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Inelastic-scattering rate on thermal conductivity of ad,2_,2 superconductor
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We calculate the electronic component of the thermal conductivity @fa,2 superconductor. We use a
formalism in which the inelastic scattering is modeled explicitly through a spectral density which describes the
fluctuation spectrum responsible for the superconducting transition and also for the large inelastic scattering
observed in the normal state aboVg. The feedback effect of superconductivity on the spectral density is
modeled by a low-frequency cutoff. For values of parameters used to successfully fit the measured microwave
peak in pure and Zn- and Ni-doped Y-Ba-Cu-O we obtain good agreement with the experiment for the thermal
conductivity. The effect of resonant impurity scattering is also considered, as is the zero-frequency conductiv-
ity, the Lorenz number, and the effect on these of the renormalization due to the inelastic scattering.
[S0163-182698)00621-3

[. INTRODUCTION temperature-dependent elastic-scattering rate modeled from
spin-fluctuation theory.

It is now widely accepted that the large peak obsetvéd Our own approach here is very different. The inelastic
around T=40 K in the microwave response of optimally scattering is introduced through a spectral density that de-
doped YBaCuzOg o5 (YBCO) as a function of temperature is scribes the fluctuation spectrum involved in the superconduc-
due to the collapse of the inelastic-scattering rates because ity which we take here for definiteness to be the antifer-
the onset of superconductivity. The mechanism envisaged ivmagnetic spin fluctuations, although other forms of the
a feedback in which the fluctuation spectrum involved in thespectra| density could be used. In the case of the infrared
superconducting transition becomes gapped as a result of th@nductivity, the generalized optical scattering rate which
gapping of the electronic spectrum. Such an effect should bgesyits from our model spectral density were indeed found to
generic to electronic mechanisms, but the exact detail wilhe in qualitative and semiquantitative agreement with experi-
depend on microscopic details such as energy gap Symmetffent |n the normal state the model correctly gives a nearly
and the fluctuations involved. A rapid reduction in the scatyinear temperature dependence for the scattering as well as a
tering rate as the temperature is lowered throlighT has o aqjlinears dependence. The scattering rate is of the order
also been measured in infrafestudies and it has been sug- of w over a large range of energy as is observed. To include

gested to be responsible for a large peak observed in thlﬁ the formalism the effect of the collapse of the inelastic
thermal conductivity’. In this case some assumptions need toscatterin on entering the su ercondFL)lctin State a low-
be made about the relative amount of the total thermal cur: 9 9 P 9

rent coming from electrons as opposed to the phonong_requency cutofiwe, is introdu_c_ed. This simulates the gffect
Original interpretations of the thermal conductivity peak in- Of the onset of superconductivity on the spectral density and
volved phononé. the cutoff is taken to be temperature d(_ependent and vary in
In this paper we use solutions of generalized Eliashbergth® Same way as the BCS gap. To obtain agreement with the
like equations for ad-wave superconductor which include Microwave data in a pure twinned crystal of YBC®, at
inelastic scattering through a spectral density. The paranZero temperature is fixed at a value of &1 Further, in our
eters of the spectral density are all fixed through our previoughicrowave work the strong-coupling parameter g was
study of the microwave pedkiNo new parameters need to be fixed at a value of 0.31. This value was required to get the
introduced. From oud-wave gap solutions we calculate the correct amount of inelastic scattering observed in the normal
electronic thermal conductivity in the superconducting statestate just abovd.. In terms of the spin-fluctuation energy
The formulas used are standard strong-coupling formittas scale, this corresponds =30 meV which is a value
which include the inelastic scattering, and which we havequite typical of the oxides. The only other important param-
generalized to also include the gap symmetry ofdqe ,»  eter of the theory is the electron spin-fluctuation coupling
type. There already exists a considerable literature on thehich was simply adjusted to get the measured valu€& .of
thermal conductivity in exotic pairing statés:* All are  taken 100 K as typical of the cuprates so that this too is not
within a BCS framework. The calculations were originally variable.
applied to heavy fermiod3 but have been adapted recently  In Sec. Il we specify the basic Eliashberg-like equations
to YBCO® In this last case an attempt is also made to in-used in our work and the formula for the thermal conductiv-
clude approximately into the BCS framework some inelastidty is given. In Sec. Il we discuss our results and Sec. IV
scattering. This is accomplished through the introduction of gresents our conclusions.
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Il. FORMALISM 12F (), which describes the bosons exchanged, have been

