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Inelastic-scattering rate on thermal conductivity of a dx22y2 superconductor
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Institut für Theoretische Physik, Technische Universita¨t Graz, A-8010 Graz, Austria
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Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

~Received 8 January 1998!

We calculate the electronic component of the thermal conductivity of adx22y2 superconductor. We use a
formalism in which the inelastic scattering is modeled explicitly through a spectral density which describes the
fluctuation spectrum responsible for the superconducting transition and also for the large inelastic scattering
observed in the normal state aboveTc . The feedback effect of superconductivity on the spectral density is
modeled by a low-frequency cutoff. For values of parameters used to successfully fit the measured microwave
peak in pure and Zn- and Ni-doped Y-Ba-Cu-O we obtain good agreement with the experiment for the thermal
conductivity. The effect of resonant impurity scattering is also considered, as is the zero-frequency conductiv-
ity, the Lorenz number, and the effect on these of the renormalization due to the inelastic scattering.
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I. INTRODUCTION

It is now widely accepted that the large peak observed1–4

around T540 K in the microwave response of optimal
doped YBa2Cu3O6.95 ~YBCO! as a function of temperature i
due to the collapse of the inelastic-scattering rates becau
the onset of superconductivity. The mechanism envisage
a feedback in which the fluctuation spectrum involved in
superconducting transition becomes gapped as a result o
gapping of the electronic spectrum. Such an effect should
generic to electronic mechanisms, but the exact detail
depend on microscopic details such as energy gap symm
and the fluctuations involved. A rapid reduction in the sc
tering rate as the temperature is lowered throughT5Tc has
also been measured in infrared5 studies and it has been su
gested to be responsible for a large peak observed in
thermal conductivity.6 In this case some assumptions need
be made about the relative amount of the total thermal c
rent coming from electrons as opposed to the phono
Original interpretations of the thermal conductivity peak
volved phonons.7

In this paper we use solutions of generalized Eliashbe
like equations for ad-wave superconductor which includ
inelastic scattering through a spectral density. The par
eters of the spectral density are all fixed through our previ
study of the microwave peak.8 No new parameters need to b
introduced. From ourd-wave gap solutions we calculate th
electronic thermal conductivity in the superconducting sta
The formulas used are standard strong-coupling formulas9–11

which include the inelastic scattering, and which we ha
generalized to also include the gap symmetry of thedx22y2

type. There already exists a considerable literature on
thermal conductivity in exotic pairing states.12–14 All are
within a BCS framework. The calculations were origina
applied to heavy fermions15 but have been adapted recen
to YBCO.16 In this last case an attempt is also made to
clude approximately into the BCS framework some inelas
scattering. This is accomplished through the introduction o
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temperature-dependent elastic-scattering rate modeled
spin-fluctuation theory.

Our own approach here is very different. The inelas
scattering is introduced through a spectral density that
scribes the fluctuation spectrum involved in the supercond
tivity which we take here for definiteness to be the antif
romagnetic spin fluctuations, although other forms of t
spectral density could be used. In the case of the infra
conductivity, the generalized optical scattering rate wh
results from our model spectral density were indeed found
be in qualitative and semiquantitative agreement with exp
ment. In the normal state the model correctly gives a nea
linear temperature dependence for the scattering as well
quasilinearv dependence. The scattering rate is of the or
of v over a large range of energy as is observed. To incl
in the formalism the effect of the collapse of the inelas
scattering on entering the superconducting state a l
frequency cutoffvc , is introduced. This simulates the effe
of the onset of superconductivity on the spectral density
the cutoff is taken to be temperature dependent and var
the same way as the BCS gap. To obtain agreement with
microwave data in a pure twinned crystal of YBCO,vc at
zero temperature is fixed at a value of 2.1Tc . Further, in our
microwave work the strong-coupling parameterTc /v log was
fixed at a value of 0.31. This value was required to get
correct amount of inelastic scattering observed in the nor
state just aboveTc . In terms of the spin-fluctuation energ
scale, this corresponds tovsf.30 meV which is a value
quite typical of the oxides. The only other important para
eter of the theory is the electron spin-fluctuation coupli
which was simply adjusted to get the measured value ofTc
taken 100 K as typical of the cuprates so that this too is
variable.

