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We propose an adiabatic approach for Hubbard models in the Fermi-liquid regime coupled to phonons. The
Hubbard parameters are associated with the bandwititha an interpolation formula between the trivial for
W strong- and weak-coupling limits of Hubbard models. Phonons are introduced via an adiabatic random-
phase approximation scheme. We obtain simple conditions for phonon-driven instabilities in a Fermi liquid
with short-ranged interactions. We report phonon-driven instabilities without nesting and describe the elimi-
nation of the Peierls instability in a nested system by Coulomb correlations. We also report the possibility for
a phonon-driven phase separati® instability as well as the strong enhancement of forward processes in
the effective electron-phonon scattering near the phase separation instability. We show that the proximity to PS
induces momentum decoupliilyID) in superconductivity which implies a tendency for decorrelation between
the physics in the different regions of the Fermi surface. MD could induce anisotropic superconductivity with
unconventional gap symmetry suchdsvave. Whether anisotropy in the high-oxides is driven by MD or
by anisotropic scatteringfor example with spin fluctuationsbecomes a crucial question. We discuss some
qualitative implications of MD that explain puzzling qualitative aspects of superconductivity in the oxides and
could advocate that MD is at the origin of anisotropies. Such effects are the marginality of the superconducting
gap symmetry for the condensation free energy and the resulting possibility of gap symmetry transitions with
the doping, the temperature dependence of the shape of the anisotropy, and the behavior of the anomalous dip
above the gap in the density of states. We also show that in the MD regime the orthorhombic distortion of the
Cu0, planes in YBaCu;O; could be sufficient to explain the mixing sfgap components in the dominantly
d-wave gap. On the other hand, if spin fluctuations mediate the pairing in({B@-, at least 25% of the
condensate must be located in the chains. Our analysis could rehabilitate phonons as potential mediators of the
pairing in all “unconventional” superconductors including heavy-fermion and organic compounds.
[S0163-18298)06914-9

I. INTRODUCTION footing with the electronic terms and this is by definition a
nonadiabatic approach which complicates tremendously the
Despite the intense theoretical activity, there is no conseneventual study of superconductivity. In this manuscript, we
sus on the microscopic mechanism responsible for fiigh- adopt a simpler approach to Hubbard models in the presence
superconductivity. Many authors argue that Coulomb correef adiabatic electron-phonon coupling, being consistent with
lations or magnetic interactions are at the origin of high-  the following analysis of the resulting superconductivity
To understand the effect of strong Coulomb correlations ofvithin a BCS framework. The electron-phonon scattering is
the carriers in cuprates, a first step is the understanding of treuipposed adiabat&b initio, treating therefore the questions
behavior of the Hubbard model at strong couplings. Considof Coulomb correlations and electron-phonon correlations
erable theoretical activity has been devoted to the study afeparately.
models derived from the Hubbard model involving sophisti- Our approach can be sketched as follows. The electron-
cated numerical and field-theoretical methiodsand allow-  phonon coupling is considered as adiabaticinitio in the
ing significant progress. However, the study of Coulombsense that it is not interfering with the electronic degrees of
correlations alone may not be sufficient in the oxidesfreedom. The first step is the link between the relevant pa-
Various experiments like neutron diffractién,Raman rameters of the Fermi liquid and the parameters of the Hub-
spectroscopies site-selective isotope effect measureménts, bard models without electron-phonon coupling. We show
and tunneling) indicate that phonons are probably strongly that the knowledge of the bandwidW is sufficient for our
coupled to the carriers, and may also play an important rol@urpose. Having made this remark, the link between the
in the mechanism that leads to high-® Fermi liquid and Hubbard parameters is greatly simplified. In
In this spirit, much attention has been attracted recentljact, W is obtained rather trivially in the weak-coupling and
by models in which electron-phonon coupling and strongstrong-coupling limits of the Hubbard model. We assume
Coulomb correlations are simultaneously preseft.In  thatW has a smooth crossover from its strong-coupling to its
some of these approaches, a Hubbard model with an addiveak-coupling behavior and describe it by a simple interpo-
tional local (Holstein electron-phonon coupling term was lation formula. We obtain, therefor®y/ for any magnitude of
considered®'**5The presence of phonons complicates fur-the Coulomb correlations. This simple interpolation formula
ther the strongly correlated electronic problem. On the othedescribes reasonably the behaviorVf as can be seen by
hand, including a phonon term in the Hubbard Hamiltoniancomparing with numerical exact diagonalization results from
implies somehow the constraint to treat phonons on the samehich we can even estimate the parameters of our interpola-
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tion formula. Phonons are introduced via an adiabatids also possible that the two-dimensional structure of the
random-phase approximati¢RPA) scheme, which leads to electronic syzstem favors forward scattering with some opti-
an effective composite interaction. In this way we avoid thecal phonons? We do not claim here a demonstration that

complications with nonadiabaticity mentioned above, with-instabilities are phonon driven in the oxides. Whatever the
origin of the phase separation instability, in its vicinity the

out losing relevant physics. The strength of the electron: " i fthe electroni " ith b ic field
phonon coupling is treated as a phenomenological free pa{[‘ eraction ot the electronic System with any bosonic fie

ter that b btained Vi h eri t.wiII be dominated by forward scattering and therefore mo-
rameter that can be oblained analyzing - charactenstig,q decoupling occurs. Also our simple approach is not

_exper|ment§.6 *1_7V\_/e could say that the spirit of our analysis gynected to capture all the relevant physics of the oxides. We
is some_what similar to that of Overhauser on the exchanggre rather considering this case as a paradigm for a phase
effects in a correlated electron gés. separation instability in a strongly correlated system for
We must insist here on the fact that our approach delibwhich we are able to apply a simple theoretical approach and
erately neglects the rich magnetic physics of Hubbard typghow that phonon-dominated physics may concern various
models. We suppose in fact, without proving it, that the be-unconventional parts of the phenomenology of the oxides.
havior of the charge degrees of freedom is sufficient as far as It results from our analysis that while “simple” phonon
the electron-phonon problem is concerned. However, it apmechanisms must be excluded for the oxides, when the elec-
pears quite probable to us that the charge instabilities will béronic system is close to the PS instability the interaction of
accompanied by spin instabilities. This could indicate thatlectrons with phonons deserves serious consideration in
one cannot excluda priori interference of magnetic degrees connection with the higf-. phenomenon. In fact, the com-
of freedom with electron-phonon scattering. Simplicity is in bination of MD and extended van Hove singularities may
fact the only justification of our approach. Reversing the ar2Iso reconcile many of the experimental argumeothier
gument, we could say that if a complete heavy treatment of@n anisotropigsused in the past to exclude phonons, like
the lattice Hamiltonian is adopted in the Fermi-liquid regime,the weakness of the isotope effect in optimally doped
then it is worth considering the interference of the magneti©Xides,” the linear temperature dependence of the dc
degrees of freedom with electron-phonon scattering. Othef€SiStivity,™ etc. On the other hand, the noticeable isotope
wise, for the charge degrees of freedom our simple approac‘f‘lffeCt.away from. opnmari doplﬁé IS very d'ff'culllt toégg;g
is to a large extent sufficient, clle with mechanisms where phonons are totally a

Within our approach we can describe the conditions undefd" be considered as an additional argument that the mecha-

- hism of MD with phonons presented here, is a serious can-
which the phonon-driven charge instabilities may occur. Thedidate that meritspcareful inpvestigations. '

novelty of Hubbard Fermi liquids is precisely the possibility e naner is organized as follows. In Sec. II, we briefly
to undergo phase separati¢RS instability due, for ex-  gegcribe the adiabatic RPA scheme that leads to the effective
ample, to electron-phonon coupling, that in “normaftee-  composite interaction. We show how phonon-driven insta-
electron-gas-like Fermi liquids is eliminated by the long- pijlities and in particular PS occur in this formalism. In Sec.
range character of Coulomb correlations. We can clearly seg|, we show how, in our case, using a simple interpolation
within our approach that close to the PS instability the effecformula for the dependence of the bandwitithon the Hub-
tive interaction of the carriers with optical phonons is bard parameters, we can make the link between Fermi-liquid
strongly enhanced at forward scattering. Dominance of forparameters and Hubbard parameters. In Sec. IV, we describe
ward processes in the effective scattering leads to momentuthe conditions under which phonon-driven instabilities occur
decoupling(MD) in superconductivity. In the MD regime in a Hubbard model. In Sec. V, we show that approaching
evenphonon-mediated superconductivity has very “uncon-the instability line from the Fermi-liquid regime, we have
ventional” propertiesthat could explain many qualitative precursors of the instability in the effective scattering ampli-
puzzling aspects of the superconducting phenomenology aftide. In particular, forward-scattering processes are strongly
the highT. oxides. In particular, the proximity of a phase enhanced which results in an effective momentum cutoff in
separation instability becomes an alternative to anisotropithe scattering amplitude. In Sec. VI, we show that in the
scattering(for example with spin fluctuationgxplanation of  vicinity of the phase separation instability, the dominance of
anisotropic superconductivity af or d-wave gap symmetry. forward scattering induces momentum decoupling in super-
It becomes, therefore, a crucial problem to distinguishconductivity leading to anisotropies driven by the angularly
whether anisotropies in the superconductive behavior ofesolved electronic density of statésRDOS) even if the
high-T. oxides, and especiallg waves, are due to momen- scattering is isotropic. Discerning whether anisotropies in the
tum decoupling or due to anisotropic scattering, for examplesuperconducting properties of the oxides ahdiave gaps,
in a conventional approach, with antiferromagnetic spin fluc-are due to momentum decoupling or to anisotropic scattering
tuations. We analyze some qualitatively puzzling aspects dfecomes a crucial question for understanding their physics.
the phenomenology of the oxides that advocate momenturin Sec. VII, we discuss some fundamental qualitative points
decoupling as the origin of anisotropic superconductivity inthat may answer the question of the origin of anisotropies.
the cuprates. We show that the doping-induced variation of the gap sym-
Momentum decoupling does not necessarily imply prox-metry and the observation of different gap symmetries in
imity of phase separation instability. There are alternativedifferent oxides(Sec. VII A), the temperature dependence of
theoretical approaches that could lead to a similar situatiotthe shape of the anisotrog$ec. VII B), and the behavior of
for the superconductive behavior. For example, the interlayethe anomalous dip structure above the gap in tunneling and
tunneling pairing model proposed by Anderson is effectivelyangle-resolved photoemission spectrosc6piRPES (Sec.
q~0 pairing’® The proposed pairing mediated by a charge-VIl C), are puzzling aspects advocating momentum decou-
transfer resonanéis also based on smail-processeé! It pling in high-T, oxides. We also show that one can obtain an



57 PHONON-MEDIATED UNCONVENTIONAL . .. 13745

indirect answer to the question of the origin of the anisotro- The above is generally true for a Fermi liquid irrespective

pies in superconductivity by answering the question of theof the geometry of the system or the exact mechanism and
relevance of the chains in Y-Ba-Cu-O, since only in the mo-structure of Coulomb correlations. Supposing that a Hubbard
mentum decoupling regime the orthorhombicity distortion ofmodel captures the physics of the Coulomb correlations of
the CuQ planes may be sufficient to explain the mixingsef  the carriers, we assume essentially that Coulomb correlations
and d-wave gap component$Sec. VII D). Finally, in Sec. have the peculiarity of being short range, as opposed to the

VIII, we summarize our conclusions. infinite range Coulomb correlations in a simple electron gas.
The novelty when the long-range part is neglected is the
Il. THE EFFECTIVE COMPOSITE INTERACTION possibility for the system to undergo phase separation insta-

bility. Various magnetic and charge instabilities of Coulom-

The effective interaction is the sum of the Coulomb andbic Origin have been reported in the literature in Hubbard-
the electron-phonon interaction. Since our approach is adidgype model$’3! Here, we consider instabilities due to the
batic, the Coulomb interaction is taken instantaneous an@resence of the electron-phonon interaction which we call
there is no need for a propagator to be associated with thEhonon-driven instabilities. Phonon-driven instabilities have
Coulomb lines, instead we can use an effective scalar repuliso been discussed in Refs. 13 and 15 on the basis of a
sionV. On the other hand, the electron-phonon interaction is|ave-boson approach to a Hubbard Hamiltonian inlte
retarded and therefore we consider both the phonon propa-,« regime with a local Holstein electron-phonon term.
gator and the electron-phonon vertex. To introduce screen- An instability corresponds to a divergence of the effective
ing, we must renormalize by polarization effects the Cou-composite interaction. If the instability is Coulomb driven,
lomb repulsion, the phonon propagator and the electronten it comes from the first term of E¢6), while a phonon-
phonon vertex. Notice that, in accordance with our adiabatigriven instability is due to a singularity in the second term.
assumption, while the phonon propagator and the electronfaking thew— 0 limit of Eq. (6), we can see that a phonon-

phonon vertex are renormalized by Coulomb effects, theyriven instability appears when the following condition is
Coulomb part is not affected by the electron-phonon interacfy|silled:

tion.
The effective composite interaction reads 1+V(q,011(q 0)_5 2[1(q,0)=0. )

