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Phonon-mediated unconventional superconductivity in strongly correlated systems
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~Received 26 June 1997!

We propose an adiabatic approach for Hubbard models in the Fermi-liquid regime coupled to phonons. The
Hubbard parameters are associated with the bandwidthW via an interpolation formula between the trivial for
W strong- and weak-coupling limits of Hubbard models. Phonons are introduced via an adiabatic random-
phase approximation scheme. We obtain simple conditions for phonon-driven instabilities in a Fermi liquid
with short-ranged interactions. We report phonon-driven instabilities without nesting and describe the elimi-
nation of the Peierls instability in a nested system by Coulomb correlations. We also report the possibility for
a phonon-driven phase separation~PS! instability as well as the strong enhancement of forward processes in
the effective electron-phonon scattering near the phase separation instability. We show that the proximity to PS
induces momentum decoupling~MD! in superconductivity which implies a tendency for decorrelation between
the physics in the different regions of the Fermi surface. MD could induce anisotropic superconductivity with
unconventional gap symmetry such asd wave. Whether anisotropy in the high-Tc oxides is driven by MD or
by anisotropic scattering~for example with spin fluctuations! becomes a crucial question. We discuss some
qualitative implications of MD that explain puzzling qualitative aspects of superconductivity in the oxides and
could advocate that MD is at the origin of anisotropies. Such effects are the marginality of the superconducting
gap symmetry for the condensation free energy and the resulting possibility of gap symmetry transitions with
the doping, the temperature dependence of the shape of the anisotropy, and the behavior of the anomalous dip
above the gap in the density of states. We also show that in the MD regime the orthorhombic distortion of the
CuO2 planes in YBa2Cu3O7 could be sufficient to explain the mixing ofs-gap components in the dominantly
d-wave gap. On the other hand, if spin fluctuations mediate the pairing in YBa2Cu3O7, at least 25% of the
condensate must be located in the chains. Our analysis could rehabilitate phonons as potential mediators of the
pairing in all ‘‘unconventional’’ superconductors including heavy-fermion and organic compounds.
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I. INTRODUCTION

Despite the intense theoretical activity, there is no cons
sus on the microscopic mechanism responsible for highTc

superconductivity. Many authors argue that Coulomb co
lations or magnetic interactions are at the origin of high-Tc .
To understand the effect of strong Coulomb correlations
the carriers in cuprates, a first step is the understanding o
behavior of the Hubbard model at strong couplings. Cons
erable theoretical activity has been devoted to the stud
models derived from the Hubbard model involving sophis
cated numerical and field-theoretical methods1–3 and allow-
ing significant progress. However, the study of Coulom
correlations alone may not be sufficient in the oxid
Various experiments like neutron diffraction,4 Raman
spectroscopies,5 site-selective isotope effect measuremen6

and tunneling,7 indicate that phonons are probably strong
coupled to the carriers, and may also play an important
in the mechanism that leads to high-Tc .8

In this spirit, much attention has been attracted rece
by models in which electron-phonon coupling and stro
Coulomb correlations are simultaneously present.9–15 In
some of these approaches, a Hubbard model with an a
tional local ~Holstein! electron-phonon coupling term wa
considered.10,14,15The presence of phonons complicates f
ther the strongly correlated electronic problem. On the ot
hand, including a phonon term in the Hubbard Hamilton
implies somehow the constraint to treat phonons on the s
570163-1829/98/57~21!/13743~22!/$15.00
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footing with the electronic terms and this is by definition
nonadiabatic approach which complicates tremendously
eventual study of superconductivity. In this manuscript,
adopt a simpler approach to Hubbard models in the prese
of adiabatic electron-phonon coupling, being consistent w
the following analysis of the resulting superconductiv
within a BCS framework. The electron-phonon scattering
supposed adiabaticab initio, treating therefore the question
of Coulomb correlations and electron-phonon correlatio
separately.

Our approach can be sketched as follows. The electr
phonon coupling is considered as adiabaticab initio in the
sense that it is not interfering with the electronic degrees
freedom. The first step is the link between the relevant
rameters of the Fermi liquid and the parameters of the H
bard models without electron-phonon coupling. We sh
that the knowledge of the bandwidthW is sufficient for our
purpose. Having made this remark, the link between
Fermi liquid and Hubbard parameters is greatly simplified.
fact, W is obtained rather trivially in the weak-coupling an
strong-coupling limits of the Hubbard model. We assum
thatW has a smooth crossover from its strong-coupling to
weak-coupling behavior and describe it by a simple inter
lation formula. We obtain, therefore,W for any magnitude of
the Coulomb correlations. This simple interpolation formu
describes reasonably the behavior ofW, as can be seen b
comparing with numerical exact diagonalization results fro
which we can even estimate the parameters of our interp
13 743 © 1998 The American Physical Society
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13 744 57GEORGIOS VARELOGIANNIS
tion formula. Phonons are introduced via an adiaba
random-phase approximation~RPA! scheme, which leads to
an effective composite interaction. In this way we avoid t
complications with nonadiabaticity mentioned above, wi
out losing relevant physics. The strength of the electr
phonon coupling is treated as a phenomenological free
rameter that can be obtained analyzing character
experiments.16,17 We could say that the spirit of our analys
is somewhat similar to that of Overhauser on the excha
effects in a correlated electron gas.18

We must insist here on the fact that our approach de
erately neglects the rich magnetic physics of Hubbard t
models. We suppose in fact, without proving it, that the b
havior of the charge degrees of freedom is sufficient as fa
the electron-phonon problem is concerned. However, it
pears quite probable to us that the charge instabilities wil
accompanied by spin instabilities. This could indicate t
one cannot excludea priori interference of magnetic degree
of freedom with electron-phonon scattering. Simplicity is
fact the only justification of our approach. Reversing the
gument, we could say that if a complete heavy treatmen
the lattice Hamiltonian is adopted in the Fermi-liquid regim
then it is worth considering the interference of the magne
degrees of freedom with electron-phonon scattering. Oth
wise, for the charge degrees of freedom our simple appro
is to a large extent sufficient.

Within our approach we can describe the conditions un
which the phonon-driven charge instabilities may occur. T
novelty of Hubbard Fermi liquids is precisely the possibil
to undergo phase separation~PS! instability due, for ex-
ample, to electron-phonon coupling, that in ‘‘normal’’~free-
electron-gas-like! Fermi liquids is eliminated by the long
range character of Coulomb correlations. We can clearly
within our approach that close to the PS instability the eff
tive interaction of the carriers with optical phonons
strongly enhanced at forward scattering. Dominance of
ward processes in the effective scattering leads to momen
decoupling~MD! in superconductivity. In the MD regime
evenphonon-mediated superconductivity has very ‘‘unco
ventional’’ properties that could explain many qualitativ
puzzling aspects of the superconducting phenomenolog
the high-Tc oxides. In particular, the proximity of a phas
separation instability becomes an alternative to anisotro
scattering~for example with spin fluctuations! explanation of
anisotropic superconductivity ofs- or d-wave gap symmetry
It becomes, therefore, a crucial problem to distingu
whether anisotropies in the superconductive behavior
high-Tc oxides, and especiallyd waves, are due to momen
tum decoupling or due to anisotropic scattering, for exam
in a conventional approach, with antiferromagnetic spin fl
tuations. We analyze some qualitatively puzzling aspect
the phenomenology of the oxides that advocate momen
decoupling as the origin of anisotropic superconductivity
the cuprates.

Momentum decoupling does not necessarily imply pro
imity of phase separation instability. There are alternat
theoretical approaches that could lead to a similar situa
for the superconductive behavior. For example, the interla
tunneling pairing model proposed by Anderson is effectiv
q'0 pairing.19 The proposed pairing mediated by a charg
transfer resonance20 is also based on small-q processes.21 It
c
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is also possible that the two-dimensional structure of
electronic system favors forward scattering with some o
cal phonons.22 We do not claim here a demonstration th
instabilities are phonon driven in the oxides. Whatever
origin of the phase separation instability, in its vicinity th
interaction of the electronic system with any bosonic fie
will be dominated by forward scattering and therefore m
mentum decoupling occurs. Also our simple approach is
expected to capture all the relevant physics of the oxides.
are rather considering this case as a paradigm for a p
separation instability in a strongly correlated system
which we are able to apply a simple theoretical approach
show that phonon-dominated physics may concern vari
unconventional parts of the phenomenology of the oxide

It results from our analysis that while ‘‘simple’’ phono
mechanisms must be excluded for the oxides, when the e
tronic system is close to the PS instability the interaction
electrons with phonons deserves serious consideratio
connection with the high-Tc phenomenon. In fact, the com
bination of MD and extended van Hove singularities m
also reconcile many of the experimental arguments~other
than anisotropies! used in the past to exclude phonons, li
the weakness of the isotope effect in optimally dop
oxides,23 the linear temperature dependence of the
resistivity,24 etc. On the other hand, the noticeable isoto
effect away from optimal doping25 is very difficult to recon-
cile with mechanisms where phonons are totally absent26 and
can be considered as an additional argument that the me
nism of MD with phonons presented here, is a serious c
didate that merits careful investigations.

The paper is organized as follows. In Sec. II, we brie
describe the adiabatic RPA scheme that leads to the effec
composite interaction. We show how phonon-driven ins
bilities and in particular PS occur in this formalism. In Se
III, we show how, in our case, using a simple interpolati
formula for the dependence of the bandwidthW on the Hub-
bard parameters, we can make the link between Fermi-liq
parameters and Hubbard parameters. In Sec. IV, we desc
the conditions under which phonon-driven instabilities occ
in a Hubbard model. In Sec. V, we show that approach
the instability line from the Fermi-liquid regime, we hav
precursors of the instability in the effective scattering amp
tude. In particular, forward-scattering processes are stron
enhanced which results in an effective momentum cutof
the scattering amplitude. In Sec. VI, we show that in t
vicinity of the phase separation instability, the dominance
forward scattering induces momentum decoupling in sup
conductivity leading to anisotropies driven by the angula
resolved electronic density of states~ARDOS! even if the
scattering is isotropic. Discerning whether anisotropies in
superconducting properties of the oxides andd-wave gaps,
are due to momentum decoupling or to anisotropic scatte
becomes a crucial question for understanding their phys
In Sec. VII, we discuss some fundamental qualitative poi
that may answer the question of the origin of anisotropi
We show that the doping-induced variation of the gap sy
metry and the observation of different gap symmetries
different oxides~Sec. VII A!, the temperature dependence
the shape of the anisotropy~Sec. VII B!, and the behavior of
the anomalous dip structure above the gap in tunneling
angle-resolved photoemission spectroscopy~ARPES! ~Sec.
VII C !, are puzzling aspects advocating momentum dec
pling in high-Tc oxides. We also show that one can obtain
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57 13 745PHONON-MEDIATED UNCONVENTIONAL . . .
indirect answer to the question of the origin of the anisot
pies in superconductivity by answering the question of
relevance of the chains in Y-Ba-Cu-O, since only in the m
mentum decoupling regime the orthorhombicity distortion
the CuO2 planes may be sufficient to explain the mixing ofs-
and d-wave gap components~Sec. VII D!. Finally, in Sec.
VIII, we summarize our conclusions.

II. THE EFFECTIVE COMPOSITE INTERACTION

The effective interaction is the sum of the Coulomb a
the electron-phonon interaction. Since our approach is a
batic, the Coulomb interaction is taken instantaneous
there is no need for a propagator to be associated with
Coulomb lines, instead we can use an effective scalar re
sionV. On the other hand, the electron-phonon interactio
retarded and therefore we consider both the phonon pr
gator and the electron-phonon vertex. To introduce scre
ing, we must renormalize by polarization effects the Co
lomb repulsion, the phonon propagator and the electr
phonon vertex. Notice that, in accordance with our adiab
assumption, while the phonon propagator and the elect
phonon vertex are renormalized by Coulomb effects,
Coulomb part is not affected by the electron-phonon inter
tion.

The effective composite interaction reads

L~q,v!5Veff~q,v!1@geff~q,v!#2Deff~q,v!, ~1!

whereVeff(q,v) is the effective Coulomb repulsion given b

Veff~q,v!5V~q,v!1Veff~q,v!P~q,v!V~q,v! ~2!

the effective phonon propagatorDeff(q,v) is given by

Deff~q,v!5D0~q,v!1Deff~q,v!P~q,v!g2D0~q,v!

