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In this work, we present numerical results which suppor{8®@ymmetry as a concept unifying supercon-
ductivity and antiferromagnetism in the high-temperature superconductors. Using exact cluster diagonalization,
we verify that low-energy states of thie] model, a widely used microscopic model for the higheuprates,
form SQ5) symmetry multiplets. Our results show that tievave superconducting ground states away from
half-filling are obtained from the higher-spin states at half-filling througtiSs@tations. The S&) symme-
try is found to be robust against the inclusion of longer-ranged Coulomb repulsion and next-nearest-neighbor
hopping.[S0163-18208)00518-9

I. INTRODUCTION nalizations of small-sizedten site$ cluster§ studying dy-

The most prominent universal feature of high-temperaturenamlc correlations functions involving the AF and dSC

. o . rotation () operator§.'7 In this work, we shall use the-J
superconductors is the proximity of antiferromagnet{gr) . o ; ;
S . . model because of its more limited Hilbert space which en-
and d-wave superconductlv&y2 (dSQ in their temperature

. . . ables significantly larger clustefd6 and 18 sitgsto be di-
versus doping phase diagram. We can be certain by now th%onalized. Since theJ model explicitly projects out the

microscopic models such as the two-dimensiof@) t-J  gtates in the upper Hubbard band, some of the quedtidis
and Hubbard mOdeﬁ‘ describe the antiferromagnetic phase aised recently about the compatibility between the Mott
very well> Numerical studies indicate that these models alsqq,pbard gap and SG) symmetry can also be answered ex-
reproducd the “high-energy” and “medium-energy” scale piicitly. We use a general and direct formula for checking
physics of the normal-state metallic phase reasonably wellicroscopic Hamiltonians for S®) symmetry, i.e., the con-
However, the low-energy content of thel and Hubbard cept of “superspin multiplets.” In particular, if there is an
models of order of the gap energy~J/10~10-20 meV, approximate S() symmetry of the microscopic model, the
which determines the competition between different possibléow-energy states of this model should fall into irreducible
ground states such as the ordered AF state andltvave representationgirreps of SQ(5). In a given quantum me-
superconducting state, has so far eluded both analytical arghanical system, the direction of the &Psuperspin vector
numerical investigations. is quantized in a way similar to an ordinary &pspin, and
While an AF insulator appears to be diagonally oppositethe classically intuitive picture of the precession of thg 90O
to a superconductor, their close proximity led one of ussuperspin vector under the influence of the chemical
(S.C.Z) to conjecture that they are in fact intimately related potential can be identified with the equal level spacing be-
by an S@5) symmetry group, which unifies thefnin this  tween the members of $8 multiplets carrying different
theory, the AF and dSC order parameters are grouped into gharge. At a critical value.. of the chemical potential the
single five-component vectar, called superspin. The tran- superspin multiplets are nearly degenerath a standard
sition from AF to dSC is viewed as a superspin flop transi-deviation an order of magnitude smaller thinand there-
tion as a function of the chemical potential or doping, wherefore higher-spin AF states at half-filling can be freely rotated
the direction of the superspin changes abruptly. In this workinto dSC states away from half-filling. Therefore, numeri-
we present exact diagonalization results, which supportally identifying the low-lying states of the microscopic
SQ(5) symmetry as a unifying concept behind superconducmodel with the S@b) irreps can lead to a detailed under-
tivity and antiferromagnetism in the highs superconduct- standing of the one-to-one correspondence and the level
ors. crossing between the excited states of the AF and the dSC
While SQ5) symmetry was originally proposed in the states, and thereby lead us to the microscopic mechanism by
context of an effective field-theory description, its predic-which the AF state changes into the dSC state. While finite-
tions can actually be tested within the microscopic modelsize calculations cannot generally be used to prove the exis-
which to a good approximation reproduce the “high- andtence of long-range order in infinite systems, the spectro-
medium-energy” physics of the high; compounds. The scopic information about the $8) symmetry can be used as
first numerical evidence for the approximate (SOsymme-  input for the effective field theofy*>'*which captures the
try of the Hubbard model came recently from exact diago4ow-energy and long-distance physics of the problem.
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Il. SO(5) SUPERSPIN MULTIPETS: first pairwise trace ensures the vanishing for all other pair-
A PYRAMID OF DIAMONDS wise traces. Therefore, a pairwise traceless symmetric tensor
has