. . given before. They are fundamental for all the work to be
The basic gap equations for d&twave superconductor )giscussed and take the fofi7-2:

with inelastic scattering included through a spectral densit

i < cog26" ) A(iwy: ') >

A(v+i8,0)=inTg>, cog20)[N(v—iwm)+A(v+inmg]
m=0 Vo i o)+ E¥iwn: 0)

. cog260")A(v—2+i5,0") '
+i7-rf7ocdz cos(20)|2F(z)[n(z)+f(z—w)]< > , (]

Vo2 (v—2+i8) - A% (v—2+i5.0')
and in the renormalization channel

- - o(iop) ’ -
w(v+i5)=v+iﬂ'TE [Nyv—iwg)—Nv+ioy,)] +i1'rJ' dzIPF(z)[n(z)+f(z— )]
m=0 V(i om) + K¥ion;0') -
w(v—2z+i0) L - Q(v) o
X +imlt
Vor(v-z+i0)-K2(v-2+i5:0") c*+ D (1) + Q%)

with w,=7T(2n+1), n=0,=1,%2,..., (...) the angular malization channel2) is isotropic with the same spectral

average ovep, and densityl2F(Q) as in Eq.(1) but with nog value. In general
5 a different form of the spectral density could come into Egs.
()= — f”“ 40 1F(Q) 3 (1) and(2) but here, for simplicity, we have used the same
e v—Q+i0T’ form but allowed for the possibility that they do not both
have the same magnitude, i.g.heed not be equal to one.
A(v+i6;0) We will present results only fay=0.8 put we have expl_ored
D(v)= , (4) other values and found no new physics. These equations can
\/;2(,,“5)_32(,,“5; 0) be considered as a minimum set that goes beyond a BCS

approach to include approximately the inelastic scattering
D(v+id) which is known to be very strong in the cuprate supercon-
Q(v)= ) (5)  ductors. In the normal state &t aroundT, the inelastic-
\/Z)Z(v+i6)—32(v+i5; 0) scattering rate often varies linearly ih as it does in our
theory and is of the order of a few timds.. These facts
Equations(1) and (2) are a set of two nonlinear coupled constrain somewhat the form of the spectral deniSig(Q))
equations for the pairing potentidl(v+i8;6) and the nor- as will be discussed later.

malized frequencie®(v+ i) with the gap: In Eq. (2) the impurity scattering rate is proportionl®
and comes in only in the renormalization channel because we
A(v+i6:;0) have assumed a pudkwave model for the gap with zero
A(v+id;,0)=v—=———, (6) average over the Fermi surface. This is expected to be the
w(v+id) case in a tetragonal system. If one wishes to include an
or if the renormalization functio@(») is introduced in the ~S-wave part to the gap to treat an orthorhombic system, a
usual way ass(v+id)=rZ(v) then new impurity term would now enter Eql) for A. It would
have the same form as the last term of E2).but with Q(v)
_ A(v+i8;0) in the numerator replaced b®(v), a quantity which is
A(v+id)= Tz (7)  strictly zero for the purel-wave symmetry. The parameter

in the elastic-scattering part of E() is zero for resonant or
Here, 6 is an angle on the two-dimensional circular Fermiunitary scattering and infinity in the Born approximation,
surfacev is a real frequency, andlis a positive infinitesimal i.e., weak scattering limit. In this case the entire impurity
0*. To arrive at these equations a separdbiehe angular term reduces to the forirt ™ (v) with ¢ absorbed intd ™.
part) model was used for the pairing potential. In the pairingFor intermediate coupling is finite. The thermal factors
channel it has the forng cos()I°F(Q)cos(¥') with g a  appear in Eqs(1) and (2) through the Bose and Fermi dis-
constant and?F(Q) being the pairing spectral density. This tribution n(z) andf(z), respectively.
leads to a gap proportional to cogf2by arrangement. No To summarize, the parameters in the set of equatibrs
other anisotropies are included and we note that the reno(5) areg=0.8 and, not of great importance, the spectral den-
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sity 12F(€), and the impurity parametd™ (unitary limit) ~ T.=T_,=100 K. This value is taken to be typical of the
or t* (Born limit). In our previous work on the infrared oxides. At the same time, to get an inelastic-scattering rate in
andUCtIVIt)?_ we used a model for the spectral density the normal state just abovi, of the order of a fewl., we
[“F(Q) motlvgted by a spin-fluctuation mechanism with apeed to chosewg=30 meV in Eq.(8) and this gives a
spectral density of the form strong-coupling indeX of T,/wj,,=0.31. No parameters re-
Olw main. When dealing with impurities we can either quote the
12ZF(Q)=12—— 2 (8)  value of'* used or the corresponding reduction in the criti-
1+ (D og) cal temperature induced by the impurity scattering; but this is
with w¢ the spin-fluctuation frequency. This form has only not a new parameter.
two parameters which can be fit to experiment. First the In the notation of our previous papers on the ac optical
value ofl2 can be determined upon solution of the gap equaeonductivity®?3 the formula for the electronic thermal con-
tions (1) and (2) linearized inA at T=T, to get a value of duction can be written as