A(0,0)=V*"(q,0) +[g°(0,0)]*D*(q,®), (1)  Inthe random-phase approximatitRPA) scheme the polar-
ization partIl(q,w) is replaced by the bare or Linhardt
bubble ITy(g,w). This last approximation is supposed to
Vefi(q,w)=V(q,0)+ Ve (q,0)I(q,0)V(q,e0) (2) 9dive arather good description in the long-wavelength limit
) o where the exchange interaction is neglected compared to the
the effective phonon propagat®®(q,w) is given by direct Coulomb interaction. As we are going to see in the
following, the RPA scheme is suitable for systems that are
D*(q,0)=D°(q,0) + D*(q,0)1(q,®)g*D°(q, 0) close to the phase separatit®S instability, since in that
+DeM(q, ) TT2(q, 0)g2Ve(q,0) DY(q, o), case, the physics is indeed dominated by long-wavelength
processes. In fact, a PS instability is an instabilitygat 0
) and near this instability the system is very susceptible to any
and the effective electron-phonon interactighf is given by long-wavelength process. In. a class_ical_eleqtron gas the long-
range part of the Coulomb interaction implies g% fliver-
9°M(q,0) =g+ Ve (q,w)I1(g,w)g. (4 gence ofV(g—0,0) and therefore phonon-driven PS insta-
o bilities are impossible since the condition of Ed@) cannot
The parametefl(q,w) represents the polarization part and pe fyffiled wheng—0. On the other hand, when the Cou-

whereVef(q,w) is the effective Coulomb repulsion given by

the “free” phonon propagatoP°(q, ) is defined by lomb interaction is local like in Hubbard models, this is re-
Q flected in the residual Coulomb interactions of the carriers by

DO, )= a 5 a finite value even wheq—0. To establish, therefore, the

(@) wz—ﬂq ® vocabulary, we will call a Fermi liquid with short-ranged

) ) ) _ interactions (of Hubbard type¢ a system in whichV(q
Replacing Eqs(2)—(5) in Eq. (1), the effective composite ¢ ) is finite as opposed to a “normalifree-electron-

interaction takes the following form: like) Fermi liquid in whichV(g— 0,0)— .
~, To get a qualitative insight let us replace the bubble by
_V(q,0) 99q,») the Linhardt function. The Linhardt bubble at=0 reads
A(g,w)= +
P(q,0) P(q,0)
02 o(g,0=0)=N(Er)F(a/2ke), ®
q
X = , where
®?P(0,0)— Q5[ P(d,0)—5%(0,0)I1(q,0)]
1 1+x
©) F(x)=1+2—(1—x2)lnr. 9
whereP(q,w)=1+V(q,0)II(q,w). With this notation the X X
Coulomb interactionV(q,w) is positive and§2=gzlﬂq, Therefore, the condition for an instability given in EJ)

whereg is the bare electron-phonon scattering. reads
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scription of Fermi surfaces as confirmed by angle-resolved-

V(q,w=0)=92—m- (100 photoemission(ARPES results overestimating, however,
FIFLGIeKe largelyW. This indicates that indeed the carriers are strongly
We remark that ¥ (q/2kg) grows smoothly forq=2kg, correlated®® In our previous analysisW does not appear
while for q> 2k it grows rapidly behaving approximatively explicitly. It is, nevertheless, naturally associated with the
as stability of the system and amall doping we can see its
) influence through the relation
1 3 3 ‘o 1) 11
FX)|., 2 10 X/ V<W. (13)

. _l _ . . .
Monotonic growth ofll, *(q,w=0) in the smallg region s qy1omb correlations tend to avoid that electrons occupy the

still true even if the bubble is calculated for tight-binding g5 me site and this can cost them at most the kinetic energy
two-dimensional models that are supposed to describe the\y a5 it is nicely explained by Fulde in Ref. 35. The

electronic structure of higfi;, oxides. This is going to be the ga1ler the Coulomb repulsion, the larger &V ratio,
case latefin Sec. ) where we discuss the possible applica- pile the equalityv~W could hold only in the infinite Cou-
bility of some of our results to the oxides. Sinee'(a/2ke)  jomp repulsion and the very small hole doping regitné®

is @ monotonically growing function arfé(x=0)=2 we can From Eq.(12), we have seen that small residual Coulomb
conclude from Eq(10) that if repulsion of the carriery favors phonon-driven instabilities.

1 From Eq.(13), this turns out to be equivalent with the state-
ngcza R —— (12) ment that small bandwidt® favors phonon-driven instabili-
2N(0) ties and this is quite reasonable. In factW<VC then a

then the electronic system is certainly driven to an instability?honon-driven instability will certainly occur. Combining,
because of the strong electron-phonon couplingv# V¢ therefore, Eqs(12) and(13) we are already able, given the
the instability occurs forg—0 and it is a PS instability, Pandwidth, to provide sufficientyet not necessayycondi-
while for V<V the instability occurs at a finite momentum tions for a phonon-driven instability to occur.
and corresponds to a charge-density we@®W) instability. Having identified thatVV may be the crucial parameter,
As we mentioned earlier, within the RPA approach the exHubbard Hamllto_nlan_s _become trivial in the _extreme weak-
change interaction is neglected compared to the direct Cond strong-coupling limits. Next we write a simple Hubbard
lomb interaction. Therefore, we cannot trust this descriptiorfi@miltonian to define our notations
for momenta of the ordekg, and since we will limit our-
selves here to RPA, we will avoid discussion of CDW at H=tS al
large momenta. The inclusion of the exchange effects would _tm)U aj,a
be necessary for example in the study of magnetic effects
where the relevant physics is at large momenta of the ordeghereU is the on-site repulsion and,j) denotes pairs of
ke . Of course, the Coulomb repulsidf{(q, ) is the residual nearest neighbors. It will be clear later that our analysis can
repulsion among the quasiparticles, and its relation with theye straightforwardly generalized to complex hopping situa-
on-site repulsion of a Hubbard model is not trivial and it istions and this is one of the greatest advantages of our ap-
given from a solution of the Hubbard problem in the Fermi-proach.
liquid regime. However, for our purpose, this type of com-|n the extreme weak-coupling regime/{t—0), only the
plex solution may be avoided as described in the next seginetic term of Eq.(14) remains. Then the dispersion be-
tion. comese = —4t=%  cosk) whered is the dimensionality
and W= 2tz with z=2d the number of nearest neighbors.
ll. FERMI LIQUID AND HUBBARD PARAMETERS On the other hand, in thd/t—« regime, double occupancy

of sites is forbidden making interesting the work in a reduced

A basic problem is the link between the parameters of th(?-Hlbert space where all configurations containing doubly oc-
considered Hubbard model and the characteristics of the re- P 9 9 y

sulting Eermi-liauid regime. For thel s regime this can cupied sites are forbidden. This is done though a Schrieffer-
b 9 q gime. = 9 olf transformation of the Hamiltoniat{;* that leads to an
e achieved, for example, using a slave-boson approach an . L~ o .
a 1N expansion’2 Our simple approachannotreplace such e fgctlye HamiltoniarH qctmg in the reduced HllberF space,
methods. Our aim is to give easily applicable results on th&/Nich |n~theU/t—>oo~r$g|~me is reduced to an effective hop-
characteristics of the charge Fermi-liquid behavior, valid iniNg termH=tZ; ;;,(a; ,a; ,+H.c.) with effective annihila-
the whole range of couplings of the Hubbard model. Bytion and creation operator; ,=a; ,(1—n;_,) anda/,
making the serious simplification of neglecting the magnetic= aiT’(,(l— ni_,), respectively’> Defining & the hole concen-
behavior, we avoid searching tedious solutions of the probtration or the doping from half-filling, the effective hopping
lem without losing the relevant physics. term leads, in analogy with the weak-coupling regime, to a
From the Fermi-liquid point of view, the fundamental bandwidthW=2zt§. Therefore, in th&J/t—0 andU/t —
quantity related to Coulomb correlations is the bandwitith  regimes, the bandwidth is obtained essentialithout solv-
One naturally expects that Coulomb correlations of the caring the Hamiltonian Although in these two extreme limiw/
riers reduceW obtained, for example, by local-density- is trivial, whenU/t is finite we are not able to predigV as
approximation(LDA) calculations® It is noticeable that in function of the Hubbard parametets't, z, and & for two-

high-T. oxides, LDA calculations provide a reasonable de-dimensional models that could be relevant for the oxides.

J'O.+Uzi niTnil, (14)
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18 ——— our prescription for a smooth polynomial crossover from the
strong- to the weak-coupling regimes.

Equation(15) which relatesW with the parameters of the
one-band Hubbard model, can be straightforwardly general-
ized for the case of more complex hopping situations. The
advantage of our approach is to isolate the effect of the Cou-
lomb repulsion even in the case of Hubbard models with
complex hopping terms, that will just lead to an effective
hopping termt in Eq. (15). As will be made clear in the
following, t sets the energy scale without interfering with our
qualitative discussion. We illustrate that point in the three-
band Hubbard model which is frequently used to describe the
. ] physics in the Cu@planes of the cupraté.If the indicesp
B R Y S - MY - oy andd refer to thep band andd band, respectively, then in

g/t the relevant for cuprates limi,— e >t,q we haveW(U

FIG. 1. The dependence of the bandwidttit on J/t as ob- H0)“8"123d2/(‘“"p_Ed)' while ‘in the opposite limitW(U
tained by numerical exact diagonalization on a cluster with one hole~ ) ~[8t54/ (£~ £4)15."° Therefore, the situation is quite
in Ref. 39(black dot3, and from our interpolation formula E¢L5)  similar to that of the one-band Hubbard model, except that
with z=2, u=1, anda=0.28 (full line). The results of Ref. 39 now we have an effective hoppimg:tf,d/(sp—sd). Our pre-
confirm our prescription of a smooth polynomial crossover from thevious approach remains valid and the dependence of the
U/t—0 to theU/t—c regime of the bandwidth in the Hubbard bandwidth on the parameters of the three-band Hubbard

16¢

14}

12}

1F

W/t

08¢

06}

04}

02

(o]

model. model can be reasonably described by
2
SinceW is a fundamental parameter for our discussion, _ 22tyzad5+ 2Zt,¢(1—9) 1
we will try to overcome this handicap with a simple interpo- £p—&q ep—e&qg 1+ b(U(sp—sd)/tf,d)“'
lation formula. We suppose that for the intermediate cou- (16

plings, there is no particular resonance, and the syste
switches smoothly from th&J/t—0 regime to theU/t—

regime. We propose the simplest two-parameter polynomia[tlﬁ
interpolation between the strong- and weak-coupling regim%
dependence dfV on the Hubbard parameters

The same occurs if next-nearest neighbors and other hopping
rms are included. Since our discussion is independent on
e hopping behavior, our analysis is valid whatever the elec-

onic dispersion is and many qualitative aspects of the dis-

cussion that follows argeneric

2z4(1-da(d/y* 2z4(1-6) IV. PHONON-DRIVEN INSTABILITIES IN A FERMI
1+aQdi* 2T 1xpUuine LIQUID WITH SHORT-RANGED INTERACTIONS
(19

W=2zt6+

Combining Egs(12), (13), and(15) gives sufficient(but
not necessapyconditions for a phonon-driven instability of

wheret is the hopping matrix element] is the local repul- the electronic system described by the inequality

sion in a Hubbard Hamiltoniang is the doping from half-

filling, and z is the number of nearest neighbdgzt=8t in 2zt(1— d)a(It)* ~ 1

the two-dimensional case considered in relation to high- 2zt5+ 1+a(dn” <92—m- (17
T.'s). This formula interpolates smoothly between tbe F

—0 regime whereW~2zt and theW—-c regime where Our feeling is that nesting effects or saddle points that