In Sec. II we specify the basic Eliashberg-like equatio
used in our work and the formula for the thermal conduct
ity is given. In Sec. III we discuss our results and Sec.
presents our conclusions.
13 773 © 1998 The American Physical Society
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II. FORMALISM

The basic gap equations for ad-wave superconducto
with inelastic scattering included through a spectral den
d

m

ng

is

no
y

I 2F(V), which describes the bosons exchanged, have b
given before. They are fundamental for all the work to
discussed and take the form:8,17–21
D̃~n1 id;u!5 ipTg(
m50

`

cos~2u!@l~n2 ivm!1l~n1 ivm!#K cos~2u8!D̃~ ivm ;u8!

Aṽ2~ ivm!1D̃2~ ivm ;u8!
L 8

1 ipE
2`

`

dz cos~2u!I 2F~z!@n~z!1 f ~z2v!#K cos~2u8!D̃~n2z1 id;u8!

Aṽ2~n2z1 id!2D̃2~n2z1 id;u8!
L 8

, ~1!

and in the renormalization channel

ṽ~n1 id!5n1 ipT (
m50

`

@l~n2 ivm!2l~n1 ivm!#K ṽ~ ivm!

Aṽ2~ ivm!1D̃2~ ivm ;u8!
L 8

1 ipE
2`

`

dzI2F~z!@n~z!1 f ~z2v!#

3K ṽ~n2z1 id!

Aṽ2~n2z1 id!2D̃2~n2z1 id;u8!
L 8

1 ipG1
V~n!

c21D2~n!1V2~n!
~2!
l

qs.
e

th
.

can
CS

ing
on-

we

the
an
, a

n,
ity

-

en-
with vm5pT(2n11), n50,61,62,..., ^...& the angular
average overu, and

l~n!52E
2`

`

dV
I 2F~V!

n2V1 i01 , ~3!

D~n!5K D̃~n1 id;u!

Aṽ2~n1 id!2D̃2~n1 id;u!
L , ~4!

V~n!5K ṽ~n1 id!

Aṽ2~n1 id!2D̃2~n1 id;u!
L . ~5!

Equations~1! and ~2! are a set of two nonlinear couple
equations for the pairing potentialD̃(n1 id;u) and the nor-
malized frequenciesṽ(n1 id) with the gap:

D~n1 id;u!5n
D̃~n1 id;u!

ṽ~n1 id!
, ~6!

or if the renormalization functionZ(n) is introduced in the
usual way asṽ(n1 id)5nZ(n) then

D~n1 id!5
D̃~n1 id;u!

Z~n!
. ~7!

Here, u is an angle on the two-dimensional circular Fer
surface,n is a real frequency, andd is a positive infinitesimal
01. To arrive at these equations a separable~in the angular
part! model was used for the pairing potential. In the pairi
channel it has the formg cos(2u)I2F(V)cos(2u8) with g a
constant andI 2F(V) being the pairing spectral density. Th
leads to a gap proportional to cos(2u) by arrangement. No
other anisotropies are included and we note that the re
i

r-

malization channel~2! is isotropic with the same spectra
densityI 2F(V) as in Eq.~1! but with nog value. In general
a different form of the spectral density could come into E
~1! and ~2! but here, for simplicity, we have used the sam
form but allowed for the possibility that they do not bo
have the same magnitude, i.e.,g need not be equal to one
We will present results only forg50.8 but we have explored
other values and found no new physics. These equations
be considered as a minimum set that goes beyond a B
approach to include approximately the inelastic scatter
which is known to be very strong in the cuprate superc
ductors. In the normal state atT aroundTc the inelastic-
scattering rate often varies linearly inT as it does in our
theory and is of the order of a few timesTc . These facts
constrain somewhat the form of the spectral densityI 2F(V)
as will be discussed later.

In Eq. ~2! the impurity scattering rate is proportionalG1

and comes in only in the renormalization channel because
have assumed a pured-wave model for the gap with zero
average over the Fermi surface. This is expected to be
case in a tetragonal system. If one wishes to include
s-wave part to the gap to treat an orthorhombic system
new impurity term would now enter Eq.~1! for D̃. It would
have the same form as the last term of Eq.~2! but with V~n!
in the numerator replaced byD(n), a quantity which is
strictly zero for the pured-wave symmetry. The parameterc
in the elastic-scattering part of Eq.~2! is zero for resonant or
unitary scattering and infinity in the Born approximatio
i.e., weak scattering limit. In this case the entire impur
term reduces to the formipt1V(n) with c absorbed intot1.
For intermediate couplingc is finite. The thermal factors
appear in Eqs.~1! and ~2! through the Bose and Fermi dis
tribution n(z) and f (z), respectively.

