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Quantum-classical transition of the escape rate of a uniaxial spin system
in an arbitrarily directed field

D. A. Garanin,* X. Martı́nez Hidalgo,† and E. M. Chudnovsky‡

Department of Physics and Astronomy, City University of New York–Lehman College,
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~Received 19 November 1997!

The escape rateG of the large-spin model described by the HamiltonianH52DSz
22HzSz2HxSx is inves-

tigated with the help of the mapping onto a particle moving in a double-well potentialU(x). The transition-
state method yieldsG in the moderate-damping case as a Boltzmann average of the quantum transition
probabilities. We have shown that the transition from the classical to quantum regimes with lowering tempera-
ture is of the first order (dG/dT discontinuous at the transition temperatureT0) for hx below the phase
boundary linehx5hxc(hz), wherehx,z[Hx,z /(2SD), and of the second order above this line. In the unbiased
case (Hz50) the result ishxc(0)51/4, i.e., one fourth of the metastability boundaryhxm51, at which the
barrier disappears. In the strongly biased limitd[12hz!1, one hashxc>(2/3)3/4(A32A2)d3/2>0.2345d3/2,
which is about one half of the boundary valuehxm>(2d/3)3/2>0.5443d3/2. The latter case is relevant for
experiments on small magnetic particles, where the barrier should be lowered to achieve measurable quantum
escape rates.@S0163-1829~98!11717-4#
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I. INTRODUCTION

The two fundamental mechanisms of the escape of a
ticle from a metastable potential well are quantum tunnel
through the barrier and the classical thermal activation o
the barrier. The first mechanism is closely related to the t
neling level splitting for a particle in a double-well potentia
which was considered by Hund1 for the ammonia molecule
Other early studies based on the WKB approximation2–4

treated the ionization of atoms in electric fields,5 cold emis-
sion of electrons from metal surfaces,6 and decay of nuclei.7

Tunneling in spin systems was considered much later:
renblit and Shender8 calculated the ground-state splitting
the high-spin rare-earth compounds with the help of a hi
order perturbation theory, Chudnovsky9 applied the instanton
technique for the Landau-Lifshitz equation to calculate
escape rates. The current broad interest to the spin-tunn
problem was initiated, however, mainly by the application
the instanton method by Enz and Schilling10 and Chud-
novsky and Gunther,11 and the spin-WKB formalism by van
Hemmen and Su¨tő.12

Studying thermally activated escape of a classical part
from the metastable minimum of a potentialU(x) goes back
to Kramers,13 who solved the Fokker-Planck equation d
scribing the diffusion of the particle over the barrier. For sp
systems, the role of thermal agitation in overcoming ene
barriers ~described, e.g., by the Stoner-Wohlfart model14!
was stressed by Ne´el.15 Brown16 has derived the Fokker
Planck equation for classical spin systems and calculated
escape rate in the uniaxial model.

An extensive reference to the thermal activation and t
neling of particles can be found in Ref. 17, to magnetizat
tunneling in Ref. 18, and to the thermal activation in clas
cal spin systems in Ref. 19. Spin tunneling was recen
observed in small magnetic particles such as ferritin20–22and
barium ferrite,23 and in high-spin molecules, Mn12Ac24–28

~see also Refs. 29! and Fe8.30
570163-1829/98/57~21!/13639~16!/$15.00
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Considering escape at finite temperatures, the first ide
to sum the tunneling and thermoactivation escape rate
stemming from independent channels:G5Gq1G th . Since
the thermoactivation rate follows the very steep Arrhen
temperature dependence,G th5G0exp(2DU/T), the transition
between quantum and classical regimes occurs at the
perature T0 defined by Gq5G th(T0). Writing Gq
5Aexp(2B), ignoring prefactors and equating the exp
nents, one obtains the estimation

T0
~0!5DU/B, ~1.1!

where the superscript inT0 says that the ground-state tunne
ing is considered. ForT.T0

(0) one has practicallyG
>G th(T), whereas below the transitionG>Gq is independent
of temperature. The transition between the two regimes
cures on the temperature intervalDT;T0

(0)/B. SinceB}S,
this is much smaller thanT0

(0) in the quasiclassical limit,S
@1. The simple scenario above is the prototype for the
called first-order quantum-classical transition of the esc
rate, which is accompanied by the discontinuity ofdG/dT at
T0.

