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Fluxon lattice oscillations in layered superconductors
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The fluxon structure in a layered superconductor under an applied parallel constant magnetic field is exam-
ined within the model of stacked Josephson junctions. The interlayer phase differencewn,n11, which is found
as a solution of the system of nonlinear equations, corresponds to buckled chains of fluxons, alternating with
the field strength. The calculatedwn,n11 is then used to obtain the spectrum of vortex and plasma small
oscillations that has a fine band structure showing gaps.
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I. INTRODUCTION

The attention paid to the intrinsic Josephson effect~IJE!
in the metal oxide superconductors is prompted by numer
interesting experimental data obtained in recent years. A
the discovery of the IJE itself,1 the next spectacular examp
was the observation of a low-lying collective mode inc po-
larized experiments2–4 made on single crystal samples.
theoretical interpretation5–7 of the mentioned results is base
on the idea of a weak Josephson coupling between super
ducting CuO2 layers separated by nonconducting interstit
regionsI. This means that metal oxide single crystal samp
behave like a stack of microscopic tunneling junction1

•••CuO2-I-CuO2•••. This kind of setup particularly deter
mines the electrodynamic properties5 of these materials in a
mixed state created by an applied constant magnetic fiel6,7

Under certain conditions~which basically depend on man
factors, e.g., temperature, field strength, and anisotropy
rameter! the mixed state may consist of a regular set of v
tex lines. Depending on the orientation of the external fieldB
various vortex structures that may appear in a layered su
conductor~SC! can be reduced to two important limitin
cases.8–10 When the field is parallel to the layers, i.e.,Biab
planes, the structure is formed by Josephson vortices, fl
ons, while in a perpendicular field it can consist of a set
pancakelike structures. Since the mixed state correspond
a minimum of the total thermodynamic potential atBÞ0,
one may consider small oscillations near the equilibrium
sition, which are analogous to plasma and vortex oscillati
of a fluxon lattice in a single long Josephson junction11

However, in metal oxide SC’s, due to the interlayer co
pling, the •••CuO2-I-CuO2••• junctions can be suppose
to be no longer independent; thus the single-junct
solution11 may not be adequate for the stack. This means
in layered SC’s, the steady state fluxon lattice11 may have
specific features that make it different from both an isotro
homogeneous SC’s and a single junction. Since until n
only the limiting cases of either a strong or a weak magn
570163-1829/98/57~21!/13765~8!/$15.00
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field were considered, there arises a fundamental questio
to which kind of mixed state occurs in an arbitrary paral
field for a big stack of Josephson junctions. Another po
that is addressed is a dispersion law for the modes o
fluxon lattice, which may have a complex multiband anis
tropic structure. Because the Josephson properties th
selves are quite dependent on the strength of magnetic fi
another issue here concerns the relationship between th
sephson oscillations5 and the presence of the vortex stru
ture. Calculations of the resonance frequency were p
formed for cases of parallel and tilted fields in rece
papers.6,7 Nevertheless, the results6,7 were obtained only for
limits of weak or strong fields, while an important case
arbitrary field amplitude remained to be solved. An ad
tional restriction6,7 concerned the structure of the mixe
state, which was assumed to be a triangular~or hexagonal!
fluxon lattice. The triangular fluxon arrangement w
claimed to take place also in stacks of a few (N55) junc-
tions in Refs. 12. However, the size of the stack there12 was
too small to relate it to a bulk crystal. Additionally, Peders
and co-workers12–14 neglected the interplane recharging e
fect ~see, e.g., Refs. 7 and 15!, which is of crucial importance
for nonstationary phenomena.

