melting and decoupling of the vortex lattice in layered superconductors
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The dynamic phase diagram of vortex lattices driven in disorder is calculated in two and three dimensions.
A modified Lindemann criterion for the fluctuations of the distance of neighboring vortices is used, which
unifies previous analytic approaches to the equilibrium and nonequilibrium phase transitions. The temperature
shifts of the dynamic melting and decoupling transitions are found to scale inversely proportional to large
driving currents. A comparison with two-dimensional simulations shows that this phenomenological approach
can provide a quantitative estimate for the location of these transitions.
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I. INTRODUCTION

The prediction of nonequilibrium phase transitions
driven vortex lattices1 has triggered an extensive theoretic
study of periodic structures moving through a random en
ronment, using both analytical2–9 and numerical10–15 ap-
proaches. The striking experiments on vortex transport16–22

that motivated and supported theoretical efforts provid
convincing evidence for a genuine nonequilibrium pha
transition between different driven states of the vortex
tice. Investigations of theI -V curves in Nb2Se samples and
MoGe films16,19,20 revealed regimes of plastic and elas
flow of the vortex lattice separated by a characteristic c
rent. Neutron-scattering experiments18 on the driven vortex
state in Nb2Se demonstrated a sharp increase in the den
of structural defects of the vortex lattice in a certain curr
interval just above the depinning transition. At a larger ch
acteristic current the defect density dropped significan
suggesting a reordering of the vortex system.

To understand the above experiments it is crucial to
termine how quenched disorder affects the structure of
driven vortex system. The central idea of Ref. 1 was
suggestion that disorder, being frozen in the laborat
frame, appears as a temporarily fluctuating force in the fra
of the moving vortices and leads to an increased effec
temperature of the vortex system. This effective tempera
strongly depends on the drift velocity. Thus an equilibriu
phase transition of the pure system~like melting! should
have a counterpart in the system driven in a disordered
vironment and could be triggered by changing the drive
constant true temperature. For increasing drift velocities,
order should be more and more washed out and the temp
ture of the dynamic transition should approach the transi
temperature of the pure system from below.

One related question of principal interest is to what ext
disorder-induced features of the equilibrium phase diag
could be eliminated by applying a driving current. The mo
prominent example for such a feature is the first-order m
ing transition of the vortex lattice, which is experimenta
570163-1829/98/57~21!/13800~11!/$15.00
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found to end at a critical point.23 For decreasing strength o
disorder the location of the transition moves to higher te
peratures and the end point wanders to larger fields.24 There-
fore it seems plausible that with increasing sample purity t
critical point continues to be shifted to larger fields and t
theoretically expected phase diagram, which does not dis
a critical point, is recovered. Since it is practically impo
sible to obtain pinning-free samples, one might hope to
serve the phase diagram of the ideal pure system by incr
ing a driving force in a given impure sample. The discuss
of this scenario is one of the goals of the present paper.

Already in the pure case one has to face the problem
how to capture the melting transition theoretically. Here
phenomenological approach based on the Lindemann c
rion has been used successfully.25–29This criterion states tha
the static lattice melts as the mean squared thermal displ
ment of a vortex line becomes equal to a certain fraction
the lattice spacing,̂ u2(r ,t)&.cL

2a0
2 . The numbercL is

called the Lindemann number and is usually of order un
a0 is the vortex spacing in the direction perpendicular to
magnetic field. In this conventional form the Lindemann c
terion would suggest that in two dimensions~where
^u2(r ,t)&5` for all finite temperatures! crystals would al-
ways be unstable to thermal fluctuations. Indeed, the lo
range translational order is lost, but a quasi-long-range tra
lational order and the topological order persist at lo
temperatures and vanish only above a finite melting temp
ture. Since disorder in general reduces long-range orde
quasi-long-range order between two and fo
dimensions,30–32 it is necessary to modify the phenomen
logical criterion for detection of the more subtle loss of t
pological order. This is achieved by using a slightly modifi
criterion for the relative displacement of two neighborin
vortices,

w~b!5^@u~r1b,t !2u~r ,t !#2&. ~1!

Here b is a basis vector of the perfect lattice that separa
the undisplaced vortices. If one naively thinks of the latti
13 800 © 1998 The American Physical Society
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57 13 801DYNAMIC MELTING AND DECOUPLING OF THE . . .
as being built by vortices connected by springs, thenw is a
measure for the typical stress of a bond~‘‘spring’’ ! connect-
ing neighboring vortices. Such bonds can be expected
‘‘break’’ for

w~b!'cL
2a0

2 . ~2!

In a layered superconductor, where the vortex lines are a
ally composed of pointlike vortices, not only the meltin
transition but also a decoupling transition28 can exist. The
evaluation of bond widthsw for different orientations~in-
plane and out-of-plane! provides additional insight into the
anisotropy of vortex fluctuations and the location of the
transitions.

The extension of the Lindemann criterion on disord
dominated systems33 enabled the description of disorde
induced static transitions between elastic and plastic glas
In view of the loss of topological order the so-called ‘‘e
tanglement’’ transition from the Bragg glass to the vort
glass is equivalent to the melting of the pure system. Us
the very same Lindemann criterion~2! with bond widths
averaged over thermal and disorder-induced fluctuations
location of this entanglement transition has been determ
recently.34–40 The validity of this criterion has even bee
derived within a self-consistent variational approach.34,37

For driven vortex systems disorder-induced displaceme
were calculated in Ref. 1 within a naive large velocity e
pansion approach for the two-dimensional vortex lattice, a
the nonequilibrium melting line was found for the case
strong disorder. Based on scaling arguments, Balents
Fisher extended the concept of nonequilibrium phase tra
tions to charge-density wave systems.2 Giamarchi and Le
Doussal3 focused on the structure of thehigh velocitydriven
vortex phase and noticed that it retains some glassy feat
of its static counterpart. The investigations th
followed4,5,7–9 revealed further fundamental features of t
driven phase, in particular, the fact that in a coarse-grai
description~i.e., on a large enough spatial scale! the main
effect of disorder on the driven periodic structure can
described as arandom force. Besides that, the intrinsic non
equilibrium nature shows up in Kardar-Parisi-Zhang~KPZ!
-type nonlinearities and convective terms that describe
effective dynamics of the systems onlarge scales.