W=~2zt5. We remark thafl =2t U is the well-known pa- may lead to peaks in the density of states, would help insta-
rameter of thet-J description of the Hubbard modébb-  bilities. This is naturally contained in our analysis and we
tained after the Schrieffer-Wolf transformation mentionedcan distinguish two extreme cases wih physical situa-
previously, which impliesab=2"*. tions ranging in betweerFirst, we suppose that the elec-
The coefficientsa or b and u can be estimated by fit to tronic density of states is rather homogeneous all over the
the results of numerical calculations, although, their exachands, or in other terms, there are not important nesting or
values have no qualitative influence on the following discussaddle-point effects in the system. We are, therefore, in the
sion. In the very strong-coupling limil{/t—) in a square |ess favorable situation for instabilities. In that case, there
lattice we have from Eq(15) W~8ts5+8t(1—d)a(J/t)*,  exists a simple relationship between the density of states at
and since various numerical simulations point to a lineathe Fermi levelN(Eg) and the bandwidth W~ 1/N(Eg).
dependence of the bandwidth diit,***?we can choose Using this relation and Eq(17) we obtain the following
n=1. Taking alsa~0.28, we can reasonably {gee Fig. 1  sufficient condition for instability:
the J/t dependence oiV obtained by Poilblanet al*° from
numerical exact diagonalization on a cluster with one hole. 52
Better fits of these last results can be obtained by taking for T
examplex= 1.1 but this is not so important for our purpose.
The quality of the fit shown in Fig. 1, gives an indication on The condition for instability depends linearly on the dopihg
the validity of our interpolation formula, and also establishesexcept in the weak-coupling regime&J(t—0) where the

4z
~ 1+b(U/t)~

=

4z P (18)

Z
T Trp(UnE
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doping is an irrelevant parameter. In this last case, the con- 2zt(1-9) 1 2zt(1- 9)

dition for instability become@ 2/t=4z and is very difficult 2zto+ 1+b w v | U—2zt6+ 3
(Ult) c(U/t) 1+b(U/t)

to fulfill. Notice, however, that the smaller the number of

nearest neighborg the easier is met the condition for insta- T2 1 21)

bility which is a quite natural result. On the other hand, in =9 2N(Eg)’
the strong-coupling regimeJ/t— o) the border for instabil- o
ity is a line with slope 4 that crosses the origin. Whatever Here we also distinguish the two extreme cases of the most

the electron-phonon coupling is, at sufficiently small dopingdifficult and the easiest situation for instability, all realistic
a phonon-driven instability occurs even in the absence ofituations ranging in between depending on the details of the
nesting. The doping is now the relevant parameter. considered systems. The most difficult situation for instabil-
We suppose now that we are in a situation of perfeciy iS the case of a rather homogeneous density of states
nesting or with van Hove singularities on the Fermi level, Where the nesting or van Hove effects are negligible and the
which is the other extreme case expected to be the mogglationship 2V~1/N(Eg) is reasonable. Using this last re-

favorable for instabilities. Nesting or saddle points may leadation, the instability condition given by inequalitg1) reads
to a divergence of the density of states at the Fermi level

N(Eg)—<e, and the sufficientbut not necessajconditions 92=2| 2zt5+ 2z4(1-9) U—27t5
for instability become now 1+b(U/t)*|  1+c(U/t)”
_ 2zt(1-96)
CE PR S =
t 1+b(U/t)*|” " 1+b(U/t)

One can better understand the constraints imposed by in-

The inequality(19) is easier to fulfill than Eq(18) in all equality (22) writing it in the following form:

regimes. ~,
Equationg18) and(19) are sufficient conditions for insta- 9-

bility, in the sense that, when they are fulfilled, the systemis t

certainly driven to an instability. But the system could also

be unstable, even, if these conditions are not fulfilled. In fact, n 2z S+ 4z

an instability may also occur even W is higher thanv® [1+c(U/t)"I[1+b(U/t)*] 1+b(U/M)*

provided the conditioW=<V¢ is met. In order to be closer to

reality, we propose a second interpolation formula to de- + Uit _ 2z

scribe the relationship between the effective Coulomb inter- 1+c(U/t)” [1+c(U/t)”][1+b(U/t)*]’

actionV and the bandwidthv.

4z 2z

=427 T3 b0 1+ c(UN)”

=

(23

We plot in Fig. 2a) the instability condition as a function of
the hole concentratiof for different characteristic values of
N Uu-w -1 20 the ratioU/t in the casez=4 (e.g., 2D square latti¢ghe b
1+c(U/t)”’ ' and u parameters obtained by the fit of Fig. 1, and choosing
c=1 and v=2 to be in reasonable agreement with Kan-

This formula might essentially be valid in the small doping@mori’s result. In Fig. &), we plot the condition for insta-
regime which is considered relevant for high-supercon- bility as a funct_lon of the ratidJ/t for characteristic values
ductivity. Equation(20) interpolates smoothly between the Of the hole doping and the same parameters. For each insta-
U/t—0 regime where/~U and theU/t— regime where Dbility line thg upper part of the figure corresponds to the
V~W (at least in the small doping regimeWe see no u_nstable regime and the lowest part to the Fermi-liquid re-
physical reason for an anomaly at some intermediatg ~ 9'Me. o . _ -
especially whelW itself has a smooth behavior between the e see in Fig. @) that for a given ratidJ/t the condition
two (U/t—0 andU/t—) regimes. We must notice that a for |n§tabll|ty depe'nds Ilnearly od. This is not_spemflcally
similar relationship betweewW andV has been reported by assoma;ed to our interpolation formulas, but it is ra’gher due
Kanamor?® using the t-matrix approach V=U(1 © the Imgar& dependence 'oW |n.the U/t—oo regime.
+U/W) L. Kanamori’s formula is almost exact in the limit However, in the weak-coupling regiméJ(t—0) the slope
of large U and small density. Kanamori's result indicates ©f this linear dependence is always zero. This shows that
that there is indeed a smooth crossover from the weak- to thiEom the weak-coupling regime where the hole concentration
strong-coupling regime in the relationship betwaeandW. is totally irrelevant for the stability of the system, enhancmg
Kanamori’s formula is an excellent approximation even if it U/t, 6 becomes a relevant parameter. In thé— 0 regime,
is not formally exact a$— 0. We adopt here Eq20) thatis  the instability condition is trivialg 2=2zt and for realistic
a bit more general than Kanamori’s formula. As for the exactsituations is rather difficult to fulfill. The larger is the slope,
value of the parametersand v we are going to see that they the more sensitive is the system to the doping. In the
also do not have qualitative influence on our discussion. The» regime thes slope of the instability line that crosses
following qualitative discussion would not be influenced, if zero is maximal. The fact that it crosses zero implies that in
instead of Eq(20), Kanamori's formula was used. the U/t>1 regime the system is certainly unstable by the
Combining Egs.(12), (15), and (20), we can write the phonons at sufficiently smalf that becomes the crucial pa-
more precise condition for instability rameter. As we can see in Figk?, the necessary electron-

V=W
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FIG. 2. (a) The critical electron-phonon scatterigét as a func- FIG. 3. (a) Same as in Fig. (@) but for the cas&(Eg) — . (b)
tion of the hole concentratio® for a homogeneous band with game as in Fig. ®) but for the caseN(Eg)— .

N(Eg)=1/2W and a square 2D lattice £ 4) with the coefficients
b andu obtained from the fit of Fig. 1=1 andv=2. VariousU/t
regimes are considered)/t=0 (horizontal full line, U/t=0.1
(dashed ling U/t=1 (short dashegd U/t=10 (dotted and U/t
—oo (full line that crosses origin For each line the upper half
plane corresponds to the unstable regime and the lower half plane to ~ 2

the Fermi-liquid regime(b) The criticalg/t as a function ofJ/t for 9_2 oy 2z 2z

the same coefficients and various characteristic doping levels: t 1+b(U/t)* 1+c(U/t)”
=0 (full line), §=0.1(dashed ling §=0.2 (short dashed lineand

respond, for example, to a perfect nesting. We take here
N(Eg)—. Then the analogous to Eq23) condition for
instability becomes

6=0.3 (dotted ling (from bottom to top the doping increageBor n 2z St 2z
each line, the upper half plane is always associated with the un- [1+c(U/t)"I[1+b(U/t)*] 1+b(U/)*
stable regime.
u/t 2z
+ 7 5 = (29
phonon coupling strength for a phonon-driven instability 1+c(U/t)” [1+c(U/D)"][1+b(U/t)¥]

grows monotonically as the ratld/t is reduced, with essen- Figures 3a) and 3b) are the analogues of Figs(a? and
tially two regimes. A rather rapid doping independent in thez(b), the only difference being that het(Eg) —. Now
U/t<1 region and a sloweé dependent in th&J/t>1 re-  the situation is completely different in tHa/t—0 regime.
_gio_n. The doping aIvv_ays heI_ps _thc_e system tp preserve StabilThe condition for instability becomei?/tzo and is always
ity in the U/t>1 region, while is irrelevant in th&)/t<1. ¢ jjieq for a finite value of the electron-phonon coupling. In
From the previous remarks, we conclude that in the case offﬁe limit of weak Coulomb correlations afd(Eg) — we
a rather homogeneous band the instability condition is rather‘iecessarily have phonon-driven CDW instabilities, regard-
difficult to fulfill except in theU/t—o and §—0 situation |ess of the electron-phonon coupling strength. This instabil-
where the electronic system is certainly driven to an instabiljty is the well-known Peierls instability. Our approach con-
ity despite the absence of any nestiAg we will see next, in  tains naturally the possibility of a Peierls instability and this
the case of important nesting or van Hove effects the condican give an indication on its validity. We can say at first that
tions for instability are much easier to fulfill and the picture the Peierls instability occurs even if the range of the Cou-
changes qualitatively. lomb correlations is finite provided the on-site repulsion is
We now consider the other extreme case that could comweak.
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However, in theU/t—« regime the occurrence of a 25
Peierls-type instability is not automatiévhen the ratio Ut
has appreciable values, the doping becomes a relevant pa-
rameter even in the case of perfect nestilhenU/t— oo,
our previous discussion for the case of an homogeneous band
remains qualitatively relevant even if nesting or van Hove
effects are important. The condition for instability is, never-
theless, easier to fulfill in the case of perfect nesting, since
the 6 slope is twice smaller compared to that of an homoge-
neous band.

In this entire section we consider that the particular ge-
ometry of a given system is contained in the density of states :
N(Eg). In fact the hopping that appears in our formalism 0 TS50
does not enter our qualitative discussion but sets an energy ust
scale. Whatever the band dispersion of a given system, we FIG. 4. The critical§/t as a function ofU/t when N(Eg)

may find effective tight-binding fits that could require not _c, §=0.1 and the same coefficients as in Figs. 2 except that
only nearest-neighbor but also next-nearest neighbor ang@es three different values:=3/2 (full line), v=2 (dashed ling
other hopping termg;. The hopping that appears in our also shown in dashed line in Fig(t8, andv =4 (short dashed line
equations will be a combination of these hopping terms that

will be obtained considering only the kinetic term of the V. FORWARD SCATTERING DOMINATES
Hamiltonian as is done in th&//t—0 limit of the simple NEAR THE PS INSTABILITY

Hubbard Hamiltonian written n Equl4). The depsﬁy of We have mentioned previously that in systems with short-
statesN(EF) resu'lt.s from t'h.e given band dispersion, b“t_asrange Coulomb repulsion like Hubbard models, phonon-
far as the instability conditions are concerned, all physicalriyen ps instability is probable. Before the appearance of
situations will range in between the two limits of homoge- the instability, there are precursor effects that have unex-
neous and nested bands we are considering. The influence ﬁécted implications on the phenomenology. When the sys-
the specific dispersion of a system enters, therefore, our digem is close to the instability, the gradual appearance of the
cussion througN(Eg) and as we can see comparing Figs.instability singularity changes qualitatively the scattering be-
2(b) and 3b), the geometry of a particular system will influ- havior of the system. This very particular regime of quasi-
ence the physics qualitatively essentially in the redibft  singular scattering will be shown to be potentially relevant
<1. In theU/t>1 region, Figs. &) and 3b) display similar  for the understanding of various puzzles of the superconduct-
qualitative behavior and therefore the details of the considing phenomenology of the oxides and could be intimately
ered system have no qualitative influence. However, in theelated to the high-. phenomenon.

case of sharp peaks in the density of states the instability The vicinity of the instability will affect the effective
conditions are easier to fulfill also in tH@/t>1 region. If ~ composite interaction (g, w) given in Eq.(6). Up to now

we want the larger sensitivity of our physics to the dopliyg We studied the eventual divergence /bf next we will ex-

we must be in the rather strong-coupling regibié>1 but plor_e the effectlve_ interaction near the singularity. Or_l the
also it is better that our density of states is rather flat since aaSis of our previous approach, we are able to obtain the

we can see comparing Figga2and Zb), the largers slopes dependence of.the .effective inte_raction on.the H.ubbard pa-
are reached in the homogeneous band case rameters. For simplicity we consider only dispersionless op-
It is interesting to notice from Fig. (B) thé.t the most tical phonons and assume that the bare electron-phonon scat-

