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Numerical evidence for SO„5… symmetry and superspin multiplets
in the two-dimensional t-J model
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In this work, we present numerical results which support SO~5! symmetry as a concept unifying supercon-
ductivity and antiferromagnetism in the high-temperature superconductors. Using exact cluster diagonalization,
we verify that low-energy states of thet-J model, a widely used microscopic model for the high-Tc cuprates,
form SO~5! symmetry multiplets. Our results show that thed-wave superconducting ground states away from
half-filling are obtained from the higher-spin states at half-filling through SO~5! rotations. The SO~5! symme-
try is found to be robust against the inclusion of longer-ranged Coulomb repulsion and next-nearest-neighbor
hopping.@S0163-1829~98!00518-9#
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I. INTRODUCTION

The most prominent universal feature of high-temperat
superconductors is the proximity of antiferromagnetism~AF!
and d-wave superconductivity1,2 ~dSC! in their temperature
versus doping phase diagram. We can be certain by now
microscopic models such as the two-dimensional~2D! t-J
and Hubbard models3,4 describe the antiferromagnetic pha
very well.5 Numerical studies indicate that these models a
reproduce6 the ‘‘high-energy’’ and ‘‘medium-energy’’ scale
physics of the normal-state metallic phase reasonably w
However, the low-energy content of thet-J and Hubbard
models of order of the gap energyD;J/10;10– 20 meV,
which determines the competition between different poss
ground states such as the ordered AF state and thed-wave
superconducting state, has so far eluded both analytical
numerical investigations.

While an AF insulator appears to be diagonally oppos
to a superconductor, their close proximity led one of
~S.C.Z.! to conjecture that they are in fact intimately relat
by an SO~5! symmetry group, which unifies them.7 In this
theory, the AF and dSC order parameters are grouped in
single five-component vectorna called superspin. The tran
sition from AF to dSC is viewed as a superspin flop tran
tion as a function of the chemical potential or doping, whe
the direction of the superspin changes abruptly. In this wo
we present exact diagonalization results, which supp
SO~5! symmetry as a unifying concept behind supercond
tivity and antiferromagnetism in the high-Tc superconduct-
ors.

While SO~5! symmetry was originally proposed in th
context of an effective field-theory description, its pred
tions can actually be tested within the microscopic mod
which to a good approximation reproduce the ‘‘high- a
medium-energy’’ physics of the high-Tc compounds. The
first numerical evidence for the approximate SO~5! symme-
try of the Hubbard model came recently from exact diag
570163-1829/98/57~21!/13781~9!/$15.00
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nalizations of small-sized~ten sites! clusters8 studying dy-
namic correlations functions involving the AF and dS
rotation ~p! operators.9,7 In this work, we shall use thet-J
model because of its more limited Hilbert space which e
ables significantly larger clusters~16 and 18 sites! to be di-
agonalized. Since thet-J model explicitly projects out the
states in the upper Hubbard band, some of the questions10–12

raised recently about the compatibility between the M
Hubbard gap and SO~5! symmetry can also be answered e
plicitly. We use a general and direct formula for checki
microscopic Hamiltonians for SO~5! symmetry, i.e., the con-
cept of ‘‘superspin multiplets.’’ In particular, if there is a
approximate SO~5! symmetry of the microscopic model, th
low-energy states of this model should fall into irreducib
representations~irreps! of SO~5!. In a given quantum me-
chanical system, the direction of the SO~5! superspin vector
is quantized in a way similar to an ordinary SO~3! spin, and
the classically intuitive picture of the precession of the SO~5!
superspin vector under the influence of the chemi
potential7 can be identified with the equal level spacing b
tween the members of SO~5! multiplets carrying different
charge. At a critical valuemc of the chemical potential the
superspin multiplets are nearly degenerate~with a standard
deviation an order of magnitude smaller thanJ! and there-
fore higher-spin AF states at half-filling can be freely rotat
into dSC states away from half-filling. Therefore, nume
cally identifying the low-lying states of the microscop
model with the SO~5! irreps can lead to a detailed unde
standing of the one-to-one correspondence and the l
crossing between the excited states of the AF and the
states, and thereby lead us to the microscopic mechanism
which the AF state changes into the dSC state. While fin
size calculations cannot generally be used to prove the e
tence of long-range order in infinite systems, the spec
scopic information about the SO~5! symmetry can be used a
input for the effective field theory7,13,14 which captures the
low-energy and long-distance physics of the problem.
13 781 © 1998 The American Physical Society
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II. SO„5… SUPERSPIN MULTIPETS:
A PYRAMID OF DIAMONDS

The SO~5! Lie algebra is generated by ten operatorsLab
with a,b51,...,5 anda,b. They obey the following com-
mutation relation:

@Lab ,Lcd#5 i ~dacLbd1dbdLac2dadLbc2dbcLad!. ~1!