Most of these recent studies have been focused on
large-scale properties of the system in the elastic approxi
tion. Based on the properties of the topologically constrain
system, it is in principle possible to include topological d
fects like dislocations and to study the topological stability
the lattice systematically. In practice, this approach is di
cult to realize, in particular when the transition appears a
collective effect of the dislocations, as in the example
three-dimensional melting. Encouraged by the success o
Lindemann criterion in capturing the location of the pha
transition in the pure case as well as in the static disorde
case, we extend this approach in this paper to the locatio
nonequilibrium transitions of the vortex system. Since
employed Lindemann criterion is a local criterion, disord
can be treated perturbatively in the unrenormalized equa
of motion ~3! below. Thus the large-scale renormalizatio
such as KPZ nonlinearities do not enter the phenomenol
cal melting criterion and, within the limits of validity of this
criterion, do not change the phase boundaries.
to
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The organization of this paper is as follows. In Sec. II w
outline the perturbative approach for vortex lattices driv
through disorder and specify the generalized form of the L
demann criterion. In Sec. III we evaluate this criterion f
two-dimensional systems and perform a quantitative co
parison of the resulting phase diagram with numerical sim
lations. In Sec. IV we derive consequences for the dyna
phase diagram of three-dimensional systems. Dynamic m
ing and decoupling transitions are discussed in Sec. V.

II. PERTURBATIVE APPROACH

We consider a vortex lattice in a steady driven state w
velocity v. Vortices are labeled by their ideal positionr in
the comoving frame, whereas their actual position in
laboratory frame isR(r ,t)5r1vt1u(r ,t). The dynamics of
the system is governed by the conventional equation for
vortex displacement fieldu[u(r ,t),

hu̇5c“2u1f pin~R!1F2hv1z, ~3!

wherec represents the elastic constants~specified below for
the vortex lattice! and “ the lattice gradient. The therma
noisez couples the vortices to a heat bath of temperatureT.
The pinning force densityf pin(r ,t)52“V@R(r ,t)# is related
to the pinning potentialV, which is supposed to be Gaussia
distributed with a second moment

V~k!V~k8!5D~k!d~k1k8!, ~4a!

D~k!5D0e2
1
2 k'

2 j2
. ~4b!

The correlations decay on the scale of the coherence le
j. We definek'

2 5kx
21ky

2 as the vector component perpe
dicular to the magnetic field. Equation~3! refers to pointlike
vortices in a single layer (D52) or in a layered supercon
ductor (D53).

In the absence of disorder the response of the vortex
tice is different for longitudinal (L) and transverse (T)
modes. Since the vortex lattice is almost incompressible,
longitudinal modes do not significantly contribute to ma
physical properties. However, as we see later on, in a vo
lattice driven through disorder these modes are impor
and have to be retained. The response functionG is deter-
mined by the elastic constants for compressionc11, shear
c66, and tilt c44:

Gab~q,v!5(
p

Gp~q,v!Pab
p ~q!, ~5a!

Gp~q,v!5@2 ihv1cpq'
2 1c44qz

2#21, ~5b!

Pab
T ~q!5dab2

qaqb

q'
2

, Pab
L ~q!5

qaqb

q'
2

, ~5c!

where p5L,T stands for a polarization withcp5c11,c66,
respectively, andq'

2 5qx
21qy

2 . Wave vectorsq are restricted
to the first Brillouin zone~BZ! of the ideal lattice in contras
to k.

To calculate the fluctuationsw of the distance of neigh-
boring vortices we treat disorder on the lowest level of p
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13 802 57STEFAN SCHEIDL AND VALERII M. VINOKUR
turbation theory by approximatingf(R)5f(r1vt1u)'f(r
1vt), which is justified as long asw(b)&j2. This condition
is satisfied in the whole range of interestw(b)<cL

2a0
2 if

cLa0&j. This restricts the validity of our approach to hig
magnetic fields not too much below the upper critical fiel

In this approximation the pinning force can be conside
as an ‘‘external’’ force that does not depend on the respo
of the vortex lattice. The combinationf(r ,t)5f pin(r1vt)
1z(r ,t) of this pinning force and the thermal noise h
Gaussian correlations

^ f a~q,v! f b~q8,v8!&5Cab~q,v!d~q1q8!d~v1v8!,

Cab~q,v!5qdab1(
Q

kakbD~k!d~v1v•k!,

q52hT. ~6!

The averaging includes the randomness of disorder and
of thermal noise. We denotek5Q1q with a reciprocal lat-
tice vector ~RLV! Q ~being perpendicular to the magnet
field! and a vectorq within the BZ.

The displacements in response to the total external forf
have correlations

ua~q,v!ub~q8,v8!5Cab~q,v!d~q1q8!d~v1v8!,

Cab~q,v!5Gag~q,v!Cgd~q,v!Gbd~2q,2v!. ~7!

From Eq.~7! we can immediately calculate the bond fluctu
tions

w~b!'E
vq

1

2
~q•b!2Caa~q,v!. ~8!