The SA5) Lie algebra is generated by ten operathgg
with a,b=1,...,5 anda<b. They obey the following com- N+v—1 N+ (r—2)—1
mutation relation: ( )—( b2

14

[Lab:Lcal=i(8ackbat Spdlac— Fadlbe— Obclag). (1)  components, which gives the dimensibr of a level (»,0)
(or simply ») irreps. Throughout the rest of this paper, the

SQ(5) is a rank-2 algebra; we can therefore choose total théevel quantum number simply refers to the number of in-
chargeQ=L,5=3(N.—M) and z component of the total dices of a SCb)-symmetric tensor. For S6) we obtain
spin S,= — L3 to be the members of the Cartan subalgebraD ,= % (v+1)(v+2)(2v+3), while for SG3), D, reduces
of mutually commuting generators. Helkk,, the number of to the familiar degeneracy 12-1. The Casimir operator
electrons, and/, the number of lattice sites, are both takentakes the value/(v+ 3) for a levelw irreps.
to be even. Moreover, the Casimir operatbv=23<bL§b The linear combinations ofi,, A*=n;*ing, Séznz
commutes with all generators and can be used to label th%in3

X ' , andSé=n4, are eigenvectors @@ andS,, and their
representation. The operators are defined as follows:

products can be used to construct irreps in the two-
dimensional coordinate space @fandS,. The diagrams of
?) the multiplets take the form of a diamond as plotted in Fig. 1.
Generally, a levek irrep contains many spin multiplets, with
the total spinS=» multiplet being the largest member. At

wherec; annihilates an electron with momentym(we are  the top of the diamondQ=w is a spin singlet, at the next
suppressing the spin indexr,, is the vector of Pauli matri- Sublevel,Q=v—1 is a spin triplet, and th@=»—2 sub-
ces, andd= () is the antiferromagnetic wave vector. If level contains both a spin singlet and a quintet. Generally,

- the Q=v—p sublevel contains total spirS=p,p—2,p
olne takesgl(%)—sgn(cos;;x—czlaspy), thle ISQS) {:llgeb;a —4,... multiplets. These different spin multiplets take the
closes exactly” However, for cluster calculations itis often o "of nested diamonds in a multiplet. The different dia-
more convenient to takg(p) = cosp,—cospy; the numeri-

i : A monds at levelv are stacked together to form a pyramid,
cal difference between these two choices is small. Togethgfii, the =0 singlet at the apex and the=M/2 diamond at
with the total spin-raising and -lowering operat@®$, m,

+ X the base of the pyramid. Each member of a given irrep is a
and, form the root generators of $8) and rotate different 1,5y containing many microscopic states with the identical
members of a multiplet into each other.

. ) ) transformation properties under &)
In this paper, we are concerned with tensorial representa-

tions of SA5). Tensors with given symmetry types under L. AF AND dSC STATES IN
permutation of their indices are classified by their Young THE SO(5 SUPERMULTIiLET
tableauxt® For the S@5) group, tensors which have more ®)

than two antisymmetric indices can always be mapped to |f we were dealing with a microscopic model with exact
tensors with less or equal to two antisymmetric indices bysQ(s) symmetry*® all the states at a given levelare degen-
the invariant tensog®°°?¢, the fully antisymmetric index in  erate with each other at any finite system. Degeneracy be-
five dimensions. Therefore, all tensorial irreps of(Sare  tween differenty multiplets can only occur in an infinite
characterized by two integers ('), corresponding to the system, signaling spontaneous symmetry breal@®p. On
length of two rows in the Young tableadX.The general g finite system, the ground state is an(SKGsinglet, lying in
(v,v") series can only be constructed from two differentthe =0 box at the apex of the §6) pyramid. The ten-
SQO(5) vectors. However, as we shall see later, the low-lyingdency towards SSB in the large system limit can be recog-
states of the-J model can all be classified according to the nized from the scaling of the energies of excited states with
restricted irreps(»,0) generated by the superspin vector higher irreps. For example, in the infinite-size limit, an AF
alone. Therefore, we shall restrict ourselves to the fully symstate with Nel vector in thexy plane is constructed from the
metric tensord=, o, .. a Series(»,0) generated by the prod- linear superposition of states in the center column of the