1Deff~q,v!P2~q,v!g2Veff~q,v!D0~q,v!,

~3!

and the effective electron-phonon interactiongeff is given by

geff~q,v!5g1Veff~q,v!P~q,v!g. ~4!

The parameterP(q,v) represents the polarization part an
the ‘‘free’’ phonon propagatorD0(q,v) is defined by

D0~q,v!5
Vq

v22Vq
2 . ~5!

Replacing Eqs.~2!–~5! in Eq. ~1!, the effective composite
interaction takes the following form:

L~q,v!5
V~q,v!

P~q,v!
1

g̃ 2~q,v!

P~q,v!

3
2Vq

2

v2P~q,v!2Vq
2@P~q,v!2g̃2~q,v!P~q,v!#

,

~6!

whereP(q,v)511V(q,v)P(q,v). With this notation the

Coulomb interactionV(q,v) is positive andg̃ 25g2/Vq ,
whereg is the bare electron-phonon scattering.
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The above is generally true for a Fermi liquid irrespecti
of the geometry of the system or the exact mechanism
structure of Coulomb correlations. Supposing that a Hubb
model captures the physics of the Coulomb correlations
the carriers, we assume essentially that Coulomb correlat
have the peculiarity of being short range, as opposed to
infinite range Coulomb correlations in a simple electron g
The novelty when the long-range part is neglected is
possibility for the system to undergo phase separation in
bility. Various magnetic and charge instabilities of Coulom
bic origin have been reported in the literature in Hubba
type models.27–31 Here, we consider instabilities due to th
presence of the electron-phonon interaction which we
phonon-driven instabilities. Phonon-driven instabilities ha
also been discussed in Refs. 13 and 15 on the basis
slave-boson approach to a Hubbard Hamiltonian in theU/t
→` regime with a local Holstein electron-phonon term.

An instability corresponds to a divergence of the effect
composite interactionL. If the instability is Coulomb driven,
then it comes from the first term of Eq.~6!, while a phonon-
driven instability is due to a singularity in the second ter
Taking thev→0 limit of Eq. ~6!, we can see that a phonon
driven instability appears when the following condition
fulfilled:

11V~q,0!P~q,0!2g̃ 2P~q,0!50. ~7!

In the random-phase approximation~RPA! scheme the polar-
ization part P~q,v! is replaced by the bare or Linhard
bubble P0(q,v). This last approximation is supposed
give a rather good description in the long-wavelength lim
where the exchange interaction is neglected compared to
direct Coulomb interaction. As we are going to see in t
following, the RPA scheme is suitable for systems that
close to the phase separation~PS! instability, since in that
case, the physics is indeed dominated by long-wavelen
processes. In fact, a PS instability is an instability atq→0
and near this instability the system is very susceptible to
long-wavelength process. In a classical electron gas the lo
range part of the Coulomb interaction implies a 1/q2 diver-
gence ofV(q→0,0) and therefore phonon-driven PS inst
bilities are impossible since the condition of Eq.~7! cannot
be fulfilled whenq→0. On the other hand, when the Co
lomb interaction is local like in Hubbard models, this is r
flected in the residual Coulomb interactions of the carriers
a finite value even whenq→0. To establish, therefore, th
vocabulary, we will call a Fermi liquid with short-range
interactions ~of Hubbard type! a system in whichV(q
→0,0) is finite as opposed to a ‘‘normal’’~free-electron-
like! Fermi liquid in whichV(q→0,0)→`.

To get a qualitative insight let us replace the bubble
the Linhardt function. The Linhardt bubble atv50 reads

P0~q,v50!5N~EF!F~q/2kF!, ~8!

where

F~x!511
1

2x
~12x2!lnU11x

12xU. ~9!

Therefore, the condition for an instability given in Eq.~7!
reads
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13 746 57GEORGIOS VARELOGIANNIS
V~q,v50!5g̃ 22
1

N~EF!F~q/2kF!
. ~10!

We remark that 1/F(q/2kF) grows smoothly forq<2kF ,
while for q.2kF it grows rapidly behaving approximativel
as

1

F~x!G
x@1

'
3x2

2
2

3

10
1OS 1

xD . ~11!

Monotonic growth ofP0
21(q,v50) in the small-q region is

still true even if the bubble is calculated for tight-bindin
two-dimensional models that are supposed to describe
electronic structure of high-Tc oxides. This is going to be the
case later~in Sec. V! where we discuss the possible applic
bility of some of our results to the oxides. SinceF21(q/2kF)
is a monotonically growing function andF(x50)52 we can
conclude from Eq.~10! that if

V<VC5g̃ 22
1

2N~0!
, ~12!

then the electronic system is certainly driven to an instabi
because of the strong electron-phonon coupling. IfV5VC

the instability occurs forq→0 and it is a PS instability,
while for V,VC the instability occurs at a finite momentu
and corresponds to a charge-density wave~CDW! instability.
As we mentioned earlier, within the RPA approach the
change interaction is neglected compared to the direct C
lomb interaction. Therefore, we cannot trust this descript
for momenta of the orderkF , and since we will limit our-
selves here to RPA, we will avoid discussion of CDW
large momenta. The inclusion of the exchange effects wo
be necessary for example in the study of magnetic effe
where the relevant physics is at large momenta of the o
kF . Of course, the Coulomb repulsionV(q,v) is the residual
repulsion among the quasiparticles, and its relation with
on-site repulsion of a Hubbard model is not trivial and it
given from a solution of the Hubbard problem in the Ferm
liquid regime. However, for our purpose, this type of com
plex solution may be avoided as described in the next s
tion.

III. FERMI LIQUID AND HUBBARD PARAMETERS

A basic problem is the link between the parameters of
considered Hubbard model and the characteristics of the
sulting Fermi-liquid regime. For theU→` regime this can
be achieved, for example, using a slave-boson approach
a 1/N expansion.32 Our simple approachcannotreplace such
methods. Our aim is to give easily applicable results on
characteristics of the charge Fermi-liquid behavior, valid
the whole range of couplings of the Hubbard model.
making the serious simplification of neglecting the magne
behavior, we avoid searching tedious solutions of the pr
lem without losing the relevant physics.

From the Fermi-liquid point of view, the fundament
quantity related to Coulomb correlations is the bandwidthW.
One naturally expects that Coulomb correlations of the c
riers reduceW obtained, for example, by local-density
approximation~LDA ! calculations.33 It is noticeable that in
high-Tc oxides, LDA calculations provide a reasonable d
he
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scription of Fermi surfaces as confirmed by angle-resolv
photoemission~ARPES! results overestimating, howeve
largelyW. This indicates that indeed the carriers are stron
correlated.34 In our previous analysis,W does not appea
explicitly. It is, nevertheless, naturally associated with t
stability of the system and atsmall doping we can see its
influence through the relation

V<W. ~13!

Coulomb correlations tend to avoid that electrons occupy
same site and this can cost them at most the kinetic en
'W as it is nicely explained by Fulde in Ref. 35. Th
smaller the Coulomb repulsion, the larger theW/V ratio,
while the equalityV'W could hold only in the infinite Cou-
lomb repulsion and the very small hole doping regime.35,36

From Eq.~12!, we have seen that small residual Coulom
repulsion of the carriersV favors phonon-driven instabilities
From Eq.~13!, this turns out to be equivalent with the stat
ment that small bandwidthW favors phonon-driven instabili-
ties and this is quite reasonable. In fact, ifW<VC then a
phonon-driven instability will certainly occur. Combining
therefore, Eqs.~12! and ~13! we are already able, given th
bandwidth, to provide sufficient~yet not necessary! condi-
tions for a phonon-driven instability to occur.

Having identified thatW may be the crucial paramete
Hubbard Hamiltonians become trivial in the extreme wea
and strong-coupling limits. Next we write a simple Hubba
Hamiltonian to define our notations

H5t (
^ i , j &s

ais
† aj s1U(

i
ni↑ni↓ , ~14!

whereU is the on-site repulsion and̂i , j & denotes pairs of
nearest neighbors. It will be clear later that our analysis
be straightforwardly generalized to complex hopping situ
tions and this is one of the greatest advantages of our
proach.

In the extreme weak-coupling regime (U/t→0), only the
kinetic term of Eq.~14! remains. Then the dispersion be
comes«k524t( i 51

d cos(ki) where d is the dimensionality
and W52tz with z52d the number of nearest neighbor
On the other hand, in theU/t→` regime, double occupanc
of sites is forbidden making interesting the work in a reduc
Hilbert space where all configurations containing doubly o
cupied sites are forbidden. This is done though a Schrief
Wolf transformation of the Hamiltonian,37,35 that leads to an
effective HamiltonianH̃ acting in the reduced Hilbert space
which in theU/t→` regime is reduced to an effective hop
ing termH̃5t(^ i , j &s(ã i ,s

† ã j ,s1H.c.) with effective annihila-
tion and creation operatorsã j ,s5aj ,s(12nj 2s) and ã i ,s

†

5ai ,s
† (12ni 2s), respectively.35 Definingd the hole concen-

tration or the doping from half-filling, the effective hoppin
term leads, in analogy with the weak-coupling regime, to
bandwidthW52ztd. Therefore, in theU/t→0 andU/t →`
regimes, the bandwidth is obtained essentiallywithout solv-
ing the Hamiltonian. Although in these two extreme limitsW
is trivial, whenU/t is finite we are not able to predictW as
function of the Hubbard parametersU/t, z, andd for two-
dimensional models that could be relevant for the oxides
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SinceW is a fundamental parameter for our discussio
we will try to overcome this handicap with a simple interp
lation formula. We suppose that for the intermediate c
plings, there is no particular resonance, and the sys
switches smoothly from theU/t→0 regime to theU/t→`
regime. We propose the simplest two-parameter polynom
interpolation between the strong- and weak-coupling reg
dependence ofW on the Hubbard parameters

W52ztd1
2zt~12d!a~J/t !m

11a~J/t !m 52ztd1
2zt~12d!

11b~U/t !m ,

~15!

wheret is the hopping matrix element,U is the local repul-
sion in a Hubbard Hamiltonian,d is the doping from half-
filling, and z is the number of nearest neighbors~2zt58t in
the two-dimensional case considered in relation to hi
Tc’s!. This formula interpolates smoothly between theU
→0 regime whereW'2zt and theW→` regime where
W'2ztd. We remark thatJ52t2/U is the well-known pa-
rameter of thet-J description of the Hubbard model~ob-
tained after the Schrieffer-Wolf transformation mention
previously!, which impliesab522m.

The coefficientsa or b andm can be estimated by fit to
the results of numerical calculations, although, their ex
values have no qualitative influence on the following disc
sion. In the very strong-coupling limit (U/t→`) in a square
lattice we have from Eq.~15! W'8td18t(12d)a(J/t)m,
and since various numerical simulations point to a lin
dependence of the bandwidth onJ/t,38,39,2 we can choose
m51. Taking alsoa'0.28, we can reasonably fit~see Fig. 1!
theJ/t dependence ofW obtained by Poilblancet al.39 from
numerical exact diagonalization on a cluster with one ho
Better fits of these last results can be obtained by taking
examplem51.1 but this is not so important for our purpos
The quality of the fit shown in Fig. 1, gives an indication o
the validity of our interpolation formula, and also establish

FIG. 1. The dependence of the bandwidthW/t on J/t as ob-
tained by numerical exact diagonalization on a cluster with one h
in Ref. 39~black dots!, and from our interpolation formula Eq.~15!
with z52, m51, anda50.28 ~full line!. The results of Ref. 39
confirm our prescription of a smooth polynomial crossover from
U/t→0 to the U/t→` regime of the bandwidth in the Hubbar
model.
,
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our prescription for a smooth polynomial crossover from t
strong- to the weak-coupling regimes.

Equation~15! which relatesW with the parameters of the
one-band Hubbard model, can be straightforwardly gene
ized for the case of more complex hopping situations. T
advantage of our approach is to isolate the effect of the C
lomb repulsion even in the case of Hubbard models w
complex hopping terms, that will just lead to an effecti
hopping termt̃ in Eq. ~15!. As will be made clear in the
following, t sets the energy scale without interfering with o
qualitative discussion. We illustrate that point in the thre
band Hubbard model which is frequently used to describe
physics in the CuO2 planes of the cuprates.40 If the indicesp
andd refer to thep band andd band, respectively, then in
the relevant for cuprates limit«p2«d@tpd we haveW(U
→0)'8tpd

2 /(«p2«d), while in the opposite limitW(U
→`)'@8tpd

2 /(«p2«d)#d.15 Therefore, the situation is quite
similar to that of the one-band Hubbard model, except t
now we have an effective hoppingt̃5tpd

2 /(«p2«d). Our pre-
vious approach remains valid and the dependence of
bandwidth on the parameters of the three-band Hubb
model can be reasonably described by

W5
2ztpd

2 d

«p2«d
1

2ztpd
2 ~12d!