SO~5! is a rank-2 algebra; we can therefore choose total
chargeQ[L155

1
2 (Ne2M ) and z component of the tota

spin Sz[2L23 to be the members of the Cartan subalge
of mutually commuting generators. HereNe , the number of
electrons, andM , the number of lattice sites, are both tak
to be even. Moreover, the Casimir operatorC5(a,bLab

2

commutes with all generators and can be used to label
representation. Thep operators are defined as follows:

pa5(
pW

g~pW !cpW 1QW ~sasy!c2pW , ~2!

wherecpW annihilates an electron with momentumpW ~we are
suppressing the spin index!, sa is the vector of Pauli matri-
ces, andQW 5(p,p) is the antiferromagnetic wave vector.
one takes g(pW )5sgn(cospx2cospy), the SO~5! algebra
closes exactly.15 However, for cluster calculations it is ofte
more convenient to takeg(p)5cospx2cospy ; the numeri-
cal difference between these two choices is small. Toge
with the total spin-raising and -lowering operatorsS6, pa

andpa
† form the root generators of SO~5! and rotate different

members of a multiplet into each other.
In this paper, we are concerned with tensorial represe

tions of SO~5!. Tensors with given symmetry types und
permutation of their indices are classified by their You
tableaux.16 For the SO~5! group, tensors which have mor
than two antisymmetric indices can always be mapped
tensors with less or equal to two antisymmetric indices
the invariant tensoreabcde, the fully antisymmetric index in
five dimensions. Therefore, all tensorial irreps of SO~5! are
characterized by two integers (n,n8), corresponding to the
length of two rows in the Young tableaux.16 The general
(n,n8) series can only be constructed from two differe
SO~5! vectors. However, as we shall see later, the low-ly
states of thet-J model can all be classified according to t
restricted irreps~n,0! generated by the superspin vect
alone. Therefore, we shall restrict ourselves to the fully sy
metric tensorsFa1 ,a2 ,...,an

series~n,0! generated by the prod

ucts of the SO~5! vectorna , satisfying

@Lab ,nc#52 idbcna1 idacnb .

Here na is the five-dimensional vector„D†1D,SW QW ,2 i (D†

2D)…, whereD5( i /2)(pWg(pW )cpWs
yc2pW denotes the dSC or

der parameter andSW QW 5(pWcQW 1pW
†

sW cpW denotes the AF Ne´el
vector. However, these representations are in general no
reducible. Since SO(N) transformations preserve the nor
of a vector, the pairwise trace components ofF should be
projected out to obtain an irreducible tensor, i.
Fa1 ,a1 ,...,an

50. SinceF is symmetric, the vanishing of th
e

a

he

er

a-

to
y

t
g

-

ir-

,

first pairwise trace ensures the vanishing for all other p
wise traces. Therefore, a pairwise traceless symmetric te
has

S N1n21
n D2S N1~n22!21

n22 D
components, which gives the dimensionDn of a level ~n,0!
~or simply n! irreps. Throughout the rest of this paper, t
level quantum numbern simply refers to the number of in
dices of a SO~5!-symmetric tensor. For SO~5! we obtain
Dn5 1

6 (n11)(n12)(2n13), while for SO~3!, Dn reduces
to the familiar degeneracy 2n11. The Casimir operator
takes the valuen(n13) for a leveln irreps.

The linear combinations ofna , D65n16 in5 , SQW
6

5n2

6 in3 , andSQW
z

5n4 , are eigenvectors ofQ andSz , and their
products can be used to construct irreps in the tw
dimensional coordinate space ofQ andSz . The diagrams of
the multiplets take the form of a diamond as plotted in Fig.
Generally, a level-n irrep contains many spin multiplets, wit
the total spinS5n multiplet being the largest member. A
the top of the diamond,Q5n is a spin singlet, at the nex
sublevel,Q5n21 is a spin triplet, and theQ5n22 sub-
level contains both a spin singlet and a quintet. Genera
the Q5n2p sublevel contains total spinS5p,p22,p
24,... multiplets. These different spin multiplets take t
form of nested diamonds in a multiplet. The different di
monds at leveln are stacked together to form a pyrami
with then50 singlet at the apex and then5M /2 diamond at
the base of the pyramid. Each member of a given irrep
box containing many microscopic states with the identi
transformation properties under SO~5!.