The thermal and pinning contributions to the force correla
~6! generate two corresponding contributions to the bo
width w5wth1wpin, which can be considered as approx
mately independent. Thethermalcontribution has been stud
ied extensively in the past in order to determine the melt
transition of the vortex lattice in the absence of impuritie
Here we focus our attention on the contribution due to p
ning, which is

wpin~b!'(
p,Q

E
q

1

2
~q•b!2Gp~k!D~k!, ~9!

where*q5*dDq/(2p)D and we abbreviate

GT~k![
~k'`q'!2

q'
2

1

h2~v•k!21~c66q'
2 1c44qz

2!2
,

~10a!

GL~k![
~k'•q'!2

q'
2

1

h2~v•k!21~c11q'
2 1c44qz

2!2
.

~10b!

Before we proceed to a detailed evaluation of Eq.~9! in
the following sections, we recall the result of lowest-ord
perturbation theory for the macroscopic friction forceFfr

arising from the collective summation of the microscop
d
se

at

-

r
d

g
.
-

r

pinning forces. In order to achieve a drift velocityv, one has
to apply a driving forceF(v)5hv1Ffr(v) with9

Fa
fr5E

k
ikakbkgD~k!Gbg~k,2v•k! ~11a!

5(
p,Q

E
q
kah~v•k!Gp~k!D~k!, ~11b!

which coincides forD52 with the early result of Schmid
and Hauger.41

The disordered vortex lattice is characterized by two
ementary length scales: the disorder correlation lengthj and
the ‘‘vortex spacing’’a0[AF0 /B (B is the magnetic induc-
tion andF0 the flux quantum!. In the triangular lattice the
actual distance between neighboring vortices in a direc
perpendicular to the magnetic field isa5A2/A3a0. We as-
sumecLa0&j&a0, which is realistic for high-temperatur
superconductors at large fields. For the evaluation of
main formulas~9! and ~11!, we will retain the reciprocal
lattice structure inQ, but we approximate the BZ as a sphe
cal cylinder with boundsq'

2 <q'
* 2[4p/a0

2 and uqzu<qz*
[p/d for a layer spacingd. This approximation preserve
the area of the BZ. The nonlocality ofc66 will be neglected.
We choose thex axis as the direction of the velocityv5v x̂,
and suppose the vortex lattice to move along one main
rection of the hexagonal lattice, which are the directions
minimum energy dissipation.41

III. EVALUATION IN D52

The general expressions for bond widthsw and friction
force Ffr are immediately specialized to two dimensions
settingqz50. They are evaluated here in order to compa
the location of the dynamic melting transition according
the Lindemann criterion with numerical simulations.

A. Thermal bond width

To start with, we consider the contribution of therm
fluctuations to the bond width. By a comparison with t
Kosterlitz-Thouless melting theory42 we are able to fix the
Lindemann numbercL .

Thermal fluctuations lead to a displacement correlatio

Caa
th ~q,v!5

q

h2v21c66
2 q4

, ~12!

which implies a bond width

wth~b!'E
vq

1

2
~q•b!2Caa

th ~q,v!'b2
T

4a0
2c66

. ~13!

Here the contribution of longitudinal displacements can
safely neglected since, typically,c11@c66. In D52 there is
only one bond length,b5a. The actual melting temperatur
within Kosterlitz-Thouless theory42 ~neglecting renormaliza-
tion effects! is given by

TKT'
a0

2c66

4p
. ~14!
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Inserting this temperature into Eq.~13! one can estimate th
Lindemann parameter

cL
2'

1

6A3p
'0.03. ~15!

This value is in good agreement with typical values th
empirically describe the melting transition in high
temperature superconductors. We stick to this value in
quantitative considerations below.

As soon as we have determined the pinning bond wid
we can estimate the location of the transition where bondb
become unstable according to the Lindemann criterionwth

1wpin5cL
2a0

2 . The transition temperature will be determine
by

Tc5TKT2
4a2c66

a0
2

wpin ~16!

as a function of the bond orientation and of velocity.

B. Pinning bond width

The evaluation of the disorder contributions~9! to the
bond width is more subtle than the calculation of the fricti
force. In particular, since the velocity selects a particu
direction, which is chosen parallel to thex axis, we have to
distinguish bonds pointing parallel to the velocity~called x
bonds! and bonds that enclose an angle of 60° with thex
axis ~called y bonds!. Both types of bonds have a leng
ubu5a. Due to the invariance of Eq.~9! under a reflection of
components ofk, one can parametrize the bond width by tw
coefficients,

wpin~b!5wx
pinbx

2/b21wy
pinby

2/b2. ~17!

These coefficientswx
pin and wy

pin can be calculated analyti
cally for small and large velocities:

wx
pin'5

a2D0

A8pa0j3h2v2
,

a2a0
2D0

32p2j4c66
2 S 11

3A2pj

2a0
D ln S 4pjc66

a0
2hv

D ,

~18a!

wy
pin'5

a2D0

4A2pj3hvc11

,

a2a0
2D0

32p2j4c66
2 S 11

A2pj

2a0
D ln S 4pjc66

a0
2hv

D .

~18b!

Upper and lower expressions hold forv@c11/a0h and v
!jc66/a0

2h, respectively.
In the limit of large velocities the contributions to leadin

order inv and in smallj/a0 come only from RLV withQx
50, since the denominator of the response function beco
small, h2v2kx

21cp
2q45h2v2qx

21cp
2q4, and gives the larges

weight to smallqx . In the case ofwx
pin the elastic interaction

is negligible above a characteristic velocityv;cp /a0h.
Then longitudinal and transverse modes areequally impor-
t

ll

s,

r

es

tant and give contributions;v22. For wx
pin , vortices there-

fore respond as if they were independent particles. In
case ofwy

pin , there is aqualitativedifference between longi-
tudinal and transverse modes. Transverse modes again
only contributions of;v22, whereas longitudinal mode
give dominating contributions of order;v21. Thus at large
velocitiesy bonds are subject to much stronger fluctuatio
thanx bonds.