To summarize, the parameters in the set of equations~1!–
~5! areg50.8 and, not of great importance, the spectral d
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sity I 2F(V), and the impurity parameterG1 ~unitary limit!
or t1 ~Born limit!. In our previous work on the infrared
conductivity8 we used a model for the spectral dens
I 2F(V) motivated by a spin-fluctuation mechanism with
spectral density of the form

I 2F~V!5I 2
V/vsf

11~V/vsf!
2 , ~8!

with vsf the spin-fluctuation frequency. This form has on
two parameters which can be fit to experiment. First
value ofI 2 can be determined upon solution of the gap eq
tions ~1! and ~2! linearized inD̃ at T5Tc to get a value of
an

t is
e

re
th
is

lid
as
e
-

Tc5Tc05100 K. This value is taken to be typical of th
oxides. At the same time, to get an inelastic-scattering rat
the normal state just aboveTc of the order of a fewTc , we
need to chosevsf530 meV in Eq. ~8! and this gives a
strong-coupling index22 of Tc /v log50.31. No parameters re
main. When dealing with impurities we can either quote t
value ofG1 used or the corresponding reduction in the cr
cal temperature induced by the impurity scattering; but thi
not a new parameter.

In the notation of our previous papers on the ac opti
conductivity,8,23 the formula for the electronic thermal con
duction can be written as
chinger
h

kab,e~T!5
2N~0!vF

2

T2 E
0

` dnn2

cosh2~n/2T! K 11N1
2~n;u!1N2

2~n;u!2P1
2~n;u!2P2

2~n;u!

E2~n;u! L , ~9!

E~n;u!5Aṽ2~n1 id!2D̃2~n1 id;u!, ~10!

N~n;u!5
ṽ~n1 id!

E~n;u!
, ~11!

P~n;u!5
D̃~n1 id;u!

E~n;u!
. ~12!

Here,T is the temperature,N(0) is the unknown, single-spin quasiparticle density of states at the Fermi surface, andvF is the
Fermi velocity. The formula is valid in two dimensions, and it has the same general form as the formula given by Scha
et al.8 for the zero-frequency limit of the real part of the ac conductivity of ad-wave strong-coupling superconductor whic
was

s1~0,T!5
e2N~0!vF

2

2 K 1

2T E
0

` dn

cosh2~n/2T!

11N1
2~n;u!1N2

2~n;u!1P1
2~n;u!1P2

2~n;u!

2E2~n;u!

2
1

4T E
0

` dn

cosh2~n/2T!

1

E1
2~n;u!1E2

2~n;u!
$2E1~n;u!@N1~n;u!N2~n;u!1P1~n;u!2~n;u!#

1E2~n;u!@12N1
2~n;u!1N2

2~n;u!2P1
2~n;u!1P2

2~n;u!#%L . ~13!
uc-
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In the above, the indices 1 and 2 stand for the real
imaginary parts, respectively. Also,e is the charge on the
electron. Both formulas, forkab,e and for s1 , greatly sim-
plify when retardation effects are ignored and a BCS limi
taken. This is not justified when the strong-coupling ind
Tc /v log50.31 which is a very strong-coupling case,22 and
we can only proceed numerically.

III. RESULTS

In Fig. 1 we show the reduced temperatureT/Tc , varia-
tion of the in-plane thermal conductivity obtained in the pu
case, i.e., only the inelastic scattering is included through
spectral density~8! and the elastic-impurity-scattering rate
set to zero (G150) in Eq. ~2!. The dotted line is without a
low-energy cutoff in the spectral density while the so
curve includes it. The application of this cutoff clearly h
d