III. AF AND dSC STATES IN
THE SO„5… SUPERMULTIPLET

If we were dealing with a microscopic model with exa
SO~5! symmetry,15 all the states at a given leveln are degen-
erate with each other at any finite system. Degeneracy
tween differentn multiplets can only occur in an infinite
system, signaling spontaneous symmetry breaking~SSB!. On
a finite system, the ground state is an SO~5! singlet, lying in
the n50 box at the apex of the SO~5! pyramid. The ten-
dency towards SSB in the large system limit can be rec
nized from the scaling of the energies of excited states w
higher irreps. For example, in the infinite-size limit, an A
state with Ne´el vector in thexy plane is constructed from th
linear superposition of states in the center column of
SO~5! pyramid, while a dSC state is constructed from a l
ear superposition of states on the two~dSC! ridges of the
SO~5! pyramid. Because of the degeneracy within all m
tiplets, the AF and the dSC states constructed in the la
system limit would have the same ground-state energy
one applies a chemical potential termHm , the members of a
given multiplet with different charge quantum numbers w
be linearly shifted by the22mQ term, leading to an equa
level difference within a given multiplet.

In the microscopic Hubbard or thet-J model used to de-
scribe the high-Tc superconductors, the SO~5! symmetry is
not exact, and there are different types of symmetry-break
terms. The symmetry-breaking terms can also be class
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according to irreducible tensors of the SO~5! Lie algebra. In
order for the SO~5! symmetry to be a useful concept, on
might hope that these symmetry-breaking terms are sim
or lower-rank, irreducible tensors. The chemical poten
term mentioned above belongs to the ten-dimensional ad
representation. The next simplest type of symmetry-break
term preserving spin rotation and charge conservation wo
be theQ5Sz50 member of a 14-dimensional traceless a
symmetric ~2,0! tensor Hg transforming like D1D2

22/3SW QW •SW QW . This type of symmetry breaking has two im
portant effects. First it can lead to mixing of states withn
quantum numbers differing by 2. The second more import
effect is the removal of the degeneracy between the mem
of a supermultiplet carrying different charge quantum nu
bers. However, unlike the chemical potential term, it p
serves the symmetry between the charge states with the
magnitudeuQu. This type of symmetry-breaking term ca
remove the degeneracy between the AF and dSC states
m50, leading to a charge gap while keeping the spin ex
tations at low energy. However, with an applied chemi
potential, the effects of these two types of symmet
breaking terms can compensate each other for one typ
charge state, say, hole states withQ,0, and there is a critica
chemical potentialmc at which the multiplets with differen
chargesQ,0 can recover their near degeneracy. As we sh
see later, our overall numerical results can be consiste
interpreted by these two types of explicit symmetry-break
terms. The competition between these two types
symmetry-breaking terms is analogous to the competition
tween the spin anisotropy and an applied uniform magn
field in an antiferromagnet, as illustrated in Ref. 7.

It is important to point out that, althoughHg andHm can
nearly compensate each other on one side of the ch
states, the full SO~5! symmetry between low-energy states
different signs of chargeQ cannot be recovered. In thet-J
model, for example, all states withQ.0 are projected out o
the Hilbert space, and the SO~5! symmetry can only be ap
proximately realized between the members of the superm
tiplets on theQ,0 half of the SO~5! pyramid. However,
Q,0 states are the relevant low-energy degrees of free
in question, and the approximate SO~5! symmetry between
these states is sufficient to understand the full effect of d
ing. In this formalism we see the fundamental importance
the Mott-Hubbard gap~projecting out theQ.0 states! on
the interplay between AF and dSC. Assuming that all
superspin multiplets are degenerate for theQ,0 states at a
given mc , one can either form an AF-ordered state by t
linear superposition of theQ50 members of the differentn
multiplets or use the same coefficients to form a pure dS
ordered state by the linear superposition of theQ52n
members of the differentn multiplets. These two states an
the intermediate states between them are degenerate amc .
However, since a macroscopic number ofQ,0 states is
used to form a phase-coherent pure dSC state, it has a
hole density. Therefore, Mott insulating behavior at ha
filling is compatible with the SO~5! symmetry: AF and dSC
states are nearly degenerate atmc , but they have different
densities.

