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Fluxon lattice oscillations in layered superconductors
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The fluxon structure in a layered superconductor under an applied parallel constant magnetic field is exam-
ined within the model of stacked Josephson junctions. The interlayer phase diffgrgncg which is found
as a solution of the system of nonlinear equations, corresponds to buckled chains of fluxons, alternating with
the field strength. The calculategl, ., is then used to obtain the spectrum of vortex and plasma small
oscillations that has a fine band structure showing gaps.
[S0163-18298)03722-9

[. INTRODUCTION field were considered, there arises a fundamental question as
to which kind of mixed state occurs in an arbitrary parallel
The attention paid to the intrinsic Josephson effétE) field for a big stack of Josephson junctions. Another point
in the metal oxide superconductors is prompted by numerouthat is addressed is a dispersion law for the modes of a
interesting experimental data obtained in recent years. Afteffuxon lattice, which may have a complex multiband aniso-
the discovery of the IJE itseffthe next spectacular example tropic structure. Because the Josephson properties them-
was the observation of a low-lying collective modecipo-  selves are quite dependent on the strength of magnetic field,
larized experiments® made on single crystal samples. A another issue here concerns the relationship between the Jo-
theoretical interpretation’ of the mentioned results is based sephson oscillatioisand the presence of the vortex struc-
on the idea of a weak Josephson coupling between superconwre. Calculations of the resonance frequency were per-
ducting CuQ layers separated by nonconducting interstitialfformed for cases of parallel and tilted fields in recent
regionsZ. This means that metal oxide single crystal samplepaper$:’ Nevertheless, the resuitswere obtained only for
behave like a stack of microscopic tunneling junctfons limits of weak or strong fields, while an important case of
-+ -CuG,-Z-CuG,- - -. This kind of setup particularly deter- arbitrary field amplitude remained to be solved. An addi-
mines the electrodynamic properfiesf these materials in a tional restrictio’ concerned the structure of the mixed
mixed state created by an applied constant magnetic®feld. state, which was assumed to be a triangétarhexagonal
Under certain conditiongwhich basically depend on many fluxon lattice. The triangular fluxon arrangement was
factors, e.g., temperature, field strength, and anisotropy palaimed to take place also in stacks of a feM=5) junc-
ramete) the mixed state may consist of a regular set of vor-tions in Refs. 12. However, the size of the stack tieveas
tex lines. Depending on the orientation of the external field too small to relate it to a bulk crystal. Additionally, Pedersen
various vortex structures that may appear in a layered supeand co-worker$~* neglected the interplane recharging ef-
conductor(SC) can be reduced to two important limiting fect(see, e.g., Refs. 7 and }15vhich is of crucial importance
case$ 1°When the field is parallel to the layers, i.Blab  for nonstationary phenomena.
planes, the structure is formed by Josephson vortices, flux- In this paper we examine which kind of fluxon structure
ons, while in a perpendicular field it can consist of a set oftakes place under an arbitrary magnetic field applied parallel
pancakelike structures. Since the mixed state corresponds [8||ab planeg to a stack of Josephson junctions. The steady
a minimum of the total thermodynamic potential B#0, fluxon state obtained here is used to explore the spectrum of
one may consider small oscillations near the equilibrium poplasma and vortex small oscillations. In Sec. Il we discuss
sition, which are analogous to plasma and vortex oscillationghe main assumptions of the model and formulate basic equa-
of a fluxon lattice in a single long Josephson junctidn. tions. In order to find the interlayer phase difference describ-
However, in metal oxide SC’s, due to the interlayer cou-ing a fluxon lattice, we obtain a numerical solution for a
pling, the - - - CuG,-Z-Cu0,- - - junctions can be supposed system of nonlinear equations. We show that the kind of
to be no longer independent; thus the single-junctionsolution depends on the field strength and parameter of an-
solutiort! may not be adequate for the stack. This means thasotropy between the axis andab planes. In Sec. I, be-
in layered SC's, the steady state fluxon lattfcmay have ginning with a simple model of a layered SC for an interest-
specific features that make it different from both an isotropidng limiting case, we consider the excitation spedga of
homogeneous SC’s and a single junction. Since until nowsmall oscillations. Using results obtained for the fluxon lat-
only the limiting cases of either a strong or a weak magnetidice in Sec. Il, we also perform numerical calculations of
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Q, . We obtain that the spectrum of plasma excitations has which essentially contributes to a nonstationary case due to
band structure determined by the strength of the magnetithe big coefficientX , /\;)?=10*—10P. Let us also note that
field B as well as by the interlayer coupling and the anisot-Bulaevskiiet al. used a more compact form of E(l), but,
ropy of the penetration depth. The brancligshave regions in fact, they sacrificed a generality, initially assuming the
with negative group velocity,<0 and are separated by dispersion relationship such &s= w/c. Another problem is
gaps. The interaction between the junctions leads &xis  related to the dynamic screening effects, which were in-
fluxon oscillations with a peculiar dispersion law. Th®  cluded in an equation of Ref. 7 in a static case. Therefore, we