«p2«d

1

11b„U~«p2«d!/tpd
2
…

m .

~16!

The same occurs if next-nearest neighbors and other hop
terms are included. Since our discussion is independen
the hopping behavior, our analysis is valid whatever the e
tronic dispersion is and many qualitative aspects of the
cussion that follows aregeneric.

IV. PHONON-DRIVEN INSTABILITIES IN A FERMI
LIQUID WITH SHORT-RANGED INTERACTIONS

Combining Eqs.~12!, ~13!, and ~15! givessufficient~but
not necessary! conditions for a phonon-driven instability o
the electronic system described by the inequality

2ztd1
2zt~12d!a~J/t !m

11a~J/t !m <g̃ 22
1

2N~EF!
. ~17!

Our feeling is that nesting effects or saddle points t
may lead to peaks in the density of states, would help in
bilities. This is naturally contained in our analysis and w
can distinguish two extreme cases withall physical situa-
tions ranging in between.First, we suppose that the elec
tronic density of states is rather homogeneous all over
bands, or in other terms, there are not important nesting
saddle-point effects in the system. We are, therefore, in
less favorable situation for instabilities. In that case, th
exists a simple relationship between the density of state
the Fermi levelN(EF) and the bandwidth 2W'1/N(EF).
Using this relation and Eq.~17! we obtain the following
sufficient condition for instability:

g̃ 2

t
>F4z2

4z

11b~U/t !mGd1
4z

11b~U/t !m . ~18!

The condition for instability depends linearly on the dopingd
except in the weak-coupling regime (U/t→0) where the
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doping is an irrelevant parameter. In this last case, the c

dition for instability becomesg̃ 2/t>4z and is very difficult
to fulfill. Notice, however, that the smaller the number
nearest neighborsz, the easier is met the condition for inst
bility which is a quite natural result. On the other hand,
the strong-coupling regime (U/t→`) the border for instabil-
ity is a line with slope 4z that crosses the origin. Whateve
the electron-phonon coupling is, at sufficiently small dopi
a phonon-driven instability occurs even in the absence
nesting. The doping is now the relevant parameter.

We suppose now that we are in a situation of perf
nesting or with van Hove singularities on the Fermi lev
which is the other extreme case expected to be the m
favorable for instabilities. Nesting or saddle points may le
to a divergence of the density of states at the Fermi le
N(EF)→`, and the sufficient~but not necessary! conditions
for instability become now

g̃ 2

t
>F2z2

2z

11b~U/t !mGd1
2z

11b~U/t !m . ~19!

The inequality~19! is easier to fulfill than Eq.~18! in all
regimes.

Equations~18! and~19! are sufficient conditions for insta
bility, in the sense that, when they are fulfilled, the system
certainly driven to an instability. But the system could al
be unstable, even, if these conditions are not fulfilled. In fa
an instability may also occur even ifW is higher thanVC

provided the conditionV<VC is met. In order to be closer to
reality, we propose a second interpolation formula to
scribe the relationship between the effective Coulomb in
actionV and the bandwidthW.

V5W1
U2W

11c~U/t !n , n.1. ~20!

This formula might essentially be valid in the small dopi
regime which is considered relevant for high-Tc supercon-
ductivity. Equation~20! interpolates smoothly between th
U/t→0 regime whereV'U and theU/t→` regime where
V'W ~at least in the small doping regime!. We see no
physical reason for an anomaly at some intermediateU/t,
especially whenW itself has a smooth behavior between t
two ~U/t→0 andU/t→`! regimes. We must notice that
similar relationship betweenW andV has been reported b
Kanamori36 using the t-matrix approach V5U(1
1U/W)21. Kanamori’s formula is almost exact in the lim
of large U and small density. Kanamori’s result indicat
that there is indeed a smooth crossover from the weak- to
strong-coupling regime in the relationship betweenV andW.
Kanamori’s formula is an excellent approximation even if
is not formally exact asd→0. We adopt here Eq.~20! that is
a bit more general than Kanamori’s formula. As for the ex
value of the parametersc andn we are going to see that the
also do not have qualitative influence on our discussion.
following qualitative discussion would not be influenced,
instead of Eq.~20!, Kanamori’s formula was used.

Combining Eqs.~12!, ~15!, and ~20!, we can write the
more precise condition for instability
n-
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2ztd1
2zt~12d!

11b~U/t !m 1
1

c~U/t !n FU22ztd1
2zt~12d!

11b~U/t !mG
<g̃ 22

1

2N~EF!
. ~21!

Here we also distinguish the two extreme cases of the m
difficult and the easiest situation for instability, all realist
situations ranging in between depending on the details of
considered systems. The most difficult situation for instab
ity is the case of a rather homogeneous density of st
where the nesting or van Hove effects are negligible and
relationship 2W'1/N(EF) is reasonable. Using this last re
lation, the instability condition given by inequality~21! reads

g̃ 2>2F2ztd1
2zt~12d!

11b~U/t !mG1
1

11c~U/t !n FU22ztd

1
2zt~12d!

11b~U/t !mG . ~22!

One can better understand the constraints imposed by
equality ~22! writing it in the following form:

g̃ 2

t
>F4z2

4z

11b~U/t !m2
2z

11c~U/t !n

1
2z

@11c~U/t !n#@11b~U/t !m#Gd1
4z

11b~U/t !m

1
U/t

11c~U/t !n2
2z

@11c~U/t !n#@11b~U/t !m#
. ~23!

We plot in Fig. 2~a! the instability condition as a function o
the hole concentrationd for different characteristic values o
the ratioU/t in the casez54 ~e.g., 2D square lattice! the b
andm parameters obtained by the fit of Fig. 1, and choos
c51 and n52 to be in reasonable agreement with Ka
amori’s result. In Fig. 2~b!, we plot the condition for insta-
bility as a function of the ratioU/t for characteristic values
of the hole doping and the same parameters. For each in
bility line the upper part of the figure corresponds to t
unstable regime and the lowest part to the Fermi-liquid
gime.

We see in Fig. 2~a! that for a given ratioU/t the condition
for instability depends linearly ond. This is not specifically
associated to our interpolation formulas, but it is rather d
to the lineard dependence ofW in the U/t→` regime.
However, in the weak-coupling regime (U/t→0) the slope
of this linear dependence is always zero. This shows
from the weak-coupling regime where the hole concentrat
is totally irrelevant for the stability of the system, enhanci
U/t, d becomes a relevant parameter. In theU/t→0 regime,

the instability condition is trivialg̃ 2>2zt and for realistic
situations is rather difficult to fulfill. The larger is the slop
the more sensitive is the system to the doping. In theU/t
→` regime thed slope of the instability line that crosse
zero is maximal. The fact that it crosses zero implies tha
the U/t@1 regime the system is certainly unstable by t
phonons at sufficiently smalld that becomes the crucial pa
rameter. As we can see in Fig. 2~b!, the necessary electron
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phonon coupling strength for a phonon-driven instabil
grows monotonically as the ratioU/t is reduced, with essen
tially two regimes. A rather rapid doping independent in t
U/t<1 region and a slowerd dependent in theU/t@1 re-
gion. The doping always helps the system to preserve sta
ity in the U/t.1 region, while is irrelevant in theU/t,1.
From the previous remarks, we conclude that in the case
a rather homogeneous band the instability condition is ra
difficult to fulfill except in theU/t→` and d→0 situation
where the electronic system is certainly driven to an insta
ity despite the absence of any nesting. As we will see next, in
the case of important nesting or van Hove effects the co
tions for instability are much easier to fulfill and the pictu
changes qualitatively.

We now consider the other extreme case that could

FIG. 2. ~a! The critical electron-phonon scatteringg̃/t as a func-
tion of the hole concentrationd for a homogeneous band wit
N(EF)51/2W and a square 2D lattice (z54) with the coefficients
b andm obtained from the fit of Fig. 1,c51 andn52. VariousU/t
regimes are considered:U/t50 ~horizontal full line!, U/t50.1
~dashed line!, U/t51 ~short dashed!, U/t510 ~dotted! and U/t
→` ~full line that crosses origin!. For each line the upper hal
plane corresponds to the unstable regime and the lower half pla
the Fermi-liquid regime.~b! The criticalg̃/t as a function ofU/t for
the same coefficients and various characteristic doping leveld
50 ~full line!, d50.1 ~dashed line!, d50.2 ~short dashed line!, and
d50.3 ~dotted line! ~from bottom to top the doping increases!. For
each line, the upper half plane is always associated with the
stable regime.
il-
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respond, for example, to a perfect nesting. We take h
N(EF)→`. Then the analogous to Eq.~23! condition for
instability becomes

g̃ 2

t
>F2z2

2z

11b~U/t !m2
2z

11c~U/t !n

1
2z

@11c~U/t !n#@11b~U/t !m#Gd1
2z

11b~U/t !m

1
U/t

11c~U/t !n2
2z

@11c~U/t !n#@11b~U/t !m#
. ~24!

Figures 3~a! and 3~b! are the analogues of Figs. 2~a! and
2~b!, the only difference being that hereN(EF)→`. Now
the situation is completely different in theU/t→0 regime.

The condition for instability becomesg̃2/t>0 and is always
fulfilled for a finite value of the electron-phonon coupling.
the limit of weak Coulomb correlations andN(EF)→` we
necessarily have phonon-driven CDW instabilities, rega
less of the electron-phonon coupling strength. This insta
ity is the well-known Peierls instability. Our approach co
tains naturally the possibility of a Peierls instability and th
can give an indication on its validity. We can say at first th
the Peierls instability occurs even if the range of the Co
lomb correlations is finite provided the on-site repulsion
weak.

to

n-

FIG. 3. ~a! Same as in Fig. 2~a! but for the caseN(EF)→`. ~b!
Same as in Fig. 2~b! but for the caseN(EF)→`.
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However, in theU/t→` regime the occurrence of
Peierls-type instability is not automatic.When the ratio U/t
has appreciable values, the doping becomes a relevant
rameter even in the case of perfect nesting. WhenU/t→`,
our previous discussion for the case of an homogeneous
remains qualitatively relevant even if nesting or van Ho
effects are important. The condition for instability is, neve
theless, easier to fulfill in the case of perfect nesting, si
the d slope is twice smaller compared to that of an homo
neous band.

In this entire section we consider that the particular
ometry of a given system is contained in the density of sta
N(EF). In fact the hoppingt that appears in our formalism
does not enter our qualitative discussion but sets an en
scale. Whatever the band dispersion of a given system
may find effective tight-binding fits that could require n
only nearest-neighbor but also next-nearest neighbor
other hopping termst i . The hopping that appears in ou
equations will be a combination of these hopping terms t
will be obtained considering only the kinetic term of th
Hamiltonian as is done in theU/t→0 limit of the simple
Hubbard Hamiltonian written in Eq.~14!. The density of
statesN(EF) results from the given band dispersion, but
far as the instability conditions are concerned, all physi
situations will range in between the two limits of homog
neous and nested bands we are considering. The influen
the specific dispersion of a system enters, therefore, our
cussion throughN(EF) and as we can see comparing Fig
2~b! and 3~b!, the geometry of a particular system will influ
ence the physics qualitatively essentially in the regionU/t
<1. In theU/t.1 region, Figs. 2~b! and 3~b! display similar
qualitative behavior and therefore the details of the con
ered system have no qualitative influence. However, in
case of sharp peaks in the density of states the instab
conditions are easier to fulfill also in theU/t@1 region. If
we want the larger sensitivity of our physics to the dopingd,
we must be in the rather strong-coupling regimeU/t.1 but
also it is better that our density of states is rather flat sinc
we can see comparing Figs. 2~a! and 2~b!, the largerd slopes
are reached in the homogeneous band case.

It is interesting to notice from Fig. 3~b! that the most
unfavorable case for a Peierls stability is whenU/t'1, since
the instability condition reaches a maximum at aroundU/t
'1 even at half-filling. The presence of a maximum is u
avoidable at least atd→0 since in both theU/t→0 and
U/t→` limits, the system is unstable at any electron-phon
coupling.