IV. RESULTS OF EXACT DIAGONALIZATION
OF THE t-J MODEL

Numerical demonstration of SSB requires careful study
the level spacing as a function of system sizes, and true
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is generally hard to establish. However, it is relatively ea
to recognize a nearly degenerate multiplet structure on a
nite system. For example, if we have a weakly anisotro
Heisenberg model on a lattice, the energy splitting within
multiplet would be small compared to the splitting betwe
multiplets. Although both level spacings may scale as 1/N
the limit of large system sizeN, the ratio of their difference
can be independent of the system size and its smallness
can be recognized even with limited finite-size data. In
following, we study thet-J model, the simplest mode
Hamiltonian which incorporates the key features of t
strong-correlation limit:

H5PF2t(
^ i , j &

ci
†cj1J(

^ i , j &
S SW i•SW j2

ninj

4 D GP,

where ^ i , j & denotes a summation over all nearest-neigh
pairs on a 2D square lattice;P projects onto the subspace o
states with no doubly occupied sites. The latter constra
reflects the strong correlations in theU/t→` limit of the
Hubbard model. The parameters2t and J are the nearest
neighbor hopping and exchange integral. We have num
cally diagonalized thet-J model on finite lattices of 16 and
18 sites~see Ref. 6 for pictorial representations of these st
dard systems! and studied its low-lying eigenstates up
total spin-3 and -6 holes. In addition to their spin and cha
quantum numbers, these states are also labeled by their
momentum and the point group symmetry. In Fig. 1 we sh
how some of the low-lying states of the 18-site clustert-J
model with J/t50.5 fit into the irreps of SO~5!, up to the
n53 supermultiplets. The ground states within the resp
tive hole-number sector are labeled by an asterisk@we note
that up to now this assignment of multiplets is only a co
jecture; below we will present numerical evidence that th
groups of states indeed are SO~5! multiplets#. There are four
states inside the ‘‘nested diamonds’’ which cannot yet
fully identified with our current methods; they are marked
the ~ ! symbol. We see that all the different quantum nu
bers of the states are naturally accounted for by the quan
numbers of the superspin, and the levels with differe
chargeQ are approximately equally spaced. More precise
the mean level spacing~indicated byDE in Fig. 1! within
each multiplet up toQ522 is 22.9886t with a standard
deviation of only 0.0769t ~in this calculation spin degen
eracy was neglected; i.e., each energy difference betw
any two spin multiplets is counted as one random variab!.
Therefore, at a chemical potential comparable to the m
level spacing,the superspin multiplets are nearly degene
ate. The variance of the splitting among various states c
nected by thep operator is a well-defined numerical measu
of how good thep operator is as an eigenoperator oft-J
model. ForJ50.5t, the variance 0.07t is much smaller than
J. The situation is similar forJ/t50.25, but less favorable
for J/t51,2. This indicates that the perturbing terms for t
SO~5! symmetry do have a marked dependence onJ/t.

Now we wish to demonstrate that the different states
side a given multiplet can indeed be rotated into each o
by the SO~5! root generators. In particular, we would like t
show explicitly how higher-spin AF states are rotated in
the dSC states. Let us first briefly discuss the selection r
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FIG. 1. The upper diagram illustrates a general level-n irreps of SO~5!. Every state can be labeled byQ andSz . The maximal charge is
Q56n. The states labeled by a3 form the shape of a diamond, while states inside the nested diamonds are labeled bys and n.
Overlapping states with sameQ andSz are distinguished by theirS quantum numbers. The lower diagrams are forn51,2,3 irreps of SO~5!.
The figure shows the energies of some low-energy states for the 18-site cluster withJ/t50.5. The states are grouped into different multiple
and are labeled by the spin, point group symmetry, and total momentum.A1 denotes the totally symmetric,B1 thedx22y2-like representation
of the C4v symmetry group. The~ ! symbol denotes as yet unidentified members of the respective multiplet.
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within Fig. 1. Thep and p† operators act as raising an
lowering operators and obey the selection ruleDn50. In
other words, they give transitions within the ‘‘diamonds’’
Fig. 1. In the presence of anHg type of perturbationDn
52 transitions are also possible, but are expected to ha
smaller amplitude. Next, as mentioned above, the five op
tors D, D†, and SW QW together form an SO~5! vector. Conse-
quently they play a role analogous to the dipole operato
SO~3!. They obey the selection ruleDn561; i.e., they al-
low transitions between the different diamonds. TherebyD†

is a spin singlet, transfers zero momentum, and hasB1 sym-
metry, whereasSW QW is a spin triplet, transfers momentum
~p,p!, and hasA1 symmetry.SW QW is the operator relevant fo
neutron scattering; this experiment thus probesDn561
transitions. As a ‘‘diagnostic tool’’ to judge if a transitio
from a given stateuC& by the operatorÔ ~which can bep,
p†, D, or SW QW ! is possible, we compute the spectral functi
a
a-

n

Aa~v!5Im
1

p K CUÔ†
1

v2~H2Eref!2 i01 ÔUC L , ~3!