plane branches also have a different and more complex strugrefer to begin with Eq(1) rather than with the equation of
ture in comparison to the case of the one-dimensional longef. 7.

Josephson junctiof. With respect to Eq(1), indeed, there exists a complica-
tion that appears due to finite differences. It serves as a rea-
Il. FLUXON LATTICE IN THE SET son why this equation has such a distinct mathematical back-
OF STACKED JUNCTIONS ground compared, e.g., to the case of a long Josephson

junction!! The right-hand side of Eq1) contributes only to
nonstationary case and is modified here to be consistent

®ith the conservation conditiofp/dt+Vj=0 (p and | are

the electric charge and current density, respectjvedynall

oscillations of the fluxon lattice can be expressed as an ac

additione{") . ;(t) to the “vortex” phase differencey . 1,

The gestalt of the vortex state, taking place in metal oxid
superconductors, basically depends on several factors such
the magnitude of the external magnetic fi@dthe strength
of the interlayer coupling, the anisotropy paramejerand
the temperatur@&. The theoretical models for the vortex state
in a weakly coupled layered SC were initially proposed in
Refs. 6 and 8-10. As it was emphasized in Refs. 8-10, the
alternation of the order parameter amplitydér)| does not
contribute essentially to the total free energy, particularly inynare @
a parallel field B||lab plane$, because the vortex cores are Joseph
localized in interlayer regions. The equations for the order
parameter in a layered SC with the Josephson coupling fol- 2ed [t
low from the free energy functiorfaf'® describing the SC in oM ()= —f dt E,(t), 3
a magnetic field or from Maxwell equations taking into ac- ' h
count the Josephson relationship. This kind of equation Waghered is the averaged thickness of interstitial regiods,
used beforesee, for instance, Refs. 6 and 8310 deter-  _. ' anqE (1) is thec axis component of the electric field
mine the interlayer phase differengg ... However, even yacior |n the following we will be interested in a steady
for a well-defined fluxon lattice, which we explore here, thegate vortex solution. Then EGl) has to be completed by
solutions¢y, ., had been obtained, until now, only in lim- b nqary conditionBC’s) that determine the positions of
iting cases, although a moderate field strength is a matter gf,q yortices. Bulaevskiet al®’ suggested that in a parallel

interest. In the stacked system, the equation for interlayefic magnetic field, the centers of vortices form a triangular

bt 1(D)=nni1t el 1 (D), @)