In this paper we examine which kind of fluxon structu
takes place under an arbitrary magnetic field applied para
[Biab planes# to a stack of Josephson junctions. The stea
fluxon state obtained here is used to explore the spectrum
plasma and vortex small oscillations. In Sec. II we discu
the main assumptions of the model and formulate basic eq
tions. In order to find the interlayer phase difference desc
ing a fluxon lattice, we obtain a numerical solution for
system of nonlinear equations. We show that the kind
solution depends on the field strength and parameter of
isotropy between thec axis andab planes. In Sec. III, be-
ginning with a simple model of a layered SC for an intere
ing limiting case, we consider the excitation spectraVk of
small oscillations. Using results obtained for the fluxon l
tice in Sec. II, we also perform numerical calculations
13 765 © 1998 The American Physical Society
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13 766 57S. E. SHAFRANJUK, M. TACHIKI, AND T. YAMASHITA
Vk . We obtain that the spectrum of plasma excitations ha
band structure determined by the strength of the magn
field B as well as by the interlayer coupling and the anis
ropy of the penetration depth. The branchesVk have regions
with negative group velocityvk,0 and are separated b
gaps. The interaction between the junctions leads toc axis
fluxon oscillations with a peculiar dispersion law. Theab
plane branches also have a different and more complex s
ture in comparison to the case of the one-dimensional l
Josephson junction.11

II. FLUXON LATTICE IN THE SET
OF STACKED JUNCTIONS

The gestalt of the vortex state, taking place in metal ox
superconductors, basically depends on several factors su
the magnitude of the external magnetic fieldB, the strength
of the interlayer coupling, the anisotropy parameterg, and
the temperatureT. The theoretical models for the vortex sta
in a weakly coupled layered SC were initially proposed
Refs. 6 and 8–10. As it was emphasized in Refs. 8–10,
alternation of the order parameter amplitudeuD(r )u does not
contribute essentially to the total free energy, particularly
a parallel field (Biab planes!, because the vortex cores a
localized in interlayer regions. The equations for the or
parameter in a layered SC with the Josephson coupling
low from the free energy functional8–10 describing the SC in
a magnetic field or from Maxwell equations taking into a
count the Josephson relationship. This kind of equation
used before~see, for instance, Refs. 6 and 8–10! to deter-
mine the interlayer phase differencefn,n11. However, even
for a well-defined fluxon lattice, which we explore here, t
solutionsfn,n11 had been obtained, until now, only in lim
iting cases, although a moderate field strength is a matte
interest. In the stacked system, the equation for interla
phase differencesfn,n11 reads~see, e.g., Refs. 7!

¹ i
2fn,n112

1

lJ
2 ~2 sin fn,n112sin fn11,n122sin fn21,n!

2
1

l'
2
sin fn,n11

5
e

c2

]2

]t2Ffn,n111
l'

2

lJ
2 ~2fn,n112fn11,n122fn21,n!G ,

~1!

wheren50, . . . ,N denotes the layer’s index,N is the num-
ber of layers in the stack,lJ5gc' , c' is the c axis lattice
constant,g5l' /l i is the anisotropy ratio,l' andl i are the
static penetration depths along thec axis and theab plane,
respectively,¹ i

2 is the Laplacian alongab planes, and¹ i
2

5¹x
21¹y

2 . In metal oxides, the anisotropy ratio is typical
largeg510021000 ~see, e.g., Ref. 1!. This means that the
second term on the left-hand side of Eq.~1!, which is due to
a mutual influence between neighbor junctions in the sta
may prevail over the third term~which is caused by the Jo
sephson current within the same junction!. A similar equa-
tion had been derived in Refs. 12 and 14, but they omit
the term in parentheses on the right-hand side of Eq.~1!,
a
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which essentially contributes to a nonstationary case du
the big coefficient (l' /lJ)

251042106. Let us also note tha
Bulaevskiiet al. used a more compact form of Eq.~1!, but,
in fact, they sacrificed a generality, initially assuming t
dispersion relationship such ask5v/ c̄. Another problem is
related to the dynamic screening effects, which were
cluded in an equation of Ref. 7 in a static case. Therefore,
prefer to begin with Eq.~1! rather than with the equation o
Ref. 7.