To=2, 9(P)C;15(T40y)C_ 5,
p

ucts of the S@) vectorn,, satisfying SQ(5) pyramid, while a dSC state is constructed from a lin-
ear superposition of states on the tdSO ridges of the
[Lap.Nel=—i8yNatiSachy - SQ(5) pyramid. Because of the degeneracy within all mul-

tiplets, the AF and the dSC states constructed in the large

Heren, is the five-dimensional vecto(rAT+A,§Q*,—i(AT system Iimit would _have the same ground-state energy. If

) - one applies a chemical potential tek, , the members of a
—A)), whereA=(|£2)Eﬁg(p)05zzyc,5 denotes the dSC or-  4iyen multiplet with different charge quantum numbers will
der parameter an®g=X;Cg, ;0C; denotes the AF N& e linearly shifted by the-2uQ term, leading to an equal
vector. However, these representations are in general not itevel difference within a given multiplet.
reducible. Since SQN) transformations preserve the norm  In the microscopic Hubbard or teJ model used to de-
of a vector, the pairwise trace componentsFoshould be scribe the highF, superconductors, the $8 symmetry is
projected out to obtain an irreducible tensor, i.e.,notexact, and there are different types of symmetry-breaking
Fa, a,..a,=0. SinceF is symmetric, the vanishing of the terms. The symmetry-breaking terms can also be classified



57 NUMERICAL EVIDENCE FOR S@5) SYMMETRY AND... 13783

according to irreducible tensors of the &DLie algebra. In  is generally hard to establish. However, it is relatively easy
order for the S@b) symmetry to be a useful concept, one to recognize a nearly degenerate multiplet structure on a fi-
might hope that these symmetry-breaking terms are simplenite system. For example, if we have a weakly anisotropic
or lower-rank, irreducible tensors. The chemical potentiaHeisenberg model on a lattice, the energy splitting within a
term mentioned above belongs to the ten-dimensional adjoirthultiplet would be small compared to the splitting between
representation. The next simplest type of symmetry-breakingnytiplets. Although both level spacings may scale as 1/N in
term preserving spin rotation and charge conservation woulghe [imit of large system sizhl, the ratio of their difference

be theQ=S,=0 member of a 14-dimensional tracel+es§ andcan be independent of the system size and its smallness thus
symmetric (2,0) tensor H, transforming like A™A can be recognized even with limited finite-size data. In the
—2/355-Sg . This type of symmetry breaking has two im- following, we study thet-J model, the simplest model

portant effects. First it can lead to mixing of states with Hamiltonian which incorporates the key features of the
quantum numbers differing by 2. The second more importangirong-correlation limit:

effect is the removal of the degeneracy between the members
of a supermultiplet carrying different charge quantum num-
bers. However, unlike the chemical potential term, it pre-
serves the symmetry between the charge states with the same H="P
magnitude|Q|. This type of symmetry-breaking term can
remove the degeneracy between the AF and dSC states when . ) .
w=0, leading to a charge gap while keeping the spin exciyvh_ere<|,1> denotes a summation over all nearest-neighbor
tations at low energy. However, with an applied chemicalPairs on a 2D square lattic&, projects onto the subspace of
potential, the effects of these two types of symmetry-States with no doubly occupied sites. The latter constraint
breaking terms can compensate each other for one type ogflects the strong correlations in th#/t—oe limit of the
charge state, say, hole states witk: 0, and there is a critical Hubbard model. The parameterst andJ are the nearest-
chemical potentiak.. at which the multiplets with different neighbor hopping and exchange integral. We have numeri-
chargeQ< 0 can recover their near degeneracy. As we shaltally diagonalized th¢-J model on finite lattices of 16 and
see later, our overall numerical results can be consistently8 sites(see Ref. 6 for pictorial representations of these stan-
interpreted by these two types of explicit symmetry-breakingdard systemisand studied its low-lying eigenstates up to
terms. The competition between these two types ofotal spin-3 and -6 holes. In addition to their spin and charge
symmetry-breaking terms is analogous to the competition bequantum numbers, these states are also labeled by their total
tween the spin anisotropy and an applied uniform magnetignomentum and the point group symmetry. In Fig. 1 we show
field in an antiferromagnet, as illustrated in Ref. 7. how some of the low-lying states of the 18-site clugter