It turns out, however, that for common metastable
double-well potentials, such as cubic or quartic parabola,
other scenario is realized. Below the crossover tempera
T0 the particles cross the barrier at the most favorable ene
level E(T) which goes down from the top of the barrier
the bottom of U(x) with lowering temperature. Such
regime is called thermally assisted tunneling~TAT!. The
transition from the classical regime to TAT is smooth, wi
no discontinuity ofdG/dT at T0, and the transition tempera
ture is given by31

T0
~2!5ṽ0 /~2p!, ṽ05AuU9~xsad!u/m. ~1.2!

Here the superscript inT0 denotes the second-order trans
tion, xsad corresponds to the top of the barrier~the saddle
13 639 © 1998 The American Physical Society
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13 640 57GARANIN, MARTÍNEZ HIDALGO, AND CHUDNOVSKY
point of the potential!, andṽ0 is the so-called instanton fre
quency. In fact, the above formula is valid in the modera
damping case, in which the Kramers’ result for the class
escape rate is independent of the friction constanth and
coincides with that of the simple transition-state theo
~TST!. In the strong- and weak-damping casesG0}1/h and
G0}h, respectively,13 and the formula~1.2! should be modi-
fied ~see, e.g., Ref. 17!. The consideration in the moderat
damping case is the most simple, and all the results ca
obtained from the simple quantum TST formula neglect
dissipation and giving the escape rate as a Boltzmann a
age of quantum escape rates at different energies.32,33 The
quantum-classical transition of the escape rate including
dissipation in the strong- to moderate-damping regimes
described with the help of the Caldeira-Leggett formalism34

in Refs. 35–39. The results show that in the exponen
approximation for the escape rate only the second deriva
d2G/dT2 is discontinuous atT0

(2) . More accurate calcula
tions taking into account the prefactor33,36 show the smooth-
ening of the transition in the vicinity ofT0

(2) due to quantum
effects and the thermal distribution, so that all the derivati
of G(T) behave continuously.

The terms first- and second-order quantum-classical t
sitions of the escape rate used above are due to Larkin
Ovchinnikov.40 Chudnovsky41 stressed the analogy with th
phase transitions and analyzed the general conditions
both types of quantum-classical transitions. He has sho
that for the second-order transition the period of oscillatio
t(E) in the inverted potential2U(x) should monotonically
increase with the amplitude of oscillations, i.e., with the lo
ering energyE from the top of the barrier. Ift(E) is non-
monotonic, the first-order transition occurs. Quite recently
effective free energyF(E) for quantum-classical transition
of the escape rate of a spin system was written,42 the mini-
mization of which determines the escape rate in the expon
tial approximation:G;exp(2Fmin /T). The latter has the
form F5af21bf41cf61F0, just as in the Landau mode
of phase transitions.43 Here a50 corresponds to the
quantum-classical transition andb50 to the boundary be
tween first- and second-order transitions.

In a sense, second-order quantum-classical transition
the escape rate are common, whereas the first-order one
exotic and have to be specially looked for. Nevertheles
number of systems and processes showing first-order tra
tions are already known, e.g., a superconducting quan
interference device with two Josephson junctions,44 false
vacuum decay in field theories,45–48and depinning of a mas
sive string from a linear defect.49,50 All these systems have
more degrees of freedom than just a particle, thus the se
for a physical system equivalent to a particle in a poten
U(x) leading to the first-order transition of the escape r
seems to be quite actual. Qualitatively it is clear howU(x)
should look: The top of the barrier should be rather fl
whereas the bottom should not. In this case, as for the r
angular barrier, tunneling just below the top of the barrie
unfavorable, the TAT mechanism is suppressed, and
thermal activation competes with the ground-state tunnel
leading to Eq.~1.1!. Such a requirement is satisfied, e.g., f
the pinning potential,49,50 which consists of periodically
spaced narrow pits. Here the qualitative results can be ea
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anticipated, at least for particles moving in such a potent
However, the exact form of the pinning potential is n
known.

A rather simple and experimentally important system s
isfying the above requirement is the uniaxial spin model i
field described by the Hamiltonian

H52DSz
22HzSz2HxSx . ~1.3!