For small velocities the elastic interaction dominates
response of vortices and forc11@c66 longitudinal modes are
in general negligible compared to the transverse modes.
small velocity regime is reached when in the denomina
h2v2kx

21cp
2q4 of the response functions the first term is typ

cally small compared to the second one, i.e., below a ve
ity v;jcp /a0

2h. To the leading order in smallv and j/a0,
RLV of all directions contribute equally the the bond width
which diverge; ln (1/v). The anisotropy doesnot vanish at
small velocities, the prefactor of the logarithmic divergen
depends~in subleading order inj/a0, arising from contribu-
tions of RLV with Qx50) on the bond orientation. In con
trast to the high velocity regime,x bonds have stronger fluc
tuations thany bonds at small velocities. These results w
be discussed in more detail later in Sec. III E.

C. Friction force

In most experiments and simulations the driving for
rather than the velocity is the parameter controlling the dr
Therefore we wish to express the bond widths as a func
of the force and to evaluate the transport characteristicv(F)
from the friction force~11!. Since we assume that vortice
drift along a basic lattice direction, the friction force is als
parallel to velocity,Ffrivix. Equation~11! can be evaluated
analytically in the limits of large and small velocities. In bo
cases the main contributions to the sum over RLV’s co
from Q with all possible orientations. Therefore the chara
teristic velocity separating the large and small velocity
gimes for transverse and longitudinal modes are given bv
;jc66/a0

2h andv;jc11/a0
2h, respectively. We find

F fr'(
p,Q

D„Q)
Q2Qx

8pcp
arctan

4pcp

Qxa0
2hv

~19a!

'5
D0

pj4hv
for v@jc11/a0

2h,

3a0
2D0

2~2p!5/2j5c66

for v!jc66/a0
2h.

~19b!

Only for large velocitiesv@jc11/a0
2h, longitudinal and

transverse modes contribute equally to the friction force.
velocitiesv!jc11/a0

2h the transverse modes dominate sin
c11@c66. Note that the friction force enters the large veloc
regime already forv@jc11/a0

2h, whereas the bond width
reach their corresponding regime only forv@c11/a0h.
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D. Numerical evaluation

In order to illustrate the analytic results and to demo
strate the capability of the Lindemann approach to prov
even a quantitative estimate for the location of dynami
phase transitions, we perform a numerical evaluation of
bond width and the friction force from Eqs.~9! and~11!. The
results are then compared with the simulation data in Re

For this purpose we specify the parameters as follows
Ref. 1 the vortex spacinga was used as a length scale a
2de0[2d(F0/4pl)2 as an energy scale (l is the penetra-
tion depth,d is the layer thickness!. The time scale is set by
h51. From the melting temperatureTKT'0.007 of the pure
system we findc66'0.088, according to Eq.~14!. The vortex
interaction chosen in Ref. 1 decays on the penetration len
estimated byl'a. The compression constant is obtain
from c11'(16pl2/a2)c66'50c66.43 We furthermore iden-
tify j[r p50.2 and refer to the data sets with a pinni
strengthA50.006, a number of pinning centersNp5104,
and a number of vorticesNv5400. Then the disorde
strength is D05gU /a0

25(Np /Nva0
2)@pA(j/a0)2#2'1.42

31025.
Figure 1 shows the pinning bond widths forx bonds~full

line! andy bonds~long-dashed line!. The short-dashed line
are a guide to the eyes representing an asymptotic d
;v22 for x bonds and;v21 for y bonds. This asymptotic
regime is reached only forv*100. At small velocitiesv
&0.01, both bond widths diverge logarithmically. For lar
velocities,y bonds have stronger fluctuations thanx bonds,
as opposed to small velocities.

The friction force obtained from Eq.~11! is shown in Fig.
2 by the full line. The dashed line displays av21 depen-
dence, which is realized byF fr for v*100. At small veloci-
ties, v&0.01, F fr saturates at a finite value in accordan
with Eq. ~19b!. The resulting transport characteristicv(F) is
shown in Fig. 3. The dashed line is the characteristic in
absence of pinning, which is shifted to the full line by th
presence of disorder. This shift is practically constant in
small velocity regime. The dots represent the simulation d
of Ref. 1 for the lowest temperature (T50.001) considered
there. The agreement with the perturbative result is surp

FIG. 1. Plot of pinning bond widthswx
pin ~full line! and wy

pin

~long-dashed line! calculated numerically from Eq.~9! for the pa-
rameters specified in the text. The short-dashed lines represen
pendenceswpin(v);v21,v22, which are realized at highv.
-
e

e

1.
In

th

ay

e

e
ta

s-

ing for F.Fc'0.04, where vortices move coherently (Fc
corresponds tof t in Ref. 1!. The regime of forcesF,Fc is
beyond the validity range of our elastic approach.

Figure 4 displays the phase diagram, comparing the re
of the Lindemann criterion~full line! to the simulation
~dots!. Above this transition line all bonds are stable, belo
the transition line bonds are broken. In the displayed rang
small velocitiesx bonds are the least stable. Agreement b
tween perturbation theory and simulations is given up t
factor of the order of unity, which is still quite favorable i
view of the conceptual simplicity of the Lindemann a
proach and its sensitivity to changes, e.g., of the Lindem
number. It is worthwhile to state that no fit parameters ha
been used in our numerical calculation.