It is important to point out that, althougiy andH ,, can  madel with J/t=0.5 fit into the irreps of S(), up to the

nearly compensate each other on one side of the charg‘§:3 supermultiplets. The ground states within the respec-
states, the full SG) symmetry between low-energy states of tive hole-number sector are labeled by an astensi note

g:ggﬁn]fof'ggzrﬁf |Zh31?§af::3v?§gieorgfgvfgegétle% tgﬁgof that up to now this assignment of multiplets is only a con-
' pie, Proj jecture; below we will present numerical evidence that these

the Hilbert space, and the $&) symmetry can only be ap- ; .
proximately realized between the members of the supermuerOUpS.O]c states mfjeed are @multpylets]._There are four
states inside the “nested diamonds” which cannot yet be

tiplets on theQ<0 half of the S@5) pyramid. However, : - )
Qp<0 states are the relevant Iow—enerpg};/ degrees of freedofylly identified with our current methods; they are marked by

in question, and the approximate @&Dsymmetry between the () symbol. We see that all the different quantum num-
these states is sufficient to understand the full effect of dopPers of the states are naturally accounted for by the quantum
ing. In this formalism we see the fundamental importance oftumbers of the superspin, and the levels with different
the Mott-Hubbard gapiprojecting out theQ>0 statey on ~ chargeQ are approximately equally spaced. More precisely,
the interplay between AF and dSC. Assuming that all the¢he mean level spacingndicated byAE in Fig. 1) within
superspin multiplets are degenerate for @0 states at a each multiplet up taQ=—2 is —2.9886 with a standard
given u., one can either form an AF-ordered state by thedeviation of only 0.0760 (in this calculation spin degen-
linear superposition of th®=0 members of the different  eracy was neglected; i.e., each energy difference between
multiplets or use the same coefficients to form a pure dSCany two spin multiplets is counted as one random varjable
ordered state by the linear superposition of Qe=—v  Therefore, at a chemical potential comparable to the mean
members of the different multiplets. These two states and |level spacingthe superspin multiplets are nearly degener-
the intermediate states between them are degeneraig.at ate The variance of the splitting among various states con-
However, since a macroscopic number @0 states is nected by ther operator is a well-defined numerical measure
used to form a phase'COherent pure dscC state, it has a fln|€ﬂ how good thewr operator is as an eigenoperatort@ﬂ

hole density. Therefore, Mott insulating behavior at half-ogel. Fori=0.5, the variance 0.G7is much smaller than
filling is compatible with the S() symmetry: AF and dSC ;" The situation is similar fod/t=0.25, but less favorable
states are nearly degenerate;at, but they have different ¢, J/t=1,2. This indicates that the perturbing terms for the

densities. SQ(5) symmetry do have a marked dependenceltn
Now we wish to demonstrate that the different states in-
side a given multiplet can indeed be rotated into each other
by the S@5) root generators. In particular, we would like to
Numerical demonstration of SSB requires careful study oshow explicitly how higher-spin AF states are rotated into
the level spacing as a function of system sizes, and true SSBe dSC states. Let us first briefly discuss the selection rules

> > nin;
—tX, cle+3Y (si-sj—%) P
{ {

i) i)

IV. RESULTS OF EXACT DIAGONALIZATION
OF THE t-J MODEL
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-3 -6.6156 131(0,0)

FIG. 1. The upper diagram illustrates a general levieteps of S@5). Every state can be labeled RyandS,. The maximal charge is
Q==*v. The states labeled by & form the shape of a diamond, while states inside the nested diamonds are labelechiy A.
Overlapping states with san@@ andS, are distinguished by the® quantum numbers. The lower diagrams areiferl,2,3 irreps of S(¥).
The figure shows the energies of some low-energy states for the 18-site clustéftwith5. The states are grouped into different multiplets
and are labeled by the spin, point group symmetry, and total mome#tudenotes the totally symmetriB; thed,._.-like representation
of the C,, symmetry group. Thé¢) symbol denotes as yet unidentified members of the respective multiplet.

within Fig. 1. Thes and ' operators act as raising and 1
lowering operators and obey the selection rAle=0. In Al(w)=Im ;<‘1’
other words, they give transitions within the “diamonds” in

Fig. 1. In the presence of aHg type of perturbationA»