With respect to Eq.~1!, indeed, there exists a complica
tion that appears due to finite differences. It serves as a
son why this equation has such a distinct mathematical ba
ground compared, e.g., to the case of a long Joseph
junction.11 The right-hand side of Eq.~1! contributes only to
a nonstationary case and is modified here to be consis
with the conservation condition]r/]t1¹j50 ~r and j are
the electric charge and current density, respectively!. Small
oscillations of the fluxon lattice can be expressed as an
additionwn,n11

(1) (t) to the ‘‘vortex’’ phase differencewn,n11 ,

fn,n11~ t !5wn,n111wn,n11
~1! ~ t !, ~2!

wherewn,n11
(1) (t) may also be attributed to an ac field by th

Josephson relationship

wn,n11
~1! ~ t !5

2ed

\ E t

dt Ez~ t !, ~3!

whered is the averaged thickness of interstitial regions,d
.c' , andEz(t) is thec axis component of the electric fiel
vector. In the following we will be interested in a stead
state vortex solution. Then Eq.~1! has to be completed by
boundary conditions~BC’s! that determine the positions o
the vortices. Bulaevskiiet al.6,7 suggested that in a paralle
dc magnetic field, the centers of vortices form a triangu
lattice of fluxons,10 the parameters of which are establish
by the requirement that the magnetic flux isF0 per vortex.
Assuming also that in a general case the fluxon lattice m
contain the vortices not in every adjacent layer but, e.g.
every l th layer, they introduced the commensurability p
rameterl , which is an integer number. In a weak magne
field ~which, following Ref. 10, corresponds toax.lJ ,
whereax is the vortex lattice constant along thea axis! it
gives the lattice period as 2lc' in the c direction and
ax5F0 /Blc' in the a direction. In a strong field10 ax,lJ
the vortex cores fill all the interlayer regions. Asymptot
solutions for the aforementioned limiting cases were fou
in Ref. 6. Numerical nonstationary solutions for a stack
five Josephson junctions obtained in Refs. 12–14, howe
neglect a recharging effect, which may affect the vortex d
namics drastically.

In this paper we consider the case of an arbitrary fie
using a numerical solution of Eq.~1!. Equation ~1! was
treated as a system ofN second-order equations for a finit
number of layersN, which is then reduced to a system of 2N
first-order equations. To solve Eq.~1! we used BC’s of the
following form. Since in metal oxides the values oflJ are
2–3 orders smaller than in long Josephson junctions form
by classic superconductors, one has to modify the BC’s
the former case. In particular, for a vortex lattice, one can
BC’s that reflect the periodic variation of the local field
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57 13 767FLUXON LATTICE OSCILLATIONS IN LAYERED . . .
space and a periodic distribution of the supercurrent den
inside the sample alongx. Here we assume that the extern
magnetic inductionB5(0,By,0) is homogeneous outside th
stack of junctions. However, inside the stack it may beco
nonuniform due to the presence of vortices. In a steady s
the distribution of induction can be found from the Maxwe
equation and is related to the interlayer currentj z,n as

¹xBy
~n!~x!5

4p

c
j z,n , ~4!

where By
(n)(x) is the ŷ component of the induction in th

layern, which depends on thea axis coordinatex. Actually,
we apply BC’s at the edges of each elementary cell inst
of to the whole sample, i.e., fixing gradients of the pha
difference atxl (xr) @the left ~right! edge of the unit cell#.
Nevertheless, to perform a numerical integration we hav
follow a self-consistent solution. It is achieved in the follow
ing way. As an initial step we introduce fluxons to a set
junctionsn1 l ~n is the junction’s index andl is an integer
number! by applying BC’s

~wn1 l ,n1 l 11!x5xl
5p, S ]wn1 l ,n1 l 11

]x D
x5xl

5J0 , ~5!

whereJ05(2ec' /\)Buc , with Buc the value of induction
at the edges of the unit cell, which, generally speaking,
to be found from a normalization condition self-consisten
~see below!. We also assumed thatdn

(1) j x,n50, wheredn
(1)

means the first-order finite difference operator. In all t
other layersn1k ~kÞ l ! we use

~wn1k,n1k11!x5xl
50, S ]wn1k,n1k11

]x D
x5xl

5J0 , ~6!

respectively. Then we perform the integration along thex
coordinate, e.g., fromx5xl to x5xr5xl1ax . At the last
point we reverse the integration with descendingx back to
x5xl , implementing BC’s

S ]wn,n11

]x D
x5xr

5J0 , ~7!