where ‘‘Im’’ denotes the imaginary part andEref is a suitably
chosen reference energy. For finite systems spectral fu
tions of the type~3! can be calculated exactly by means
the Lanczos algorithm.6 An intense and isolated low-energ
peak in~say! thep spectrum~3! then indicates that there is
state withQ12 into which uC& is being transformed byp.
This should hold at least as long as the doped state is s
ciently low in energy to be still within the range of validit
of the approximate SO~5! symmetry. Our strategy for the
following, therefore, is to work ourselves through Fig. 1 a
to check ‘‘SO~5!-allowed’’ and ‘‘SO~5!-forbidden’’ transi-
tions by computing the respective spectral functions. We
then also investigate the influence of perturbations wh
could possibly break the SO~5! symmetry by studying their
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influence on the spectra, to see, e.g., how SO~5!-forbidden
transitions are enhanced by the perturbation.

We now begin to discuss the results of our ‘‘compu
spectroscopy.’’ Figure 2 compares the spin correlation fu
tion at half-filling to the spectra of thep† operator for the
lowest two-hole states withd symmetry and total spin 0 an
2. The reference energyEref has been taken as the energy
the half-filled ground state. The spin correlation function h
a single dominant low-energy peak at an excitation energ
'0.5J ~marked by an arrow! which clearly should be asso
ciated with a magnon state~all cluster states are exact eige
states ofSW 2, and so there is no SSB in the small cluster
which explains the finite excitation energy!. The spectrum of
the p† operator for the two-hole,1B1 state also shows a
single high-intensity peak, which coincides with that of t
spin correlation function; i.e., the excitation energies ag
within computer accuracy (10213). Obviously the final states
are identical, which shows that thep† operator indeed pro
duces the spin resonance. Next, the spectrum of thep† op-
erator for the two-hole5B1 state has a strong peak at hig
energy, plus a low-energy peak with significantly lower i
tensity, which again coincides with the spin resonance. H
it should be noted that the transition from the5B1 state with
momentum~0,0! to the 3A1 state with momentum~p,p! has
Dn52; it is therefore an SO~5!-forbidden transition, but it is
allowed by spin, momentum, or point group symmetry.
spection shows that the intense high-energy peak in the5B1
spectrum is nothing but the lowest7A1 state—thisDn50

FIG. 2. Comparison of spectral functions with undoped fin
states: dynamical spin correlation function for momentum tran

QW , calculated for the half-filled1A1(0,0) ground state; spectrum o
the p† operator, calculated for the1B1(0,0) ground state in theQ
521 sector; spectrum of thep† operator, calculated for the lowes
5B1(0,0) state withQ521. Data are shown for different cluste
sizes and values of the ratioJ/t.
r
-

f
s
of

e

re

-

transition obviously is allowed by the SO~5! selection rule;
see Fig. 1. The SO~5! selection rule thus is obeyed approx
mately, with the ratio of the two peaks in the5B1 spectrum
being a rough measure for the degree of symmetry break
The pattern of the explicit symmetry breaking is consist
with that of a second-rank SO~5! tensorHg . The intensity of
the peaks in the various ‘‘p spectra’’ decreases rapidly wit
decreasingJ/t—this indicates that corrections to thep op-
erator become more important at smallerJ/t. On the other
hand, the additional peaks at higher energy in thep spectra
decrease rapidly as well and always stay well separate
energy—restricting the Hilbert space to states below a cu
frequency'2J would therefore give a very good eigeno
erator of the Hamiltonian.