(1), 1(t) may also be attributed to an ac field by the
son relationship

phase differencegy ., reads(see, e.g., Refs.)7 lattice of fluxonst® the parameters of which are established
by the requirement that the magnetic fluxdig, per vortex.
Vf¢n,n+1— iz(z SiN s 1~ SIN G 12— SN b 1) Assur_ning also t_hat in a _general case the fluxon lattice may
\j contain the vortices not in every adjacent layer but, e.g., in
every Ith layer, they introduced the commensurability pa-
1 . rameterl, which is an integer number. In a weak magnetic
2o Pnn+1 field (which, following Ref. 10, corresponds ta,>X\;,
+ where a, is the vortex lattice constant along tleaxis) it
e 2 kf gives the lattice period asl@, in the c direction and
== Gnn+1t 5 (2Pnni1— Pnrint2™ dn-1n) | a,=®,/Blc, in thea direction. In a strong field a, <\,
c” at N3 the vortex cores fill all the interlayer regions. Asymptotic

(1)  solutions for the aforementioned limiting cases were found
in Ref. 6. Numerical nonstationary solutions for a stack of

wheren=0, ... N denotes the layer's indeX is the num-  five Josephson junctions obtained in Refs. 12—14, however,
ber of layers in the stack;=yc, , c, is the ¢ axis lattice neglect a recharging effect, which may affect the vortex dy-
constant,y=X\, /N is the anisotropy ratioy, and\| are the  namics drastically.
static penetration depths along theaxis and theab plane, In this paper we consider the case of an arbitrary field,
reSpectiver,Vﬁ is the Laplacian alongb planes, andVﬁ using a numerical solution of Eql). Equation (1) was
=V§+ Vf,. In metal oxides, the anisotropy ratio is typically treated as a system &f second-order equations for a finite
large y=100-1000 (see, e.g., Ref.)1 This means that the number of layerd, which is then reduced to a system dfl 2
second term on the left-hand side of Efj), which is due to  first-order equations. To solve Efl) we used BC's of the
a mutual influence between neighbor junctions in the stackipllowing form. Since in metal oxides the values 0f are
may prevail over the third terrtwhich is caused by the Jo- 2-3 orders smaller than in long Josephson junctions formed
sephson current within the same junclioA similar equa- by classic superconductors, one has to modify the BC'’s for
tion had been derived in Refs. 12 and 14, but they omittedhe former case. In particular, for a vortex lattice, one can use
the term in parentheses on the right-hand side of @y. BC's that reflect the periodic variation of the local field in
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space and a periodic distribution of the supercurrent densitferent, showing a regular array of fluxons. In three-
inside the sample along Here we assume that the external dimensional (3D) plots of Figs. 1-5 we present typical
magnetic inductiorB=(0,B,,0) is homogeneous outside the solutionse,, ,,1(x) versus the layer indem and thea axis
stack of junctions. However, inside the stack it may becomeoordinatex at the strength of the parallel field,=0.03
nonuniform due to the presence of vortices. In a steady stateptained forN=50; A\, =2 and\ ;=0.02 for varioud. We
the distribution of induction can be found from the Maxwell expressB,, in units of ®o/nc? (P, being the elementary

equation and is related to the interlayer currgnt as magnetic flux andy=5x 10°), while the length is expressed
4 in units of 0.5<10%, . If one accepts, e.g., the valug
VXB§/n)(X):Tsz,n’ (4 =1 nm, thendy/7ct=0.4 T. These unusual units were

chosen because an important spatial alternation in the system
takes place on the scale), , while a more fundamental

(n) . ~ . . .
Y;hz:i B\zvh(ﬁc()h Idsetr:;ﬁscc?rzn tFr);naexri]; 223?(;&2?; C,tal\cé?u;“ the scale is~c, . The self-consistent procedure to determine the
yern, P X Y, induction atx=x, , is the following. Initially we solve Eqg.

we apply BC's at the edges of each elementary cell msteagl) with BC's (5) and (6) settingB,.=B, . Then we calcu-

of to the whole sample, i.e., fixing gradients of the phasqate the interlayer supercurrent distribution proportional to

difference atx; (x,) [the left (right) edge of the unit ce]l ' . ; :
LY ) Si X)], from which, using the Maxwell equatio@),
Nevertheless, to perform a numerical integration we have t%ri;gp?i'%ls( %Ele variation of theglocal magneticqindu?:(ti())n in

follow a self-consistent solution. It is achieved in the follow- loc X Incu
ing way. As an initial step we introduce fluxons to a set ofSPaceB, " (x). It is checked whether the functiog,"(x)
junctionsn+1 (n is the junction’s index andi is an integer sat_|sf|e_s the condition for the total flux across the stack,
numbej by applying BC'’s which is