while for (wn,n11)x5xr
we use the value obtained from th

previous ascending integration. Then we repeat the pro
dure with ascending and descendingx coordinates until a
stable solution has been achieved. Of course, BC’s are
ferent for various types of vortex structure and basica
must be verified by a corresponding calculation of therm
dynamic potential, which has to be minimized in order
find a stable configuration. These BC’s are then used fo
numerical solution of Eq.~1!, which for convenience can b
reduced to a system of 2N differential equations with respec
to x. We begin with a stack ofN515 junctions. In this case
with BC’s ~5! and ~6!, we do not get any stable solution fo
wn,n11(x). Contrary to our initial expectations and to Ref. 1
~where static results were reported forN55; see, e.g., Fig. 5
therein!, we obtain a triangular lattice only for some partic
lar field amplitude, which disarranges as the field chang
However, when the number of junctions in the stack is
creased up toN550 ~and higher!, the situation becomes dif
ity
l
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ferent, showing a regular array of fluxons. In thre
dimensional ~3D! plots of Figs. 1–5 we present typica
solutionswn,n11(x) versus the layer indexn and thea axis
coordinatex at the strength of the parallel fieldBy50.03
obtained forN550; l'52 andlJ50.02 for variousl . We
expressBy in units of F0 /hc'

2 ~F0 being the elementary
magnetic flux andh553103!, while the length is expresse
in units of 0.53104c' . If one accepts, e.g., the valuec'

.1 nm, thenF0 /hc'
2 50.4 T. These unusual units wer

chosen because an important spatial alternation in the sy
takes place on the scale;l' , while a more fundamenta
scale is;c' . The self-consistent procedure to determine
induction atx5xl ,r is the following. Initially we solve Eq.
~1! with BC’s ~5! and ~6! settingBuc5By . Then we calcu-
late the interlayer supercurrent distribution proportional
sin@wn,n11(x)#, from which, using the Maxwell equation~4!,
one finds the variation of the local magnetic induction
spaceBn

loc(x). It is checked whether the functionBn
loc(x)

satisfies the condition for the total flux across the sta
which is

(
n
E

0

Lx
dx Bn

loc~x!5ByNLx , ~8!

whereLx is the length of the sample andN is the number of
junctions in the stack. If the left-hand side of Eq.~8! deviates
from ByNLx , then for the next cycleBuc should increase~or
decrease! until self-consistency is achieved. The detailed c
culations conducted here show that the final result, howe
is not very sensitive to the precise value ofBuc ; therefore,
for practical reasons we set simplyBy5Buc . From the fig-
ures mentioned one can notice that there is a regular flu
structure which nevertheless depends on the value of
commensurability parameterl . In the aforementioned plots
the position@Xi ,Ni # of a fluxon core is determined by th
conditions

wn,n11~x!50 at dn
~1!F]wn,n11

]x G
x5Xi ,n5Ni

Þ0. ~9!

From Fig. 1 (l 52, i.e., the phase difference atxl is of the
form . . . .00p00p00 . . .! one can see that instead of a tr
angular lattice the fluxons form a buckledV-shaped struc-
ture. The buckled chains are sensitive to the value ofl . In
reality, as one can see from Fig. 2, plotted forl 53, the
fluxon structure tends to reorder. In this figure one can
serve a creation of chain with an opposite orientation
buckling. This process continues asl increases; thus the flux
ons become rearranged again~see, e.g., Fig. 3!, forming a
rhomblike structure composed of two buckled chains w
opposite inclining angles. The arrangement is even impro
as l increases up tol 55 ~see Fig. 4!. In this case theV-
shaped structure has an orientational opposite to that ta
at l 52. However, the array atl 56 ~which is shown in Fig.
5! is ordered much better, but in this caseax becomes pretty
small and only a few fluxons could fit in the unit cell.