x

e

dramatic effects on the resulting electronic thermal cond
tivity, changing its value by an order of magnitude in th
region of the peak which falls at a reduced temperature va
of slightly less thanT/Tc50.15. As the temperature in
creases towardsTc the low-frequency cutoff in the spectra
density which models the reaction of the fluctuation sp
trum to the onset of superconductivity, is assumed to foll
the same temperature dependence as does the BCS ga
so decreases and is zero atTc . Thus, the solid and the dotte
curve meet atT5Tc . It is clear from these curves that, fo
the pure system with no elastic impurity component, t
peak in the thermal conductivity is very sensitive to the lo
frequency part of the spectral densityI 2F(V) and is a good
probe for such excitations. In the best untwinned crys
samples of YBCO the residual scattering is generally
lieved to be small. For twinned crystals there can be so
additional background scattering but we have previou
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13 776 57E. SCHACHINGER AND J. P. CARBOTTE
quite successfully modeled this with a small amount of el
tic Born scattering. The effect of this residual scattering
the height of the thermal conductivity peak aroundT/Tc
.0.15 is large and the impurities also shift the peak noti
ably towards higher reduced temperature values. This is
lustrated in Fig. 2~top frame! where the effect of Born im-
purity scattering@i.e., c→` in the impurity term of Eq.~2!#
is discussed. What is shown is the ratio ofkab,e(T) to its
value atT5Tc0 . For the lowest impurity concentration pre
sented in this figure,t1/Tc050.0048 ~dashed curve! the
peak’s height is still of the order of 10 in these normaliz
units but has been reduced by a factor of 2 over the p
crystal case~solid curve!. As the impurity concentration is
increased the curves reduce further in magnitude and
peak shifts towards higher reduced temperatures. For
short dashed curve the corresponding critical tempera
value is 95 K so that in this case there are enough impur
for the critical temperature to decrease by 5 K. The effec
resonant scattering is shown in the bottom frame of Fig
We see that in this case the peak is more attenuated as
pared to the corresponding Born case but the trends are s
lar. We have also done calculations for intermediate val
of c, namely forc50.5 which is a value used to model th
effect of Ni impurities in our previous work23 on the micro-
wave conductivity. The results are close to thec50 limit
~resonant scattering case!.

Without the introduction of any new parameters our th
oretical results are scaled to meet the electronic thermal
ductivity measured by Matsukawaet al.24 ~sample 3! as
shown in Fig. 3. The open triangles are data for twinn
crystals and the solid curve is our theoretical result. All m
croscopic parameters in the numerical work are the sam
used in the case of the microwave.23 To get the solid curve
which fits the data well, a low-frequency cutoff was al
included with vc52.1Tc at T50. Without the cutoff the
dotted curve is obtained. It shows no agreement with the d
so that the electronic thermal conductivity is strongly

FIG. 1. In-plane electronic thermal conductivitykab,e(T) in ar-
bitrary units as a function of the reduced temperatureT/Tc for a
pure system (Tc5100 K) with inelastic scattering included. Th
solid curve applies to the case when a low-frequency cutoffvc

52.1Tc) is introduced in the spectral density so as to simulate
effect of the superconducting transition on the fluctuation spectr
The dotted curve involves no cutoff. The differences between
curves are dramatic.
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fected by the cutoff and thus is as sensitive a probe of
feedback effect of superconductivity on the fluctuation sp
trum as is the microwave data. In Fig. 3 we have adjusted
scale on our calculations, which is arbitrary, to fit the data
the point indicated by the arrow and thus an absolute sca
units of mW/cm K applies. To set the scale theoretically t
value for the combination of the free-electron density
states and Fermi velocity in Eq.~9! is needed. This is no
known and thus a fit to one data point was needed. Finally
obtaining Fig. 3 the same amount of Born residual scatter
was used as required to get a good fit to microwave dat
twinned samples. Thus, no new parameters or any ad
ment of any kind was needed to get the fit found for t
thermal conductivity shown in Fig. 3.

A quantity closely related to the thermal conductivi
which is also a zero-frequency property is then→0 limit of

e
.

e

FIG. 2. In-plane electronic thermal conductivitykab,e(T) nor-
malized to its value atTc05100 K as a function of the reduce
temperatureT/Tc . In the top and the bottom frame the solid curv
is for the pure case with only inelastic scattering included and
others include an additional contribution from elastic impurity sc
tering. In the top frame the weak scattering limit, i.e., Born appro
mation is made. The various curves are labeled by the value
t1/Tc0 employed. The peak is depressed with increasing value
t1/Tc0 and shifted towards higher temperatures. The bottom fra
on the other hand, is for elastic impurity scattering in the reson
limit. The various curves are labeled by the value ofG1/Tc0 em-
ployed. Resonant scattering reduces the peak more rapidly tha
corresponding Born case with the same value for the scatte
parameter.
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the real part of the optical conductivity in the supercondu
ing state, i.e.,s1(n50,T) of formula ~13!. This quantity is
closely related to the microwave conductivity. Results
shown in Fig. 4. The top frame gives the ratio of the co
ductivity at T normalized to the pure single-crystal value
Tc0 . The normalization has been chosen for easy compar
with the data of Fig. 2 on the thermal conductivity. Only t
resonant impurity case is shown. The top frame is withou
low-frequency cutoff and the bottom frame is with. Again
is clear that the cutoff has a very large effect on the ze
frequency limit of the dc conductivity. Not only is the size
the peak strongly affected, its position is also changed fr
T/Tc.0.2 to T/Tc&0.4. This is different from the case o
kab,e which shows little change in peak position with th
cutoff value. The effect of impurity scattering in the unita
limit is similar on s1 as onkab,e . Also s1(n50,T) is not
very different from the microwave conductivity whe
enough impurities are present.