We proceed to the two-hole subspace, i.e.,Q521. Fig-
ure 3 shows the spin correlation function for two holes,
well as various spectra of thep andp† operators;Eref is the
energy of the two-hole ground state. To begin with, the s
correlation function again has a dominant low-energy pe
whose excitation energy scales approximately withJ. The
final state responsible for this peak is the lowest3B1 state
with momentum~p,p!. Then, the spectrum of thep operator
calculated for the undoped5A1 , kW5(0,0) state and the spec
trum of thep† operator for the1A1 , kW5(0,0) state with four
holes also have intense low-energy peaks. These peak
well separated from some incoherent high-energy contin
which start above a lower bound of'2J, and again coincide
to computer accuracy with the3B1 state observed in the spi
correlation function. This again confirms the interpretation

l
r

FIG. 3. Spectral functions with final states in theQ521 sub-
space: dynamical spin correlation function for momentum trans

QW , calculated for the1B1(0,0) ground state; spectrum of thep†

operator, calculated for the1A1(0,0) ground state in theQ522
sector; spectra of thep operator, calculated for the half-filled
1A1(0,0) ground state and the lowest half-filled5A1(0,0) state.
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13 786 57ROBERT EDER, WERNER HANKE, AND SHOU-CHENG ZHANG
the spin resonance as a ‘‘p excitation.’’ Looking at Fig. 1 it
becomes obvious that these two transitions haveDn50; i.e.,
they are SO~5! allowed. On the other hand, thep spectrum
for the undopedground state, 1A1 , has a weaker peak at th
position of the spin resonance. ThisDn52 transition is for-
bidden by the ideal SO~5! symmetry~see Fig. 1!, indicating
again a weak breaking of the SO~5! symmetry. The decreas
of the ‘‘p peaks’’ with decreasingJ/t is quite analogous a
in the case of half-filled final states. The only exceptions
the peaks in thep† spectra~i.e., with initial states in the
four-hole subspace!, which have practically zero weight fo
smallerJ/t50.25.

This also becomes clear if we study spectra with fi
states in theQ522 subspace. Figure 4 shows the spin c
relation function at four holes, together with spectra of thep
operator for the1B1 and 5B1 states of two holes with mo
mentum~0,0!. From Fig. 1, we see that the transition fro
the singlet state is forbidden and that from the quintet
allowed. Then, looking at Fig. 1, it is apparent that the
occurs a drastic change forJ/t smaller than a cluster
dependent value. ForJ/t>0.5 in the 18-site cluster~J/t>1
in the 16-site cluster! we have the ‘‘standard situation’’: th
dominant low-energyp peak for the5B1 initial state is more
intense than that for the1B1 state, indicating again a wea
breaking of the SO~5! symmetry. Bothp peaks coincide with
the dominant low-energy peak in the spin correlation fu
tion, which in turn stems from the lowest3A1 state at~p,p!,
which confirms that the interpretation of this peak as ap
resonance is valid throughout the low-doping regime. On
other hand, for smallerJ/t the correspondence between t
spin correlation function and thep spectra is essentially los

FIG. 4. Spectral functions with final states in theQ522 sub-
space: dynamical spin correlation function for momentum tran

QW , calculated for the1A1(0,0) ground state; spectra of thep op-
erator, calculated for the1B1(0,0) ground state and the lowe
5B1(0,0) state in theQ521 subspace.
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in the case of the 16-site cluster the spin correlation funct
does not have a distinguishable low-energy peak at all. Q
obviously, we have reached the limit of applicability of th
SO~5! symmetry, which seems to occur at a doping level
'0.25%, with some dependence on the ratioJ/t. This is
roughly the same parameter range where dSC correlat
vanish on the finite-size cluster.

Summarizing the study of the spin correlation functio
we may say that the data are in overall agreement with
approximate SO~5! symmetry, in that SO~5!-allowed transi-
tions usually have a larger intensity than the forbidden on
The data also show that the dominant low-energy spin e
tation at~p,p! always can be generated by adding or remo
ing two electrons from the system by means of thep opera-
tor, which obviously supports the conjecture of Demler a
Zhang9 that this low-energy resonance in the dynamical s
correlation function is the hallmark of the approxima
SO~5! symmetry. The agreement with the SO~5! symmetry
deteriorates for higher doping levels and/or smallerJ/t.