Our calculations show that when the field strength is
creased at fixedl ~which means that the size of the ‘‘cell’
along thex axis, ax5hc' /Bl in the units used here, is de
creased!, the evolution of the fluxon structure depends on t
value ofl . The tendency is that the fluxon structure becom
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13 768 57S. E. SHAFRANJUK, M. TACHIKI, AND T. YAMASHITA
more arranged as the field grows. Another remarkable
ture that is evident from Figs. 1–5 is the size of an individu
fluxon. From the numerical solution we find that this typic
size is;l' , but notlJ ~compare with Ref. 6! and it is not
scaled to the whole size of the sample~compare with Refs.
12 and 14!. The above calculations performed for vario
BC’s show that a stable solution may be selected with reg
to minimal energy. The calculation of the averaged Jose
son energyEJ}^12coswn,n11&sample for different l shows a
general tendency thatEJ grows asBy and l decrease. The
odd l are more energetically profitable in comparison to ev
l . However, the Josephson energy itself, due to the h
anisotropy, is much smaller in comparison to the interflux
energy within theab plane. On the contrary, the interplan
distancec' is much smaller in comparison to the typic
length of fluxons (;l') along thex axis, which overlap if
the field is sufficiently strong~then ax;l'!. The inter-
fluxon interaction indeed is repulsive. It is confirmed by t
introduction of only two fluxons in our sample. Indepe
dently from the point of entry, they are pushed out to t
opposite edges (n51 and n550! of the stack. The afore
mentioned serve as reasons for a dramatic competition
tween different factors, responsible for the formation of t
fluxon chain. One can see that the expected triangular la
does not occur for the BC’s used. It is not achieved eve
one tries to push more fluxons into the stack, e.g., by ap
ing boundary conditions such as . . .pp0pp0pp . . . . Al-

FIG. 1. Interlayer Josephson current sin@fn,n11(x)# calculated for
a stack (N550) of Josephson junctions in the parallel fieldB
50.03, l 52.

FIG. 2. Same dependence as in Fig. 1, butl 53. One can ob-
serve that the fluxon structure begins to reorder.
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though the commensurability parameter ‘‘l ’ ’ traditionally
was stated as an integer in several previous papers~see, e.g.
Refs. 6–10!, we formally may introduce a noninteger ma
nitude l 51/2 to describe the boundary conditio
. . . pp0pp0pp0pp0 . . . . Decreasing l , one may
achieve a structure with more than one fluxon per layer,
even this sort of effort does not lead to a triangular lattic

Additional calculations show that the data for the stac
with 50 and 100 junctions are similar. They both give t
buckled chain solution with a little distinction in the pos
tions of a few fluxons at the edges (n50 andn550 for a
50-junction stack andn50 andn5100 for a 100-junction
stack!. For instance, in Fig. 1 the mentioned fluxons th
drop out of the chain are located atn52 and 5~the edgen
50! and atn546, 48, and 50~the edgen550!. Similarly, at
l 55 there is also a fluxon~in Fig. 4 it is positioned atn
55 andx59.5!, which drops out from the common arra
The calculations conducted for the 100-junction stack a
give the buckled chain of fluxons, although a few fluxo
drop out of the chain near the edgesn50 and n5100 as
well. The alternation of cell size along thex directionax by
varying the magnetic inductionBy at other fixed parameter
results mostly in the rescaling of thewn,n11(x) surface while
qualitative changes of the shape of it are small.

The above calculations suggest that the position and
inclining angle of a chain depend mainly on the number
fluxons introduced in the stack initially~which in our terms

FIG. 3. Intermediate state of the vortex array atl 54. One can
notice the rhombic shape of the structure.

FIG. 4. At l 55 the structure is already arranged in the oppos
way, except for one fluxon that drops out~it belongs to a chain in
another unit cell!.
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57 13 769FLUXON LATTICE OSCILLATIONS IN LAYERED . . .
is related to the parameterl ! and are not very sensitive to th
shape of the initial input. However, a stable profi
wn,n11(x) is obtained after several cycles~in most cases
three to four cycles give already a good profile! of the rever-
sal integration. Varying BC’s, we checked the symmetry a
size dependences of the fluxon chains. We found that the
no basic symmetry in then direction, although BC’s alongn
are periodic inside the stack. However, the solutions
tained are always similar, although depending on BC’s,
buckled chains are shifted or may have a negative inclin
angle~compare Figs. 1 and 4!. In some cases one obtains
combination of two chains with opposite inclining angl
~see Figs. 2 and 3!. Similar buckled chains of vortices wer
observed by means of the Bitter-pattern technique in Ref
for a Y1Ba2Cu3O7 single crystal sample in a parallel ma
netic field. Although the initial interpretation17 of the
experiment16 was given in terms of Abrikosov vortices, con
sidering it within the phenomenological London model,
our opinion, this kind of approach17 is highly controversial
for the layered superconductor with an intrinsic Joseph
effect. Instead, the application of the Lawrence-Donia
model is more logistic in this case. These results are c
nected with the strong anisotropy and nonlinear propertie
the system that is essentially distinct from the case of A
kosov vortices.