: S . tering amplitude has no relevant momentum structure. To
unfavorable case for a Peierls stability is whétt~1, since ;
the instability condition reaches a maximum at around  °PranA(d.«) from Eq.(6), we needv(q, ) andIl(q,»).
! my art xim . . We will only consider static effects taking the—0 limit.
~1 even at half-filling. The presence of a maximum is un-

: . ; In the RPA approximation we can replace the polarizabil-
avmdablg z_it least aﬁﬂo_smce in both thed/t—0 and ity by the “bare” particle-hole bubble
U/t— o limits, the system is unstable at any electron-phonon
f(Eksg2) = F(Ek—g2)

coupling.
K Sk Sk-gqe—@

ELECTRON-PHONON SCATTERING

05 fE

To illustrate that the choice of theor v parameters does o(g,0)= -2 , (25
not affect qualitatively our discussion, we display in Fig. 4
the U/t dependence of the instability condition for=0.1  where f(&,) is the Fermi statistical factor ang, the elec-
shown in Fig. 8b), for three different values of the exponent tronic dispersion. For example, in the oxides one can con-
v: v=3/2 (full line), v=2 also shown in Fig. ®) (dashed sider a next-nearest-neighbor tight-binding dispersion. In any
line) and v=4 (short dashed line We can see that there is case, the dispersion will not have qualitative influence on our
no qualitative change and the maximumtt~1 is just discussion which is essentially generic. As for the Coulomb
becoming a bit sharper as the crossover expomegows.  termV in Eqg. (6), we use the interpolation formul&$5) and
Finally, it is worth noting here also that the relatid@8) and  (20) to relate it to the Hubbard parameters. By calculating
(24) can be straightforwardly generalized to the three-bandhe bubble for a given dispersion using Hg5) we can,
Hubbard model, if we just replace in these relatidnisy t therefore, obtaim\ (g/kg,g/t,U/t,8). Our previous discus-
=t,2)d/(sp—8d). sion for the divergence ok remains valid. Now, we exam-



57 PHONON-MEDIATED UNCONVENTIONAL . .. 13751

1200 . . . . . . : . . 0.35 -
PRtd
w L e
Q 1000} L 08 e
g 5 o
g go2sf
2 so0} o e
15
Z 3 o2} -
[ E
E 600 - g &
< 3 oisl
3 =
[72)
w400 - z
('—_.; 8 0.1}
" 5
200 b
w 008}
n s i L 1 ve RIS 0 L 1 1 X 1 A 1. I I
065065 01 015 02 055 03 035 04 045 05 0 0.0004 G.0008 0.0012 0.0016 0.002