To illustrate that the choice of thec or n parameters doe
not affect qualitatively our discussion, we display in Fig.
the U/t dependence of the instability condition ford50.1
shown in Fig. 3~b!, for three different values of the expone
n: n53/2 ~full line!, n52 also shown in Fig. 3~b! ~dashed
line! andn54 ~short dashed line!. We can see that there i
no qualitative change and the maximum atU/t'1 is just
becoming a bit sharper as the crossover exponentn grows.
Finally, it is worth noting here also that the relations~23! and
~24! can be straightforwardly generalized to the three-ba
Hubbard model, if we just replace in these relationst by t̃
5tpd

2 /(«p2«d).
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V. FORWARD SCATTERING DOMINATES
NEAR THE PS INSTABILITY

We have mentioned previously that in systems with sho
range Coulomb repulsion like Hubbard models, phono
driven PS instability is probable. Before the appearance
the instability, there are precursor effects that have un
pected implications on the phenomenology. When the s
tem is close to the instability, the gradual appearance of
instability singularity changes qualitatively the scattering b
havior of the system. This very particular regime of qua
singular scattering will be shown to be potentially releva
for the understanding of various puzzles of the supercond
ing phenomenology of the oxides and could be intimat
related to the high-Tc phenomenon.

The vicinity of the instability will affect the effective
composite interactionL(q,v) given in Eq.~6!. Up to now
we studied the eventual divergence ofL, next we will ex-
plore the effective interaction near the singularity. On t
basis of our previous approach, we are able to obtain
dependence of the effective interaction on the Hubbard
rameters. For simplicity we consider only dispersionless
tical phonons and assume that the bare electron-phonon
tering amplitude has no relevant momentum structure.
obtainL(q,v) from Eq. ~6!, we needV(q,v) andP(q,v).
We will only consider static effects taking thev→0 limit.

In the RPA approximation we can replace the polarizab
ity by the ‘‘bare’’ particle-hole bubble

P0~q,v!522(
k

f ~jk1q/2!2 f ~jk2q/2!

jk1q/22jk2q/22v
, ~25!

where f (jk) is the Fermi statistical factor andjk the elec-
tronic dispersion. For example, in the oxides one can c
sider a next-nearest-neighbor tight-binding dispersion. In
case, the dispersion will not have qualitative influence on
discussion which is essentially generic. As for the Coulo
termV in Eq. ~6!, we use the interpolation formulas~15! and
~20! to relate it to the Hubbard parameters. By calculati
the bubble for a given dispersion using Eq.~25! we can,
therefore, obtainL(q/kF ,g̃/t,U/t,d). Our previous discus-
sion for the divergence ofL remains valid. Now, we exam

FIG. 4. The critical g̃/t as a function ofU/t when N(EF)
→`, d50.1 and the same coefficients as in Figs. 2 except than
takes three different values:n53/2 ~full line!, n52 ~dashed line!
also shown in dashed line in Fig. 3~b!, andn54 ~short dashed line!.
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ine L in the vicinity of the instability. Giveng̃/t andU/t we
can investigate how theq/kF dependence ofL correlates
with d.

We show in Fig. 5 the evolution of the momentum depe
dence of the absolute value of the effective composite in
action when we approach the instability. We focus h
on the behavior of the phonon term neglecting the fi
term of Eq. ~6! which is just a repulsive constant. For th
results of Fig. 5 we consider a next-nearest-neighbor tig
binding dispersion in 2D: jk522t@cos(kx)1cos(ky)#
24t8cos(kx)cos(ky) with t50.25 eV, t8/t520.45 andm5
20.44 eV. This type of dispersion produces a van Ho
peak in the density of states 10 meV below the Fermi le
and is considered as a first approximation fit to LDA ban
structure calculations for Y-Ba-Cu-O.41 We take the Cou-
lomb repulsionU/t'10 fixed and we give to the phono
energies a value that could be relevant in the oxidesV
540 meV. The q dependence is along the directionq
5(0,q) and in the interpolation formuli we use the coef
cientsb and m obtained from the fit of Fig. 1,c51 andn
52. We see in Fig. 5~a! that reducingd we approach the
instability that is signaled by a gradual appearance of a

FIG. 5. ~a! The phonon part of the absolute effective scatter
amplitudeuLu as a function ofuq/2kFu as we approach the instabi
ity reducingd whenU/t510 ~fixed! and g̃/t51. Here we consider
a next-nearest-neighbor dispersion as described in the text, an
evolution is given along the (0,q) direction. ~b! Same as in~a!
reduced to unity. We see clearly the Lorentzian behavior
L(q/2kF) and the effective momentum cutoff that is the width
the Lorentzian.
-
r-
e
t

t-

e
l
-

n-

gularity in L(q/2kF) ~here the instability occurs atd0

'0.1196!. The vicinity of the instability implies a strong
enhancement of the effective composite interaction at
ward scattering. This introduces a Lorentzian modulation
the q dependence of the effective scattering with a char
teristic width ~or smooth momentum cutoff! qc that is be-
coming smaller as we approach closer to the instability@see
Fig. 5~b!# and can get values as small askF/10. This momen-
tum modulation will be shown to introduce qualitativ
changes on the phenomenology that could have some
evance in the oxides.

Notice that a similar result has been reported recently
ing a slave-boson approach to a Hubbard model in theU/t
→` regime with nearest- and next-nearest neighbors h
ping and a Holstein electron-phonon coupling to a disp
sionless phonon.42 It is remarkable that our simple approac
in the U/t→` regime provides results in surprisingly goo
agreement with those of Ref. 42. In particular, we obtain
this regime d050.1915, while in Ref. 42 is reportedd0

50.195. Our approach gives the possibility to obtain ana
gous results at finite values ofU/t. For example, in the cas
U/t'10 considered in Fig. 5, the condition for instability
more difficult to fulfill than in theU/t→` regime, that is
why it occurs at a smaller critical doping (d0'0.1198). In
any case, the exact value of the Hubbard parameters is
physically relevant and we will restrict our discussion to r
evant qualitative aspects.

The effective momentum cutoff or the characteris
width of the LorentzianL(q/2kF) near the instability, will be
a central parameter for our discussion that follows. In fa
we can reasonably fit theq dependence ofL(q/2kF) with a
Lorentzian of the formL/(11uqu2/qc

2), whereqc is the ef-
fective smooth cutoff of the interaction. We show in Fig.
the evolution ofqc/2kF as a function of the doping of hole
from the instabilityd2d0, whered0 is the critical hole con-
centration at which instability occurs. At smalld2d0, the
behavior ofqc/2kF is generic, independent on the dispersi
considered. In fact in Fig. 6 we consider two separate ca
The full line corresponds to the dispersion considered in F

the

f

FIG. 6. The characteristic cutoffqc/2kF or width of the Lorent-
zian as a function ofd2d0 whered0 is the hole concentration a
which the phonon-driven instability occurs. The full line corr
sponds to the situation considered in Fig. 5, and the dashed lin
the isotropic case where an homogeneous band is considered
the bubble is replaced by the Linhardt function for the same se
parameters.
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5 described in the previous paragraph. The dashed line
responds to a simple isotropic case, where we do not ca
late the bubble from Eq.~25! but just replace it by the Lin-
hardt function considering also an homogeneous band w
N(EF)51/2W and in the interpolation formulas the sam
coefficients are taken. We remark that sufficiently close
the instability, the dependence ofqc/2kF on d2d0 is the
same in both cases. The momentum modulation of the ef
tive scattering is, therefore, a robust effect that could be
served in different materials and characterizes the singula
in the effective composite interaction. Sufficiently close
the instability ~for qc,kF/4! we have approximatively
qc/2kF'220(d2d0).

The extreme sensitivity of the momentum modulation
the effective interaction on the doping appears to be a ser
handicap for the description of the doping behavior of
oxides within our simple approach. A similar sensitivity w
also characteristic of the results of Ref. 42 to which o
results fit in theU/t→` regime although very few points ar
reported there. It appears relevant for the oxides in the
gime very close to the PS instability in which forward pr
cesses dominate the scattering. If this regime is confined
very narrow range of doping then one might think that
doping the oxides we induce very small variations of t
hole concentrations in the CuO2 planes and we essentiall
built the charge reservoirs.43 This has been an open issue
to now. Another possibility is that this pronouncedd sensi-
tivity is an artifact of adiabatic mean-field considerations.
fact, using the correlated-random-field approximation an
conditional coherent-potential approximation44,45to study the
ground-state phase diagram of a one-band Hubbard m
without phonons, it was reported as numerical evidence
phase separation instability in an entire region of the ph
diagram and not just on a line as in our case.31 Unfortu-
nately, for such types of treatment, a simple formalism l
ours is not yet available, it is however plausible that no
diabaticity will somehow broaden the transition lines even
our phase diagram. It is also conceivable that the sys
could be driven close to the PS instability from the Coulom
effects alone. In that case we also expect its effective s
tering amplitude with phonons~or with some other bosonic
field! to be enhanced at small momenta and the follow
discussion is still valid. This very interesting, delicate, a
complex issue of the doping behavior will be the focus of o
future investigations. In this manuscript, we attempt to est
lish the relevance of the vicinity to the PS regime for t
understanding of the superconducting phenomenology of
oxides.

Similar plots to those of Fig. 6 can be made takingd fixed
and varyingU/t. The approach to the instability has alwa
the same qualitative effect of a strong enhancement of
ward scattering processes.

VI. DOMINANT FORWARD SCATTERING IMPLIES
MOMENTUM DECOUPLING IN SUPERCONDUCTIVITY

When forward scattering is dominant, there is ‘‘mome
tum decoupling’’~MD! in the superconducting state, imply
ing a different coupling in different regions of the Ferm
surface. In the case of MD, the coupling at each region of
Fermi surface is proportional to the angularly resolved el
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tronic density of states~ARDOS! at that regionN(EF ,k)
5uvF(k)u21, and thereforethe anisotropies in the supercon
ducting state are induced by the anisotropies of the den
of states in the normal state.

Let us now illustrate how MD appears for small mome
tum transfer processes and why it is theonly situation which
leads to ARDOS-dependent anisotropies in the superc
ducting state. The anisotropic Eliashberg equation in the
diagonal sector, for an Einstein spectrum can be written
follows:

D~k,ivn!Z~k,ivn!

5pT(
m

E
SF

d2p

SF
N~EF ,p!

3
ug~k2p!u2V

V21~vn2vm!2

D~p,ivm!

Avm
2 1D2~p,ivm!

.

~26!

We assume here that all relevant scattering is done on
Fermi surface. Although we will consider small-q scattering,
we suppose that its momentum range is, nevertheless, s
ciently larger than thek-level spacing and therefore, a de
sity of states on the Fermi levelN(EF ,p) can be defined.
The k dependence is contained in the coupling struct
ug(k2p)u2.

In conventionals-wave superconductors, it is assum
that the interactionug(k2p)u2 is smoothly varying on elec-
tronic energetic scales and it is almost constant on the Fe
surface. Then, one can obtain an isotropick-independent gap
function and this is the classical scenario for ans-wave su-
perconductor. Notice that, as will be clear later from t
numerical calculations, even if the electronic ARDO
N(EF ,p) is very anisotropic, we obtain isotropic gap fro
momentum-independent isotropic interaction.

On the other hand, if one assumes thatug(k2k8)u2 has a
relevant momentum dependence in the vicinity of the Fe
surface~as is the case in a conventionald-wave scenario
where this function reflects electron-spin fluctuation co
pling! then we obtain ak-dependent coupling and using E
~1! one can obtain an anisotropic gap. In that case, the
isotropy of the superconducting parameters is mainly
posed by the anisotropy of the interaction that we introdu
andnot from the anisotropy of ARDOS. This is considere
in general as the only way to obtain strong anisotropies in
order parameter. According to the prevailing view, a stron
anisotropic order parameter reflects strongly anisotro
‘‘unconventional’’ scattering~electron-phonon scattering i
supposed to be rather isotropic!.