IPn+in+i+1

LX
X (5) ; fo dx BLOC(X)=ByNLX, )

o
= =
o

0

(¢n+|,n+l+1)x:x|:771 (
X=X

_ ) | . . whereL, is the length of the sample amdlis the number of

where Zo=(2ec, /7)Byc, with By, the value of induction jynctions in the stack. If the left-hand side of E8) deviates

at the edges of the unit cell, which, generally speaking, hagom B,NL,, then for the next cycl&, should increaséor

to be found from a normalization condition self-consistentlydecreasbum” self-consistency is achieved. The detailed cal-

(see below. We also assumed tha"j,,=0, wheres”  culations conducted here show that the final result, however,

means the first-order finite difference operator. In all theis not very sensitive to the precise Va|ueBxfC; therefore,

other layersn+k (k#1) we use for practical reasons we set simgy=B,.. From the fig-

ures mentioned one can notice that there is a regular fluxon

c7<Pn+k,n+k+1) =E,, (6) structure which nevertheless depends on the value of the

X N—x ' commensurability parametér In the aforementioned plots,

_ the position[ X; ,N;] of a fluxon core is determined by the
respectively. Then we perform the integration along xhe conditions

coordinate, e.g., fronx=x, to x=x,=x,+a,. At the last
point we reverse_the integration with descendingack to (0=0 at o IPnn+1
x=X,, implementing BC'’s Pnn+1(0)= n X

(&‘Pn’ﬂH) =5, 7) From Fig. 1 {=2, i.e., the phase difference atis of the
X X=%, ' form ....00m00700...) one can see that instead of a tri-
angular lattice the fluxons form a bucklattshaped struc-
while for (¢n n+1)x=x, We use the value obtained from the ture. The buckled chains are sensitive to the valué. doh
previous ascending integration. Then we repeat the proceeality, as one can see from Fig. 2, plotted fer3, the
dure with ascending and descendirngcoordinates until a  fluxon structure tends to reorder. In this figure one can ob-
stable solution has been achieved. Of course, BC's are difserve a creation of chain with an opposite orientation of
ferent for various types of vortex structure and basicallybuckling. This process continueslagicreases; thus the flux-
must be verified by a corresponding calculation of thermo-ons become rearranged ag&see, e.g., Fig. )3 forming a
dynamic potential, which has to be minimized in order torhomblike structure composed of two buckled chains with
find a stable configuration. These BC's are then used for apposite inclining angles. The arrangement is even improved
numerical solution of Eq(1), which for convenience can be as| increases up td=>5 (see Fig. 4 In this case thev/-
reduced to a system oM2differential equations with respect shaped structure has an orientational opposite to that taking
to x. We begin with a stack dfl=15 junctions. In this case, atl=2. However, the array dt=6 (which is shown in Fig.
with BC's (5) and(6), we do not get any stable solution for 5) is ordered much better, but in this casgbecomes pretty
enn+1(X). Contrary to our initial expectations and to Ref. 12 small and only a few fluxons could fit in the unit cell.
(where static results were reported fo=5; see, e.g., Fig. 5 Our calculations show that when the field strength is in-
therein), we obtain a triangular lattice only for some particu- creased at fixedl (which means that the size of the “cell”
lar field amplitude, which disarranges as the field changesalong thex axis, a,= nc, /Bl in the units used here, is de-
However, when the number of junctions in the stack is in-creased the evolution of the fluxon structure depends on the
creased up tt\=50 (and highey, the situation becomes dif- value ofl. The tendency is that the fluxon structure becomes