_2N(O)v,%f°° dvr? <1+N§(v;0>+N§(v;e)—Pi(y;e)—Pg(y;a)

Kape(T)= —2 o COSH(v/2T) Eax(v;0) ' ©
E(v;0)=\Vo2(v+i8)—A2(v+i8;0), (10
w(v+id)
N(v;0)= E(v0) (1D
A(v+is;0)
P( v, 9)= W (12)

Here, T is the temperaturé\(0) is the unknown, single-spin quasiparticle density of states at the Fermi surfaag; anihe
Fermi velocity. The formula is valid in two dimensions, and it has the same general form as the formula given by Schachinger

et al® for the zero-frequency limit of the real part of the ac conductivity af-@ave strong-coupling superconductor which
was

o(0,T)=

e’N(0)wZ [ 1 F dv 1+ N2(v;0)+N3(v; 0) + P2(v;0)+ P5(v;6)
2 2T Jo cosK(w/2T) 2E,(v;6)

1 k4 dv 1
T fo cosR(vI2T) Ei(v;0)+Eg(v;e){ZEl(”;‘9)[N1(”;‘9>N2(V;9)+P1(”;9)2(”;0)]

+Eo(v; 0)[1—N3(w;0)+ N3(v; 0)— P2(v; 0)+ Pa(v; e)]}> . (13

In the above, the indices 1 and 2 stand for the real andiramatic effects on the resulting electronic thermal conduc-
imaginary parts, respectively. Alse, is the charge on the tivity, changing its value by an order of magnitude in the
electron. Both formulas, fok,, . and for oy, greatly sim-  region of the peak which falls at a reduced temperature value
plify when retardation effects are ignored and a BCS limit isof slightly less thanT/T.=0.15. As the temperature in-
taken. This is not justified when the strong-coupling indexcreases towards, the low-frequency cutoff in the spectral
T/ wog=0.31 which is a very strong-coupling ca@eand density which models the reaction of the fluctuation spec-

the same temperature dependence as does the BCS gap and
Il RESULTS so decreases and is zerolat Thus, the solid and the dotted

curve meet alf=T,. It is clear from these curves that, for

In Fig. 1 we show the reduced temperatlvd ., varia- the pure system with no elastic impurity component, the
tion of the in-plane thermal conductivity obtained in the purepeak in the thermal conductivity is very sensitive to the low-
case, i.e., only the inelastic scattering is included through thérequency part of the spectral densiF (Q) and is a good
spectral density8) and the elastic-impurity-scattering rate is probe for such excitations. In the best untwinned crystal
set to zero " =0) in Eq.(2). The dotted line is without a samples of YBCO the residual scattering is generally be-
low-energy cutoff in the spectral density while the solid lieved to be small. For twinned crystals there can be some
curve includes it. The application of this cutoff clearly hasadditional background scattering but we have previously
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FIG. 1. In-plane electronic thermal conductivikyy, o(T) in ar- T 20
bitrary units as a function of the reduced temperaflif€, for a - e
pure system T.=100 K) with inelastic scattering included. The 5 = = I'/T,=0.0048
solid curve applies to the case when a low-frequency cuteff ( 3 === =TT, =0.0096
=2.1T,) is introduced in the spectral density so as to simulate the L_,w 3 —-=T"/T =0.02
effect of the superconducting transition on the fluctuation spectrum. £ ol —--—TI"/T =0.048
The dotted curve involves no cutoff. The differences between the/\{ _____ /T =0.096
curves are dramatic. [y ‘
~
=
quite successfully modeled this with a small amount of elas- %
tic Born scattering. The effect of this residual scattering on %

the height of the thermal conductivity peak aroumdT,
=0.15 is large and the impurities also shift the peak notice-
ably towards higher reduced temperature values. This is il-
lustrated in Fig. Atop frame where the effect of Born im-
purity scatterindi.e.,c—o in the impurity term of Eq(2)]

is discussed. What is shown is the ratio «f, ¢(T) to its
value atT=T.y. For the lowest impurity concentration pre-