E. Discussion

At this point we pause to discuss some specific proper
of our results~18a! and ~18b! for the bond widths. The first
property is the strong anisotropy at large velocity, where
width of x bonds scales like;1/v2 independent of the elasti
constants, whereas they-bond width scales like;1/vc11.
This is true only for the largest velocitiesv@c11/a0h,

de-

FIG. 2. Plot of friction force~full line! calculated numerically
from Eq. ~11! for the parameters specified in the text. The dash
line represents the dependenceF fr(v);v21 at highv.

FIG. 3. Plot of the transport characteristic resulting from E
~11!, full line, and the simulation data of Ref. 1~dashed line!.



d,
e

de

T

e
th
es
a

n
p
la

on
e
ac
e
he
th

y

in
en

ing
ns

h
ve
ra
i-
te
bl
n-
.g

er-
the

e
ere
fore
be

is
ei-
us
ex-
the
scale
ilib-

in
spe-

re
s
is

the
de-

e
ct a
d
n’’
ed
ese
the

ant

or-

nd
ture
r
is
the

he
nd

the

he

re-
-

to
n-
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whereas forv!c11/a0h the isotropy is essentially restore
i.e.,y bonds havequalitativelythe same velocity dependenc
asx bonds but the prefactors are still different. At largev the
physical origin of the anisotropy can be understood in
simple picture where vortices are considered as indepen
particles. Vortices neighbored in thex direction follow the
same paths and are exposed to the same pinning forces.
experience the same force, but with a delay timeDt5a/v.
Even in the absence of vortex interactions such purely tim
shifted forces give rise to bond fluctuations of a finite wid
only. Therefore the elastic interaction is irrelevant and th
bond fluctuations are independent of elastic constants
decay proportional to (Dt)2}v22. Vortices neighbored in
directions not parallel to velocity always move on differe
trajectories and are exposed to essentially uncorrelated
ning forces. In the absence of interactions their typical re
tive distance would increase without limits in the directi
perpendicular tov as in a diffusion process. In the lattic
such a diffusive motion is prevented by the vortex inter
tions. Since their relative distance fluctuates mainly in thy
direction, which is almost parallel to their distance, it is t
compression modulus rather than the shear modulus
confines the bond fluctuations.

The anisotropy at largev can be related to the anisotrop
of the Larkin domain in the driven lattice.3,9 This domain is
much longer in the direction parallel to the velocity than
the other directions, which means that relative displacem
grow faster perpendicular tov than parallel tov. Our conclu-
sion thaty bonds are less stable thanx bonds at large veloci-
ties is in agreement with a smectic structure of the drift
system,5,7–9 where vortices move in decoupled chai
aligned parallel tov.

A second distinct feature of the bond fluctuations, t
divergence of the bond widths at small velocities, deser
some explanation. This divergence, which is in gene
found for D<2, implies that at zero velocity and for arb
trarily weak disorder all bonds are broken and the vor
lattice is destroyed, i.e., that the structure factor resem
that of a liquid. This result of the Lindemann criterion coi
cides surprisingly with that of more elaborate methods, e
renormalization-group methods,44,45 which evaluate the

FIG. 4. Plot of critical force for the transition from coherent
incoherent vortex motion. The full line is our result from the Li
demann criterion, the dots are simulation results from Ref. 1.
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large-scale correlations of the displacement field. The div
gence of the bond width in our approach arises from
integration over small momentaq, i.e., from large-scale fluc-
tuations. From a principal point of view our perturbativ
treatment of disorder is not valid at the largest scales, wh
higher-order effects can no longer be neglected. There
the correctly found divergence of the bond width has to
considered as a lucky circumstance.

Although the phenomenological Lindemann criterion
able to capture the position of a given transition, it can n
ther prove the existence of a transition nor can it tell
something about the nature of a transition. In order to
plore the nature of the transition, as well as the nature of
phases themselves, it is necessary to address the large-
aspects that are sensitive to the disorder-induced nonequ
rium correction to the equation of motion~3!.7–9 Although a
two-dimensional~2D! phase transition can be observed
the density of lattice defects and, as a consequence, in
cific features of the transport characteristic,16,19 scaling
arguments2 and numerical calculations of the structu
factor10,14 indicate that onlarge length scales free defect
should exist, i.e., that the topological order of the lattice
lost. However, at present a rigorous characterization of
large-scale properties and examination of the effects of
fects is still missing. Even if a true phase transition~like
‘‘solid-to-fluid’’ ! related to a qualitative change of the larg
correlations might be absent in the 2D case, we expe
transition ~like ‘‘liquid-to-gas’’ ! or at least a pronounce
crossover at the location of the dynamic phase ‘‘transitio
located by the Lindemann criterion, which in its generaliz
form used here probes small-scale correlations. While th
displacement fluctuations on small scales are related to
rate of generationof ~initially bound! dislocation pairs,
large-scale fluctuations of the displacement field are relev
to decide whether dislocations remainboundin pairs or dis-
sociate into free dislocations that destroy the topological
der.

It is instructive to draw a comparison between the bo
widths, which we examine here, and the shaking tempera
Tsh introduced in Ref. 1.Tsh was defined from the correlato
of the pinning force experienced by a single particle. It
therefore independent of elastic constants. If we compare
thermal and disorder contributions to the bond width, t
latter could be expressed in terms of an effective ‘‘bo
shaking temperature’’

Tbsh~b![
4a0

2c66

b2
w~b!. ~20!