(¢n+k,n+k+1)x:x|:01 (
=X

#0. (9
x=X; ,n=N;
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FIG. 1. Interlayer Josephson current[gif,.1(X)] calculated for FIG. 3. Intermediate state of the vortex arrayl &4. One can
a stack N=50) of Josephson junctions in the parallel fiddd notice the rhombic shape of the structure.
=0.03,l=2.

though the commensurability parametef’** traditionally

more arranged as the field grows. Another remarkable feawas stated as an integer in several previous pagess e.g.
ture that is evident from Figs. 1-5 is the size of an individualRefs. 6—10, we formally may introduce a noninteger mag-
fluxon. From the numerical solution we find that this typical nitude 1=1/2 to describe the boundary condition
size is~\ , but not\; (compare with Ref. pand itisnot ... #7#07707#w07w7w0 ... . Decreasingl, one may
scaled to the whole size of the sampmmpare with Refs. achieve a structure with more than one fluxon per layer, but
12 and 14. The above calculations performed for variouseven this sort of effort does not lead to a triangular lattice.
BC’s show that a stable solution may be selected with regard Additional calculations show that the data for the stacks
to minimal energy. The calculation of the averaged Josephwith 50 and 100 junctions are similar. They both give the
son energyE ;> (1— CcoSen 4 1)sample fOr different! shows a  buckled chain solution with a little distinction in the posi-
general tendency thd; grows asB, and| decrease. The tions of a few fluxons at the edgesa£0 andn=>50 for a
odd| are more energetically profitable in comparison to everb0-junction stack anth=0 andn=100 for a 100-junction
I. However, the Josephson energy itself, due to the hugstack. For instance, in Fig. 1 the mentioned fluxons that
anisotropy, is much smaller in comparison to the interfluxondrop out of the chain are located mt2 and 5(the edgen
energy within theab plane. On the contrary, the interplane =0) and atn=46, 48, and 5@the edgen=50). Similarly, at
distancec, is much smaller in comparison to the typical |=5 there is also a fluxoriin Fig. 4 it is positioned an
length of fluxons (A ,) along thex axis, which overlap if =5 andx=9.5), which drops out from the common array.
the field is sufficiently strongthen a,~\,). The inter- The calculations conducted for the 100-junction stack also
fluxon interaction indeed is repulsive. It is confirmed by thegive the buckled chain of fluxons, although a few fluxons
introduction of only two fluxons in our sample. Indepen- drop out of the chain near the edges 0 andn=100 as
dently from the point of entry, they are pushed out to thewell. The alternation of cell size along tixedirectiona, by
opposite edgesn=1 andn=>50) of the stack. The afore- varying the magnetic inductioB, at other fixed parameters
mentioned serve as reasons for a dramatic competition beesults mostly in the rescaling of thg, ,1(x) surface while
tween different factors, responsible for the formation of thegualitative changes of the shape of it are small.
fluxon chain. One can see that the expected triangular lattice The above calculations suggest that the position and the
does not occur for the BC’s used. It is not achieved even iinclining angle of a chain depend mainly on the number of
one tries to push more fluxons into the stack, e.g., by applyfluxons introduced in the stack initiallgwhich in our terms
ing boundary conditions such as w707 70w . ... Al-

FIG. 4. Atl =5 the structure is already arranged in the opposite
FIG. 2. Same dependence as in Fig. 1, ba3. One can ob- way, except for one fluxon that drops diiitbelongs to a chain in
serve that the fluxon structure begins to reorder. another unit cejl
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1=6 posite to our situation, which rather corresponds \p
B =0.03 >\;. Here, using the equation for the stacked system of
sin @ y om 4 M= Josephson junctionsee, e.g., Ref.)7we investigate the 3D
no-l 0.02 setup. Equatior{1) can be linearized with respect to small
1 deviationse(l), ; as
0k
-1 P
2 (1 _—
Vi <P£1,r)1+1_c 2?
6%% 8 1 i 1 1 1
ox. 30 6 X (Piw,gwl"'_2(290$1,r)1+1_¢§1421,n+2_¢§1—)1,n
Y. 40 A
’70(}. * J
o 3 =304 ) Tigodt) +] WD), (10
FIG. 5. Wherl =6, the size of the cell becomes pretty small and wherec= c/ /e (e is the dielectric constant of the barrier and
only a few fluxons can fit in the cell. c is the velocity of light in vacuum The right-hand side of