FIG. 2. In-plane electronic thermal conductiviiyy, o(T) nor-
malized to its value af,,=100 K as a function of the reduced

. o 5 _ temperaturel /T, . In the top and the bottom frame the solid curve
sented in this figuref"/T.,=0.0048 (dashed curve the is for the pure case with only inelastic scattering included and the

pe_ak’s height is still of the order of 10 in these nOrma“ZEdothers include an additional contribution from elastic impurity scat-
units but has b_een reduced by a fact_or of 2 over f[he PUr&ring. In the top frame the weak scattering limit, i.e., Born approxi-
crystal case(solid curve. As the impurity concentration iS mation is made. The various curves are labeled by the value of
increased the curves reduce further in magnitude and the /T ; employed. The peak is depressed with increasing values of
peak shifts towards higher reduced temperatures. For the /T, and shifted towards higher temperatures. The bottom frame,
short dashed curve the corresponding critical temperaturgn the other hand, is for elastic impurity scattering in the resonant
value is 95 K so that in this case there are enough impuritieBmit. The various curves are labeled by the valuel'6f/ T, em-
for the critical temperature to decrease by 5 K. The effect oployed. Resonant scattering reduces the peak more rapidly than the
resonant scattering is shown in the bottom frame of Fig. 2corresponding Born case with the same value for the scattering
We see that in this case the peak is more attenuated as coparameter.
pared to the corresponding Born case but the trends are simi-
lar. We have also done calculations for intermediate valuefected by the cutoff and thus is as sensitive a probe of the
of ¢, namely forc=0.5 which is a value used to model the feedback effect of superconductivity on the fluctuation spec-
effect of Ni impurities in our previous wofR on the micro-  trum as is the microwave data. In Fig. 3 we have adjusted the
wave conductivity. The results are close to e 0 limit scale on our calculations, which is arbitrary, to fit the data at
(resonant scattering case the point indicated by the arrow and thus an absolute scale in
Without the introduction of any new parameters our the-units of mW/cm K applies. To set the scale theoretically the
oretical results are scaled to meet the electronic thermal corvalue for the combination of the free-electron density of
ductivity measured by Matsukawat al?* (sample 3 as states and Fermi velocity in Eq9) is needed. This is not
shown in Fig. 3. The open triangles are data for twinnecknown and thus a fit to one data point was needed. Finally, in
crystals and the solid curve is our theoretical result. All mi-obtaining Fig. 3 the same amount of Born residual scattering
croscopic parameters in the numerical work are the same agas used as required to get a good fit to microwave data in
used in the case of the microwa%&To get the solid curve twinned samples. Thus, no new parameters or any adjust-
which fits the data well, a low-frequency cutoff was alsoment of any kind was needed to get the fit found for the
included with w.=2.1T. at T=0. Without the cutoff the thermal conductivity shown in Fig. 3.
dotted curve is obtained. It shows no agreement with the data A quantity closely related to the thermal conductivity
so that the electronic thermal conductivity is strongly af-which is also a zero-frequency property is the>0 limit of
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FIG. 3. The in-plane electronic thermal conductivity, ¢(T) in
units of mW/cm K as a function of the reduced temperailif€, .
The solid curve is the result of our calculations using the same .
parameters for the microscopic quantities involved as were used i~ 3 [ / \ — =TT =002
our previous calculations of the microwave peak in YBCO. The |- =---T'/T,=0.09
open triangles are the data of Matsukaetaal. (Ref. 24 and are ~—
seen to agree well with our calculations. The scale of the theoretica ;i
Kap,e Was adjusted to fit the point indicated by the arrow. The dotted -~
line is a theoretical calculation without low-frequency cutoff on the
fluctuation spectrum. It disagrees strongly with the data.

—r'T,=0
10 | ;7 T~ — — -I'/T,=0.0096

(o]
!