The comparison between thermal and electrical cond
tivity can be presented in a different way through t
Wiedemann-Franz law or Lorenz numberL. We define

L~T!5
kab,e~T!

s1~T!T
~14!

with the free-electron value of L equal to
L05p2/3(kB /e)2. Figure 5 shows our results for the tem
perature dependence ofL(T)/L0 in a case which includes
enough unitary impurity scattering forTc to have dropped
from Tc0 by 5 K to 95 K. Thesolid curve includes the low
frequency cutoff in the spectral density and the dotted cu
is without such a cutoff. We see large differences in size
also in position of the peak. AtTc both curves meet becaus
at this temperature no low-frequency cutoff is in effe
Therefore, the electronic thermal conductivity reflects

FIG. 3. The in-plane electronic thermal conductivitykab,e(T) in
units of mW/cm K as a function of the reduced temperatureT/Tc .
The solid curve is the result of our calculations using the sa
parameters for the microscopic quantities involved as were use
our previous calculations of the microwave peak in YBCO. T
open triangles are the data of Matsukawaet al. ~Ref. 24! and are
seen to agree well with our calculations. The scale of the theore
kab,e was adjusted to fit the point indicated by the arrow. The dot
line is a theoretical calculation without low-frequency cutoff on t
fluctuation spectrum. It disagrees strongly with the data.
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e

full influence of the inelastic scattering due to the sp
fluctuation spectrum~8! andL/L0 is necessarily smaller tha
one. Our fit to the microwave data by Bonnet al.2 resulted in
a dc conductivity atTc of s1(0,Tc)52.563106 (Vm)21,
our rescaling to the thermal data~Fig. 3! gives kab,e(Tc)
54.1 W/mK, and this combines according to Eq.~14! to
L(Tc)51.7331028 WV/K2, well within the range of 1.2
22.031028 WV/K2 given by Hirschfeld and Putikka.16

While the microwave conductivity and thermal conductivi
data are on different samples and so the unknown sca
factorsN(0)vF

2 in Eqs. ~9! and ~13! could be different, we
find they differ only by less than 3% effectively from ou
theoretical value which does not involve this prefactor. T
is quite remarkable.

At the lowest temperature shown the curves meet and
now discuss the low-temperature limit of this quantity whi
is particularly interesting and leads to universal limits in t
case of resonant scattering.25–28 These limits have been dis
cussed before only within the BCS weak-coupling form
ism. This formalism is mathematically much less compl

e
in

al
d

FIG. 4. The zero-frequency limit of the real part of the optic
conductivitys1(0,T/Tc) normalized to its value atTc0 ~the critical
temperature of the pure system! as a function of the reduced tem
peratureT/Tc . In top frame no low-frequency cutoff has been a
plied to the fluctuation spectrum while in the bottom frame it h
The solid curve is for the pure case—only inelastic scattering,
elastic impurity scattering. The dashed curve is forG1/Tc0

50.0096 (Tc599.5 K) and the dotted one forG1/Tc050.096 (Tc

595 K) with G1 a measure of the elastic-scattering rate in t
resonant scattering limit.
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than the one employed here. Our formulas are more gen
and include inelastic scattering but must reduce in the ap
priate limit to the BCS case and they do.

We begin with the reduction of formula~9! for the ther-
mal conductivity. In the limit ofT→0 the thermal factor is
highly peaked aroundn50 and we can ignore the frequenc
dependence in the factors that enter the average over
angle indicated by the symbol^¯&. We replace these by the
normalized BCS limits

E~n50; u!5E~u!5Aṽ2~n50!2D̃2~n50; u!, ~15!

N~n50; u!5N~u!5
ṽ~n50!

E~u!
, ~16!