This Hamiltonian can be mapped51–55onto a particle moving
in the potentialU(x) which has a double-well form in the
region of field variables h̃x,z[Hx,z /(2S̃D), S̃[S11/2
satisfying h̃x

2/31h̃z
2/3<1, as the original spin model~1.3!

in the classical limit.14 The first-order escape-rate transitio
in the unbiased (Hz50) model ~1.3! for Hx below some
critical value was found in Ref. 56. In Ref. 42 the exact val
h̃xc51/4 was obtained with the help of the particle mappin
One can get an idea of why the first-order transition sho
occur at smallHx from the following simple arguments
Since tunneling in the model~1.3! is caused entirely by the
transverse fieldHx , it becomes very small forh̃x!1. In this
limit the barrier heightDU remains finite, and the form o
the potential near the bottoms should also be preserved.
only possibility for the vanishing tunneling rate is that th
barrier becomes very thick, with a very flat top~see, e.g.,
Fig. 1!. The latter is just what is needed for the first-ord
quantum-classical escape rate transition.

The aim of this article is to generalize the approach
the biased caseHzÞ0 and to compute the entire phase d
gram with the boundary lineh̃xc(h̃z) below which the tran-
sition is first order. We will use the simple damping
independent quantum TST formula as the starting point
calculations. This requires justification for our spin system
is known that for the model without the transverse field t
thermoactivation escape rate is proportional to the damp
constant,G0}h, for all values ofh.16 The models consider
ing hopping over discrete levels for moderate values oS
yield the same result.57,58 Such a situation can be thought o

FIG. 1. Reduced effective potential for the spin system, E
~2.5!, in the unbiased case. The boundaries between the spin s
and unphysical states are indicated by horizontal dotted lines.
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57 13 641QUANTUM-CLASSICAL TRANSITION OF THE ESCAPE . . .
as the weak- and strong-damping regimes at the same t
~This is not a contradiction, since according to the Land
Lifshitz equation,59 but not according to the Gilber
equation,60 larger values ofh always lead to a faster relax
ation.! This situation is different from that of a particle, be
cause, in terms of polar anglesu andw, in the axially sym-
metric caseHx50 the spins cross the barrier not through t
vicinity of a saddle point but through the ridgeu5u* , where
the energy of the spin has a maximum. If the transverse fi
is applied, the spins flow over the vicinity of a saddle po
u5u* , w50. This brings the system closer to the usu
situation with particles, and the moderate-damping reg
with the damping-independentG0 appears.61–65 The cross-
over from the strong- to moderate-damping regimes w
confirmed recently by a numerical solution of the Fokk
Planck equation for classical spins in the oblique field in R
65. The boundaries of the moderate-damping regime for
spin system depend, in addition toh, onHx andHz and they
are not yet well established. Accordingly, an accurate
scription of spin tunneling with dissipation is an open pro
lem. For this reason we restrict ourselves in this work to
simple damping-independent quantum TST approach.

The structure of the main part of this article is the follow
ing. In Sec. II the fundamentals concerning the particle m
ping, WKB approximation and the quantum TST are
viewed. In Sec. III the quantum-classical transition of t
escape rate in the unbiased case is studied, and the e
rate is calculated in the whole temperature range includ
the prefactor. In Sec. IV the results are generalized for
biased case. The possibilities of the experimental observa
of different types of the escape-rate transition are discus
in Sec. V.

II. PARTICLE MAPPING AND ESCAPE RATE

A. Particle mapping

The spin problem with the Hamiltonian~1.3! can be
mapped51–55 onto a particle problem

H5
p2

2m
1U~x!, p52 i

d

dx
, m5

1

2D
. ~2.1!

The mapping makes a correspondence between the
wave functionCS5(m52S

S Cmum&, whereum& are the eigen-
states ofSz , and the coordinate wave function

C~x!5e2 f ~x! (
m52S

S
Cmexp~mx!

A~S2m!! ~S1m!!
, ~2.2!

where

f ~x!5S̃@ h̃xcosh~x!2h̃zx# ~2.3!

and

S̃[S11/2, h̃x,z[Hx,z /~2S̃D !. ~2.4!

It can be shown that if the coefficientsCm satisfy the Schro¨-
dinger equation for the spin problem~1.3!, the coordinate
wave function~2.2! satisfies the Schro¨dinger equation for the
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particle problem~2.1!, in the stationary case with the sam
energy levelsEn , n50,1, . . . ,2S. The potentialU(x) in Eq.
~2.1! is given by

U~x!5S̃ 2Du~x!,

u~x!5@ h̃xsinh~x!2h̃z#
222h̃xcosh~x!. ~2.5!