_—
QO

=

e}

DOPING FROM INSTABILITY

FIG. 6. The characteristic cutoff./2kr or width of the Lorent-
zian as a function o— 6° where 6° is the hole concentration at
which the phonon-driven instability occurs. The full line corre-
sponds to the situation considered in Fig. 5, and the dashed line to
the isotropic case where an homogeneous band is considered and
the bubble is replaced by the Linhardt function for the same set of
parameters.
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gularity in A(qg/2kg) (here the instability occurs at°
~0.1196. The vicinity of the instability implies a strong
. enhancement of the effective composite interaction at for-
~~~~~~~~~~~~~ ward scattering. This introduces a Lorentzian modulation in
______________________ ] the q dependence of the effective scattering with a charac-
""""""""""""""" teristic width (or smooth momentum cutgffg, that is be-
0005 01 015 02 055 03 085 04 045 05 coming smaller as we approach closer to the instalitige
(b) d Fig. 5(b)] and can get values as smallikgg10. This momen-
FIG. 5. (a) The phonon part of the absolute effective scatteringfUm modulation will be shown to introduce qualitative
amplitude| A| as a function ofq/2ks| as we approach the instabil- changes on the phenomenology that could have some rel-
ity reducings whenU/t=10 (fixed) andg/t=1. Here we consider €vance in the oxides.
a next-nearest-neighbor dispersion as described in the text, and the Notice that a similar result has been reported recently us-
evolution is given along the (@) direction. (b) Same as in@  inNg a slave-boson approach to a Hubbard model intle
reduced to unity. We see clearly the Lorentzian behavior of—c0 regime with nearest- and next-nearest neighbors hop-
A(g/2kg) and the effective momentum cutoff that is the width of ping and a Holstein electron-phonon coupling to a disper-
the Lorentzian. sionless phonof? It is remarkable that our simple approach
in the U/t—o0 regime provides results in surprisingly good
ine A in the vicinity of the instability. Giverg/t andU/t we  agreement with those of Ref. 42. In particular, we obtain in
can investigate how the/ks dependence of\ correlates this regime 8°=0.1915, while in Ref. 42 is reported®
with 6. =0.195. Our approach gives the possibility to obtain analo-
We show in Fig. 5 the evolution of the momentum depen-gous results at finite values of/t. For example, in the case
dence of the absolute value of the effective composite interd/t~10 considered in Fig. 5, the condition for instability is
action when we approach the instability. We focus heremore difficult to fulfill than in theU/t—o regime, that is
on the behavior of the phonon term neglecting the firswhy it occurs at a smaller critical doping{~0.1198). In
term of Eq.(6) which is just a repulsive constant. For the any case, the exact value of the Hubbard parameters is not
results of Fig. 5 we consider a next-nearest-neighbor tightphysically relevant and we will restrict our discussion to rel-
binding dispersion in 2D: §=—2t[cosk)+cosk)] evant qualitative aspects.
—4t'cosk,)cosk,) with t=0.25eV, t'/t=—-0.45 andu= The effective momentum cutoff or the characteristic
—0.44 eV. This type of dispersion produces a van Hovewidth of the Lorentziam\ (g/2kg) near the instability, will be
peak in the density of states 10 meV below the Fermi leveh central parameter for our discussion that follows. In fact,
and is considered as a first approximation fit to LDA band-we can reasonably fit thg dependence oA (g/2kg) with a
structure calculations for Y-Ba-Cu-88.We take the Cou- Lorentzian of the form/\/(1+|q|2/q§), whereq, is the ef-
lomb repulsionU/t~10 fixed and we give to the phonon fective smooth cutoff of the interaction. We show in Fig. 6
energies a value that could be relevant in the oxifles the evolution ofq./2kr as a function of the doping of holes
=40 meV. Theq dependence is along the directian  from the instabilityd— 6°, wheres® is the critical hole con-
=(0,9) and in the interpolation formuli we use the coeffi- centration at which instability occurs. At smait &°, the
cientsb and n obtained from the fit of Fig. 1c=1 andv  behavior ofq./2kg is generic, independent on the dispersion
=2. We see in Fig. &) that reducingé we approach the considered. In fact in Fig. 6 we consider two separate cases.
instability that is signaled by a gradual appearance of a sinfhe full line corresponds to the dispersion considered in Fig.
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5 described in the previous paragraph. The dashed line cofronic density of state§ARDOS) at that regionN(Eg ,k)
responds to a simple isotropic case, where we do not calcu= lue(k)| %, and thereforehe anisotropies in the supercon-
late the bubble from Eq(25) but just replace it by the Lin-  ducting state are induced by the anisotropies of the density
hardt function considering also an homogeneous band whegF states in the normal state

N(Eg) =1/2W and in the interpolation formulas the same |et us now illustrate how MD appears for small momen-
coefficients are taken. We remark that sufficiently close tqum transfer processes and why it is ey situation which

the instability, the dependence of/2k: on 6—&° is the  |eads to ARDOS-dependent anisotropies in the supercon-
same in both cases. The momentum modulation of the effeqjucting state. The anisotropic Eliashberg equation in the off-
tive scattering is, therefore, a robust effect that could be obdiagonal sector, for an Einstein spectrum can be written as
served in different materials and characterizes the singularitfo|lows:

in the effective composite interaction. Sufficiently close to

the instability (for q.<kg/4) we have approximatively AK,i0)Z(K,i 0p)

0c/2ke~220(5— &°). s

The extreme sensitivity of the momentum modulation of d?p
the effective interaction on the doping appears to be a serious = ”T% S § N(Eg,p)
handicap for the description of the doping behavior of the -
oxides within our simple approach. A similar sensitivity was lg(k—p)|2Q A(p,iwgy)

also characteristic of the results of Ref. 42 to which our O (o—0)? [P ort o .
results fit in thelU/t— regime although very few points are @n~ ©m)" o+ AX(p.i o)
reported there. It appears relevant for the oxides in the re- (26)
gime very close to the PS instability in which forward pro-
cesses dominate the scattering. If this regime is confined in We assume here that all relevant scattering is done on the
very narrow range of doping then one might think that by Fermi surface. Although we will consider smalscattering,
doping the oxides we induce very small variations of thewe suppose that its momentum range is, nevertheless, suffi-
hole concentrations in the Cy@lanes and we essentially ciently larger than thé-level spacing and therefore, a den-
built the charge reservoif$.This has been an open issue upsity of states on the Fermi lev®(Eg,p) can be defined.
to now. Another possibility is that this pronouncédsensi-  The k dependence is contained in the coupling structure
tivity is an artifact of adiabatic mean-field considerations. In|g(k—p)|2.
fact, using the correlated-random-field approximation and a |n conventionals-wave superconductors, it is assumed
conditional coherent-potential approximatiof°to study the  that the interactiong(k—p)|2 is smoothly varying on elec-
ground-state phase diagram of a one-band Hubbard modgbnic energetic scales and it is almost constant on the Fermi
without phonons, it was reported as numerical evidence fogyrface. Then, one can obtain an isotrdpimdependent gap
phase separation instability in an entire region of the phasgnction and this is the classical scenario forsawave su-
diagram and not just on a line as in our cdsénfortu-  perconductor. Notice that, as will be clear later from the
nately, for such types of treatment, a simple formalism likenumerical calculations, even if the electronic ARDOS
ours is not yet ava.ilable, it is however plaUSible that nona'N(EF ’p) is very anisotropiC, we obtain isotropic gap from
d|abat|C|ty will somehow broaden the transition lines even inmomentum_independent isotropic interaction.
our phase diagram. It is also conceivable that the system Qn the other hand, if one assumes thgk—k')|? has a
could be driven close to the PS |nStab|l|ty from the Coulombre|evant momentum dependence in the V|C|n|ty of the Fermi
effects alone. In that case we also eXpeCt its effective Scagurface(as is the case in a conventionddwave scenario
tering amplitude with phonon®r with some other bosonic \here this function reflects electron-spin fluctuation cou-
field) to be enhanced at small momenta and the followingyjing) then we obtain &-dependent coupling and using Eq.
discussion is still valid. This very interesting, delicate, and(1) one can obtain an anisotropic gap. In that case, the an-
CompleX iSSUe Of the dOpIng behaVior W|” be the fOCUS Of Ourisotropy Of the Superconducting parameters iS main'y im_
future investigations. In this manuscript, we attempt to estabposed by the anisotropy of the interaction that we introduce
lish the relevance of the vicinity to the PS regime for thegand not from the anisotropy of ARDOS. This is considered
understanding of the superconducting phenomenology of thgy general as the only way to obtain strong anisotropies in the
oxides. _ o order parameter. According to the prevailing view, a strongly
Similar plots to those of Fig. 6 can be made takifixed  anjsotropic order parameter reflects strongly anisotropic
and varyingU/t. The approach to the instability has always «“ynconventional” scattering(electron-phonon scattering is
the same qualitative effect of a strong enhancement of forsupposed to be rather isotropic
ward scattering processes. However, it is possible to obtain significant ARDOS-
induced anisotropies by considering &wtropic electron-
phonon interactiondominated by forward-scattering pro-
cesses. This can be illustrated taking an interaction which is
sharply peaked at zero momentufg(k—k’)|2~g2s(k
When forward scattering is dominant, there is “momen-—k’). Then from Eq.(1), it is easy to see that there is
tum decoupling”(MD) in the superconducting state, imply- momentum decouplingVe obtain anomentum-independent
ing a different coupling in different regions of the Fermi Eliashberg equation which provides the gap function
surface. In the case of MD, the coupling at each region of thé\(k,iw,) for each point k on the Fermi surface:
Fermi surface is proportional to the angularly resolved elecA (K,i w,)Z(K,iw,)~N(Eg k) Xisotropic terms This last

VI. DOMINANT FORWARD SCATTERING IMPLIES
MOMENTUM DECOUPLING IN SUPERCONDUCTIVITY
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equation is analogous to the isotropic Eliashberg equation 2.2
with a coupling strength proportional to the value of the
density of states at the given point of the Fermi surface
N(Eg ,k). The equations we obtain are isotropic with cou-
plings that may be different in different regions of the Fermi
surface depending oN(Eg,k). Of course, the gap will be
larger when the ARDOS and the resulting coupling are
larger.

Since the coupling strength at each pding proportional
to the electronic ARDOS at that point and since the Eliash- L e
berg equations for the different poinksare totally decou- 1.0 0 02 04 0.6 08
pled, the resulting momentum dependence of the gap will ' ' q/ x '
follow the momentum dependence of the ARDOS. We have, ¢
therefore, ARDOS-driven anisotropies. Notice also that F|G. 7. Evolution of the anisotropy ratio as a function of the
smallq scattering is theonly way to ARDOS-driven characteristic range of the exchanged momegtaForq.< 7/v?2 it
anisotropies. In fact, the ARDOBN(E k) is in a convolu- increases sharply indicating the onset of MD.
tion integral with the interactiofg(k—k')|, and it is a well-
known result of functional analysis that tlédunction is the
uniqueunity element of the convolution product.

Notice that as-function peak afj=0 is a rather unreal-
istic coupling function. We also noticed previously that we

assume that the momentum range is large enough to aIIOWig. 7 the ratio of the gap d0.m) over the gap at the points

the definition of the electronic ARDOS. However, MD oc- where the ARDOS is minimal/2,7r/2) as a function of. .

curs even fpr finiteq providedq is small com_pe}red to the We can see that fog.<#/v2 this ratio begins to be appre-
characteristic momentum of the ARDOS variations over the. . L

o : . . . Ciably different from unity indicating the onset of ARDOS-
Brillouin zone To illustrate this point we performed numeri-

cal calculations on a realistic two-dimensional BCS model.Induced anisotropy because of MD. It is clear that for finite

1.8 -

A(x, 0) / Alr, )

ciently smaller thanm/v2, MD should prevail leading to
ARDOS-induced anisotropies.
This is precisely what is obtained numerically. We plot in

AK)=—

In that case the gap is given by transferred momenta it is possible to obtain significant
ARDOS-induced anisotropies. We also remark in Fig. 7 that
(2 A2, even though the electronic ARDOS that corresponds to our
z Ak=pA(p) tank( &+ A%(p) dispersion is very anisotropic, the gap is isotropic when the
plE<0p Zm 2T range of the exchanged momenta is of the ot¢er!n fact,
(27) wheng.~ we haveA_(O,q_T)/A(qr_/z,w/Z)~1. Only if thek
range of the interaction is sufficiently small we can have
We consider an isotropis-wave electron-phonon coupling ARDOS-driven anisotropies in the order parameter no matter
having at small momenta a Lorentzian behavior as a functiohow anisotropic is the electronic system. This is why very
of the norm of the exchanged momentdiour analysis con-  different conventional superconducting materials with differ-
cerns processes in which the momenta exchanged are smalkt electronic structures have an isotropic gap as observed

compared to the Fermi wave vector for example by tunneling.
K—pl2| -1 Therefore, the proximity of PS instability, manifests by
A(k—p)=—A° 1+| 2p| ) (28) the dominance of forward scattering that implies MD and
c opens a new channel for anisotropic superconducting behav-

r even if the involved scattering is isotropis central issue
our understanding of the mechanism of highis to es-
blish whether the anisotropies in superconductivity are due
MD or are simply due to the more “conventional” chan-
nel of anisotropic scattering. For example, the approach of
%‘pin—fluctuation scattering in the analysis abfwave super-

In this spectrum the electron-phonon scattering is dominate'ﬁﬁ
by the processes which transfer a momentum smaller that%l
d.. As we discussed earlier a scattering of the form of Eq,[0
(28) describes well the effective pairing interaction when the
electronic system is close to the phase separation instabilit

The_ closer the system i.s to the instabiIiFy the smallegds conductivity belongs to the second categttin the follow-
Notice that the d|scgssmn that follows is unaffected by theing we will discuss some specific qualitative characteristics
use of another functlonal type of momentum cutoff, the re"of MD that may help answer the crucial question of the ori-
ev?:nt palraTeter be|n|? In faqg. h the simol ¢ gin of anisotropies in the oxides. We will see in particular
or clarity, we will consider here the sSimple nearest-y, ¢ some puzzling qualitative aspects of the phenomenology

neighbor tight-binding dispersion at half-fillingé, = fth id to b tural f MD
—2t[ cosk,) +cosk,)] (the lattice spacing is taken equal to Of the oxices appear fo be nailiral consequences o '

unity). The Fermi surface is a square definedkyy-k,* 7
and k,=—-k, =7 with saddle points at (&)
and (= ,0). The minimum of the density of states on the
Fermi surface is obtained at the points £/2,= #/2) and
therefore the characteristic length of the ARDOS variations We will focus on the superconducting phenomenology
over the Brillouin zone ist/v2. We expect, therefore, that because obviously our approach neglects various aspects of
for g.> 7/v2 the gap might be isotropic, while fay. suffi-  the physics of the oxides. For example, magnetic effects are

VIl. MOMENTUM DECOUPLING
AND THE SUPERCONDUCTING PHENOMENOLOGY
OF THE OXIDES