III. SMALL OSCILLATIONS OF THE FLUXON LATTICE

In this section we consider the spectrum of small osci
tions of the fluxon lattice using stationary solutions of E
~1!. The time evolution of fluxons can be described by qu
tizing the classical field equations in a way similar to that
a single junction in Ref. 11. The total Hamiltonian opera
for the stacked set of Josephson junctions, like the sin
junction Hamiltonian,11 basically contains harmonic and a
harmonic terms. When deviations from equilibrium a
small, the anharmonic terms are negligible11 and the nonsta-
tionary effect is reduced to small fluctuations. Therefore, o
can consider elementary excitations in this system, wit
steady ground state characterized bywn,n11. This kind of
oscillation atwn,n11[0 is similar to that5 obtained for the
caseB[0. Due to the essential interlayer interaction, t
system becomes three-dimensional, which is different fr
the setup of Ref. 11. Therefore, the case of a long Josep
junction11 ~wherel' is finite whilelJ→`! is somehow op-

FIG. 5. Whenl 56, the size of the cell becomes pretty small a
only a few fluxons can fit in the cell.
d
is
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e
g

6

n
h
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of
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-
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-
r
r
e-

e
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posite to our situation, which rather corresponds tol'

@lJ . Here, using the equation for the stacked system
Josephson junctions~see, e.g., Ref. 7!, we investigate the 3D
setup. Equation~1! can be linearized with respect to sma
deviationswn,n11

(1) as

¹ i
2wn,n11

~1! 2 c̄22
]2

]t2

3Fwn,n11
~1! 1

l'
2

lJ
2 ~2wn,n11

~1! 2wn11,n12
~1! 2wn21,n

~1! !G
5 j Jos

J ~ t !1 j Jos
' ~ t !1 j qp~ t !, ~10!

wherec̄5c/Ae ~e is the dielectric constant of the barrier an
c is the velocity of light in vacuum!. The right-hand side of
Eq. ~10! consists of driving terms, where

j Jos
J 5

1

lJ
2 @2wn,n11

~1! coswn,n11
~0!

2wn11,n12
~1! coswn11,n12

~0! 2wn21,n
~1! coswn21,n

~0! #

~11!

is the linear part of the ac Josephson contribution along thc
axis, while

j Jos
' 5

1

l'
2

wn,n11
~1! coswn,n11

~0! ~12!

is the corresponding in-plane ac part. The third term on
right-hand side of Eq.~10! belongs to a contribution from the
quasiparticles that exist, e.g., for an anisotropic pairing ca5

even at low temperatures and at low frequencies. Using
substitution

wn,n11
~1! 5exp$ ikyy1 ikznc'2 ivt% f n~x! ~13!

and the ‘‘potential’’ coswn,n11
(0) 5Un(x), Eq. ~10! can be re-

duced to the system of Schro¨dinger-like equations

~¹x
22ky

2! f n~x!

5
1

lJ
2H 2FUn~x!2

v2

c̄2
l'

2 G f n~x!2eikzc'

3Fe2 iGa/2Un21~x!2
v2

c̄2
l'

2 G f n21~x!2e2 ikzc'

3FeiGa/2Un11~x!2
v2

c̄2
l'

2 G f n11~x!J
1

1

l'
2 FUn~x!2

v2

c̄2
l'

2 G f n~x!. ~14!

Unfortunately, in the casel'@lJ , as in Ref. 11, a genera
solution is not available anymore and one has to consid
numerical solution. Because numerical procedures are
always well illustrative, we would like to begin with a simpl
limiting case that could be solved analytically and is use
for understanding the common scenario. If one approxima
the potential coswn,n11

(0) by a single harmonic;cosQx, where
Q serves as a fitting parameter, the alternation of interla
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phase difference along thea axis may be presented in th
form wn,n11

(0) 5anx1bn . Then one can implement a tw
wave approximation~see, e.g., Ref. 18! with the trial func-
tion

f n~x!5eikxxakx
1ei ~kx2G!xakx2G . ~15!