=2 transitions are also possible, but are expected to havewghere “Im” denotes the imaginary part arkf; is a suitably
smaller amplitude. Next, as mentioned above, the five operazhosen reference energy. For finite systems spectral func-
tors A, AT, and Sg together form an S@®) vector. Conse- tions of the type(3) can be calculated exactly by means of
quently they play a role analogous to the dipole operator irthe Lanczos algorithd An intense and isolated low-energy
SO3). They obey the selection rulkv=+1; i.e., they al- peakin(say the = spectrum(3) then indicates that there is a
low transitions between the different diamonds. TheraBy ~state withQ+2 into which [¥) is being transformed byr.

is a Spin Sing|et, transfers zero momentum, andBpsym_ This should hold at least as Iong as the doped state is suffi-

metry, whereaséé is a spin triplet, transfers momentum ciently low in energy to be still within the range of validity

2 of the approximate S@) symmetry. Our strategy for the
(), and hash, symmetry.S; is the operator relevant for following, therefore, is to work ourselves through Fig. 1 and

neutron scattering; _this e)gperiment t_hus p_rohms: *1 {0 check “SQ5)-allowed” and “SO(5)-forbidden” transi-
transitions. As a "diagnostic tool” to judge if a transition ons 1y computing the respective spectral functions. We can
from a given statd¥) by the operatoO (which can bem,  then also investigate the influence of perturbations which
', A, or So) is possible, we compute the spectral function could possibly break the 86 symmetry by studying their

o—(H—E)—i0* ©

ol

‘I’>, 3
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FIG. 2. Comparison of spectral functions with undoped final FIG. 3. Spectral functions with final states in tQe= —1 sub-
states: dynamical spin correlation function for momentum transfespace: dynamical spin correlation function for momentum transfer
Q, calculated for the half-filledA;(0,0) ground state; spectrum of Q, calculated for the'B,(0,0) ground state; spectrum of the'
the =" operator, calculated for th&B,(0,0) ground state in th® operator, calculated for théA,(0,0) ground state in th@=—2
= —1 sector; spectrum of the' operator, calculated for the lowest sector; spectra of ther operator, calculated for the half-filled
5B,(0,0) state withQ=—1. Data are shown for different cluster A;(0,0) ground state and the lowest half-filléd,(0,0) state.
sizes and values of the ratiigt.

transition obviously is allowed by the $&) selection rule;
influence on the spectra, to see, e.g., how®@orbidden  see Fig. 1. The SG) selection rule thus is obeyed approxi-
transitions are enhanced by the perturbation. mately, with the ratio of the two peaks in tH&; spectrum

We now begin to discuss the results of our “computerbeing a rough measure for the degree of symmetry breaking.
spectroscopy.” Figure 2 compares the spin correlation funcThe pattern of the explicit symmetry breaking is consistent
tion at half-filling to the spectra of the-" operator for the  With that of a second-rank S6) tensorH,. The intensity of
lowest two-hole states with symmetry and total spin 0 and the peaks in the various7 spectra” decreases rapidly with
2. The reference enerdyq has been taken as the energy of decreasing]/t—this indicates that corrections to the op-
the half-filled ground state. The spin correlation function haserator become more important at smallét. On the other
a single dominant low-energy peak at an excitation energy ofand, the additional peaks at higher energy in thepectra
~0.5) (marked by an arroywhich clearly should be asso- decrease rapidly as well and always stay well separated in
ciated with a magnon stafell cluster states are exact eigen- €nergy—restricting the Hilbert space to states below a cutoff
states ofS?, and so there is no SSB in the small cluster— requency~2J would therefore give a very good eigenop-

which explains the finite excitation enejgiThe spectrum of €rator of the Hamiltonian. _ _

the ! operator for the two-hole!B, state also shows a W€ proceed to the two-hole subspace, i@z — 1. Fig-
single high-intensity peak, which coincides with that of theUre 3 shows the spin correlation fuTnctlon for two holes, as
spin correlation function; i.e., the excitation energies agredVell @s various spectra of theandm' operatorsE e is the

within computer accuracy (13%). Obviously the final states €N€rgy of the two-hole ground state. To begin with, the spin
are identical, which shows that the" operator indeed pro- correlation function again has a dominant low-energy peak,

duces the spin resonance. Next, the spectrum ofithep- ~ WhOse excitation energy scales approximately ithThe
erator for the two-hol&’B, state has a strong peak at high fmal state responsible for this peak is the lowéBy, state
energy, plus a low-energy peak with significantly lower in- With momentum(m,m). Then, the spectrum of the operator
tensity, which again coincides with the spin resonance. Heréalculated for the undopetA,, k=(0,0) state and the spec-