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not taken into account. In the normal-state phenomenologgirection indicating anisotropis-wave symmetry’ These
all these relevant parts of the physics manifest. However, itast results indicate that the gap symmetry varies with the
the superconducting state, the physics is dominated by theoping, yet the material remains a high-superconductor
scattering with the bosonic processes that mediate the pairinghe overdoped material hds.=83 K, while the optimally
(in conventional cases these bosons are phoramms there-  dopedT.=92 K). Recent Raman spectroscopy results con-
fore our simple approach could be satisfactory if these profirm this behavior in Bi-Sr-Ca-Cu-O and report the same
cesses are in the MD regime. phenomenon of doping-induced gap symmetry transition in
overdoped TJBa,CuOs, 5.°8 High-T, appears thereforaot
associated with a specific gap symmetry, but rather associ-
ated with a “volatility” of the gap symmetrySuch “uncon-
The symmetry of the order parameter is in the center oventional” behavior is a smoking gun for momentum decou-
the debate for the origin of highz superconductivity. It is  pling.
generally believed that the symmetry of the gap should also We will show in fact that, isotropis-wave interaction
indicate the nature of the pairing mechanism. According tathat could be mediated by phongris the momentum de-
the general approach the symmetry should allow one to dezoupling regime can lead teither swave ord-wave super-
termine whether cuprates are conventiogalave supercon- conductivity depending on parameters that ax@&ginal for
ductors with an interaction that could be mediated bythe pairing. These parameters are the magnitude of the Cou-
phonons, or whether they are unconventiothalave super- lomb pseudopotentigh* and the characteristic momenta of
conductors in which case the pairing interaction should behe variations of the Coulomb pseudopotentidl compared
due to spin fluctuations or to some other exotic mechanisnmo the characteristic momenta exchanged during the pairing
In the spirit of this approach, all high; materials should interaction. It is possible that overdoped,8,L,CaCuyQOg is
have the same gap symmetry and their high critical tempergARDOS-driven anisotropjcs-wave and YBaCu;O; as well
tures should be intimately related to the symmetry of the gapas optimally doped BBr,CaCyOg are (ARDOS-driven an-
The experimental situation is far from being in convincing isotropig d-wave superconductors all havirthe sameat-
agreement with the previous approach. Angle-resolved pharactive isotropics-wave pairing interaction in the momen-
toemissionfARPES on overdoped Bi-Sr-Ca-Cu-@Ref. 47 tum decoupling regime. In addition, we report the possibility
indicate an anisotropis-wave gap havingr-dependent an- for transitions froms wave tod wave and vice versa by
isotropy that will be shown later to be evidence in support ofdoping sinceu* depends sensitively on it, and this appears
MD.*® However, various phase sensifiVeand node to be the case in Bi-Sr-Ca-Cu-O. Of course it will be obvious
sensitivé® experiments on YBZLu;0; report evidence of a thatd-wave gap symmetry does not imply a spin-fluctuation
sign reversal of the order parameter supporthgiaves®  pairing mechanism
even though experimental contradictions still persist for Irrelevance of the symmetry of the order parameter for the
Y-Ba-Cu-O (Refs. 52, 53 that will be shown later to be free energy has also been reported in a model proposed to
understood within MD as resulting from the orthorhombic describe the “spin gap” in underdoped cupratesThis
distortion of the Cu@ planes. On the other hand, it appearsproperty is also seen in another model in which the Fermi
now established that electron-doped oxides are rather isotraurface is divided in three independent pieces and the inter-
pic s-wave superconductors. action has a low-energy cutdff.The possibility for material
Recent angle-resolvent photoemission results are vergpecific gap is reported on taJ model with three lattice
puzzling reporting that optimally doped Bir,CaCyOg has
a node in th€1,1) direction consistently witld waves and in 4
agreement with other measuremetits? while on the other
hand, the overdoped material has a finite gap in this same

A. Marginality of the superconducting gap symmetry

0.25

0 0.785 1.57 2.36 3.14
k

COULOMB PSEUDOPOTENTIAL

FIG. 9. The gap along a quadrant of the Fermi surface defined
by k+ky=m as a function ofk, (or k,) for a momentum-
, ) , ) , , . ) independent repulsiop* and Q.(e-ph)=/12. We consider the
o+ 2 3 4 5 6 7 8 9 10 s-wave channel ang.* =0 (upper full lind, w*/g?=0.05 (triple-
dot-dashed ling w*/g?=0.21 (dot-dashed ling w*/g?=0.22
FIG. 8. The Coulomb pseudopotential given from E80) as  (dotted ling, u*/g?=0.30 (dashed ling and thed-wave channel
function of U/t for different hole concentrationdrom top to bot-  for the sameu* /g ratios (lower full line). Thed-wave solution is
tom §=0,0.1,0.2,0.3 independent of.*.
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terms®! and similar numerical results were reported by Hell-qualitative understanding of the behavior @f* in a

berg and Manousakf€.Nazarenko and Dagoftbproposed a Hubbard-type Fermi liquidHFL) by considering a simpli-

specific Holstein model with nearest-neighbor attractionfied picture of a material with homogeneous band and adopt-

which leads tad-wave superconductivity with the spin fluc- ing thatu* is given by the following relatiofi’®®

tuations playing a secondary role. A similar approach was

also developed by Song and Ann¥ttkamimuraet al,®®

166 N(Eg)V

and Peraliet al. w*= )
Within our approachu* corresponds to the first term of 1-N(Ep)V In(Q/W)

Eqg. (6) renormalized by retardation. While our scheme ac-

counts for the qualitative fact of the presence (of, its  The renormalization of the Coulomb repulsion by retardation

quantitative evaluation is out of the question within our ap-is explicit. In fact there is a characteristic “distance” be-

proach. Not only is a simple RPA approach questionable fotween electrons in the superconducting state associated with

the dynamic behavior, but the retardation renormalization itthe characteristic time for the absorption of the virtual pho-

self in an anisotropic system is a very complex issue andion that mediates the pairing. Since E2P) is valid in the

obtaining quantitative results of that type is beyond the scopease of homogeneous bands we hat§R:)~W~!. Then

of this manuscript. We can, however, easily obtain someombining with Eqs(15) and (20) we obtain

(29

L1 1 U/t ) 1 U/t )
K =2 | M Treum 2zer 22— s buiF Y| 2 | Treun” \Bsr - s+ b(UinA] L
QO 1 -1
XIn | gsrsa—srirbuiA) || (30)

We show in Fig. 8 thaJ/t dependence of.* for different to the phase separation instabilitfor example 5— &°
hole concentrations. WhenU/t<1 the doping is irrelevant, ~10"*). The momentum dependence of the gap in the
while in theU/t>1 regime it becomes relevant. The larger S-wave channel at zero repulsi¢apper full ling is due to
the hole concentratios, the smaller the sensitivity gi* on ~ momentum decoupling. The anisotropy in both channels is
the local Coulomb repulsiot/t in the Ut region. Usu- therefore ARDOS drlve*n since our interaction is isotropic.
ally, in conventional superconductoys? plays just the role When we introduce.® in the s-wave channel, the gap is

: : : ; reduced by a constant amount in all directidigple-dot-
of an effectlvs negative COUp“rﬁj’bUt for a system_ in the dashed lingresulting therefore in an effective enhancement
MD regime u* becomes a crucial parameter having unex-

R of the anisotropy. At a critical value of the repulsion which
pected implications on the gap symmetry.

. . in the case considered in Fig. 9 is on the orgef/g?
We performed calculations on a BCS model as that in Ed. g 21 (dot-dashed ling the gap becomes almost zero in the

(27), but the interaction is taken here\(q)=A(d) () direction, and we have discontinuougransition to a
+w1* (). The effective interaction is, therefore, the sum of new gap symmetry structure with two nodes in the quadrant
the attractive interaction, due to the electron-phonon coushown in Fig. 9(dotted and dashed linedn this new state
pling A, that will be taken to have a form as that in EB8),  the gap becomeimdependenbf the magnitude ofu* and
and the effective Coulomb repulsion* (q). The pairing the areas of the Fermi surface in which the gap is positive are
scattering is dominated by the processes which transfer equal to the areas in which the gap is negative. We will see
momentum smaller than the effective momentum cutoff denext that this new state is not the physical state occupied by
fined here agg-Ph_ Qg-Ph is the relevant parameter and the the'system because at thast the d-wave solution is ener-
particular shape of the interaction is irrelevant. As for thegetically more favorable.
repulsive interaction, it is first supposed momentum indepen- Thed-wave solution is also characterized by the indepen-
dent u* (q) = u% as in Eq.(30) (hard-core-like yet finite re- dence of the gap on the magnitude;f. The origin of the
pulsion or contact repulsionBand-structure effects are mar- répulsion-independent gap lies on the momentum indepen-
ginal for our discussion and for clarity we show, here alsodénce ofu”, and on the equality of the Fermi-surface areas
results corresponding to the simple nearest-neighbor tigh#/ith positive and negative gap. We can see this analytically
binding dispersion at half-fillingt, = — 2t[ cosky) +cosk,)] by co_n&dermg a circular Fermi surface. If the gap on the
(the lattice constant is taken equal to upity Fermi surface has the formy,=A cosfi¢) wheren is the

We show in Fig. 9 some of the calculated momentum-Number of nodes ang is the polar angle in the usual polar
dependent gap functions on the Fermi surface, for differengoordinates, then the momentum-independent repulsive con-
values ofu? in both thed-wave ands-wave channel. When f[r|but|on to the gap function becomes proportional to the
k (ky or k) varies from 0 tor we cover a quadrant of the integral
Fermi surface which is defined bk +k,= 7. Here we take
QP'~ 7/12 which places us deeply in the momentum de-
coupling regime and might characterize a system rather close

|:j2ﬂ- A cogng)

d =0 31
0 V&R +A%cog(ng) 3D
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Free energy gain (arb. units)

0 0.05 0.1 0.15 0.2 0.25
Repuision

FIG. 11. The absolute value of the free energy gain due to the
) superconducting transition as a function of the rati§/g? for

FIG. 10. Theswave gap(full lines) and thed-wave gap — q (e-ph)= /12 andQ,(Cb)= /4. The dotted lindtriangles cor-
(dashed linessas a function ok, (or k) on a quadrant of the Fermi - o5n4nds to thel-wave solution and the full lincircles to the

. . 2
surface, for three different values of the repulsia§/g°=0.05, ¢ \yave solution. The physical solution is that with the higher abso-
0.15, and 0.25, in the ca&g.(e-ph)= 7/12 andQ (Cb)= /4. The | te free-energy gaiflower free energy

smaller the ratiqu} /g2 the larger is the absolute value of the gap in

both thes- andd-wave solutions. solutions is the physical state of the system, one has to cal-

culate the free-energy gain due to the superconducting
which is identically zero. Therefore, a gap changing sign transition®® the physical solution being that with the higher
periodically on the Fermi surface eliminates the effect of anyabsolute free-energy gaithe lower free energy Of course,
momentum-independergpulsion providing a qualitative un- the solution with the higher free-energy gain is that for
derstanding of the discontinuous nature of the transition irwhich the integral of the absolute value of the gap on the
the s-wave channel in Fig. Yfrom dot-dashed line at Fermi surface is higher and this is also the solution with the

w*1g?=0.21 to dashed line at*/g?=0.22. We remark higherT,. The condensation free energy at zero temperature
that the nodes we obtain have a finite slope and therefore ig given by°

linear T dependence of the penetration depth in The 0

regime is plausible. 1 /§2+ AZ—¢ A2
The g independence oft* in the simple case considered F%N Z K K > K 5 ko 2k (- (32
in Eq. (30) is due to the locality of the repulsion in our K VE AL 2VE+ AL

model. However, in realistic situations* is expected to be . . .
X In Fig. 11, we show the evolution of the free-energy gain
momentum dependent. This momentum dependence can :
. . . (@bsolute value of the free energy due to the superconducting
either due to a nonlocal repulsion or due to the retardatio

renormalization of this quantity since it is always associate(}ransmg,!1 n arbnrar;g_‘l)Jhnltjsas a function of,uolg? |n. the
with a characteristic time a characteristic distance in a FermffS€Qc = /4 ansz_c = m/12. Thes-wave solution is fa-
liquid. For example, if the diameter of the pairs in the oxidesvorable whenug/g< is small but when this ratio takes values
is about four times the lattice spacing, we could expect darger than a critical value of the order af/g”~0.15 then
characteristic momentum of the ordeg/4. A realistic cal- the d-wave solution becomes more favorable. Therefore,
culation of theq dependence of.* in the oxides would transitions froms-wave to d-wave superconductivity and
require a retarded framework which is very complicated for avice versa appear possible depending on details. Notice also
Hubbard model and is in any case beyond the scope of thikat the evolution ofT . follows essentially that of the free-
manuscript. energy gain, and from Figs. 10 and 11 one can conclude that
To introduce a smooth momentum cutoff for the varia-the negative effect gi* on T is smaller in the case of d
tions of u* and be more realistic, we consider a structurewaves than in the case of s waves
analogous to that of the pairing interaction written at small ~ Suchs-d transitions occur in our system at conventional
aSM*(Q):M3[1+|Q|2/(ng)2]_1. in which caseQEb rep- Values of the Coulomb pseudopotential already observed in
resents the characteristic range of the exchanged momen@w-T. superconductor®. The critical uj is very dependent
(smooth cutoff in the repulsive interaction. The important on the ratioQS™YQS®. We studied the evolution of the free-
parameter is the momentum cutoff in the repulsive interacenergy gain in thes- andd-wave channels as a function of
tion QSP compared to that in the attractive pairing interactionug /g for different values ofQSPYQSP. This allowed us to
&Ph ‘We show in Fig. 10 ths-wave andd-wave gap so- construct the phase diagram shown in Fig. 12. We also made
lutions for ng: w4 anng-Ph: x/12. Now thed-wave so- @an analogous study in the case of different momentum struc-
lution is not u* independent but it still appears to be lesstures ofu* having an effective momentum cutoff and the
sensitive tou* than thes-wave solution. It is clear from Fig. resulting phase diagrams are similar to that of Fig. 12. When
10 (and also Fig. Dthat at some critica* the absolute for a given QSP1QS® the ratio u*/g? is larger than the
d-wave gap will become larger in average than sheave critical value shown in Fig. 12, the gapdswave. It is clear
gap, and this will become the energetically favorable state.that the smaller the rati@SPYQS®, the smaller is the value

To find out which one between thewave andd-wave of the critical repulsion, while fo¢P" of the same order as
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0.3 X We should only notice here that the orthorhombic distortion
turns out to be favorable for treechannel and appears there-
< 7T fore natural that in Y-Ba-Cu-O tha& channel is robudiin the
% oel d channel thed-wave component is dominant, however, be-
=3 D - wave cause of the distortion there exists also a misarompo-
o 0.15 - nenj.
8
ig o1 r B. Temperature dependence of the shape of the anisotropy
0.05 ¢ S - wave Clearly, a fundamental issue in the analysis of the super-
conducting behavior of the oxides should be to distinguish
°, 0'1 0'2 0'3 0'4 s whether the anisotropies or even tdesymmetry reflect

Qc (e-ph) / Qc (Cb) anisotropies of the scattering amplitudie that with spin
fluctuationg or are simply due to momentum decoupling. If