However, it is possible to obtain significant ARDOS
induced anisotropies by considering anisotropic electron-
phonon interactiondominated by forward-scattering pro
cesses. This can be illustrated taking an interaction whic
sharply peaked at zero momentumug(k2k8)u2'g2d(k
2k8). Then from Eq.~1!, it is easy to see that there i
momentum decoupling. We obtain amomentum-independen
Eliashberg equation which provides the gap functi
D(k,ivn) for each point k on the Fermi surface
D(k,ivn)Z(k,ivn)'N(EF ,k)3 isotropic terms. This last
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equation is analogous to the isotropic Eliashberg equa
with a coupling strength proportional to the value of th
density of states at the given point of the Fermi surfa
N(EF ,k). The equations we obtain are isotropic with co
plings that may be different in different regions of the Fer
surface depending onN(EF ,k). Of course, the gap will be
larger when the ARDOS and the resulting coupling a
larger.

Since the coupling strength at each pointk is proportional
to the electronic ARDOS at that point and since the Elia
berg equations for the different pointsk are totally decou-
pled, the resulting momentum dependence of the gap
follow the momentum dependence of the ARDOS. We ha
therefore, ARDOS-driven anisotropies. Notice also t
small-q scattering is theonly way to ARDOS-driven
anisotropies. In fact, the ARDOSN(EF ,k) is in a convolu-
tion integral with the interactionug(k2k8)u, and it is a well-
known result of functional analysis that thed function is the
uniqueunity element of the convolution product.

Notice that ad-function peak atq50 is a rather unreal-
istic coupling function. We also noticed previously that w
assume that the momentum range is large enough to a
the definition of the electronic ARDOS. However, MD o
curs even for finiteq providedq is small compared to the
characteristic momentum of the ARDOS variations over
Brillouin zone. To illustrate this point we performed numer
cal calculations on a realistic two-dimensional BCS mod
In that case the gap is given by

D~k!52 (
p,ujpu,VD

L~k2p!D~p!

2Ajp
21D2~p!

tanhS Ajp
21D2~p!

2T
D .

~27!

We consider an isotropics-wave electron-phonon couplin
having at small momenta a Lorentzian behavior as a func
of the norm of the exchanged momentum~our analysis con-
cerns processes in which the momenta exchanged are s
compared to the Fermi wave vector!

L~k2p!52L0S 11
uk2pu2

qc
2 D 21

. ~28!

In this spectrum the electron-phonon scattering is domina
by the processes which transfer a momentum smaller
qc . As we discussed earlier a scattering of the form of E
~28! describes well the effective pairing interaction when t
electronic system is close to the phase separation instab
The closer the system is to the instability the smaller isqc .
Notice that the discussion that follows is unaffected by
use of another functional type of momentum cutoff, the r
evant parameter being in factqc .

For clarity, we will consider here the simple neare
neighbor tight-binding dispersion at half-fillingjk5
22t@cos(kx)1cos(ky)# ~the lattice spacing is taken equal
unity!. The Fermi surface is a square defined bykx5ky6p
and kx52ky6p with saddle points at (0,6p)
and (6p,0). The minimum of the density of states on t
Fermi surface is obtained at the points (6p/2,6p/2) and
therefore the characteristic length of the ARDOS variatio
over the Brillouin zone isp/&. We expect, therefore, tha
for qc.p/& the gap might be isotropic, while forqc suffi-
n
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ciently smaller thanp/&, MD should prevail leading to
ARDOS-induced anisotropies.

This is precisely what is obtained numerically. We plot
Fig. 7 the ratio of the gap at~0,p! over the gap at the point
where the ARDOS is minimal (p/2,p/2) as a function ofqc .
We can see that forqc,p/& this ratio begins to be appre
ciably different from unity indicating the onset of ARDOS
induced anisotropy because of MD. It is clear that for fin
transferred momenta it is possible to obtain significa
ARDOS-induced anisotropies. We also remark in Fig. 7 t
even though the electronic ARDOS that corresponds to
dispersion is very anisotropic, the gap is isotropic when
range of the exchanged momenta is of the orderkF . In fact,
whenqc'p we haveD(0,p)/D(p/2,p/2)'1. Only if thek
range of the interaction is sufficiently small we can ha
ARDOS-driven anisotropies in the order parameter no ma
how anisotropic is the electronic system. This is why ve
different conventional superconducting materials with diffe
ent electronic structures have an isotropic gap as obse
for example by tunneling.

Therefore, the proximity of PS instability, manifests b
the dominance of forward scattering that implies MD a
opens a new channel for anisotropic superconducting beh
ior even if the involved scattering is isotropic. A central issue
in our understanding of the mechanism of high-Tc is to es-
tablish whether the anisotropies in superconductivity are
to MD or are simply due to the more ‘‘conventional’’ chan
nel of anisotropic scattering. For example, the approach
spin-fluctuation scattering in the analysis ofd-wave super-
conductivity belongs to the second category.46 In the follow-
ing we will discuss some specific qualitative characterist
of MD that may help answer the crucial question of the o
gin of anisotropies in the oxides. We will see in particul
that some puzzling qualitative aspects of the phenomeno
of the oxides appear to be natural consequences of MD.

VII. MOMENTUM DECOUPLING
AND THE SUPERCONDUCTING PHENOMENOLOGY

OF THE OXIDES

We will focus on the superconducting phenomenolo
because obviously our approach neglects various aspec
the physics of the oxides. For example, magnetic effects

FIG. 7. Evolution of the anisotropy ratio as a function of th
characteristic range of the exchanged momentaqc . Forqc,p/& it
increases sharply indicating the onset of MD.
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not taken into account. In the normal-state phenomenol
all these relevant parts of the physics manifest. However
the superconducting state, the physics is dominated by
scattering with the bosonic processes that mediate the pa
~in conventional cases these bosons are phonons! and there-
fore our simple approach could be satisfactory if these p
cesses are in the MD regime.

A. Marginality of the superconducting gap symmetry

The symmetry of the order parameter is in the center
the debate for the origin of high-Tc superconductivity. It is
generally believed that the symmetry of the gap should a
indicate the nature of the pairing mechanism. According
the general approach the symmetry should allow one to
termine whether cuprates are conventionals-wave supercon-
ductors with an interaction that could be mediated
phonons, or whether they are unconventionald-wave super-
conductors in which case the pairing interaction should
due to spin fluctuations or to some other exotic mechani
In the spirit of this approach, all high-Tc materials should
have the same gap symmetry and their high critical temp
tures should be intimately related to the symmetry of the g

The experimental situation is far from being in convinci
agreement with the previous approach. Angle-resolved p
toemission~ARPES! on overdoped Bi-Sr-Ca-Cu-O~Ref. 47!
indicate an anisotropics-wave gap havingT-dependent an-
isotropy that will be shown later to be evidence in support
MD.48 However, various phase sensitive49 and node
sensitive50 experiments on YBa2Cu3O7 report evidence of a
sign reversal of the order parameter supportingd waves,51

even though experimental contradictions still persist
Y-Ba-Cu-O ~Refs. 52, 53! that will be shown later to be
understood within MD as resulting from the orthorhomb
distortion of the CuO2 planes. On the other hand, it appea
now established that electron-doped oxides are rather iso
pic s-wave superconductors.53

Recent angle-resolvent photoemission results are v
puzzling reporting that optimally doped Bi2Sr2CaCu2O8 has
a node in the~1,1! direction consistently withd waves and in
agreement with other measurements,54–56 while on the other
hand, the overdoped material has a finite gap in this sa

FIG. 8. The Coulomb pseudopotential given from Eq.~30! as
function of U/t for different hole concentrations~from top to bot-
tom d50,0.1,0.2,0.3!.
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direction indicating anisotropics-wave symmetry.57 These
last results indicate that the gap symmetry varies with
doping, yet the material remains a high-Tc superconductor
~the overdoped material hasTc583 K, while the optimally
dopedTc592 K!. Recent Raman spectroscopy results co
firm this behavior in Bi-Sr-Ca-Cu-O and report the sam
phenomenon of doping-induced gap symmetry transition
overdoped Tl2Ba2CuO61d.

58 High-Tc appears thereforenot
associated with a specific gap symmetry, but rather ass
ated with a ‘‘volatility’’ of the gap symmetry. Such ‘‘uncon-
ventional’’ behavior is a smoking gun for momentum deco
pling.

We will show in fact that, isotropics-wave interaction
~that could be mediated by phonons! in the momentum de-
coupling regime can lead toeither s-wave ord-wave super-
conductivity depending on parameters that aremarginal for
the pairing. These parameters are the magnitude of the C
lomb pseudopotentialm* and the characteristic momenta
the variations of the Coulomb pseudopotentialm* compared
to the characteristic momenta exchanged during the pai
interaction. It is possible that overdoped Bi2Sr2CaCu2O8 is
~ARDOS-driven anisotropic! s-wave and YBa2Cu3O7 as well
as optimally doped Bi2Sr2CaCu2O8 are ~ARDOS-driven an-
isotropic! d-wave superconductors all havingthe sameat-
tractive isotropics-wave pairing interaction in the momen
tum decoupling regime. In addition, we report the possibil
for transitions froms wave to d wave and vice versa by
doping sincem* depends sensitively on it, and this appea
to be the case in Bi-Sr-Ca-Cu-O. Of course it will be obvio
that d-wave gap symmetry does not imply a spin-fluctuat
pairing mechanism.

Irrelevance of the symmetry of the order parameter for
free energy has also been reported in a model propose
describe the ‘‘spin gap’’ in underdoped cuprates.59 This
property is also seen in another model in which the Fe
surface is divided in three independent pieces and the in
action has a low-energy cutoff.60 The possibility for material
specific gap is reported on at-J model with three lattice

FIG. 9. The gap along a quadrant of the Fermi surface defi
by kx1ky5p as a function ofkx ~or ky! for a momentum-
independent repulsionm* and Qc(e-ph)5p/12. We consider the
s-wave channel andm* 50 ~upper full line!, m* /g250.05 ~triple-
dot-dashed line!, m* /g250.21 ~dot-dashed line!, m* /g250.22
~dotted line!, m* /g250.30 ~dashed line!, and thed-wave channel
for the samem* /g2 ratios~lower full line!. Thed-wave solution is
independent ofm* .
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terms,61 and similar numerical results were reported by He
berg and Manousakis.62 Nazarenko and Dagotto63 proposed a
specific Holstein model with nearest-neighbor attract
which leads tod-wave superconductivity with the spin fluc
tuations playing a secondary role. A similar approach w
also developed by Song and Annett,64 Kamimura et al.,65

and Peraliet al.66

Within our approach,m* corresponds to the first term o
Eq. ~6! renormalized by retardation. While our scheme a
counts for the qualitative fact of the presence ofm* , its
quantitative evaluation is out of the question within our a
proach. Not only is a simple RPA approach questionable
the dynamic behavior, but the retardation renormalization
self in an anisotropic system is a very complex issue
obtaining quantitative results of that type is beyond the sc
of this manuscript. We can, however, easily obtain so
,
er

x

Eq

o
ou

er
de
e
he
e

r-
so
gh

m
e

e

e
lo
-

n

s

-

-
r

t-
d
e
e

qualitative understanding of the behavior ofm* in a
Hubbard-type Fermi liquid~HFL! by considering a simpli-
fied picture of a material with homogeneous band and ad
ing thatm* is given by the following relation:67,68

m* 5
N~EF!V

12N~EF!V ln~V/W!
. ~29!

The renormalization of the Coulomb repulsion by retardat
is explicit. In fact there is a characteristic ‘‘distance’’ be
tween electrons in the superconducting state associated
the characteristic time for the absorption of the virtual ph
non that mediates the pairing. Since Eq.~29! is valid in the
case of homogeneous bands we have 2N(EF)'W21. Then
combining with Eqs.~15! and ~20! we obtain
m* 5
1

2 F11
1

11c~U/t !nS U/t

2zd12~12d!/@11b~U/t !m#
21D G H 12

1

2 F11
1

11c~U/t !n S U/t

8d18~12d!/@11b~U/t !m#
21D G

3 lnFVt S 1

8d18~12d!/@11b~U/t !m# D G J
21

. ~30!
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We show in Fig. 8 theU/t dependence ofm* for different
hole concentrationsd. WhenU/t<1 the doping is irrelevant
while in theU/t.1 regime it becomes relevant. The larg
the hole concentrationd, the smaller the sensitivity ofm* on
the local Coulomb repulsionU/t in the U.t region. Usu-
ally, in conventional superconductors,m* plays just the role
of an effective negative coupling,17 but for a system in the
MD regime m* becomes a crucial parameter having une
pected implications on the gap symmetry.