P~n50; u!5P~u!5
D̃~n50; u!

E~u!
, ~17!

and obtain

kab,e~T!

T
5

N~0!vF
2

T2 K 11N1
2~u!1N2

2~u!2P1
2~u!2P2

2~u!

E2~u! L .

~18!

Now, in the resonant scattering limit withn→0 we takeṽ

.an1 ig and so ṽ(n50). ig, where g is the self-
consistent scattering rate. In this limit

E1~u!5N2~u!5P1~u!50,

and with D̃(0,u)[D̃0(u),

E2~u!5Ag21D̃0
2~u!, ~19!

N1~u!5
g

E2~u!
, ~20!

FIG. 5. The ratio of the Lorenz numberL to its free-electron
value as a function of the reduced temperatureT/Tc . Enough im-
purity scattering was used to reduce the critical temperature f
100 to 95 K. The solid curve results when a low-frequency cutof
applied to the fluctuation spectrum, while the dotted curve is w
out cutoff. It is clear that the inelastic scattering can have a la
effect onL even when impurities are present.
ral
o-

he

P2~u!52
D̃0~u!

E2~u!
. ~21!

After simple algebra we get the well-known result of th
BCS theory:

kab,e~T!

T U
T→0

5
N~0!vF

2

2

p2

3 F1

g
g~g!2

dg~g!

dg G ~22!

with

g~g!5gK 1

Ag21D̃0
2~u!

L . ~23!

Note that it isD̃0(u) that enters Eq.~23! and not the gap
D0(u) of BCS theory. Using the familiarluu model22 for the
interactionsl(z) in Eqs. ~1! and ~2!, D̃0(u)5D0 cos(2u)(1
1l) wherel is the mass-renormalization parameter asso
ated with the spectral densityI 2F(V). Evaluation of Eq.
~23! in the standard way gives

kab,e~T!

T U
T→0

5
N~0!vF

2

2

p

3

2

D0~11l!
~24!

independent ofG1. The saturated limit is identical to its
BCS value except that it includes in addition the renorm
ization factor (11l). It is quite important to note that the
existence of this limit has just recently been confirmed
perimentally by Tailleferet al.30 using optimally doped un-
twinned YBCO single crystals, a result which is in stron
support of a predominantlydx22y2-symmetric order param
eter.

Similar manipulations for the conductivity formula~13!
give

s1~0,0!5s005
e2N~0!vF

2

2

1

p

2

D0~11l!
, ~25!

which also contains the renormalization factor (11l). The
Lorenz numberkab,e /Ts1 has its free-electron valueL0 in
the saturation limit with the above universal value f
kab,e /T and for s1(T→0). In Fig. 6 ~top frame! we show
results for the saturated value ofL/L0 at T50 as a function
of the strength in the coupling of the electron-boson spec
density I 2F(V), i.e., of Tc /v log . In these calculationsv log
was changed by changing the value ofvsf in Eq. ~8! with I 2

readjusted to keepTc05100 K. We note from this figure tha
the Lorenz number in the saturated regime atT50 for reso-
nant scattering depends on the size ofTc /v log and recovers
its BCS value given by the ratio of Eq.~24! to Eq. ~25! only
for Tc /v log→0. On the other hand, remarkably, the dev
tions from the ideal value are always very small and can
ignored. Note that the solid squares are calculated from
full formula ~9! and ~13! with a low-frequency cutoff in
I 2F(V) and the open triangles without. At this point
seems to be appropriate to point out that the spectra with
low-frequency cutoff built in do have significantly smalle
values for Tc /v log . Nevertheless, the corresponding da
points have been placed at theTc /v log values of the corre-
sponding spectra without the low-frequency cutoff in an
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tempt to make the correlation of the data more apparen
these curvesG1/Tc050.096 orTc /Tc050.95, with resonant
scattering assumed. While the zero-temperature valueL/L0
with resonant scattering is hardly affected by strong coup
effects the bottom frame of Fig. 6 shows that this is not
case whens1(0,0) andkab,e(T)/T in the limit T→0 are
considered separately. Results fors1(0,0) as a function of
Tc /v log show a large variation, dropping from a value
;0.035 to less than;0.01 asTc /v log ranges from 0~BCS
value for T50! to 0.31 ~very strong coupling!. The solid
squares are again the result of full strong-coupling calcu
tions based on the numerical evaluation of Eq.~13! from
complete numerical solutions to Eqs.~1! and ~2!. G1 was
adjusted to getTc /Tc050.95. Also, a low-frequency cutof
is used inI 2F(V), while the open triangles involve no cu
off. The results are clearly not dependent significantly on
low-frequency part of the fluctuation spectrum. Finally, w
compare with our renormalized BCS result of Eq.~25! which
includes the factor (11l). These are the open squares a
we see good agreement with the results of the complete