~
-~

c,(0,T/

the real part of the optical conductivity in the superconduct-
ing state, i.e.g1(v=0,T) of formula (13). This quantity is
closely related to the microwave conductivity. Results are
shown in Fig. 4. The top frame gives the ratio of the con-
ductivity at T normalized to the pure single-crystal value at L ,
T,o. The normalization has been chosen for easy comparison F'C: 4. The zero-frequency limit of the real part of the optical
with the data of Fig. 2 on the thermal conductivity. Only the conductivity o(0,T/T.) normalized to its value af, (the critical

. . ) . L temperature of the pure systgms a function of the reduced tem-
resonant impurity case is shown. The top frame is without a

S .. peratureT/T,. In top frame no low-frequency cutoff has been ap-
!OW'Ifrethﬁ ntc¥hcutof: ?fnﬁ the bOttO”l] frameﬁls \;V'th' fr\]galn it plied to the fluctuation spectrum while in the bottom frame it has.
IS clear that the cutoft has a very large eriect on the€ zeros. sqjig curve is for the pure case—only inelastic scattering, no

frequency limit of the dc con.ductivif[y. Npt only is the size of 45stic impurity scattering. The dashed curve is BF /T,

the peak strongly affected, its position is also changed from. g gogg T.=99.5 K) and the dotted one fdt*/T,=0.096 (T,

T/Tc=0.2 10 T/T.=0.4. This is different from the case of —g5 k) with I* a measure of the elastic-scattering rate in the

Kap,e Which shows little change in peak position with the resonant scattering limit.

cutoff value. The effect of impurity scattering in the unitary

limit is similar on oy @s onkape. Also o1(»=0,T) is not  full influence of the inelastic scattering due to the spin-

very different from the microwave conductivity when fluctuation spectrun@) andL/L is necessarily smaller than

enough impurities are present. one. Our fit to the microwave data by Boanhal? resulted in
The comparison between thermal and electrical conduca dc conductivity atT, of o;(0,T.)=2.56x 10° (Qm)~ 1,

tivity can be presented in a different way through theour rescaling to the thermal dat&ig. 3) gives kape(Te)

Wiedemann-Franz law or Lorenz numbder We define =4.1 W/mK, and this combines according to E34) to
L(T.)=1.73x10"8 WQ/K?, well within the range of 1.2
Kabe(T) —2.0x10"8 WQ/K? given by Hirschfeld and Putikk®.
L(T)= W (14 While the microwave conductivity and thermal conductivity

data are on different samples and so the unknown scaling
with the free-electron value of L equal to factorsN(O)v2 in Egs.(9) and (13 could be different, we
Lo=m?/3(kg/€)?. Figure 5 shows our results for the tem- find they differ only by less than 3% effectively from our
perature dependence &i(T)/L, in a case which includes theoretical value which does not involve this prefactor. This
enough unitary impurity scattering fdr, to have dropped is quite remarkable.
from T, by 5 K to 95 K. Thesolid curve includes the low- At the lowest temperature shown the curves meet and we
frequency cutoff in the spectral density and the dotted curv@ow discuss the low-temperature limit of this quantity which
is without such a cutoff. We see large differences in size ands particularly interesting and leads to universal limits in the
also in position of the peak. Ak, both curves meet because case of resonant scatterifitj?® These limits have been dis-
at this temperature no low-frequency cutoff is in effect.cussed before only within the BCS weak-coupling formal-
Therefore, the electronic thermal conductivity reflects theism. This formalism is mathematically much less complex
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Ao(0)
25 | s, P,(0)=— : 21
i i . -.. . 2( ) E2( 0) ( )
20 L L After simple algebra we get the well-known result of the
' BCS theory:
i 2 2
= 15} Kab, (T) N(O)UF |1 dg(’y)
3 —r—| g |z (@
i T—0 Y Y
1.0 - with
0.5 L 1 N 1 L 1 N 1 L ) 1 ( )
0.0 0.2 0.4 0.6 0.8 1.0 gy =y ———— 23
T 7*+85(0)

FIG. 5. The ratio of the Lorenz numbér to its free-electron
value as a function of the reduced temperaftf®. . Enough im-