it should be noted that the transition from thB, state with  trum of thew ' operator for the'A,, k= (0,0) state with four
momentum(0,0) to the 3A; state with momentuntr,7m) has  holes also have intense low-energy peaks. These peaks are
Av=2; itis therefore an S@)-forbidden transition, but itis well separated from some incoherent high-energy continua,
allowed by spin, momentum, or point group symmetry. In-which start above a lower bound sf2J, and again coincide
spection shows that the intense high-energy peak ifBye  to computer accuracy with théB, state observed in the spin
spectrum is nothing but the lowedA\; state—thisAv=0  correlation function. This again confirms the interpretation of
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- S(a)|1A1> t—J model, Q=—2 t—J model, Q=—2

n*B,>

18 sites 18 sites 16 sites

JM=2 Ji=2

A N d A
N /JLA/\JT\A
Ji=0.5 Jit=0.5
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FIG. 4. Spgctral f_unctions V‘_’ith final _states in te=—2 sub- FIG. 5. Spectrum of ther operator in the “spin resonance
space: dynamical spin correlation function for momentum transfegtate,, 38, () atQ=—1; this state is the final state correspond-
Q, calculated for the'A,(0,0) ground state; spectra of theop- ing to the dominant peak in Fig. 3.
erator, calculated for théB,(0,0) ground state and the lowest
5B,(0,0) state in th&)=—1 subspace. in the case of the 16-site cluster the spin correlation function

does not have a distinguishable low-energy peak at all. Quite
the spin resonance as ar‘excitation.” Looking at Fig. 1 it obviously, we have reached the limit of applicability of the
becomes obvious that these two transitions have-0; i.e.,  SQ(5) symmetry, which seems to occur at a doping level of
they are S@b) allowed. On the other hand, thespectrum  ~0.25%, with some dependence on the ralio. This is
for the undopedyround state *A;, has a weaker peak at the roughly the same parameter range where dSC correlations
position of the spin resonance. Thig/=2 transition is for-  vanish on the finite-size cluster.
bidden by the ideal SB) symmetry(see Fig. 1, indicating Summarizing the study of the spin correlation function,
again a weak breaking of the $8) symmetry. The decrease we may say that the data are in overall agreement with an
of the “ peaks” with decreasingd/t is quite analogous as approximate SG) symmetry, in that S(®)-allowed transi-
in the case of half-filled final states. The only exceptions ar&ions usually have a larger intensity than the forbidden ones.
the peaks in ther' spectra(i.e., with initial states in the The data also show that the dominant low-energy spin exci-
four-hole subspagewhich have practically zero weight for tation at(,7) always can be generated by adding or remov-
smallerJ/t=0.25. ing two electrons from the system by means of thepera-

This also becomes clear if we study spectra with finaltor, which obviously supports the conjecture of Demler and
states in theQ= —2 subspace. Figure 4 shows the spin cor-Zhang that this low-energy resonance in the dynamical spin
relation function at four holes, together with spectra ofthe correlation function is the hallmark of the approximate
operator for the'B; and °B; states of two holes with mo- SQO(5) symmetry. The agreement with the &Dsymmetry
mentum(0,0). From Fig. 1, we see that the transition from deteriorates for higher doping levels and/or smallk
the singlet state is forbidden and that from the quintet is We now proceed to map some additional transitions
allowed. Then, looking at Fig. 1, it is apparent that therewithin the S@5) multiplets. Figure 5 shows the spectrum of
occurs a drastic change fai/t smaller than a cluster- the m operator for the lowest triplet state with two holgisis
dependent value. Fal/t=0.5 in the 18-site clustefd/t=1  state is the one which gives rise to the prominent peak in the
in the 16-site clustg¢rwe have the “standard situation™: the spin correlation function in Fig.)3 The initial state thus is
dominant low-energyr peak for the®B, initial state is more  3B;(7,7) with two holes, and on the basis of Fig. 1 we
intense than that for théB, state, indicating again a weak expect a strong transition to thbA;(0,0) state with four
breaking of the S() symmetry. Bothr peaks coincide with  holes(i.e., the four-hole ground stateAs the reference en-
the dominant low-energy peak in the spin correlation func-ergy we choose the energy of the four-hole ground state, and
tion, which in turn stems from the lowesa, state ai(r, ), Fig. 5 then clearly shows a pronounced peak in thepec-
which confirms that the interpretation of this peak asra trum with zero excitation energy, precisely as expected on
resonance is valid throughout the low-doping regime. On thehe basis of the S@G) symmetry. Figures 2-5 thus demon-
other hand, for smalled/t the correspondence between thestrate that the four-hole ground state can be obtained by two-
spin correlation function and the spectra is essentially lost; fold * 7 rotation” from the lowest°A; state with momentum
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' ' U ground state. With this choice the excitation energies of the
t-J-V model, Q=-2 dominant low-energy peaks in both spectra increase With