This bond shaking temperature differs fromTsh in several
respects. First of all it depends on the orientation of
bonds under consideration. At large velocitiesTsh and Tbsh

for y bonds have the dependence;v21 in common. How-
ever they differ in the prefactor, which is independent of t
elastic constants in the former case~sinceTsh characterizes a
single particle!, but contains a prefactor;c66/c11 in the lat-
ter case~sinceTbsh characterizes a relative displacement
sponse!. Tbsh is more similar to the coherent shaking tem
peratureTsh

coh of Ref. 1, which was found to decay;v22 in
agreement withTbsh for x bonds~and eveny bonds in an
incompressible lattice!.
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Speaking about effective temperatures, the attrib
‘‘shaking’’ should not be taken too literally, since even f
v50 disorder induces bond fluctuations, which are cons
in time. However, the displacements on small scales lo
like a snapshot of a system without disorder but with a te
perature increased byTbsh. Since an effective temperatur
cannot be defined uniquely in a nonequilibrium situati
anyway, we keep, in the following, the notion of bond flu
tuations. Since these fluctuations are related to the fluc
tions of the Peach-Koehler force acting on dislocations,
believe that the bond fluctuations are an appropriate mea
for the relevance of dislocation~at least on not too large
scales, see discussion above!. The order-of-magnitude agree
ment on the location of the transition between the Lind
mann criterion and simulation supports this picture.

IV. EVALUATION IN 3D

In a layered three-dimensional superconductor the phy
is even more rich than in two dimensions: besides the m
ing transition, where the structural order of the vortex latt
gets lost and its elastic moduli get renormalized to zero,
additional decoupling transition, where the conductivity p
pendicular to the layers becomes ohmic and the effec
Josephson coupling between the layers gets lost, can o
We evaluate the bond fluctuations for layered supercond
ors in the driven disordered case and discuss the implicat
for the nonequilibrium counterpart of the equilibrium me
ing and decoupling transitions.

In bulk superconductors, in particular for anisotrop
high-temperature superconductors, the elastic propertie
the vortex lattice are somewhat intricate due to the disper
of the elastic constants~mainly of c44 and c11). For com-
pleteness we give the values26,28

c115
e0

a0
2

l2q'
* 2

11g2l2q'
2 1l2qz

2

11g2l2q2

11l2q2
, ~21a!

c665
e0

4a0
2

, ~21b!

c445c44
0 1c44

c , ~21c!

c44
0 5

e0

a0
2

l2q'
* 2

11g2l2q'
2 1l2qz

2
, ~21d!

c44
c 5

e0

2a0
2F 1

g2
ln S g2j22

l221g2q'
* 21qz

2D
1

1

l2qz
2
ln S 11

l2qz
2

11l2q'
* 2D G . ~21e!

We define q'
* [A4p/a0, qz* [p/d, and e05(F0/4pl)2.

The tilt modulus is composed of a nonlocal contribution
the tilt energy and a ‘‘single-vortex’’ contribution.28 We are
interested in the range of not too small fields, wherel*a0
and an exponential decay of the elastic constants with
vortex density can be neglected.
te
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A. Thermal bond widths

It is straightforward to evaluate the bond fluctuations d
to thermal fluctuations and in the absence of disorder.
though purely thermal fluctuations have already been w
examined within the usual Lindemann approach25–27,29, we
calculate the bond fluctuations in order to gain additio
insight into the anisotropic nature of the fluctuations. N
glecting again the contributions of compression modes,
find

wx
th[wth~ax̂!'

a2T

4da0
2c66

b

A2
arctanSA2

b D

'5
a2T

4a0
2dc66

for b@1

pa2T

8A2a0
2dc66

b for b!1,

~22a!

wz
th[wth~dẑ!'

pT

24dc66
F2b222b3arctan

1

b
1 ln~11b2!G

'H pT

12dc66
ln b for b@1

pT

8dc66
b2 for b!1,

~22b!

where

b2[
c66q'

* 2

c44qz*
2

5
B

Bcr
~23!

is the magnetic field in units of the crossover field28,46

Bcr5
pF0c44

4d2c66

. ~24!

For the transparency of our arguments and for qualita
purposes we have suppressed the explicit nonlocality of
elastic constants. The nonlocality can be restored by us
effective values of the dispersive elastic constants~21! evalu-
ated at the length scales that give the largest contribution
the integrals. InD53, bond fluctuations are always dom
nated by small-scale fluctuations, since even in the prese
of disorder and for small velocities one never encounter
divergence arising from large scales~unlike in D<2).
Therefore we use in our following estimates elastic consta
evaluated forq'5q'

* anduqzu5qz* . In general this approxi-
mation underestimates the stiffness of the lattice but it
qualitatively valid as long as the dispersion~anisotropy of
the elastic constants! is not too pronounced.

Let us now locate the lines wherewa
th5cl

2a0
2 for all bond

types a5x,y,z. These lines can be described byTa
[Ta(B) in the (T,B) plane. To be specific, we consider
the following moderately anisotropic systems withgd!l
~like for YBCO, and even BSCCO lies just at the border! at
not too small fields (a0&l). For such systems one finds
q'5q'

* andqz5qz* :28
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c44'
F0

2

2~4pga0l!2
ln

g2/j2

4pg2/a0
21p2/d2

, ~25a!

Bcr'
pF0

g2d2
ln~gd/j!, ~25b!

and further on

Tx'5 cL
2

dF0
2

~4pl!2
for B@Bcr

cL
2

dF0
2

~4pl!2S Bcr

B D 1/2

for B!Bcr ,

~26a!

Tz'5 cL
2

dF0
2

~4pl!2

2

ln~B/Bcr!
for B@Bcr

cL
2

dF0
2

~4pl!2S Bcr

B D for B!Bcr .