Note that it isAy(6) that enters Eq(23) and not the gap
Ao( ) of BCS theory. Using the familiax?’ modef? for the

purity scattering was used to reduce the critical temperature fronfiteractionsi(z) in Egs. (1) and(2), Ag(6) =24, cos(F)(1
100 to 95 K. The solid curve results when a low-frequency cutoff is TA) where\ is the mass-renormalization parameter associ-
applied to the fluctuation spectrum, while the dotted curve is with-ated with the spectral density’F((2). Evaluation of Eqg.
out cutoff. It is clear that the inelastic scattering can have a largd23) in the standard way gives

effect onL even when impurities are present.

than the one employed here. Our formulas are more general T 2
and include inelastic scattering but must reduce in the appro-

priate limit to the BCS case and they do.
We begin with the reduction of formulg@®) for the ther-

mal conductivity. In the limit ofT—0 the thermal factor is

kane(T) | _NOuiw 2

3 Ag(1+X)

(24)
T—0
independent of"*. The saturated limit is identical to its

BCS value except that it includes in addition the renormal-
ization factor (I \). It is quite important to note that the

highly peaked arouné=0 and we can ignore the frequency existence of this limit has just recently been confirmed ex-
dependence in the factors that enter the average over tiperimentally by Tailleferet al>° using optimally doped un-
angle indicated by the symb@l--). We replace these by their twinned YBCO single crystals, a result which is in strong

normalized BCS limits

E(v=0; 6)=E(8)= Va(v=0)—2A2(v=0; 6), (15

w(v=0)

N(v=0; B)ZN(H):W, (16)
A(v=0; 6)

P(v=0; G)IP(H):W, 17

and obtain

Kab,e(T) _ N(O)U|2: 1+ Ni( 0)+N§( 0)— P%( 0)— pg( 0)
T T Ex(0)

(18)

Now, in the resonant scattering limit with—0 we takew
~av+iy and so w(r=0)=iy, where y is the self-
consistent scattering rate. In this limit

E1(0)=Ny(0)=P1(60)=0,

and withA (0,0)=2A4(6),

E.(0)=\y?+243(0), (19)
Y
N1(0)= E,(0)’ (20)

support of a predominantlgl,>_2-symmetric order param-
eter.

Similar manipulations for the conductivity formuld.3)
give

eNOjw2 1 2
2w A(1+N)’

71(0,0 = 0= (29
which also contains the renormalization factor{1). The
Lorenz numberk,y, ./ Toy has its free-electron valukeg in

the saturation limit with the above universal value for
Kape! T and foro(T—0). In Fig. 6 (top frame we show
results for the saturated value lofL, at T=0 as a function

of the strength in the coupling of the electron-boson spectral
density I ?F(Q), i.e., of Tc/wiog- In these calculations),og
was changed by changing the valuewgf in Eq. (8) with |
readjusted to keep.o=100 K. We note from this figure that
the Lorenz number in the saturated regimd &t0 for reso-
nant scattering depends on the sizeTef w4 and recovers

its BCS value given by the ratio of E(R4) to Eq.(25) only

for T¢c/w,g—0. On the other hand, remarkably, the devia-
tions from the ideal value are always very small and can be
ignored. Note that the solid squares are calculated from the
full formula (9) and (13) with a low-frequency cutoff in
I2F(Q) and the open triangles without. At this point is
seems to be appropriate to point out that the spectra with the
low-frequency cutoff built in do have significantly smaller
values for T¢/wy4. Nevertheless, the corresponding data
points have been placed at tfig/ wo4 values of the corre-
sponding spectra without the low-frequency cutoff in an at-
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1.03 culations. This demonstrates that for this quantity strong-
coupling effects are captured well by the single renormaliza-

—bo— /T =0 . .
- m°/T°_21 tion (1+X\). This of course also holds for the thermal
¢l T A conductivity.
1.02 | /
- -/ . IV. CONCLUSIONS
—
1.01 F u We have presented calculations of the electronic in-plane

thermal conductivity of ad,2_y2 superconductor which in-
clude inelastic scattering at the level of a spectral density that
describes the fluctuation spectrum. The choice of spectral
1o M) density reproduces several of the important properties ob-
000 0.05 010 015 020 025 030 035 served in the cuprates: For example, the quasilinear law for
T /o the temperature dependence of the scattering rate in the nor-

o0 e mal state abov@&,, and its sizda fewT,);?° The quasilinear
—A— /T =0 frequency-dependent scattering rate over a very large energy