FIG. 6. The coupling dependence of the normalized Lore
number atT54.75 K ~upper frame! and the zero-frequency rea
part of the optical conductivity~lower frame! as a function of the
coupling strengthTc0 /v log in the electron-boson spectral densit
The open triangles are results without a low-frequency cutoffvc

50 and the solid squares with such a cutoff (vc52.1Tc). In the
lower frame we also compare the results of numerical calculat
with the expression 2/pD0(11l) with D0 related to the critical
temperature through the BCS relation ford-wave 2D0 /kBTc

54.29 ~open squares!. The lines are drawn to guide the eye.
In

g
e

-

e

d
al-

culations. This demonstrates that for this quantity stro
coupling effects are captured well by the single renormali
tion (11l). This of course also holds for the therm
conductivity.

IV. CONCLUSIONS

We have presented calculations of the electronic in-pl
thermal conductivity of adx22y2 superconductor which in-
clude inelastic scattering at the level of a spectral density
describes the fluctuation spectrum. The choice of spec
density reproduces several of the important properties
served in the cuprates: For example, the quasilinear law
the temperature dependence of the scattering rate in the
mal state aboveTc , and its size~a fewTc!;

29 The quasilinear
frequency-dependent scattering rate over a very large en
scale extending into the mid-infrared region which is o
tained from optical data and its size~of ordern at n!;8,29,31,32

The broad nearly constant electronic Raman background33 of
the normal state, as well as other properties. The model
also describe well the measured large peak in the temp
ture dependence of the microwave conductivity atT.40 K
in pure samples as well as the effect of Zn and Ni doping
these same quantities.8,23 This last phenomenon is associat
with a feedback effect of the superconducting phase tra
tion on the fluctuation spectrum which is assumed to beco
reduced or even possibly fully gapped at low temperatu
This feedback effect is expected in electronic pairing mec
nisms. This would be the case for electronic coupling to
spin fluctuations observed at momentum transferq
5(p,p). The measured spin susceptibility in optimal
doped YBCO does indeed show a gapping in the superc
ducting state and the emergence of the 41 meV peak.34–37

Within the same model and without changing any of t
parameters we have calculated, using the appropriate str
coupling formulas generalized to account for angular dep
dence of the gap around the Fermi circle in the tw
dimensional Brillouin zone and the electronic therm
conductivity, and find good agreement with the in-plane d
for YBCO. The observed peak is related to the lo
frequency cutoff and corresponds to a radical drop in
inelastic-scattering rate on entering the superconduc
state. This is not a novel interpretation but what is differe
is our method of calculation and our way of including th
inelastic scattering. The system is believed to be in the v
strong-coupling regime with a strong-coupling parame
Tc /v log50.31. BCS results generalized of course to inclu
thed-wave symmetry of the gap should be quantitative o
whenTc /v log→0. All prior calculations that we are aware o
have used a BCS approach and the few that have inclu
the inelastic scattering do so through a temperatu
dependent elastic impurity scattering rate with the tempe
ture dependence modeled through consideration of a s
fluctuation mechanism. We also have a spin-fluctuat
mechanism in mind and have used a spectral density with
form expected for the coupling of the quasiparticles to s
fluctuations in a nearly antiferromagnetic Fermi liquid. T
precise form of this spectral density could be altered, bu
the moment, we do not have a definitive microscopic mo
of the mechanism involved and cannot make a definit
choice.
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Another zero-frequency quantity, very closely related
the thermal conductivity, is the real part of the dc conduct
ity in the superconducting state and this quantity is clos
related to the microwave conductivity. We have studied
effect of elastic impurity scattering in the Born~weak! and
the unitary~strong! limit on s1(0,T) as well as on the ther
mal conductivity and have compared them in relation to
Lorenz number and the universal saturation of both qua
ties asT→0. The role of strong coupling has been delinea
and a simple approximate formula for the saturated value
-

ev

nd

n,

s

ev

lid

e

-
y
e

e
i-
d
of

the conductivity is given in terms of the boson mass ren
malization that enters the theory.
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