We performed calculations on a BCS model as that in
~27!, but the interaction is taken hereL̃(q)5L(q)
1m* (q). The effective interaction is, therefore, the sum
the attractive interaction, due to the electron-phonon c
pling L, that will be taken to have a form as that in Eq.~28!,
and the effective Coulomb repulsionm* (q). The pairing
scattering is dominated by the processes which transf
momentum smaller than the effective momentum cutoff
fined here asQc

e-ph. Qc
e-ph is the relevant parameter and th

particular shape of the interaction is irrelevant. As for t
repulsive interaction, it is first supposed momentum indep
dentm* (q)5m0* as in Eq.~30! ~hard-core-like yet finite re-
pulsion or contact repulsion!. Band-structure effects are ma
ginal for our discussion and for clarity we show, here al
results corresponding to the simple nearest-neighbor ti
binding dispersion at half-fillingjk522t@cos(kx)1cos(ky)#
~the lattice constant is taken equal to unity!.

We show in Fig. 9 some of the calculated momentu
dependent gap functions on the Fermi surface, for differ
values ofm0* in both thed-wave ands-wave channel. When
k ~kx or ky! varies from 0 top we cover a quadrant of th
Fermi surface which is defined bykx1ky5p. Here we take
Qc

e-ph'p/12 which places us deeply in the momentum d
coupling regime and might characterize a system rather c
-
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to the phase separation instability~for example d2d0

'1024!. The momentum dependence of the gap in
s-wave channel at zero repulsion~upper full line! is due to
momentum decoupling. The anisotropy in both channels
therefore ARDOS driven since our interaction is isotropic

When we introducem* in the s-wave channel, the gap i
reduced by a constant amount in all directions~triple-dot-
dashed line! resulting therefore in an effective enhanceme
of the anisotropy. At a critical value of the repulsion whic
in the case considered in Fig. 9 is on the orderm* /g2

'0.21~dot-dashed line!, the gap becomes almost zero in th
~p,p! direction, and we have adiscontinuoustransition to a
new gap symmetry structure with two nodes in the quadr
shown in Fig. 9~dotted and dashed lines!. In this new state
the gap becomesindependentof the magnitude ofm* and
the areas of the Fermi surface in which the gap is positive
equal to the areas in which the gap is negative. We will
next that this new state is not the physical state occupied
the system because at thesem* the d-wave solution is ener-
getically more favorable.

Thed-wave solution is also characterized by the indep
dence of the gap on the magnitude ofm* . The origin of the
repulsion-independent gap lies on the momentum indep
dence ofm* , and on the equality of the Fermi-surface are
with positive and negative gap. We can see this analytic
by considering a circular Fermi surface. If the gap on t
Fermi surface has the formDk5D cos(nf) wheren is the
number of nodes andf is the polar angle in the usual pola
coordinates, then the momentum-independent repulsive
tribution to the gap function becomes proportional to t
integral

I 5E
0

2p

df
D cos~nf!

Aj uku
2 1D2cos2~nf!

50, ~31!
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which is identically zero. Therefore, a gap changing sig
periodically on the Fermi surface eliminates the effect of a
momentum-independentrepulsion providing a qualitative un
derstanding of the discontinuous nature of the transition
the s-wave channel in Fig. 9~from dot-dashed line a
m* /g250.21 to dashed line atm* /g250.22!. We remark
that the nodes we obtain have a finite slope and therefo
linear T dependence of the penetration depth in theT→0
regime is plausible.

The q independence ofm* in the simple case considere
in Eq. ~30! is due to the locality of the repulsion in ou
model. However, in realistic situationsm* is expected to be
momentum dependent. This momentum dependence ca
either due to a nonlocal repulsion or due to the retarda
renormalization of this quantity since it is always associa
with a characteristic time a characteristic distance in a Fe
liquid. For example, if the diameter of the pairs in the oxid
is about four times the lattice spacing, we could expec
characteristic momentum of the orderkF/4. A realistic cal-
culation of theq dependence ofm* in the oxides would
require a retarded framework which is very complicated fo
Hubbard model and is in any case beyond the scope of
manuscript.

To introduce a smooth momentum cutoff for the var
tions of m* and be more realistic, we consider a structu
analogous to that of the pairing interaction written at smaq
asm* (q)5m0* @11uqu2/(Qc

Cb)2#21, in which caseQc
Cb rep-

resents the characteristic range of the exchanged mom
~smooth cutoff! in the repulsive interaction. The importan
parameter is the momentum cutoff in the repulsive inter
tion Qc

Cb compared to that in the attractive pairing interacti
Qc

e-ph. We show in Fig. 10 thes-wave andd-wave gap so-
lutions forQc

Cb5p/4 andQc
e-ph5p/12. Now thed-wave so-

lution is not m* independent but it still appears to be le
sensitive tom* than thes-wave solution. It is clear from Fig
10 ~and also Fig. 9! that at some criticalm* the absolute
d-wave gap will become larger in average than thes-wave
gap, and this will become the energetically favorable sta

To find out which one between thes-wave andd-wave

FIG. 10. The s-wave gap ~full lines! and the d-wave gap
~dashed lines! as a function ofkx ~or ky! on a quadrant of the Ferm
surface, for three different values of the repulsionm0* /g250.05,
0.15, and 0.25, in the caseQc(e-ph)5p/12 andQc(Cb)5p/4. The
smaller the ratiom0* /g2 the larger is the absolute value of the gap
both thes- andd-wave solutions.
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solutions is the physical state of the system, one has to
culate the free-energy gain due to the superconduc
transition,69 the physical solution being that with the high
absolute free-energy gain~the lower free energy!. Of course,
the solution with the higher free-energy gain is that f
which the integral of the absolute value of the gap on
Fermi surface is higher and this is also the solution with
higherTc . The condensation free energy at zero tempera
is given by70

F'
1

N (
k

H jk

Ajk
21Dk

22jk

Ajk
21Dk

2
2

Dk
2

2Ajk
21Dk

2J . ~32!

In Fig. 11, we show the evolution of the free-energy ga
~absolute value of the free energy due to the superconduc
transition in arbitrary units! as a function ofm0* /g2 in the
caseQc

Cb5p/4 andQc
e-ph5p/12. Thes-wave solution is fa-

vorable whenm0* /g2 is small but when this ratio takes value
larger than a critical value of the order ofm0* /g2'0.15 then
the d-wave solution becomes more favorable. Therefo
transitions froms-wave to d-wave superconductivity and
vice versa appear possible depending on details. Notice
that the evolution ofTc follows essentially that of the free
energy gain, and from Figs. 10 and 11 one can conclude
the negative effect ofm* on Tc is smaller in the case of d
waves than in the case of s waves.

Suchs-d transitions occur in our system at convention
values of the Coulomb pseudopotential already observe
low-Tc superconductors.67 The criticalm0* is very dependent
on the ratioQc

e-ph/Qc
Cb . We studied the evolution of the free

energy gain in thes- andd-wave channels as a function o
m0* /g2 for different values ofQc

e-ph/Qc
Cb . This allowed us to

construct the phase diagram shown in Fig. 12. We also m
an analogous study in the case of different momentum st
tures ofm* having an effective momentum cutoff and th
resulting phase diagrams are similar to that of Fig. 12. Wh
for a given Qc

e-ph/Qc
Cb the ratio m* /g2 is larger than the

critical value shown in Fig. 12, the gap isd wave. It is clear
that the smaller the ratioQc

e-ph/Qc
Cb , the smaller is the value

of the critical repulsion, while forQc
e-ph of the same order as

FIG. 11. The absolute value of the free energy gain due to
superconducting transition as a function of the ratiom0* /g2 for
Qc(e-ph)5p/12 andQc(Cb)5p/4. The dotted line~triangles! cor-
responds to thed-wave solution and the full line~circles! to the
s-wave solution. The physical solution is that with the higher ab
lute free-energy gain~lower free energy!.
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Qc
Cb the d-wave solution is impossible and this is probab

the case in low-Tc metallic superconductors. Since in th
MD regime Qc

e-ph!kF , we can also haveQc
e-ph!Qc

Cb , in
which cases- and d-wave superconductivity are energe
cally close and both states are physically acceptable dep
ing on details like the precise value and structure ofm* .

It is quite plausible that by overdoping Bi-Sr-Ca-Cu-O w
induce a transition fromd-wave tos-wave gap as reporte
by Kelley et al.57 While a realistic calculation ofm* in
Bi-Sr-Ca-Cu-O is not possible within our simple approac
there are qualitative points from our analysis that make p
sible this d-s transition by overdoping Bi-Sr-Ca-Cu-O. I
fact, the smaller the hole dopingd, the smaller is expected t
be the effective cutoff of the pairing interaction~see Fig. 5!
and therefore thed state is favored. As we enhanced, we
move gradually away from the instability enhancin
Qc

e-ph/Qc
Cb ~see Fig. 5! favoring therefore a transition tos

wave ~see Fig. 11!. In addition, the anisotropics-wave state
is obtained naturally in the overdoped regime@as far as pos-
sible from the antiferromagnetic~AF! state#, since the closer
we are to the AF regime, the larger is expected the ra
m* /g which favors thed state within our analysis. On th
other hand, if the anisotropies were imposed by anisotro
scattering for example, with spin fluctuations, such variat
of the gap symmetry with doping appears very difficult
understand.46

It is important to notice that thed-wave state we obtain is
anisotropic and its anisotropies are driven by the ARD
anisotropies in the same way as for thes-wave state dis-
cussed in the previous section.48 This is clear in Figs. 9 and
10, where thed-wave solution away from the (p/2,p/2) di-
rection has exactly the form of thes-wave solution. When
we are in the MD regime we always have different couplin
in different regions of the Fermi surface whatever the sy
metry of the gap. In particular all of our discussion that fo
lows on the origin of the dip structure, the correlation
gap, dip, and DOS anisotropies, and the asymme
of superconductor–insulator–normal-metal~SIN! tunnel
spectra48 is independent of the gap symmetry. Notice fina
that many of the contradictions in the gap-symmetry spec
scopic experiments on YBa2Cu3O7 may be quantitatively un-
derstood within our picture if we include the orthorhomb
distortion of the CuO2 planes~this will be discussed later!.

FIG. 12. Phase diagram. The critical repulsionm0* /g2 for the
transition froms-wave tod-wave superconductivity as a function o
the ratioQc(e-ph)/Qc(Cb). The upper region of the graph corre
sponds to thed-wave state.
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We should only notice here that the orthorhombic distort
turns out to be favorable for thed channel and appears ther
fore natural that in Y-Ba-Cu-O thed channel is robust~in the
d channel thed-wave component is dominant, however, b
cause of the distortion there exists also a minors compo-
nent!.

B. Temperature dependence of the shape of the anisotropy

Clearly, a fundamental issue in the analysis of the sup
conducting behavior of the oxides should be to distingu
whether the anisotropies or even thed symmetry reflect
anisotropies of the scattering amplitude~like that with spin
fluctuations! or are simply due to momentum decoupling.
the anisotropy is driven by anisotropic scattering, then
should be temperature independent since usually the sca
ing amplitude is also temperature independent. This is c
tradictory to the temperature dependence of the anisotrop
slightly overdoped Bi2Sr2CaCu2O81d reported in Ref. 47.
According to Ref. 47, while the gap in theG2M̄ direction
~0,p! vanishes exactly atTc , in the G2X ~p,p! direction a
smaller critical temperature characterizes the gap variatio
This has been analyzed in Ref. 71 as an indication of a mi
symmetrys1d gap, assuming that the different gap symm
tries have differentT dependences nearTc . We will give an
alternative interpretation of this behavior in the framewo
of MD.48 Our basic observation is that the system behave
if the superconductivity atG2M̄ direction is not influenced
by the superconductivity at theG2X direction, and this is
precisely the implication of MD.

If MD was perfect in Bi2Sr2CaCu2O81d, the temperature
at which the gap disappears in theG2X direction should be
smaller than that in theG2M̄ direction. In fact, since the
ARDOS is smaller in theG2X direction the coupling is
smaller and thereforeTc is naturally smaller. The critica
temperature for superconductivity is the temperature
which not any gap is present in any direction, and therefor
corresponds to the temperature at which the larger gap~in the
G2M̄ direction! reflecting the larger coupling~the larger
ARDOS! vanishes. Therefore, if MD is perfect the aniso
ropy divergesin the vicinity of Tc since the gap away from
the optimal direction is expected to vanish at a tempera
smaller thanTc .