18 sites This is natural because the repulsignhis not operative at
half-filling, but will tend to increase the energies of hole-
doped states. The increase, however, is significantly less than

|
[
:
:: N expected, being only approximately 0fér V= 2t. This can
Q=-1 ,': : ! hardly come as a surprise, because we hatg/oV

—— By

........ w—operator x 2

n*—operator h
|

=4(n;n;,3), i.e., the nearest-neighbor density correlation
h function of holes. The latter quantity is quite small in the
BN physical range of parameters, and\sdoes not have a great

'y l : ! impact. More importantly, the difference of the excitation
} [ ] energies of thé\ and = operators is practically independent
AN :L/'\ AE s M of V. This difference of excitation energies would give the
|
|

PN J\I A 1
V=t ':" 5 V=t ':: energy required to remove k= (0,0), d-wave singlet pair
1
," l‘il' | "I\ !

b A pair. Anticipating that in a neutron-scattering experiment a
Vet h = Cooper pair from the condensate is turned into air while
! : ,( - scattering the incoming neutron, the energy difference of the
T ! Sy B peak energies in Fig. 6 thus should correspond to the energy

(. from the system and reinsert le= (7, 7), d-wave triplet
V=1.5t ]

v=2t v=2t I

I of the resulting peak in the inelastic neutron-scattering cross
| [T section, and Fig. 6 clearly shows that even a rather strong
; - - ' repulsion between the holes leaves this energy unchanged.
a/t a/t Moreover, we note that the weight of the peaks decreases
only slightly with V—the decrease is also very similar for
FIG. 6. Spectra of ther and A operators for differenV. the A and 7 operator; this would suggest that as long as
superconductivity “survives” the influence &f, so does the
7 resonance. It should also be noted that the figure actually
(0,0 at half-filling. Similarly, the two-hole ground state can compares an S@)-forbidden transitiorffrom the half-filled
be obtained byr rotation from the lowest half-filled®A; 1A,(0,0) state to the®B,(s,7) with two holed, and an
state with momentungr, ). SQ(5)-allowed transition [from the A;(0,0) four-hole
To summarize this section, we have shown that the tranground state to théB, (w, ) statd. The ratio of intensities
sitions induced by ther and S(Q) operators can be well for both transitions is~1/3 and it stays so more or less
understood in the framework of a weakly broken(Sym-  independently ofv. This indicates that the degree of sym-
metry. We have explicitly identified the multiplets with ~ metry breaking is not affected significantly b Next, the
=0,1,2,3 and shown that the operator gives transitions right-hand panel in Fig. 6 compares theand A spectra
between the members of a multiplet with differépt More-  calculated for the ground state with two holes—it shows
over, we have verified explicitly that the spin correlation similar features; in particular the difference of excitation en-
function “operates in the same subspace” astheperator, ergies is independent of, and the weights of the peaks
and that the prominent low-energy peaks in the dynamicatlecrease in a very similar fashion with
spin correlation function correspond to members of the We now consider the influence of a next-nearest-neighbor
SQ(5) multiplets for all dopings<25%. hopping integralt’. We choose a’ between (1,1)-like
neighbors with opposite sign ds for noninteracting elec-
trons this would produce a Fermi surface similar to the local
density approximationLDA) predictions. Figure 7 again
compares the spectra of the operator and theé\ operator
with differentt’ and different doping levels. The reference
Recently, Baskaran and Ander$éraised some questions energy again is the ground-state energy at half-filling in the
concerning the effect of the diagonal hopping and nearesieft panel, which shows spectra with final states in @we
neighbor Coulomb interaction on the approximate(®O —1 subspace; in the right panel, which shows final states in
symmetry. It is then of importance to check whether thesdhe Q= —2 subspacek ¢ is the ground-state energy of two
perturbations are essentially irrelevant or they could lead to &oles. The overall picture is comparable to that seen in Fig.
breakdown of théapproximate SO(5) symmetry. Again, we 6, i.e., the difference in excitation energies is nearly indepen-
resort to exact diagonalization calculations to address thident oft’/t, and in fact even decreases with increaditig.
guestion. To begin with, we consider the effect of an extraln the spectra with four-hole final states this obviously leads
“Coulomb repulsion” between holes on nearest neighborseven to a kind of level crossing, in that the lowesipeak
More precisely, we add the terd,,=VZ ;nin; to the comes down below the lowedt peak for larget’. The in-
Hamiltonian, wheren; denotes the electron density on dite  tensity of both low-energy peaks decreases in an essentially
Figure 6 then compares some spectra of #her’ operator  similar fashion with increasing’/t|. One can, however, re-
and the zero momentum pair operatofor different values alize a kind of “crossover” betweeft’/t|=0.1 and|t’/t|
of V. The left panel shows spectra with final states in the=0.2, where the spectral weight of the' spectra drops
two-hole sector; the reference energy is that oftibd-filed  sharply. The ultimate reason is a level crossing in the four-