~26b!

The relative strength of fluctuations of in-plane andz
bonds is different for small and large fields. At large fiel
wx

th/a0
2 is field independent, whereaswz

th/a0
2;1/ln B in-

creases without bounds, i.e.,wx
th!wz

th . Thus for increasing
fields Tx saturates at a constant value, whereasTz vanishes.
At small fields the situation is reversed:wx

th@wz
th because

wz
th/a0

2;B andwx
th/a0

2;B1/2.
The bond widths provide more information than the ty

cal displacement̂u2&1/2 evaluated by the usual Lindeman
criterion. However, they are related by^u2&'max(wx

th ,wz
th).

In our Lindemann criterion~26! for the different types of
phase transitions we use the same Lindemann numbercL . In
principle these values might be different, sincez bonds and
in-plane bonds are not equivalent from the point of view
lattice symmetries. But the use of different Lindemann nu
bers would lead only to a quantitative shift of the pha
boundaries, which shall not be our main concern here.

In order to associate the bond widths to possible melt
and decoupling transitions, it is worth recalling the main fe
tures of these transitions. Since for anisotropiesg@1 the
interaction between vortices in the same layer is mu
weaker than the interaction of vortices in different laye
one might in principle expect the possibility that meltin
occurs as a two-step process. In a first step the positi
correlations of vortices in different layers could get lo
while the correlations within the layers are preserved~at least
as quasi-long-range order!. This remaining two-dimensiona
order within the layers could then become short ranged
second transition at a higher temperature. However, this
nario is probably not realized, as one can conclude from
analogy to layeredXY models. On symmetry grounds the
phase diagram should be topologically equivalent to tha
layered crystals. It was shown47 that these models have on
a single transition where order is destroyed in all directio
Although the relative fluctuations between the layers can
come arbitrarily large for weak coupling between the laye
which is the case for layered superconductors at large fie
the transition temperature does not drop below that of
f
-
e

g
-

h
,

al
t

a
e-
n

f

.
e-
,
s,
e

two-dimensional system. In the Lindemann approach melt
has therefore to be identified with the breaking of in-pla
bonds.

The breaking ofz bonds therefore describes a differe
transition, which isnot related to the loss of crystalline orde
Two possible transitions have been considered recently:
decoupling transition and the supersolid transition. The
coupling transition of layered superconductors28,48,49 de-
scribes the loss of phase coherence in the supercondu
order parameter between different layers and in general d
not coincide with the melting transition. The location of th
transition can be estimated by a Lindemann-type criterion
the phase difference between neighboring layers. Altho
the vortex displacements are the main source of such p
fluctuations, a Lindemann criterion for phase differences
in general not equivalent to a Lindemann criterion for vort
displacements, since a local vortex displacement leads
nonlocal phase distortion. However, at fields below t
crossover fieldBcr , both types of Lindemann criteria actu
ally are equivalent and the decoupling transition is captu
just by breaking ofz bonds.28,48 At large fields the breaking
of z bonds describes the location of the transition from
solid to a supersolid vortex crystal due to a proliferation
vacancy and interstitial lines in the vortex line crystal.50

B. Pinning bond width

After the brief review on the effect of thermal fluctuation
on bond widths and the possible interpretations of bo
breaking, we now focus on our main issue, the contribut
of pinning to the bond widths and the question of how t
above equilibrium phase diagram of the pure system evo
into a nonequilibrium phase diagram of the disordered s
tem.

Only very recently has the equilibrium phase diagram
the disordered system (v50) received some attention~see
Refs. 34–40!. In particular, the breaking of in-plane bond
has been used as an indication for the transition from a
pologically ordered phase~Bragg-glass! to a topologically
disordered phase~vortex glass!. For small magnetic fields the
quantitative evaluation of the bond widths turned out to
quite a subtle issue because of the strong dispersion of
elastic constants in layered materials and the breakdow
perturbation theory in the low-field regime (j!cLa0). Since
we are eventually interested only in the dynamic effects
disorder on the dynamics, we do not attempt to reproduce
static results. However, it is worthwhile to point out that
D53 the disorder-induced bond fluctuations arefinite for all
bond types. This finiteness is found even at zero velocity
even if the bond widths are calculated from Eq.~9! within
naive perturbation theory that overestimates the effect of
order. For weak enough disorder all bonds are stable an
topologically ordered phase can persist. For low tempe
tures the main effect of weak disorder is to reduce the lo
range translational order to a quasi-long-range order.

At sufficiently large velocities the perturbative approac
Eq. ~9!, can always be used to calculate the shiftDTa of the
bond-breaking temperaturesTa with respect to the valuesTa

0

in the absence of disorder. For large velocities these temp
ture shifts tend to zero and the use of the lowest-order p
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turbation theory is justified at least as long as the disor
contributions to the bond widths satisfywpin&j2.

The pinning bond widths show a complicated veloc
dependence with several regimes, separated by characte
velocities related to the different elastic constants. We fo
here exclusively on the high-velocity regimev@c11/a0h for
which we estimate the pinning contribution to the bo
widths from Eq.~9!:

wx
pin'

a2D0

A8pa0dj3h2v2
, ~27a!

wy
pin'

a2D0

4A2pj3dhvc11

, ~27b!

wz
pin'

pa0D0

16A2pj3hvAc11c44

, ~27c!

where we again usedc11q'
* 2@c44qz*

2.
From Eq. ~27! one can immediately draw the importa

conclusion thaty and z bonds, for whichwpin decays like
v21, are affected by disorder at large velocities much str
ger thanx bonds withwx

pin;v22. As in D52, the relative
strength ofy-bond fluctuations in comparison tox-bond fluc-
tuations is in agreement with the prediction of a smecticl
flow of the vortex lattice.5,7–9

In order to extract the net field dependence of the bo
widths, it is important to remember the implicit dependenc
of the parameters. In particular,D0;a0

24, since D is the
correlator of the pinning energy density in Eq.~4!. For the
same reasonh;a0

22, and also all elastic constants carry
dominant implicit field dependence;a0

22. Thus the relative
fluctuations wy

pin/a0
2;a0 are essentially field independen

whereaswx
pin/a0

2;wx
pin/a0

2;a0
21 increase for large fields.