In the realistic situations where MD is not perfect, we
not expect a divergence but a strong enhancement of
anisotropy nearTc , which could very well account for the
experimental results. We will show in the following how th
results of Ref. 47 can be reproduced qualitatively when fin
momenta are transferred, doing numerical calculations w
the BCS model that we used previously@Eqs.~27! and~28!#
and the same nearest-neighbor tight-binding dispersion
Fig. 13, we report the temperature dependence ofD~0,p! and
D~p,p! ~gaps at the~0,p! and~p/2, p/2! points of the Fermi
surface, respectively! for different values ofqc , and in Fig.
14 we give the corresponding temperature dependence o
anisotropy ratioR5D(0,p)/D(p,p). The critical tempera-
tures are obtained solving numerically the Hermitian eig
value problem of the linearized BCS equations nearTc . It is
remarkable that theTc we obtain corresponds precisely to th
temperature at which the larger gap@in the ~0,p! direction#
vanishes. The momentum grid in these temperatu
dependent solutions has to be adapted to the gap magn
and for each one of the points, several hours of CPU time
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a standard Unix workstation are necessary. The points v
nearTc require a few days of CPU time. The regularity
our points reflects the quality of the numerical convergen
and the linear temperature behavior of the anisotropy r
nearTc is an intrinsic characteristic.

When qc5p/4 the DOS-induced anisotropy because
partial MD is already significant (R'1.7), but the anisot-
ropy is almost temperature independent. In fact one can
in Fig. 14 that the ratioR is temperature independent in th
case. When we consider smaller values ofqc , there is a
continuous deformation of theT dependence ofD~p,p! from
the large-qc regime where the anisotropy ratioR is almost
temperature independent towards theqc→0 regime where as
expected in perfect MD,D~p,p! should have a BCS behavio
going to zero at a temperature on the order of 0.6Tc, and
therefore the anisotropy ratio should diverge close toTc . We
see this clearly in Fig. 14, where the anisotropy ratioR

FIG. 13. Temperature dependence of the gapD in the ~p,0!
~circles! and in the~p,p! ~triangles! directions for three character
istic ranges of exchanged momentaqc . Lowering qc there is a
continuous evolution in the (p,p) direction through perfect MD,
implying two different critical temperatures.
ry

e,
io

f

ee

reaches values one order of magnitude larger nearTc . At a
first view, the results of Ref. 47 indicate the perfect M
regime but one should bear in mind that if the small gap
smaller than the temperature at which it is measured, i
experimentally inaccessible.72 Taking into account such ther
mal effects neglected in our BCS model, the results of R
47 can be qualitatively understood even withqc of the order
p/10. A remarkable point in Fig. 14, is that the anisotro
ratio R grows linearly as we increaseT towardsTc in the
MD regime. We verified this result numerically but we ha
not succeeded in obtaining an analytic understanding of

If the anisotropy is due to an anisotropic interaction a
does not reflect the DOS anisotropy, then we expect it to
temperature independent. We can understand this very easi
by remarking that the same interaction that leads to the
also leads toTc ~that is why the ratio 2D/Tc has a physical
meaning!. If the gap anisotropy atT→0 reflects the anisot-
ropy of the interaction, then since the same interaction
present atT5Tc , the same gap anisotropy should also
present whenT→Tc . This is also the result of numerica
simulations in the spin-fluctuation pairing scenario. The
fore, the enhancement of anisotropy with temperature is e
dence of MD, and cannot be understood in the case of ani
tropic interactions like these considered in the sp
fluctuation pairing scenario.46 The study of theT dependence
of the shape of the anisotropy is therefore a crucial test
the pairing mechanism.

C. The behavior of the anomalous dip above the gap
in the density of states

The presence of a characteristic dip structure above
gap in the density of states of all high-Tc materials is now
established. Various interpretations of this dip have be
proposed in the literature.73–76 It has been shown in Refs
74–76 that when the coupling strength exceeds some c
acteristic value of the orderl'2 then the dip structure ap
pears above the gap at an energy of the order 3D. This dip
structure has nothing to do with the spectral structure of
phonons and its position in energy is correlated with
value of the gap and not with phonon energies. The dip
lifetime effect of the pairs75,77 and accompanies other cha
acteristic qualitative modifications of the BCS phenomen

FIG. 14. Temperature dependence of the anisotropy ratio
qc5p/4 ~circles!, qc5p/12 ~triangles!, and qc5p/20 ~squares!.
The increase with temperature of this ratio is a clear indication
MD.
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ogy at large couplings like, for example, the absence o
Hebel-Slichter peak78–80and the anomalousT dependence o
the density of states of excitations.75,76 Therefore, within
conventional BCS theory, if the coupling is larger thanl '2
@which corresponds to 2D/Tc.5.0 ~Refs. 16,17!# then the
dip must be visible above the gap, and since experime
measure large gap ratios the dip is naturally present as
cussed in Refs. 75 and 76. The following analysis of
anisotropic behavior of the dip structure could be conside
as a strong support to the dip interpretation of Refs. 74–

The first remarkable point in the study of the density
states within strong-coupling BCS theory is that the isotro
strong-coupling solutions of Eliashberg equations provid
dip structure in surprisingly good agreement w
experiment.75,77 It is well known that the oxides are highl
anisotropic and the relevance of isotropic Eliashberg ca
lations is very surprising. The answer to this puzzle is giv
by MD. In fact, as we have discussed in Sec. VI, in the c
of MD we obtain momentum-independent Eliashberg eq
tions in the different points of the Fermi surface. If MD we
perfect, at each point of the Fermi surface the supercond
ing behavior would obey the isotropic Eliashberg equatio
with a coupling strength proportional to the ARDOS at th
point. Within the analysis of the dip given in Refs. 75 a
76, the dip visibility is correlated with the magnitude of th
coupling strength. The stronger the coupling, the sharper
deeper the dip, which can be viewed asa qualitative measure
of the coupling strength. According to the dip interpretation
of Refs. 75 and 76, an eventual anisotropy of the dip~re-
ported for example by ARPES! should indicatedifferent cou-
plings in different directions.

Within the MD scenario, we expect in the case
Bi-Sr-Ca-Cu-O the coupling strength to be stronger in
G2M̄ (0,p) direction since the extended van Hove singul
ity is present there and the ARDOS is higher. We also exp
that moving away from theG2M̄ (0,p) towards theG2X
~p,p! direction on the Fermi surface, the coupling streng
should be strongly reduced. There is a qualitative feat
common toall ARPES experiments that certifies that inde
moving from theG2M̄ to theG2X direction on the Fermi
surfacewe move from a strong-coupling regime to a wea
coupling regime. In fact in the G2M̄ direction is clearly
seen a sharp dip structure above the gap that accordin
Refs. 75 and 76 indicates rather strong coupling (l'3). It is
a common trend of all ARPES experimentsthat moving from
G2M̄ towardsG2X, the visibility of the dip drops gradu
ally and the dip is totally absent in theG2X direction. We
recall that not only the dip visibility drops but also the ele
tronic ARDOS and the gap magnitude. To our analysis t
might be considered as a strong support to MD. We are
aware of another theoretical interpretation for thecorrelation
of the dip anisotropy, with the ARDOS and gap anisotrop.

In the scheme of MD, we can also understand a fun
mental characteristic of the experimental measurement
the density of states in the oxides. In fact the tunneling81 and
ARPES measurements in the optimal for the gap directio82

report very similar dip structures above the gap in the den
of states of excitations. This is very surprising since ARP
reports the spectral function at some specific direction, w
the tunneling spectrum arises from the contribution of
a
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parts of the Fermi surface. But within the MD scheme, t
tunnel spectrum is made up by quasi-independent contr
tions of the various parts of the Fermi surface. The contri
tion of theG2M̄ region naturally dominates, since the va
Hove singularity is extended and covers around 30% of
Brillouin zone. The dip structure seen by tunneling refle
the contribution of the singular region and is therefo
equally sharp with the dip structure seen by ARPES in t
direction.77

Since the physics is dominated by the contribution of
singular regions, we can naturally understand the asymm
of the tunneling spectra of Ref. 83. In fact, the dip structu
is seen only at negative sample bias, because the Van H
singularity in theG2M̄ ~0,p! direction isbelow the Fermi
level. Measuring at positive sample bias, the dynamic beh
ior reflects the density of states above the Fermi level~as in
inverse photoemission!. The presence of the dip at negativ
sample bias and its absence at positive sample bias,83 indi-
cates that the density of states at an energy of the orderD
~the optimal gap in theG2M̄ direction! above the Fermi
level, is at least 30% smaller than that at an energyD below
the Fermi level, and this can be easily obtained given
presence of the Van Hove singularity in theG2M̄ direction.
Because the DOS is smaller above the Fermi surface,
coupling is smaller and the dip is no more visible.75,77

D. Large effects of orthorhombicity in Y-Ba-Cu-O
without involving the chains

The symmetry of the order parameter in YBa2Cu3O7 is
still controversial. While phase-sensitive experiments est
lished that the order parameter reverses its sign on the F
surface indicatingd-wave symmetry,c-axis Josephson tun
neling experiments on the same material indicated the e
tence of a significants component.84,85 This late conclusion
seems to be reinforced by the relative insensitivity of t
superconducting critical temperature on the presence of n
magnetic impurities or defects.86 It appears experimentally
that the gap has a dominantd-wave component but also
significants-wave component. It has been argued that t
behavior indicates the existence of two differe
condensates.87

The mixing ofs andd components arises naturally whe
the lattice is orthorhombically distorted.88 Large orthorhom-
bic distortions have therefore been invoked in order to
derstand the experimental reports in YBa2Cu3O7.

89–91 How-
ever, the orthorhombic distortion of the CuO2 planes in the
case of YBa2Cu3O7 is only a few percent ('3%) and such a
small distortion cannot induce significant mixing ofs com-
ponents in ad-wave spin-fluctuation-mediated pairing. In th
case of Bi2Sr2CaCu2O8 such orthorhombic distortion is es
sentially absent and the in-plane structure is tetragonal.92 The
absence of mixing of gap symmetries in Bi2Sr2CaCu2O8
could indicate that the orthorhombic distortion
YBa2Cu3O7 is indeed involved in the mechanism that lea
to the symmetry mixing in this last material.

To reconcile the large orthorhombicity effects required
the phenomenology and spin-fluctuation-mediated pairi
Carbotte and collaborators argued that the Cu-O chains
involved in superconductivity and a large part of the cond
sate is located there.91 Since the chain band concerns on
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one direction in theab plane, if chains are involved, large i
plane anisotropies are reasonable. Large anisotropies
tween thea andb directions are also reported in microwav
penetration depth measurements.93 On the other hand, sup
posing that the chains contain part of the condensate and
therefore crucially involved in the pairing mechanism is d
ficult to reconcile with the fundamental similarities of supe
conductivity in Y-Ba-Cu-O with that of the other high-Tc
cuprates where the chains are absent.94 There are also argu
ments based on LDA calculations indicating that the cha
not even contribute in the transport.43 Whether the chains ar
involved in the pairing or not is not yet a definitely answer
question, there are nevertheless strong arguments suppo
that the interesting physics happens in the CuO2 planes.43,94

We stress here that if we are able to answer experimen
the question of the relevance of the chains, we could a
give strong constraints on the origin of anisotropic superc
ductivity in YBCO.

The effect of orthorhombicity on the CuO2 plane is to
make inequivalent thea and b axes and in YBa2Cu3O7 the
difference in these lattice constants is less than'3.5%. For
such small variations, to a first order, in a tight-binding d
persion the hopping along the two different axes will
inequivalent with differences of the same order. Therefore
see the effect of the orthorhombic distortion in the Cu2
planes we take in our dispersion relations the hopping te
along kx and ky inequivalent. For example, in the simple
next nearest-neighbors tight-binding fit to the LDA ban
structure calculations for the CuO2 planes of YBa2Cu3O7 that
we already considered in Sec. V,41 we must write nowjk
522t@cos(kx)1(11b)cos(ky)#24t8cos(kx)cos(ky)2m where
b is the orthorhombicity factor of the order'4% in
Y-Ba-Cu-O and the other parameters are as explained in
V. We can inject this dispersion in Eq.~27! and solve it to
obtain the gap functionD~k! for the orthorhombically dis-
torted system. Making inequivalent the directionsa andb in
the band dispersion, we have inequivalent Fermi veloci
and therefore we naturally expect in the MD regime differe
absolute values of the gap alonga andb.