V. PERTURBATIONS TO THE t-J MODEL AND THEIR
INFLUENCE ON THE APPROXIMATE
SO(5) SYMMETRY
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the same sense as the states of a conventional spin multiplet
are connected by the spin-raising and -lowering operators.
Remarkably enough, we then found that the energy differ-
ences between different states of the assigned multiplets are
to good approximation constant both within one multiplet
and also between different mulitplets. This supports the re-
sult of Demler and Zharfghat thes operator is an approxi-
mate eigenoperator of theJ Hamiltonian. It follows that for

a critical value of the chemical potential, the superspin mul-
tiplets are nearly degenerate, and therefore higher-spin AF
states at half-filing can be freely rotated into dSC states
away from half-filling. There are clearly visible effects of
SQO(5) symmetry breaking, which to the lowest order can be
identified with the type of a symmetric traceless rank-2 ten-
sor. We would also like to stress at this point that a very
explicit symmetry breaking is due to the simple fact that for
each S@) multiplet the upper part of the diamor{dorre-
sponding toQ>0) actually does not exist in the Hilbert
space of the-J model. The numerical results indicate, how-
ever, that as long as we restrict ourselves tqB@otations
within the Q=<0 half-plane the “hard wall” atQ>0 does

not have any significant symmetry-breaking effect. As men-
tioned above, a measure of this symmetry breaking is the
standard deviation in the energy splitting& between the
different S@5) multiplets in Fig. 1, which we found to be
(for J=0.5) much smaller compared td: thus, from the
SQO(5) multiplet structure, we can see explicitly how the su-

hole sector from the “S()-compatible” *A; ground state perspin vector is rotated from the AF to the dSC direction.
to a 'B; ground state, which occurs in between these twowe can identify the intermediate states which connect them
values of|t’/t|. We note that 4 holes in 18 sites correspondcontinuously and show that, at a critical chemical potential
to a hole density of 22%, which is nominally far 4, the energy barrier between AF and dSC states is smaller
overdoped—the drop in the' spectra thus is not really a than the natural parameters of the model, Jeandt. Our
reason for concern. Moreover, the peak in the spectrum overall results suggest that the low-energy dynamics of the
the 7 operator(which is not affected by the level crossing t-J model can be described by a quantum(S®onlinears
stays well defined, its intensity decreasing slightly and inmodel with anisotropic couplings, and the transition from AF
proportion to that of the A peak.” All in all it is obvious  to dSC phase can be identified with that of a superspin flop
that larger values of degrade the SB) symmetry. On the transition’ It is truly remarkable that while the physical
other hand, practically all of our data show an intimate relaproperties of AF and dSC states are intrinsically different
tionship between thel-wave pairing amplitude and the  and they are characterized by very different forms of order,
amplitude. If thew resonance is suppressed, be it due to highhere exists nevertheless a fundamenta{3&ymmetry that
doping, largeV, or larget’, so is usually thel-wave pairing.  unifies them. The dichotomy between their apparent differ-
It is then only natural to conclude that as long asdhsave  ence and fundamental unity is in our view a key which can
pairing “survives” the influence of perturbations, so doesunlock the mystery of the higl. superconductivity.

the 7r resonance.
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