To visualize the velocity dependence of the dynamic tr
sitions, it is instructive to translate the pinning bond widt
~27! of the driven vortex lattice into shiftsDTx of the bond-
breaking temperatures~26! of the pure system. Fromwa

th

1wa
pin5cL

2a0
2 the bond-breaking temperature is reduced

DTa52Tawa
pin/cL

2a0
2 . These shifts are

DTx'2Tx

e0
2D̂0

4pcL
2j2h l

2v2S B

Hc2
D 1/2

, ~28a!

DTy'2Tx

e0D̂0

4A2pcL
2jh lv

, ~28b!

DTz'2Tz

pe0D̂0

16A2cL
2jh lv

S B

Bcr
D 1/2

. ~28c!

To make the net field dependence of bond widths expli
we have introduced a dimensionless disorder strengthD̂0 by
D05d(je0 /a0

2)2D̂0 and the friction coefficient per lineh l
r

stic
s

-

e

d
s

-

y

t,

5a0
2h. Furthermore, we have again used the values of

elastic constants forq'5q'
* and qz5qz* , wherec11'4c66

'e0 /a0
2, andHc25F0 /2pj2. In terms of these parameter

the high-velocity regime is restricted byh lv@e0 /a0.
In this high-velocity regimey bonds are less stable thanx

bonds over the whole field range. Dynamic melting is th
always driven by the breaking ofy bonds. In the absence o
disorder, thez bonds were more~less! stable than in-plane
bonds for low~high! fields compared toBcr . This relation is
preserved in the driven case, since the bond-breaking t
perature of in-plane bonds is shifted more~less! than that of
the z bonds at low~high! fields. Thus, the topology of the
phase diagram of the driven vortex lattice remains u
changed at large velocity, as one could naively expect.
high-velocity expansion does not provide evidence for a
namic shift of the crossover field.

V. DISCUSSION AND CONCLUSIONS

To discuss the actual observability of the high-veloc
regime it is important to compare the above velocity range
the depairing velocity of Cooper pairs. From the depairi
current~see, e.g., Ref. 43! the depairing velocity can be es
timated ash lvdepair;e0 /j. Thus even if j is not much
smaller thana0 ~as required by the validity of the perturba
tive approach! the high-velocity regime covers a substant
current range below the depairing current and should be
perimentally accessible. As long as disorder is weak (D̂0
!1), the location of the dynamic melting and decoupli
transitions is close to the location of the equilibrium tran
tion of the pure system, i.e.,DTa!Ta .

In this high-velocity regime dynamic melting is alway
driven by the breaking ofy bonds. The dynamic shifts o
both melting and decoupling transition temperatures sc
like DTa;v21. This dependence is in agreement wi
experiments19 and numerical simulations51,15and the original
concept of the shaking temperature.1 We have extended this
original approach, which was focused on the dynamic
sponse of a single vortex and on the response of the lattic
large scales, on the fluctuations of bonds. Thereby we w
able to put the characterization of the nonequilibrium tran
tions on a common basis with the Lindemann approache
the equilibrium counterparts.

At smaller drive the velocity dependence of the bo
widths and the temperature shifts will be in general wea
than at high drive. In two dimensions the velocity depe
dence becomes logarithmic at small velocities and the cr
over between different regimes has been calculated num
cally ~see Fig. 1!. In three dimensions there are even mo
dynamic regimes between the asymptotic regimes of z
and large velocity because of the complex elastic proper
of the vortex lattice.

However, from Eq.~28! we can conclude that for wea
disorder (D̂0!1) the scaling of the high-velocity regim
should be observable in a considerable velocity range be
depairing. In this case, where the temperature shifts are s
(DTa!Ta), it should be possible to observe a dynamic sh
of the phase boundaries experimentally. To the best of
knowledge, such dynamic shifts have not yet been repor
We naturally expect a dynamic shift to be most pronounc
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in the vicinity of the critical point of the melting line sinc
the main effect of a driving current is to reduce the effect
strength of disorder and this point has been found to be q
sensitive to the strength of disorder in equilibrium.24 In par-
ticular, the location of the critical point will be shifted t
larger fields by a driving current.

The anisotropy of bond fluctuations found above is co
sistent with the picture of smectic vortex flow5,7,9 due to the
dominant proliferation of dislocations with Burger’s vecto
parallel to the drift velocity, providing the actual mechanis
for bond breaking. We expect the anisotropy of bond flu
tuations to have immediate consequences for the structu
the coherently flowing vortex lattice. In particular, even t
Bravais basis of the vortex lattice will display this aniso
ropy. In the presence of disorder the vortex system will sh
an expansion of its lattice constants similar to a thermal
pansion. From the anisotropy of the bond fluctuations o
has to expect that this expansion will be larger in they di-
ti,

tt

B

v.

d,

s

.

S.
n

d

ys

. J
e
te

-

-
of

w
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e

rection than in thex direction. It would be interesting to
analyze neutron scattering and Bitter decoration experim
on the driven vortex lattice in view of a dynamic shift of th
location of the~quasi!-Bragg peaks.
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