Indeed, takingm* /g'0.075 in Y-Ba-Cu-O we obtained
very large differences in the gap along~near! a andb with
very small realistic values of the distortionb'0.04. The full
line in Fig. 15~a! shows the evolution of the ratioDa

2/Db
2 as a

function of the distortion factorb. We consider the energet
cally favorabled-wave channel and when we rotate 90° fro
a to b the gap changes sign being dominantlyd wave. It
must be noticed that such large ‘‘distortions’’ on the sup
conductive behavior are characteristic of MD and could
an element of answering the central question of whet
anisotropies are driven by anisotropic scattering or by M
We also consider for comparison the Millis, Monien, a
Pines ~MMP! phenomenological scattering with sp
fluctuations95 in the static limit

L'
L0

11jM
2 ~q2Q!2 , ~33!

whereQ5(p,p), the coherence range of the antiferroma
netic spin fluctuationsjM is taken on the order of three la
tice spacings as in the experiment95 and Coulomb pseudopo
tential is neglected. We show in Fig. 15~a! with dashed line
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the correspondingb dependence ofDa
2/Db

2. The structural
distortion of the CuO2 planes induces a distortion in the s
perconductive behavior that is an order of magnitude lar
in the case of MD compared to that in the case of sp
fluctuation scattering.46 In the latter case, the orthorhomb
ically induced ‘‘distortion’’ in superconductivity is on the
order of the distortion introduced in the tight-binding dispe
sion and therefore of the structural distortion.

FIG. 15. Comparison of the effect of orthorhombicity in the M
regime and in spin-fluctuation-mediated superconductivity.~a! The
ratio of the gaps along thea andb directionsDa

2/Db
2 as a function of

the distortion parameterb. ~b! The London penetration depth in
plane anisotropylb

2/la
2 as a function of the distortion parameterb.

~c! The ratio of supercurrent obtained from a Josephson junctio
Pb with anisotropic Y-Ba-Cu-O over that expected from a junct
of lead with isotropic Y-Ba-Cu-O with gap magnitud
(1/2)(uDau1uDbu). In all cases the full lines correspond to the M
regime as described in the text, while dashed lines correspond t
MMP effective scattering amplitude@Eq. ~33!# with the same dis-
persion conditions.
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The experiments in Y-Ba-Cu-O suggest strong orth
rhombicity effects that could exclude spin fluctuations
only the in-plane electronic physics is relevant and indic
that MD is at the origin of anisotropy. In fact, let us consid
the London penetration depth along the two different dir
tions at zero temperature

lkx~ky!
22 }(

k
vkx~ky!

2 @] f ~Ek!/]Ek#, ~34!

whereEk5Ajk
21Dk

2 and vki
are the Fermi velocities alon

kx andky . The experimental results of Ref. 93 indicate lar
in-plane anisotropy of the penetration depthla /lb'1.6. We
show in Fig. 15~b! the dependence of the in-plane penet
tion depth anisotropylb

22/la
22 on the distortion paramete

b. The full line corresponds to the MD regime, while th
dashed line to the MMP spin-fluctuation scattering. We
that, in the MD regime, the in-plane distortion could be s
ficient to produce the experimental in-plane anisotropy of
penetration depth for realistic values of the in-plane dist
tion parameterb'0.04. On the other hand, using MMP in
teraction, the reported in-plane anisotropy ofl for the same
distortion parameterb is an order of magnitude smaller tha
in the experiment.

The same conclusion is derived from thec-axis Josephson
tunneling results of Sunet al.84 In fact they observed Joseph
son tunneling currents onc-axis Pb/insulator/YBa2Cu3O7
tunnel junctions. According to the analysis of Ambegaok
and Baratoff96 the Josephson effect is described by

JR5
2pT

N1N2

1

p (
n50

`

(
k

D1~k!

j1~k!21D1~k!21vn
2

3(
k8

D2~k8!

j2~k8!21D2~k8!21vn
2 . ~35!

At zero temperature the sum over the fermion Matsub
frequencies becomes an integral that can be perfor
straightforwardly, leading to the following expression for t
Josephson currentJ at T50:

J~T50!R5
1

2p

1

N1N2
(
kk8

D1~k!D2~k8!

3
1

Aj1~k!21D1~k!2Aj2~k8!21D2~k8!2

3
1

Aj1~k!21D1~k!21Aj2~k8!21D2~k8!2
,

~36!

whereR is the junction resistance andNi(0) is the densities
of states on the Fermi level. It is clear that ifD1 andD2 are
orthogonal~they belong to different irreducible represent
tions of the point group!, there should not be any Josephs
current in the junction. Therefore, since the gap of Pb
known to bes wave, the observation of the Josephson c
rent seems to exclude a purelyd-wave gap in Y-Ba-Cu-O
-

e
r
-

-

e
-
e
r-

r

a
ed

s
-

and a significant part of thes component is necessary i
order to have Josephson coupling between the two con
sates.

For the Pb/insulator/Y-Ba-Cu-O junction, if we suppo
that the Pb gap is isotropic then in Eq.~35! the sum overk
for the isotropic case becomes trivial leading to a term p
portional to the density of states of lead. At zero temperat
the Matsubara frequency sum becomes a frequency inte
taking here the form*0

`dvF(v)G(v) where F(v)5(DPb
2

1v2)21/2 and G(v)5@jY(k)21DY(k)21v2#21. This last
integral is calculated numerically. The index Y stands for t
gap and dispersion of Y-Ba-Cu-O and the index Pb for
gap of lead. If DY were also isotropic and the band o
Y-Ba-Cu-O were also isotropic and infinite one should
cover the classical Ambegaokar and Baratoff result for a
sephson junction between isotropic superconductors

J~T50!R5
2DPbDY

DPb1DY
KFUDPb2DY

DPb1DY
UG , ~37!

with K a complete elliptic integral of the first kind.
In Ref. 84 a supercurrent along thec axis of a Pb/

insulator/Y-Ba-Cu-O junction was observed. This superc
rent was about 10% of what should be expected from
isotropic Ambegaokar-Baratoff formula~for Y-Ba-Cu-O the
gaps were taken equal to 1.76Tc as expected in weak
coupling BCS theory!. As we noticed, the presence of th
supercurrent demonstrates already that ans component is
present in the gap of Y-Ba-Cu-O. However, the weaknes
the supercurrent could show that thed components are nev
ertheless dominant.97 In our approach, the gap in Y-Ba-Cu-O
is indeed dominantlyd wave for the reasons we discussed
Sec. VII A yet because of the orthorhombic distortion the
is also ans component that is responsible for the Joseph
coupling with the condensate of lead. To show that this
proach could reasonably account for the results of Ref. 84
take two different cases. In the first case we consider that
gap of Y-Ba-Cu-O is isotropic and in the second case
obtain the gap from the solution of the BCS equations
before. In both cases we adjust the Y-Ba-Cu-O gap to a va
about 15 times larger than the gap of Pb. We also adjust
isotropic gap taken for Y-Ba-Cu-O in the first case to
equal to (1/2)(uDau1uDbu) where Da and Db are the gap
magnitudes we obtain alonga and b, respectively,@as we
show in Fig. 15~a! the gap changes not only its sign but al
its magnitude by ap/2 rotation#. What would be comparable
to the findings of Ref. 84 is the ratio of the Josephson sup
current produced using the anisotropic gap we obtain in
MD regime solving the BCS equations as previously, ov
the supercurrent obtained in the isotropic case and wh
should correspond to the Ambegaokar-Baratoff expectatio
We plot in Fig. 15~c! the evolution of this ratio with the
distortion parameterb. Whenb50 we have no supercurren
but as the distortion parameter reaches values as highb
50.04 we obtain appreciable currents of the order of 15%
what should be expected in a junction between isotropic
perconductors, in good agreement with the results of Ref.
The dashed line in Fig. 15~c! shows the evolution of the
same ratio withb but when the anisotropic Y-Ba-Cu-O ga
is obtained using the MMP interaction. For the supercurr
also, the orthorhombicity effect is about an order of mag
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tude larger in the case of MD than in the case of the MM
interaction. The supercurrent obtained using the MMP in
action can never reproduce the experimental reports and
volving the chains is unavoidable in that case.

It emerges therefore a fundamental qualitative differe
between MD and anisotropic scattering with spin fluctu
tions. In the case of anisotropic scattering, if the orthorho
bic distortions interpretation of thes and d mixing in
Y-Ba-Cu-O makes sense, then the chains should necess
participate fundamentally in the pairing and at least ab
25% of the condensate should be located there. In fact,
a distortion factor of 25% (b50.25) Carbotte and
collaborators91 were able to reproduce various characterist
of the ab anisotropy in YBa2Cu3O7 using the MMP interac-
tion. Of courseb50.25 is not physical for the CuO2 plane
distortion, but was used by the authors as an approxim
approach in order to simulate the effect of the Cu-O cha
within a one-band picture without considering explicitly th
chain band. Our analysis suggests that if instead of the M
interaction@Eq. ~33!# one considers the effective interactio
we obtained near the PS instability given in Eq.~28!, we
obtain the same magnitude of orthorhombicity effects but
the realistic CuO2 plane value ofb'0.04. The orthorhombic
distortion of the planes could therefore be sufficient and
chains irrelevant.

VIII. EPILOGUE

We presented in this manuscript a paradigm in which
perconductivity mediated by isotropic electron-phonon sc
tering can have very unconventional properties usually
tributed to exotic pairing mechanisms. For the occurrence
this type of ‘‘unconventional’’ superconductivity short-rang
~in real space! Coulomb correlations like in the Hubbar
models are necessary. Such a system can be driven to a p
separation instability even by phonons. Approaching the
stability line from the Fermi-liquid side, results in a stron
enhancement of long-wavelength electron-phonon scatte
Dominance of long-wavelength processes leads to mom
tum decoupling in superconductivity which is a tendency
decorrelation of the superconductive behavior in the vari
regions of the Fermi surface. We have discussed the orig
qualitative aspects of this type of unconventional superc
ductivity that arises in the momentum decoupling regime

We have particularly emphasized the qualitative aspe
that may differentiate this new type of unconventional sup
conductivity from other mechanisms of unconventional
perconductivity proposed earlier which involve anisotrop
scattering for example with spin fluctuations. We identifi
some relevant original qualitative aspects of MD that m
help identifying the origin of unconventional supercondu
tivity. Such aspects are the very small dependence of
condensation free energy on the gap symmetry which co
be determined by the conventional~and marginal for the
pairing! Coulomb pseudopotential, the temperature dep
dence of the shape of the anisotropy, and a large sensit
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of the order parameter to orthorhombic distortions. We ha
discussed these aspects in relation with the phenomeno
of the high-Tc oxides showing that many puzzles are simp
consequences of MD. We hope the reader is convinced
MD deserves serious consideration in the analysis of the
perconducting phenomenology of the oxides, andphonons
remain serious candidates for the role of the mediators of
pairing.

We must insist that, while we claim demonstration th
phonons remain in the list of candidates for the pairing,
are very far from demonstrating their relevance. MD mig
not be automatically associated to phonon-mediated su
conductivity close to a phase separation. There are other
posed mechanisms for high-Tc which also lead to MD. The
most famous are the charge-transfer resonance mechanis
Littlewood, Varma, and Abrahams20 which involves the
long-wavelength process,21 and the interlayer tunneling
mechanism of Anderson and Chakravarty,19 which corre-
sponds effectively toq'0 pairing between the planes. I
this paper, we provided the elements which may help dis
guish MD from anisotropic scattering, for example, with sp
fluctuations. In a future paper, we will attempt a finer ana
sis with the objective to identify qualitative aspects th
could help to distinguish between the~proposed in this pa-
per! phonon mechanism near a PS instability and the mod
of Refs. 20, 21, and 19.

The contribution of this paper in the discussion around
high-Tc phenomenon can therefore be summarized as
lows:

~a! We add support to the idea that phonons could
mediators of a type of unconventional superconductivity
the oxides.

~b! We provide elements for distinguishing this type
unconventional superconductivity from the older types ba
for example on spin fluctuations pairing.

~c! We identify unexpected qualitative implications o
other models that have been proposed20,21,19to explain high-
Tc superconductivity in the cuprates.

In the discussion of our findings we focus on the behav
of the high-Tc oxides. We feel, nevertheless, convinced th
our analysis may constitute a basis for a serious reconsid
tion of our ideas on other so-called ‘‘unconventional sup
conductors’’ like the heavy fermion and organic superco
ductors, restoring for example phonons in the list of t
potential mediators of the pairing there also.
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