We now proceed to map some additional transitio
within the SO~5! multiplets. Figure 5 shows the spectrum
thep operator for the lowest triplet state with two holes~this
state is the one which gives rise to the prominent peak in
spin correlation function in Fig. 3!. The initial state thus is
3B1(p,p) with two holes, and on the basis of Fig. 1 w
expect a strong transition to the1A1(0,0) state with four
holes~i.e., the four-hole ground state!. As the reference en
ergy we choose the energy of the four-hole ground state,
Fig. 5 then clearly shows a pronounced peak in thep spec-
trum with zero excitation energy, precisely as expected
the basis of the SO~5! symmetry. Figures 2–5 thus demon
strate that the four-hole ground state can be obtained by t
fold ‘‘ p rotation’’ from the lowest5A1 state with momentum

r
FIG. 5. Spectrum of thep operator in the ‘‘spin resonanc

state’’ 3B1(p,p) at Q521; this state is the final state correspon
ing to the dominant peak in Fig. 3.
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~0,0! at half-filling. Similarly, the two-hole ground state ca
be obtained byp rotation from the lowest half-filled3A1
state with momentum~p,p!.

To summarize this section, we have shown that the tr
sitions induced by thep and S(QW ) operators can be wel
understood in the framework of a weakly broken SO~5! sym-
metry. We have explicitly identified the multiplets withn
50,1,2,3 and shown that thep operator gives transition
between the members of a multiplet with differentQ. More-
over, we have verified explicitly that the spin correlatio
function ‘‘operates in the same subspace’’ as thep operator,
and that the prominent low-energy peaks in the dynam
spin correlation function correspond to members of
SO~5! multiplets for all dopings<25%.

V. PERTURBATIONS TO THE t-J MODEL AND THEIR
INFLUENCE ON THE APPROXIMATE

SO„5… SYMMETRY

Recently, Baskaran and Anderson12 raised some question
concerning the effect of the diagonal hopping and near
neighbor Coulomb interaction on the approximate SO~5!
symmetry. It is then of importance to check whether the
perturbations are essentially irrelevant or they could lead
breakdown of the~approximate! SO~5! symmetry. Again, we
resort to exact diagonalization calculations to address
question. To begin with, we consider the effect of an ex
‘‘Coulomb repulsion’’ between holes on nearest neighbo
More precisely, we add the termHV5V(^ i , j &ninj to the
Hamiltonian, whereni denotes the electron density on sitei .
Figure 6 then compares some spectra of thep, p† operator
and the zero momentum pair operatorD for different values
of V. The left panel shows spectra with final states in
two-hole sector; the reference energy is that of thehalf-filled

FIG. 6. Spectra of thep andD operators for differentV.
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ground state. With this choice the excitation energies of
dominant low-energy peaks in both spectra increase withV.
This is natural because the repulsionV is not operative at
half-filling, but will tend to increase the energies of hol
doped states. The increase, however, is significantly less
expected, being only approximately 0.5t for V52t. This can
hardly come as a surprise, because we have]E0 /]V
54^nini 1 x̂&, i.e., the nearest-neighbor density correlati
function of holes. The latter quantity is quite small in th
physical range of parameters, and soV does not have a grea
impact. More importantly, the difference of the excitatio
energies of theD andp operators is practically independen
of V. This difference of excitation energies would give th
energy required to remove ak5(0,0), d-wave singlet pair
from the system and reinsert ak5(p,p), d-wave triplet
pair. Anticipating that in a neutron-scattering experimen
Cooper pair from the condensate is turned into ap pair while
scattering the incoming neutron, the energy difference of
peak energies in Fig. 6 thus should correspond to the en
of the resulting peak in the inelastic neutron-scattering cr
section, and Fig. 6 clearly shows that even a rather str
repulsion between the holes leaves this energy unchan
Moreover, we note that the weight of the peaks decrea
only slightly with V—the decrease is also very similar fo
the D and p operator; this would suggest that as long
superconductivity ‘‘survives’’ the influence ofV, so does the
p resonance. It should also be noted that the figure actu
compares an SO~5!-forbidden transition@from the half-filled
1A1(0,0) state to the3B1(p,p) with two holes#, and an
SO~5!-allowed transition @from the 1A1(0,0) four-hole
ground state to the3B1(p,p) state#. The ratio of intensities
for both transitions is'1/3 and it stays so more or les
independently ofV. This indicates that the degree of sym
metry breaking is not affected significantly byV. Next, the
right-hand panel in Fig. 6 compares thep and D spectra
calculated for the ground state with two holes—it sho
similar features; in particular the difference of excitation e
ergies is independent ofV, and the weights of the peak
decrease in a very similar fashion withV.