FIG. 12. Phase diagram. The critical repulsia§j/g? for the ~ the anisotropy is driven by anisotropic scattering, then it
transition froms-wave tod-wave superconductivity as a function of should be temperature independent since usually the scatter-
the ratioQ.(e-ph)/Q.(Ch). The upper region of the graph corre- ing amplitude is also temperature independent. This is con-
sponds to thel-wave state. tradictory to the temperature dependence of the anisotropy in
slightly overdoped BiSr,CaCyOg, s reported in Ref. 47.

CP the d-wave solution is impossible and this is probably According to Ref. 47, while the gap in the—M direction
the case in lowF, metallic superconductors. Since in the (0:7) vanishes exactly at., in thel'=X (m,m) direction a
MD regime Qg—ph<kp, we can also haVQg—ph< ((::b’ in smaller critical temperature characterizes the gap variations.

. S . This has been analyzed in Ref. 71 as an indication of a mixed

which cases- and d-wave superconductivity are energeti- ymmetrys+d gap, assuming that the different gap symme-
_caIIy close r_:md_ both states_are physically acceptable depen ies have differemf dependences ned,. We will give an
ing on details like the precise value and structurg.t alternative interpretation of this behavior in the framework
_ Itis quite plausible that by overdoping Bi-Sr-Ca-Cu-O we ¢ \1p 48 Our basic observation is that the system behaves as
induce a transition froml-wave tos-wave gap as reported if the superconductivity af' —M direction is not influenced

by Kelley etal®” While a realistic calculation ofu* in by the superconductivity at thE— X direction, and this is
Bi-Sr-Ca-Cu-0O is not possible within our simple approach,precise|y the implication of MD.

there are qualitative points from our analysis that make plau- | Mp was perfect in BiSr,CaCyOg, 5 the temperature
sible thisd-s transition by overdoping Bi-Sr-Ca-Cu-O. In gt which the gap disappears in the- X direction should be
fact, the smaller the hole doping the smaller is expected t0  gmaller than that in th& —M direction. In fact, since the
be the effective cutoff of _the pairing interactiésee Fig. 3  ARDOS is smaller in tha’— X direction the coupling is
and therefore thel state is favored. As we enhanégwe  smaller and thereford, is naturally smaller. The critical
move gradually away from the instability enhancingtemperature for superconductivity is the temperature at
QEPYQSP (see Fig. 5 favoring therefore a transition t6  which not any gap is present in any direction, and therefore it
wave (see Fig. 11 In addition, the anisotropis-wave state corresponds to the temperature at which the larger(igahe
is obtained naturally in the overdoped regifas far as pos- I'—M direction reflecting the larger couplingthe larger
sible from the antiferromagneti@\F) statd, since the closer ARDOS) vanishes. Therefore, if MD is perfect the anisot-
we are to the AF regime, the larger is expected the ratigopy divergesin the vicinity of T, since the gap away from
w*1g which favors thed state within our analysis. On the the optimal direction is expected to vanish at a temperature
other hand, if the anisotropies were imposed by anisotropismaller thanT.
scattering for example, with spin fluctuations, such variation In the realistic situations where MD is not perfect, we do
of the gap symmetry with doping appears very difficult to not expect a divergence but a strong enhancement of the
understand® anisotropy neai., which could very well account for the

It is important to notice that thd-wave state we obtain is experimental results. We will show in the following how the
anisotropic and its anisotropies are driven by the ARDOSesults of Ref. 47 can be reproduced qualitatively when finite
anisotropies in the same way as for thavave state dis- momenta are transferred, doing numerical calculations with
cussed in the previous sectithThis is clear in Figs. 9 and the BCS model that we used previou§kgs.(27) and (28)]
10, where thed-wave solution away from ther/2,77/2) di- and the same nearest-neighbor tight-binding dispersion. In
rection has exactly the form of thewave solution. When Fig. 13, we report the temperature dependenci(6fr) and
we are in the MD regime we always have different couplingsA(sr,7) (gaps at thé0,7) and(7/2, #/2) points of the Fermi
in different regions of the Fermi surface whatever the symsurface, respectivelyfor different values ofg., and in Fig.
metry of the gap. In particular all of our discussion that fol- 14 we give the corresponding temperature dependence of the
lows on the origin of the dip structure, the correlation of anisotropy ratioR=A(0,7)/A (7, 7). The critical tempera-
gap, dip, and DOS anisotropies, and the asymmetryures are obtained solving numerically the Hermitian eigen-
of superconductor—insulator—normal-met&6IN) tunnel  value problem of the linearized BCS equations riEar It is
spectr&® is independent of the gap symmetry. Notice finally remarkable that th&, we obtain corresponds precisely to the
that many of the contradictions in the gap-symmetry spectrotemperature at which the larger gfip the (0,7) direction|
scopic experiments on YB&u;O; may be quantitatively un- vanishes. The momentum grid in these temperature-
derstood within our picture if we include the orthorhombic dependent solutions has to be adapted to the gap magnitude
distortion of the Cu@ planes(this will be discussed latgr  and for each one of the points, several hours of CPU time in
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FIG. 14. Temperature dependence of the anisotropy ratio for
- g.= m/4 (circles, q.= /12 (triangles, and q.=7/20 (squares
T The increase with temperature of this ratio is a clear indication of
) MD.
N
e reaches values one order of magnitude larger figarAt a
< first view, the results of Ref. 47 indicate the perfect MD
regime but one should bear in mind that if the small gap is
smaller than the temperature at which it is measured, it is
experimentally inaccessibl@ Taking into account such ther-
mal effects neglected in our BCS model, the results of Ref.
47 can be qualitatively understood even withof the order
/10. A remarkable point in Fig. 14, is that the anisotropy
cl? ratio R grows linearly as we increask towardsT, in the
= MD regime. We verified this result numerically but we have
N not succeeded in obtaining an analytic understanding of it.
- If the anisotropy is due to an anisotropic interaction and
F does not reflect the DOS anisotropy, then we expect it to be
temperature independenWe can understand this very easily
by remarking that the same interaction that leads to the gap
also leads tdl'; (that is why the ratio A/T has a physical
meaning. If the gap anisotropy at— 0 reflects the anisot-
0.0 0.2 0'41[-/ TO'G 0.8 1.0 ropy of the interaction, then since the same interaction is
<

present afT=T., the same gap anisotropy should also be
FIG. 13. Temperature dependence of the dajn the (,0) present wherif—T,. This is also the result of numerical
(circles and in the(s, ) (triangles directions for three character- simulations in the Spln-fluct_uatlon pairing scenario. T_here_-
istic ranges of exchanged momerda. Lowering g there is a fore, the enhancement of anisotropy W|th temperature is evi-
continuous evolution in ther, ) direction through perfect Mp, deénce of MDand cannot be understood in the case of aniso-
implying two different critical temperatures. tropic interactions like these considered in the spin-
fluctuation pairing scenari®®. The study of thél dependence

. . ) of the shape of the anisotropy is therefore a crucial test for
a standard Unix workstation are necessary. The points very,, pairing mechanism.

nearT. require a few days of CPU time. The regularity of

our points reflects the quality of the numerical convergence,

and the linear temperature behavior of the anisotropy ratio ~ C: The behavior of the anomalous dip above the gap
nearT, is an intrinsic characteristic. in the density of states

When q.=n/4 the DOS-induced anisotropy because of The presence of a characteristic dip structure above the
partial MD is already significantR~1.7), but the anisot- gap in the density of states of all high- materials is now
ropy is almost temperature independent. In fact one can sasstablished. Various interpretations of this dip have been
in Fig. 14 that the rati®R is temperature independent in that proposed in the literaturé= "% It has been shown in Refs.
case. When we consider smaller valuesopf there is a 74-76 that when the coupling strength exceeds some char-
continuous deformation of the dependence ak(w,7) from  acteristic value of the ordex~2 then the dip structure ap-
the largeg, regime where the anisotropy rati® is almost  pears above the gap at an energy of the orderThis dip
temperature independent towards thie~0 regime where as  structure has nothing to do with the spectral structure of the
expected in perfect MDA(r,7) should have a BCS behavior phonons and its position in energy is correlated with the
going to zero at a temperature on the order of Q,6and  value of the gap and not with phonon energies. The dip is a
therefore the anisotropy ratio should diverge clos&toWe lifetime effect of the pair€’’ and accompanies other char-
see this clearly in Fig. 14, where the anisotropy rdfo acteristic qualitative modifications of the BCS phenomenol-
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ogy at large couplings like, for example, the absence of garts of the Fermi surface. But within the MD scheme, the
Hebel-Slichter pea®~8°and the anomalout dependence of tunnel spectrum is made up by quasi-independent contribu-
the density of states of excitatiofis'® Therefore, within tions of the various parts of the Fermi surface. The contribu-
conventional BCS theory, if the coupling is larger thar=2  tion of theI’—M region naturally dominates, since the van
[which corresponds to £/T.>5.0 (Refs. 16,17] then the Hove singularity is extended and covers around 30% of the
dip must be visible above the gap, and since experimentBrillouin zone. The dip structure seen by tunneling reflects
measure large gap ratios the dip is naturally present as dighe contribution of the singular region and is therefore
cussed in Refs. 75 and 76. The following analysis of theequally sharp with the dip structure seen by ARPES in this
anisotropic behavior of the dip structure could be consideredirection. o _ o
as a strong support to the dip interpretation of Refs. 74—77. Since the physics is dominated by the contribution of the
The first remarkable point in the study of the density ofSingular regions, we can naturally understand the asymmetry

states within strong-coupling BCS theory is that the isotropicOf the tunnlelintg spe?ra of Refl. 85.' n I)act, the ?r']p s;’;ructﬂre
strong-coupling solutions of Eliashberg equations provide és, seen pny at negative samp.e '_as' i ecause the an. ove
dip structure in surprisingly good agreement with singularity in thel'—M (0,7) direction isbelowthe Fermi

experimen?" It is well known that the oxides are highly level. Measuring at positive sample bias, the dynamic behav-

anisotropic and the relevance of isotropic Eliashberg calcu!®’ reflects the density of states abave the Fermi leselin

. : L : =~ . inverse photoemissionThe presence of the dip at negative
lations is very surprising. The answer to this puzzle is given le bias and its absence at positive sample®Biisii-

: : ; amp
D e e ©2%Cates hat the densiy of states at an energy of the ordér o
tions in the different points of the Fermi surface. If MD were (the optimal gap in thd”—M direction) above the Fermi
perfect, at each point of the Fermi surface the superconducl€Vel: i at least 30% smaller than that at an enexdyelow

ing behavior would obey the isotropic Eliashberg equationdn® Fermi level, and this can be easily obtained given the
with a coupling strength proportional to the ARDOS at thatPresence of the Van Hove singularity in the-M direction.
point. Within the analysis of the dip given in Refs. 75 and Because the DOS is smaller above the Fermi surface, the
76, the dip visibility is correlated with the magnitude of the coupling is smaller and the dip is no more visibfe.

coupling strength. The stronger the coupling, the sharper and

deeper the dip, which can be viewedaagualitative measure D. Large effects of orthorhombicity in Y-Ba-Cu-O

of the coupling strengthAccording to the dip interpretation without involving the chains

of Refs. 75 and 76, an eventual anisotropy of the @&

ported for example by ARPBShould indicatadifferent cou- still controversial. While phase-sensitive experiments estab-

plings in different directions lished that the order parameter reverses its sign on the Fermi

Within the MD scenario, we expect in the case Ofsurface indicatingl-wave symmetryc-axis Josephson tun-
Bi-Sr-Ca-Cu-O the coupling strength to be stronger in the y ye P

N : : neling experiments on the same material indicated the exis-
I'—=M(0,7) direction since the extended van Hove singular- J exp

L et tence of a significans component#® This late conclusion
ity is present there and the ARDOS s higher. We also expetloe s 1o pe reinforced by the relative insensitivity of the

that moving away from thd"—M(0,m) towards thel'=X  gyperconducting critical temperature on the presence of non-
() direction on the Fermi surface, the coupling strengthmagnetic impurities or defecfé.It appears experimentally
should be strongly reduced. There is a qualitative featurgnat the gap has a dominadtwave component but also a
common toall ARPES experiments that certifies that indeeds;gnificants-wave component. It has been argued that this

moving from thel’'—M to theI'—X direction on the Fermi pehavior indicates the existence of two different
surfacewe move from a strong-coupling regime to a weak-condensate¥.
coupling regime In fact in thel'—M direction is clearly The mixing ofs andd components arises naturally when
seen a sharp dip structure above the gap that according the lattice is orthorhombically distortéd.Large orthorhom-
Refs. 75 and 76 indicates rather strong coupling-8). Itis  bic distortions have therefore been invoked in order to un-
acommon trend of all ARPES experimetitat moving from  derstand the experimental reports in %Bag0-.29~°* How-
I'—M towardsI'— X, the visibility of the dip drops gradu- ever, the orthorhombic distortion of the Cu@lanes in the
ally and the dip is totally absent in tHeé— X direction. We  case of YBaCus0- is only a few percent£3%) and such a
recall that not only the dip visibility drops but also the elec- small distortion cannot induce significant mixing fcom-
tronic ARDOS and the gap magnitude. To our analysis thigponents in al-wave spin-fluctuation-mediated pairing. In the
might be considered as a strong support to MD. We are natase of BjSr,CaCyOg such orthorhombic distortion is es-
aware of another theoretical interpretation for toerelation  sentially absent and the in-plane structure is tetragUrigte
of the dip anisotropy, with the ARDOS and gap anisotrapiesabsence of mixing of gap symmetries in,8LCaCyOg

In the scheme of MD, we can also understand a fundaeould indicate that the orthorhombic distortion in
mental characteristic of the experimental measurements ofBa,CusO; is indeed involved in the mechanism that leads
the density of states in the oxides. In fact the tunnéfimpd  to the symmetry mixing in this last material.
ARPES measurements in the optimal for the gap direftion  To reconcile the large orthorhombicity effects required by
report very similar dip structures above the gap in the densityhe phenomenology and spin-fluctuation-mediated pairing,
of states of excitations. This is very surprising since ARPESCarbotte and collaborators argued that the Cu-O chains are
reports the spectral function at some specific direction, whilénvolved in superconductivity and a large part of the conden-
the tunneling spectrum arises from the contribution of allsate is located ther.Since the chain band concerns only

The symmetry of the order parameter in :BayO; is
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one direction in thab plane, if chains are involved, large in 8
plane anisotropies are reasonable. Large anisotropies be- 7L