Then, using periodicity conditions along thec axis and for-
mula ~15!, from Eq. ~14! one obtains the secular equatio
det M̂50, where det is a determinant of the matrixM̂ by
size 636,

M̂5S Ãk
2 2Ua §v2 Ub §* v2 Uc

2Ua Ãk2G
2 Ub §v2 Uc §* v2

§* v2 Uc Ãk
2 2Ua §v2 Ub

Uc §* v2 2Ua Ãk2G
2 Ub §v2

§v2 Ub §* v2 Uc Ãk
2 2Ua

Ub §v2 Uc §* v2 2Ua Ãk2G
2

D ,

~16!

where Ãk
25( c̄ki)

22v2@11b22#; Ãk2G
2 5( c̄ki2G)2

2v2@11b22#, ki5Akx
21ky

2; ki2G5A(kx2G)21ky
2; §

5b22eikzc'; b5lJ /A2l' , and

Ua52Vcl
2 @11b2#, Ub5Vcl

2 eikzc'2 iGa/2 , Uc5~Ub!* ,
~17!

where Vcl5 c̄/lJ coincides with the classic Josephs
plasma frequency; the potentialsUa , Ub , and Uc in fact
determine the range for the plasma excitation spectrum.
finds the following analytical expressions for the excitati
frequencies:

Vk
~1,2!5

1

2
@2 z214 r114 r212 z1

62~z2
222 z2z11z1

218 UbUc14 Ub
2

28 UaUc28 UaUb14 Uc
214 Ua

2!1/2#1/2, ~18!

where z15( c̄ki)
22( c̄k)2@11b22#, z25( c̄ki2G)2

2( c̄k)2@11b22#, k5Aki
21kz

2, r15( c̄k/b)2eikzc', and r2

5r1* . From formula ~18! one can see that the excitatio

frequency is determined by several terms; ( c̄/lJ)(kl') ~if
one considers wave vectorsk;l'

21 , it roughly coincides
with the classic Josephson plasma frequency!. Unfortunately,
other eigenvalues as well as eigenvectors cannot be
pressed analytically and must be obtained numerically.

However, the above approach serves as a useful intro
tion to the numerical procedure that we shall apply to c
sider a more general form of the potentialUn(x). In particu-
lar it assumes that the above excitation spectra must be fo
for a ground statewn,n11(x). The last functionwn,n11(x)
was calculated from Eq.~1! for the vortex part of the inter-
layer phase differences, in Sec. II. Now implementi
wn,n11(x), we conduct more general calculations of t
small oscillations spectrum. Thus we go beyond the pre
ously made harmonic approximation for the potentialUn(x).
As in Sec. II, here we use Eqs.~10!–~12!, but with the gen-
ne

x-

c-
-

nd

i-

eralized potentialUn(x)5cos@wn,n11(x)#. In this way, we cal-
culate the coefficientsU n

s of the Fourier series

Un~x!5(
s
U n

sei ~ps/a!x ~19!

for any particular solutionwn,n11(x) at given parametersN,
B, l' , and lJ . Then we approximate the solution by
linear combination of a finite number of plane waves simi
to Eq. ~13!, but instead of Eq.~15! with

f n~x!5(
s

L

ei ~kx2Gs!xakx2Gs, ~20!

whereGs5ps/a, s is an integer number, andL is the num-
ber of waves. The substitution of Eqs.~13!, ~19!, and ~20!
into Eqs. ~10!, ~11!, and ~12! results in a secular equatio
such as detM̂50. However, the size of the matrixM̂ in this
case may be much larger than 636 @cf. Eq. ~16!#; thus the
obtainment of its eigenvalues and eigenvectors require
numerical procedure. As a result of corresponding calcu
tions for L58 one gets the branches of excitation ener
Vk

( i ) , which are shown in the 3D plot of Fig. 6. Indeed, Fi
6 corresponds to a superposition of fluxons from all the l
ers ~i.e., to the structure shown in Fig. 1, whereB50.03, l
52, l'52, andlJ50.02!. In addition, because the plottin
of all the branches in the same figure is technically proble
atic, in Fig. 6 we present only several branches, sufficient
illustration. The wave vectorkz is expressed in units ofc'