_ N Eq. (10) consists of driving terms, where
is related to the parametBrand are not very sensitive to the

shape of the initial input. However, a stable profile . 1 L o

¢nn+1(X) is obtained after several cyclgsy most cases JJos:_2[2¢£1,r)1+1COS(P(r1,21+1

three to four cycles give already a good profité the rever- A

Sf'i| integration. Varying BC's, we Ch_ecked the symmetry and_ - (pglj 1’n+2COS(,D$£2 1n+2~ qof}_) 11ncos<p$1°_) 1n

size dependences of the fluxon chains. We found that there is (12)

no basic symmetry in the direction, although BC's along _ o

are periodic inside the stack. However, the solutions obiS the linear part of the ac Josephson contribution along the
tained are always similar, although depending on BC's, théXis, while
buckled chains are shifted or may have a negative inclining
angle(compare Figs. 1 and)4In some cases one obtains a
combination of two chains with opposite inclining angles

(see Figs. 2 and)3Similar buckled chains of vortices were o )
observed by means of the Bitter-pattern technique in Ref. 16 the corresponding in-plane ac part. The third term on the
for a Y,Ba,Cu,0; single crystal sample in a parallel mag- rlght-.han(_j side of Ec(.;O) belongs to acpntrlbuyon frqm the
netic field. Although the initial interpretatioh of the quasiparticles that exist, e.g., for an anisotropic pamngscase
experiment® was given in terms of Abrikosov vortices, con- €V€N at !ow temperatures and at low frequencies. Using the
sidering it within the phenomen&l}ogical London model, in Substitution

our opinion, this kind of approachis highly controversial 1 . . .

for the layered superconductor with an intrinsic Josephson <pg’,>1+1=exp{|kyy+|kzncL—|cut}fn(x) (13

effect. Instead, the application of the Lawrence-Doniachgng the “potential” coss®,,=U,(x), Eq. (10) can be re-

model is more logistic in this case. These results are congyced to the system of Schtioger-like equations
nected with the strong anisotropy and nonlinear properties of

the system that is essentially distinct from the case of Abri(vi—kg)fn(x)
kosov vortices. [
2

1
sl 1 0
J30s™ \2 ¢$1,r)1+ 1COS(ID$‘I,I)1+1 (12

€L

w? ’
Un(X)—iM

=3 fn(X)_eikch
Ill. SMALL OSCILLATIONS OF THE FLUXON LATTICE Aj

2

In this section we consider the spectrum of small oscilla- _iGa 0°
e U, (X) — =\
n—-1 02 L

tions of the fluxon lattice using stationary solutions of Eq.
(1). The time evolution of fluxons can be described by quan-
tizing the classical field equations in a way similar to that for
a single junction in Ref. 11. The total Hamiltonian operator
for the stacked set of Josephson junctions, like the single-
junction Hamiltoniant! basically contains harmonic and an-
harmonic terms. When deviations from equilibrium are
small, the anharmonic terms are negligiblend the nonsta-
tionary effect is reduced to small fluctuations. Therefore, ondJnfortunately, in the cask, >\;, as in Ref. 11, a general
can consider elementary excitations in this system, with olution is not available anymore and one has to consider a
steady ground state characterized dy, ;. This kind of ~ numerical solution. Because numerical procedures are not
oscillation ate, ,+1=0 is similar to that obtained for the ~always well illustrative, we would like to begin with a simple
caseB=0. Due to the essential interlayer interaction, thelimiting case that could be solved analytically and is useful
system becomes three-dimensional, which is different fronfor understanding the common scenario. If one approximates
the setup of Ref. 11. Therefore, the case of a long Josephsdhe potential cosaﬁfr)m by a single harmonie- cosQx, where
junctiont! (where\ | is finite while \ ;—) is somehow op- Q serves as a fitting parameter, the alternation of interlayer