It has a double-well form forHx and Hz inside the region
closed by the metastability boundary curve14

h̃ xm
2/31h̃ zm

2/351. ~2.6!

This simple formula derived 50 years ago has been o
recently tested in experiment on individual single-doma
particles.66

Finding the extrema ofU(x) requires the solution of the
fourth-order algebraic equation fory5exp(x) and it can be
better done numerically. In the unbiased case,Hz50, the top
of the barrier is atx50 and it corresponds to the saddle po
of the classical spin Hamiltonian~1.3!. The mininum of
U(x) is attained ath̃xcosh(xmin)51. One has

Usad522S̃ 2Dh̃x , Umin52S̃ 2D~11h̃ x
2!, ~2.7!

which yields the barrier height

DU[Usad2Umin5S̃ 2D~12h̃x!
2, ~2.8!

as for the original spin problem. The frequency of sm
oscillations near the bottom ofU(x) ~the attempt frequency!

v05AU9~xmin!/m52S̃DA12h̃ x
2 ~2.9!

coincides with the ferromagnetic resonance frequency in
classical limit S→`. The instanton frequencyṽ0 of Eq.
~1.2! reads

ṽ052S̃DAh̃x~12h̃x!. ~2.10!

It becomes much smaller thanv0 for h̃x!1, which signifies
the flat top of the barrier in this limit. The expansion of th
potential near the top of the barrier in the unbiased case
the form

u~x!>22h̃x2h̃x~12h̃x!x
21

h̃x

3 S h̃x2
1

4D x4

1
2h̃x

45 S h̃x2
1

24D x61•••, ~2.11!

where the change of the sign of the coefficient in thex4 term
is responsible for the first-order escape-rate transition ah̃x
51/4.42 The behavior ofu(x) for different values of the
transverse field is represented in Fig. 1.

The particle wave functions~2.2! imaging those of the
spin system are proportional to polynomials of power 2S in
y5exp(x), thus they can have up to 2S zeros and they
describe 2S11 spin states. The corresponding solutions
the particle’s Schro¨dinger equation for the potential~2.5! in
the unbiased case were studied by Razavy,67 without a ref-
erence to the spin problem. He has found explicit analyti
solutions corresponding toS51/2,1, and 3/2, as well as for
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13 642 57GARANIN, MARTÍNEZ HIDALGO, AND CHUDNOVSKY
mally to S50. The particle problem~2.1! possesses, how
ever, an infinite number of states with the energy eigenva
above those of the spin problem. These additional unphys
states could, in principle, mix together with the true sp
states and affect the results. This does not happen if
unphysical states are much less thermally populated than
spin states near the top of the barrier,E5Usad522S2Dhx
@herehx is defined by Eq.~2.4! without the tilde#. The crite-
rium for neglecting the unphysical states can be formula
if one notices that the boundary between the two group
states corresponds, in the quasiclassical limit, to the max
energy of the spin model~1.3!,

Umax52S2Dhx . ~2.12!

Thus, the unphysical states do not affect the results and
analogy with the particle is complete if

T!Umax2Usad54S2Dhx . ~2.13!

This criterium can be violated, if the fieldhx is small and
temperature is not low enough. However, we are mainly
terested here in the temperature range about the quan
classical transition temperatureT0;SD. For such tempera
tures the complete analogy with the particle is justified
the large spin valueS.

B. Escape rate and level splitting

The simple quantum transition-state theory postulates
escape rate in the quasiclassical case and in the temper
rangeT!DU in the plausible form

G5
1

Z0
(

n
GnexpS 2

En2Umin

T D ,

Gn5
v~En!

2p
W~En!, Z0>

1

2sinh@v0 /~2T!#
, ~2.14!

wherev(En) is the frequency of oscillations at the ener
levelEn , W(En) are quantum transition probabilities, andZ0
is the partition function in the well calculated forT!DU
over the low-lying oscillatorlike states withEn5(n
11/2)v01Umin . Since the transition probabilityW(En)
usually increases rapidly with energyE, the sum in Eq.
~2.14! extends for not too low temperatures over many lev
and can be replaced by the integral according
(n . . . ⇒*dEr(E) . . . with the density of statesr(E)
51/v(E).68 This leads to

G5
1

2pZ0
E

Umin

Umax
dEW~E!expS 2

E2Umin

T D . ~2.15!