21

and is in the range2p,kz,p, the wave vectorkx is ex-
pressed in units ofax

21 , and the excitation frequency is ex

pressed in units ofV05 c̄/l' . All the surfacesVk
( i ) are

grouped in bands, while the bands are separated by gaps
lower band I does not have a gap and the excitation
quency is almost zero. Band II has maxima at some value
the wave vectork, while band III strongly depends onk and
varies within a wide range betweenV0 and ;V0 /b. The
strong dispersion ofVk at finite k particularly may contrib-
ute to losses of scaling ofB cosu near the parallel field.19

Indeed, the situation shown is somewhat idealized and
related rather to a well ordered structure~see, e.g., Figs. 1 o
5! assuming that the dc field is parallel only. However, a

FIG. 6. Results of numerical calculations for the small oscil
tions. One can clearly see three bands separated by gaps. The
at the top shows the absorption for the fluxon structure shown
Fig. 1.



n

l
h

o

der
es.

of
or
c-

a
ant
ed
the
-
he
e-
ted
ex

on.
n-
ruc-

r

57 13 771FLUXON LATTICE OSCILLATIONS IN LAYERED . . .
kind of disorder~e.g., as in Fig. 2! washes out the separatio
between the bands or at least substantially broadens~as in
Fig. 3! it. The presented dispersion law in the stacked syst
differs from that taking place for a fluxon lattice in a sing
long Josephson junction.11 We note that, in accordance wit
Figs. 1–5, the interlayer phase differencewk,k11(x) is modi-
fied as the dc magnetic field alternates. This means that
spectrum of small oscillations changes as well.

The presence of several branchesVk
( i ) in the excitation

spectrum raises a question about how they contribute to
servable characteristics. Therefore, we calculate here the
namic dielectric functione(v). The oscillating fluxons are
attributed to the ac electric field by the Josephson relati
ship ~3!, which can be rewritten as

Ez~ t !5
\

2ec'

]wn,n11
~1! ~ t !

]t
. ~21!

This field interacts with an external ac electric inductio
Dz(t). Using Maxwell’s equations, the ratiôEz(t)/Dz(t)&spl
@which itself is related to the dielectric functione(t); ^ &spl is
the average over the sample# can be expressed via eigenva
ues and eigenvectors of the matrixM̂ . Acting in this way, we
find an expression for the absorption as

ImF e`

e~v!G5 K Ez~x,v!

Dz~v! L
spl

5Gv2(
j 51

Q f j
2

~v22@V0
~ j !#2!21G2

,

~22!

wheree` is the high frequency dielectric constant,Q is the
number of eigenvalues~or the rank of the matrix!, f j

5( i 51
Q a0

i j , a0
i j is the component of the eigenvector related

the eigenvalueV0
( j )5Vk50

( j ) @there areQ components for
em
e

the

ob-
dy-

n-

n

l-

to

eachV0
( j ) ; in formula ~22! the wave vectork50#, andG is

the resonance width that is determined by lattice disor
and/or by coupling to quasiparticles at finite temperatur
The calculation of the absorption function~22! performed
here shows no contribution of the branchesVk50

( j ) at v;0
and at v@V0. A visible maximum occurs only atv
'1.5V0. This is confirmed also by plot for the function
Im@ec /e(v)#, which is presented in the inset at the top
Fig. 6 where we usedG50.1 and the same parameters as f
the 3D plot. A similar tendency holds also for fluxon stru
tures shown in Figs. 3–5.

IV. CONCLUSIONS

In conclusion, we have considered the structure of
fluxon lattice in a layered superconductor under a const
magnetic field applied parallel to the layers. The obtain
solution of the system of nonlinear equations describes
interlayer phase differencewn,n11, which behaves in a pecu
liar way compared to the field strength and anisotropy. T
ordered structure is formed by chains of fluxons, which b
come disarranged at certain conditions. The calcula
wn,n11 is then used to explore the spectrum of small vort
and plasma oscillations. The spectrumVk differs from the
spectrum of small oscillations in a single Josephson juncti
This difference is due to a contribution of the interlayer i
teraction. We obtain that the spectrum has a fine band st
ture showing gaps.
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