X foog(x)—e 1KLL

2

. w
X eIGa/ZU - 1(X) _ :2)\i
Cc

fn+1(x)]

2

Ua0= S22 1100, (14

N
N
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phase difference along thee axis may be presented in the
form %), =ax+B,. Then one can implement a two
wave approximatior(see, e.g., Ref. 18with the trial func-
tion

fa(x)=e*xa +e'* Cq . (15)
Then, using periodicity conditions along tleeaxis and for-
mula (15), from Eq. (14) one obtains the secular equation

detM =0, where det is a determinant of the mathk by
size 6X6,

wp —-U, so? Uy s*w? U,
-U, wig Uy sw? U, s*e?
R s*w? U, wi —U, s Up
M= U, s*0?> -U, wig U, sw? |’
sw? U, s*e? U, w@i -U,
Uy, sw? U; s*0?> -U, wig
(16)
where  wi=(ck)?—w(1+872]; wi g=(ck_c)?

— 0 1+B77], kj=VkZ+kZ; kj_g= (ke—G)?+ky; s
=pB 2 g=)\,/\2\,, and
Ua=205[1+8%],

Ub:Q§|eikZCi7iGaI2, UC:(Ub)*!

7

where chza)\J coincides with the classic Josephson

plasma frequency; the potentidls,, U,, and U in fact

determine the range for the plasma excitation spectrum. One
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FIG. 6. Results of numerical calculations for the small oscilla-
tions. One can clearly see three bands separated by gaps. The inset
at the top shows the absorption for the fluxon structure shown in
Fig. 1.

eralized potential{,(x) = cog ¢n n+1(X)]. In this way, we cal-
culate the coefficienta; of the Fourier series

Un(X)= 2, Use! (™SI (19

S
for any particular solutiorp,, 4 1(X) at given parameter,
B, \,, and \;. Then we approximate the solution by a
linear combination of a finite number of plane waves similar
to Eqg. (13), but instead of Eq(15) with

L
fa(x) =2, ek Cxq g, (20
S

finds the following analytical expressions for the excitation\yhereGs= rs/a, s is an integer number, ard is the num-

frequencies:

(1,2 1
o 25[2 {o+4p1+tap,+28
+2(8,2=2 {00+ {2+ 8 UpU+4 UE
—8U,U,—8U,Uy+4U2+4U%Y212 (18)
where  ¢1=(ck)>—(ck)1+B87%],  L=(ckj-c)

—(ck)q1+B72], k=+ki+KZ, py=(ck/B)%e™=:, and p,
=p7 . From formula(18) one can see that the excitation
frequency is determined by several terms(?/)xj)(k)\l) (if
one considers wave vectok;v)\jl, it roughly coincides
with the classic Josephson plasma frequenonfortunately,

other eigenvalues as well as eigenvectors cannot be e

pressed analytically and must be obtained numerically.

ber of waves. The substitution of Eq4.3), (19), and (20)

into Egs. (10), (11), and (12) results in a secular equation
such as deM =0. However, the size of the matr¥ in this
case may be much larger thaix6 [cf. Eq. (16)]; thus the
obtainment of its eigenvalues and eigenvectors requires a
numerical procedure. As a result of corresponding calcula-
tions for L=8 one gets the branches of excitation energy
QM which are shown in the 3D plot of Fig. 6. Indeed, Fig.
6 corresponds to a superposition of fluxons from all the lay-
ers(i.e., to the structure shown in Fig. 1, wheBe=0.03, 1
=2,\, =2, and\;=0.02. In addition, because the plotting
of all the branches in the same figure is technically problem-
atic, in Fig. 6 we present only several branches, sufficient for
illustration. The wave vectdk, is expressed in units m‘;l

@and is in the range- m<k,<, the wave vectok, is ex-
pressed in units oaix_l, and the excitation frequency is ex-