tween thea andb directions are also reported in microwave
penetration depth measuremetit©On the other hand, sup-
posing that the chains contain part of the condensate and are
therefore crucially involved in the pairing mechanism is dif-
ficult to reconcile with the fundamental similarities of super-
conductivity in Y-Ba-Cu-O with that of the other highs
cuprates where the chains are abSérthere are also argu-
ments based on LDA calculations indicating that the chains
not even contribute in the transp8ttWhether the chains are 1y
involved in the pairing or not is not yet a definitely answered N e e
guestion, there are nevertheless strong arguments supporting (a) O 00 00T 00 omon T 000 0oss 008
that the interesting physics happens in the gp@nes*%

We stress here that if we are able to answer experimentally
the question of the relevance of the chains, we could also
give strong constraints on the origin of anisotropic supercon-
ductivity in YBCO.

The effect of orthorhombicity on the Cy(plane is to
make inequivalent tha andb axes and in YBgCu;0O; the
difference in these lattice constants is less theéh5%. For
such small variations, to a first order, in a tight-binding dis-
persion the hopping along the two different axes will be
inequivalent with differences of the same order. Therefore, to
see the effect of the orthorhombic distortion in the GuO
planes we take in our dispersion relations the hopping terms 1 T 5
along k, andk, inequivalent. For example, in the simpler () DISTORTION
next nearest-neighbors tight-binding fit to the LDA band- 0.16
structure calculations for the Cy@lanes of YBaCu;O- that
we already considered in Sec.*¥/we must write now¢,
= —2t[cosky) +(1+ B)cosk,)]—4t'coskycosk,) —u where
B is the orthorhombicity factor of the order4% in
Y-Ba-Cu-O and the other parameters are as explained in Sec.
V. We can inject this dispersion in ER7) and solve it to
obtain the gap functiod(k) for the orthorhombically dis-
torted system. Making inequivalent the directianandb in
the band dispersion, we have inequivalent Fermi velocities
and therefore we naturally expect in the MD regime different 002}
absolute values of the gap aloagandb. o e ‘

Indeed, takingu*/g~0.075 in Y-Ba-Cu-O we obtained @ O 00 00T 0o ron s 008 0o 00d
very large differences in the gap alofigea) a andb with
very small realistic values of the distortiggr0.04. The full FIG. 15. Comparison of the effect of orthorhombicity in the MD
line in Fig. 15a) shows the evolution of the rat'mi/Ag asa regime and in spin-fluctuation-mediated superconductiviyThe
function of the distortion factog. We consider the energeti- ratio of the gaps along treandb directionsAZ/A{ as a function of
cally favorabled-wave channel and when we rotate 90° from the distortion parametes. (b) The London penetration depth in-

a to b the gap changes sign being dominandlywave. It plane anls_otropy\bh\a as afuncthn of the distortion parameté_r
must be noticed that such large “distortions” on the super—(c) The ratl_o of su_percurrent obtained from a Josephson Ju_nctlo_n of
conductive behavior are characteristic of MD and could be 2 With anisotropic Y-Ba-Cu-O over that expected from a junction
an element of answering the central question of Whethe?f lead - with ‘isotropic ¥-Ba-Cu-O with gap magnitude

. . . ; , : 1/2)(|A4]+|Apl). In all cases the full lines correspond to the MD
anisotropies are driven by anisotropic scattering or by MD.." " A . _
. ; - . regime as described in the text, while dashed lines correspond to the
We also consider for comparison the Millis, Monien, and

- ; . . . MMP effective scattering amplitudg=eg. (33)] with the same dis-
Pines (MMP) phenomenological scattering with spin - o g amplitudkEg. (33)]
. o5 L persion conditions.
fluctuations® in the static limit

GAP(a)/GAP(b)
N

24

22t

PENETRATION DEPTH ANISOTROPY

0.04 0.05

014+

0.12

01}

0.08 i

0.08

SUPERCURRENT RATIO

0.04 }

the corresponding3 dependence oA2/AZ. The structural
Ao distortion of the Cu®@ planes induces a distortion in the su-
~————, (33 X . . .
1+ &4,(9—Q) perconductive behavior that is an order of magnitude larger
in the case of MD compared to that in the case of spin-
whereQ= (1, ), the coherence range of the antiferromag-fluctuation scattering® In the latter case, the orthorhomb-
netic spin fluctuationg), is taken on the order of three lat- ically induced “distortion” in superconductivity is on the
tice spacings as in the experim&and Coulomb pseudopo- order of the distortion introduced in the tight-binding disper-
tential is neglected. We show in Fig. (& with dashed line sion and therefore of the structural distortion.

A



57 PHONON-MEDIATED UNCONVENTIONAL . .. 13761

The experiments in Y-Ba-Cu-O suggest strong ortho-and a significant part of the component is necessary in
rhombicity effects that could exclude spin fluctuations if order to have Josephson coupling between the two conden-
only the in-plane electronic physics is relevant and indicatesates.
that MD is at the origin of anisotropy. In fact, let us consider For the Pb/insulator/Y-Ba-Cu-O junction, if we suppose
the London penetration depth along the two different directhat the Pb gap is isotropic then in E85) the sum ovek
tions at zero temperature for the isotropic case becomes trivial leading to a term pro-

portional to the density of states of lead. At zero temperature

72 5 the Matsubara frequency sum becomes a frequency integral
ka(ky)“; Vi) LI (B OB, (349 taking here the form/5dwF (w)G(w) where F(w)=(A2,

+ %) 12 and G(w) =[ &y (K)%+ Ay(k)?+ w?] 1. This last
integral is calculated numerically. The index Y stands for the
gap and dispersion of Y-Ba-Cu-O and the index Pb for the
gap of lead. IfAy were also isotropic and the band of

whereE, = \/§2k+A2k andvki are the Fermi velocities along
k, andk, . The experimental results of Ref. 93 indicate large
in-plane anisotropy of the penetration depfyA\,~1.6. We  y_B5.cy-O were also isotropic and infinite one should re-

show in Fig. 18b) the %epe_nzdence of the in-plane penetra-;qyer the classical Ambegaokar and Baratoff result for a Jo-
tion depth anisotropy\, “/A, © on the distortion parameter sephson junction between isotropic superconductors
B. The full line corresponds to the MD regime, while the

dashed line to the MMP spin-fluctuation scattering. We see 2ApAy APb_AY‘
that, in the MD regime, the in-plane distortion could be suf- J(T=0)R= A TA N
ficient to produce the experimental in-plane anisotropy of the POT Y POT 2y
penetration depth for realistic values of the in-plane distoryiin k a complete elliptic integral of the first kind.

tion paramete3~0.04. On the other hand, using MMP in- |, Ref. 84 a supercurrent along the axis of a Pb/
teraction, the reported in-plane anisotropyhofor the same igyator/Y-Ba-Cu-O junction was observed. This supercur-
distortion parameteg is an order of magnitude smaller than rant was about 10% of what should be expected from the

in the experiment. _ _ isotropic Ambegaokar-Baratoff formuldor Y-Ba-Cu-O the
The same conclusion is derived from ttv@xis Josephson gaps were taken equal to 1T6as expected in weak-

. 84
tunneling results of Suat al.°>* In fact they observed Joseph- coupling BCS theory As we noticed, the presence of the

son tunneling currents oe-axis Pb/insulator/YBEwO;  gypercurrent demonstrates already thatsacomponent is
tunnel junctions. According to the analysis of Ambegaokarpresent in the gap of Y-Ba-Cu-O. However, the weakness of

6 . .
and Baratoft° the Josephson effect is described by the supercurrent could show that thecomponents are nev-
ertheless dominarif.In our approach, the gap in Y-Ba-Cu-O

, (37

27T 1 & Aq(k) is indeed dominantlg wave for the reasons we discussed in
NN, TS E(K) P+ AL (K) P+ 0> Sec. VII A yet because of the orthorhombic distortion there
is also ans component that is responsible for the Josephson
As(k") coupling with the condensate of lead. To show that this ap-
X ; £,(K )2+ A,k )2+ wﬁ' (35 proach could reasonably account for the results of Ref. 84 we

take two different cases. In the first case we consider that the

At zero temperature the sum over the fermion Matsubarng of t\r:-Ba-Cuf-O |st;]sotro;|)|(; and flr:htheB(s:eScond (E[gse we
frequencies becomes an integral that can be performeﬂ ain the gap from the solution of the equations as

. . : . before. In both cases we adjust the Y-Ba-Cu-O gap to a value
htf ly, | he foll for th ) ;
j’gségpr;tszrr\:v 2&?%’;:&@3(.” @ following expression fort eabout 15 times larger than the gap of Pb. We also adjust the

isotropic gap taken for Y-Ba-Cu-O in the first case to be
11 equal to (1/2)KAa|+|.Ab|) where A, and A, are the gap
i E AL(K)A,(K") magnlltud(.es we obtain along and b, respec.tlvely,[as we
2 NiNp (& show in Fig. 1%a) the gap changes not only its sign but also
its magnitude by ar/2 rotation]. What would be comparable
% 1 to the findings of Ref. 84 is the ratio of the Josephson super-
VE K2 AL (K)2VE(K )2+ A (K )2 current produced using the anisotropic gap we obtain in the
MD regime solving the BCS equations as previously, over
1 the supercurrent obtained in the isotropic case and which
X ; — should correspond to the Ambegaokar-Baratoff expectations.
VEL(K)Z+ A1 (K)*+ VE(K )P+ ALK )? We plot in Fig. 1%c) the evolution of this ratio with the
(36) distortion paramete. WhenB=0 we have no supercurrent
but as the distortion parameter reaches values as high as
whereR is the junction resistance amdj(0) is the densities =0.04 we obtain appreciable currents of the order of 15% of
of states on the Fermi level. It is clear thatAf andA, are  what should be expected in a junction between isotropic su-
orthogonal(they belong to different irreducible representa- perconductors, in good agreement with the results of Ref. 84.
tions of the point group there should not be any JosephsonThe dashed line in Fig. 16) shows the evolution of the
current in the junction. Therefore, since the gap of Pb issame ratio with8 but when the anisotropic Y-Ba-Cu-O gap
known to bes wave, the observation of the Josephson cur-s obtained using the MMP interaction. For the supercurrent
rent seems to exclude a purelywave gap in Y-Ba-Cu-O also, the orthorhombicity effect is about an order of magni-

J(T=0)R=
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tude larger in the case of MD than in the case of the MMPof the order parameter to orthorhombic distortions. We have
interaction. The supercurrent obtained using the MMP interdiscussed these aspects in relation with the phenomenology
action can never reproduce the experimental reports and if the highT, oxides showing that many puzzles are simple
volving the chains is unavoidable in that case. consequences of MD. We hope the reader is convinced that

It emerges therefore a fundamental qualitative differenceMD deserves serious consideration in the analysis of the su-
between MD and anisotropic scattering with spin fluctua-perconducting phenomenology of the oxides, qinons
tions. In the case of anisotropic scattering, if the orthorhomyemain serious candidates for the role of the mediators of the
bic distortions interpretation of the and d mixing in  pairing.
Y-Ba-Cu-O makes sense, then the chains should necessarily We must insist that, while we claim demonstration that
participate fundamentally in the pairing and at least abouphonons remain in the list of candidates for the pairing, we
25% of the condensate should be located there. In fact, withre very far from demonstrating their relevance. MD might
a distortion factor of 25% £=0.25) Carbotte and not be automatically associated to phonon-mediated super-
collaborators! were able to reproduce various characteristicsconductivity close to a phase separation. There are other pro-
of the ab anisotropy in YBaCu;O; using the MMP interac- posed mechanisms for high- which also lead to MD. The
tion. Of courseB=0.25 is not physical for the Cuplane  most famous are the charge-transfer resonance mechanism of
distortion, but was used by the authors as an approximateittlewood, Varma, and Abraharffs which involves the
approach in order to simulate the effect of the Cu-O chainsong-wavelength procegs, and the interlayer tunneling
within a one-band picture without considering explicitly the mechanism of Anderson and Chakravdrtywhich corre-
chain band. Our analysis suggests that if instead of the MMBponds effectively taj=0 pairing between the planes. In
interaction[Eqg. (33)] one considers the effective interaction this paper, we provided the elements which may help distin-
we obtained near the PS instability given in Eg8), we  guish MD from anisotropic scattering, for example, with spin
obtain the same magnitude of orthorhombicity effects but foifluctuations. In a future paper, we will attempt a finer analy-
the realistic Cu@plane value of3~0.04. The orthorhombic sis with the objective to identify qualitative aspects that
distortion of the planes could therefore be sufficient and theould help to distinguish between tijeroposed in this pa-
chains irrelevant. pen phonon mechanism near a PS instability and the models

of Refs. 20, 21, and 19.
VIII. EPILOGUE The contribution of this paper in the discussion around the

o ) o . high-T, phenomenon can therefore be summarized as fol-
We presented in this manuscript a paradigm in which sujgyys:

perconductivity mediated by isotropic electron-phonon scat- (3 We add support to the idea that phonons could be
tering can have very unconventional properties usually atmediators of a type of unconventional superconductivity in
tributed to exotic pairing mechanisms. For the occurrence ofhe oxides.

this type of “unconventional” sup.erconQUc'givity short-range (b) We provide elements for distinguishing this type of
(in real spacg Coulomb correlations like in the Hubbard ynconventional superconductivity from the older types based
models are necessary. Such a system can be driven to a phagg example on spin fluctuations pairing.

separation instability even by phonons. Approaching the in- (¢) we identify unexpected qualitative implications of
stability line from the Fermi-liquid side, results in a strong gther models that have been propd8éd*°to explain high-
enhancement of long-wavelength electron-phonon scatterinq—.C superconductivity in the cuprates.

Dominance of long-wavelength processes leads to momen- | the discussion of our findings we focus on the behavior
tum decoupling in superconductivity which is a tendency ofof the highT, oxides. We feel, nevertheless, convinced that
decorrelation of the superconductive behavior in the varioug,r analysis may constitute a basis for a serious reconsidera-
regions of the Fermi surface. We have discussed the origingjon of our ideas on other so-called “unconventional super-
qualitative aspects of this type of unconventional supercongonductors” like the heavy fermion and organic supercon-
ductivity that arises in the momentum decoupling regime. gy ctors, restoring for example phonons in the list of the

We have particularly emphasized the qualitative aspectgptential mediators of the pairing there also.
that may differentiate this new type of unconventional super-

conductivity from other mechanisms of unconventional su-
perconductivity proposed earlier which involve anisotropic
scattering for example with spin fluctuations. We identified | am grateful to Professor E. N. Economou and Dr. J.
some relevant original qualitative aspects of MD that mayGiapintzakis for numerous stimulating discussions and a
help identifying the origin of unconventional superconduc-critical reading of the manuscript. Also, it is a pleasure to
tivity. Such aspects are the very small dependence of thacknowledge valuable discussions with Marshall Onellion,
condensation free energy on the gap symmetry which coul€hristophe Renner, Zhixun Shen, Marko Grilli, Claudio Cas-
be determined by the convention@nd marginal for the tellani, Gregory Psaltakis, Nicos Papanicolaou, Thimios Li-
pairing Coulomb pseudopotential, the temperature depenarokapis, Luciano Pietronero, Emanuelle Cappelluti, Andrea
dence of the shape of the anisotropy, and a large sensitivitiPerali, and Martin Peter.
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