- “’Z/T:=2-1 scale extending into the mid-infrared region which is ob-

.8,29,31,32
0.03 - -O- - 1/(1+X) renormalized BCS

0.04

tained from optical data and its sizef orderv at v);
The broad nearly constant electronic Raman backgréwfd
the normal state, as well as other properties. The model can
also describe well the measured large peak in the tempera-
ture dependence of the microwave conductivityTat40 K
in pure samples as well as the effect of Zn and Ni doping in
these same quantitié<3 This last phenomenon is associated
with a feedback effect of the superconducting phase transi-
tion on the fluctuation spectrum which is assumed to become
opoot—r—1t— 1 1, 1 . 1 . 1 . reduced or even possibly fully gapped at low temperatures.
0.00 005 010 015 020 025 030 035 This feedback effect is expected in electronic pairing mecha-
Tco/u)Iog nisms. This would be the case for electronic coupling to the
spin fluctuations observed at momentum transfer
FIG. 6. The coupling dependence of the normalized Lorenz=(7r,7). The measured spin susceptibility in optimally
number atT=4.75 K (upper framg and the zero-frequency real doped YBCO does indeed show a gapping in the supercon-
part of the optical conductivitylower framé as a function of the  ducting state and the emergence of the 41 meV p&ak.
coupling strengthl ¢y /wiq in the electron-boson spectral density.  Within the same model and without changing any of the
The open triangles are results without a low-frequency cuiff  parameters we have calculated, using the appropriate strong-
=0 and the solid squares with such a cutoffc&2.1T¢). Inthe  coupling formulas generalized to account for angular depen-
lower frame we also compare the results of numerical calculationglence of the gap around the Fermi circle in the two-
with the expression Z/Aq(1+\) with A, related to the critical  gimensional Brillouin zone and the electronic thermal
temperature through the BCS relation faFwave 24,/ksT.  conductivity, and find good agreement with the in-plane data
=4.29 (open squargsThe lines are drawn to guide the eye. for YBCO. The observed peak is related to the low-
frequency cutoff and corresponds to a radical drop in the
tempt to make the correlation of the data more apparent. linelastic-scattering rate on entering the superconducting
these curve$ */T,=0.096 orT./T,=0.95, with resonant state. This is not a novel interpretation but what is different
scattering assumed. While the zero-temperature viallg is our method of calculation and our way of including the
with resonant scattering is hardly affected by strong couplindnelastic scattering. The system is believed to be in the very
effects the bottom frame of Fig. 6 shows that this is not thestrong-coupling regime with a strong-coupling parameter
case wheno1(0,0) andkape(T)/T in the limit T—0 are  T./w),,=0.31. BCS results generalized of course to include
considered separately. Results 01(0,0) as a function of thed-wave symmetry of the gap should be quantitative only
Te/wiog show a large variation, dropping from a value of whenT,/w,,—0. All prior calculations that we are aware of
~0.035 to less than-0.01 asT /w4 ranges from QBCS  have used a BCS approach and the few that have included
value for T=0) to 0.31 (very strong coupling The solid the inelastic scattering do so through a temperature-
squares are again the result of full strong-coupling calculadependent elastic impurity scattering rate with the tempera-
tions based on the numerical evaluation of EtB) from  ture dependence modeled through consideration of a spin-
complete numerical solutions to Eg4) and (2). I'* was  fluctuation mechanism. We also have a spin-fluctuation
adjusted to gef./T.,=0.95. Also, a low-frequency cutoff mechanism in mind and have used a spectral density with the
is used inl2F(Q), while the open triangles involve no cut- form expected for the coupling of the quasiparticles to spin
off. The results are clearly not dependent significantly on thdluctuations in a nearly antiferromagnetic Fermi liquid. The
low-frequency part of the fluctuation spectrum. Finally, we precise form of this spectral density could be altered, but at
compare with our renormalized BCS result of E2p) which ~ the moment, we do not have a definitive microscopic model
includes the factor (£ \). These are the open squares andof the mechanism involved and cannot make a definitive
we see good agreement with the results of the complete cathoice.
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Another zero-frequency quantity, very closely related tothe conductivity is given in terms of the boson mass renor-
the thermal conductivity, is the real part of the dc conductiv-malization that enters the theory.
ity in the superconducting state and this quantity is closely
related to the microwave conductivity. We have studied the ACKNOWLEDGMENTS
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