However, the above approach serves as a useful introdugressed in units ODO=E/M . All the surfacesﬂfj) are
tion to the numerical procedure that we shall apply to congrouped in bands, while the bands are separated by gaps. The

sider a more general form of the potentigl(x). In particu-

lower band | does not have a gap and the excitation fre-

lar it assumes that the above excitation spectra must be fourfiency is almost zero. Band Il has maxima at some values of

for a ground statep, ,.1(X). The last functione, . 1(X)
was calculated from Ed1) for the vortex part of the inter-

the wave vectok, while band lll strongly depends dnand
varies within a wide range betwedn, and ~Q,/8. The

layer phase differences, in Sec. Il. Now implementingstrong dispersion of), at finite k particularly may contrib-
¢nn+1(X), we conduct more general calculations of theute to losses of scaling d@ cosé near the parallel field®
small oscillations spectrum. Thus we go beyond the previindeed, the situation shown is somewhat idealized and is

ously made harmonic approximation for the poterttig(x).
As in Sec. I, here we use Eg&l0)—(12), but with the gen-

related rather to a well ordered structisee, e.g., Figs. 1 or
5) assuming that the dc field is parallel only. However, any
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kind of disorder(e.g., as in Fig. Pwashes out the separation each{)’; in formula (22) the wave vectok=0], andT is
between the bands or at least substantially broad@sisn e yesonance width that is determined by lattice disorder

Fig. 3) it. The presented dispersion law in the stacked system,q/or y coupling to quasiparticles at finite temperatures.

differs from that taking place for a fluxon lattice in a single The calculation of the absorption functid@2) performed
long Josephson juncticht.We note that, in accordance with here shows no contribution of the brancr(églo at w~0

Figs. 1-5, the interlayer phase differenggy..,(x) is modi- ~ at >0, A visible maximum occurs only atw

fied as the dc magnet!c fl'eld alternates. This means that the 1.50,,. This is confirmed also by plot for the function
spectrum of small oscillations changes as well.

The presence of severalbranctiah) n he excaion 1715/ W s presente n e nset o e o of
spectrum raises a question about how they contribute to Okfhe 3D plot. A similar tendency holds also for fluxon struc-
servable characteristics. Therefore, we calculate here the dy; < <hown in Figs. 3-5.
namic dielectric functiore(w). The oscillating fluxons are
attributed to the ac electric field by the Josephson relation-
ship (3), which can be rewritten as IV. CONCLUSIONS
In conclusion, we have considered the structure of a
fluxon lattice in a layered superconductor under a constant
magnetic field applied parallel to the layers. The obtained

This field interacts with an external ac electric inductionfs’()lu'[Ion of the system of nonlinear equations describes the

. : : interlayer phase difference, .. 1, which behaves in a pecu-
D(t). Using Maxwell's equations, the rat{@& ,(t)/D,(t))sp| . n.n ;
[which itself is related to the dielectric functiat); ( )syis o WAy compared to the field strength and anisotropy. The

RS ordered structure is formed by chains of fluxons, which be-
the average over the samplean be expressed via eigenval- ; . -
- A T come disarranged at certain conditions. The calculated
ues and eigenvectors of the matkik Acting in this way, we

_ f ‘"79951],-r)1+1(t)
- 2ec, ot

E,(t) . (21)

. - . ®nn+1 1S then used to explore the spectrum of small vortex
find an expression for the absorption as and plasma oscillations. The spectridy differs from the

0 2 spectrum of small oscillations in a single Josephson junction.
E,(X,w) fs

D,(w)

€

Im

= =T w? J ,
< >sp. 2 (0®—[QY']?)?+T?
(22)
wheree,, is the high frequency dielectric constaft,is the
number of eigenvaluegor the rank of the matrix f;

e(w)

=32 ,a], aj is the component of the eigenvector related to

This difference is due to a contribution of the interlayer in-
teraction. We obtain that the spectrum has a fine band struc-
ture showing gaps.
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