We now consider the influence of a next-nearest-neigh
hopping integralt8. We choose at8 between ~1,1!-like
neighbors with opposite sign ast; for noninteracting elec-
trons this would produce a Fermi surface similar to the lo
density approximation~LDA ! predictions. Figure 7 again
compares the spectra of thep operator and theD operator
with different t8 and different doping levels. The referenc
energy again is the ground-state energy at half-filling in
left panel, which shows spectra with final states in theQ5
21 subspace; in the right panel, which shows final state
the Q522 subspace,Eref is the ground-state energy of tw
holes. The overall picture is comparable to that seen in F
6, i.e., the difference in excitation energies is nearly indep
dent oft8/t, and in fact even decreases with increasingt8/t.
In the spectra with four-hole final states this obviously lea
even to a kind of level crossing, in that the lowestp peak
comes down below the lowestD peak for larget8. The in-
tensity of both low-energy peaks decreases in an essent
similar fashion with increasingut8/tu. One can, however, re
alize a kind of ‘‘crossover’’ betweenut8/tu50.1 andut8/tu
50.2, where the spectral weight of thep† spectra drops
sharply. The ultimate reason is a level crossing in the fo
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hole sector from the ‘‘SO~5!-compatible’’ 1A1 ground state
to a 1B1 ground state, which occurs in between these t
values ofut8/tu. We note that 4 holes in 18 sites correspo
to a hole density of 22%, which is nominally fa
overdoped—the drop in thep† spectra thus is not really
reason for concern. Moreover, the peak in the spectrum
the p operator~which is not affected by the level crossing!
stays well defined, its intensity decreasing slightly and
proportion to that of the ‘‘D peak.’’ All in all it is obvious
that larger values oft8 degrade the SO~5! symmetry. On the
other hand, practically all of our data show an intimate re
tionship between thed-wave pairing amplitude and thep
amplitude. If thep resonance is suppressed, be it due to h
doping, largeV, or larget8, so is usually thed-wave pairing.
It is then only natural to conclude that as long as thed-wave
pairing ‘‘survives’’ the influence of perturbations, so do
the p resonance.

VI. CONCLUSION

In summary, we have numerically diagonalized the lo
lying states of thet-J model near half-filling and found tha
they approximately fit into irreps of the SO~5! symmetry
group. More precisely, by calculating Lanczos spectra of
ladder operator of SO~5!, the p operator, we could identify
groups of states which are connected by thep operator, in

FIG. 7. Spectra of thep andD operators for differentut8/tu. t8
has the opposite sign ast.
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the same sense as the states of a conventional spin mul
are connected by the spin-raising and -lowering operat
Remarkably enough, we then found that the energy diff
ences between different states of the assigned multiplets
to good approximation constant both within one multip
and also between different mulitplets. This supports the
sult of Demler and Zhang9 that thep operator is an approxi-
mate eigenoperator of thet-J Hamiltonian. It follows that for
a critical value of the chemical potential, the superspin m
tiplets are nearly degenerate, and therefore higher-spin
states at half-filling can be freely rotated into dSC sta
away from half-filling. There are clearly visible effects o
SO~5! symmetry breaking, which to the lowest order can
identified with the type of a symmetric traceless rank-2 te
sor. We would also like to stress at this point that a ve
explicit symmetry breaking is due to the simple fact that
each SO~5! multiplet the upper part of the diamond~corre-
sponding toQ.0! actually does not exist in the Hilber
space of thet-J model. The numerical results indicate, how
ever, that as long as we restrict ourselves to SO~5! rotations
within the Q<0 half-plane the ‘‘hard wall’’ atQ.0 does
not have any significant symmetry-breaking effect. As me
tioned above, a measure of this symmetry breaking is
standard deviation in the energy splittingsDE between the
different SO~5! multiplets in Fig. 1, which we found to be
~for J50.5t! much smaller compared toJ: thus, from the
SO~5! multiplet structure, we can see explicitly how the s
perspin vector is rotated from the AF to the dSC directio
We can identify the intermediate states which connect th
continuously and show that, at a critical chemical poten
mc , the energy barrier between AF and dSC states is sma
than the natural parameters of the model, i.e.,J and t. Our
overall results suggest that the low-energy dynamics of
t-J model can be described by a quantum SO~5! nonlinears
model with anisotropic couplings, and the transition from A
to dSC phase can be identified with that of a superspin
transition.7 It is truly remarkable that while the physica
properties of AF and dSC states are intrinsically differe
and they are characterized by very different forms of ord
there exists nevertheless a fundamental SO~5! symmetry that
unifies them. The dichotomy between their apparent diff
ence and fundamental unity is in our view a key which c
unlock the mystery of the high-Tc superconductivity.
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