For particlesUmax5`, and the usual expression32,33is recov-
ered. The barrier transparencyW(E) is determined in the
WKB approximation by the imaginary-time action~see, e.g.,
Ref. 68!

S~E!52A2mE
x1~E!

x2~E!

dxAU~x!2E, ~2.16!

wherex1,2(E) are the turning points for the particle oscilla
ing in the inverted potential2U(x). The factor 2 in Eq.
es
al
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~2.16! says that the integral is taken over the whole period
oscillations, i.e., the particle crosses the barrier twice. T
WKB approximation fails for energies near the top of t
barrier, but the result forW(E) can be improved and ex
tended for the energies above the barrier, if the barrie
parabolic near the top.69,68,33The result can be convenientl
written as

W~E!5
1

11exp@S~E!#
, ~2.17!

where S(E) goes linearly through zero forE crossing the
barrier top level and it should be analytically continued in
the regionE.Usad. In the latter case formula~2.17! de-
scribes quantum reflections for a particle going over the b
rier, with W(E) slightly lower than 1. In the classical limi
W(E)⇒u(E2Usad), where u(x) is the step function,
whereas the partition functionZ0 given by Eq.~2.14! simpli-
fies to T/v0. Then integration in Eq.~2.15! yields the for-
mula

G5G0exp~2DU/T!,

G05
v0

2pF12expS 2
Umax2Usad

T D G . ~2.18!

If the condition~2.13! is satisfied, the second exponential
Eq. ~2.18! can be neglected, and the well-known modera
damping result for particles13 is recovered. In the opposit
case the prefactorG0 in Eq. ~2.18! becomes proportional to
hx and vanishes in the limithx→0. In fact, in this case dis-
sipation should be taken into account, and the well-kno
result isG0}h for all values of the damping constanth.16

The meaning of this result is that in the axially symmet
case precession of a spin around the anisotropy axis doe
bring it closer to the barrier, and the role ofv(E) as the
attempt frequency is lost. In this situation spin can overco
the barrier only via the diffusion in the energy space.

The level splittingDEn is related to the barrier transpa
encyW(En), and in the WKB approximation it is given by68

DEn5
v~En!

p
expF2

S~En!

2 G . ~2.19!

For the lowest energy levels this WKB result becomes
valid. A more accurate consideration of Weiss a
Haeffner70 using the functional-integral technique, as well
that of Shepard71 improving the usual WKB~Refs. 2–4!
scheme shows that for the potentials parabolic near the
tom the result above should be multiplied by

Ap

e

~2n11!n11/2

2nenn!
. ~2.20!

This factor approaches 1 as 111/(24n) with increasingn
and it is, in fact, very close to 1 for alln: 1.0750 forn50,
1.0275 forn51, 1.016 66 forn52, 1.011 92 forn53, etc.
Equating the expression in Eq.~2.20! to 1 defines an ap-
proximation forn! which is more accurate than the leadin
term of the Stirling formula. The correction factor~2.20!,
however, does not change much in front of the exponenti
small action term in Eq.~2.19!.
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The formula~2.19! has the meaning of the level splittin
only if the levels in the two wells are degenerate. More g
erally, Eq.~2.19! yields the transition amplitude between th
levels on both sides of the barrier, and the expression for
escape rate should be sensitive to the resonance conditio
the levels in the two wells. Therefore, the quantityGn in Eq.
~2.14! should be replaced by72,56

Gn5
~DEn!2

2 (
n8

Gnn8

~En2En8!
21Gnn8

2 , ~2.21!

whereDEn is given by Eq.~2.19!, n8 are the levels in the
other well andGnn8 is the sum of the linewidths of thenth
andn8th levels. IfGnn8 substantially exceeds the level spa
ing vn8[En8112En8, the sum in Eq.~2.21! can be approxi-
mated by the integral and one obtains

Gn5p~DEn!2/@2v~En!#. ~2.22!

The latter is by virtue of Eq.~2.19! equivalent toGn in Eq.
~2.14!, and the reasoning above can be considered as a
vation of it. However, such a situation implies that the s
tem is so strongly damped that the free precession of the
decays long before the period of the precession is comple
This is hardly the case for magnetic systems, which is kno
both from experiments and from theoretical estimation73

Indeed, resonant tunneling was observed in experiment
high-spin magnetic molecules,26 as well as onunderdamped
Josephson junctions.74,75 In this paper we will, however, ig-
nore resonance effects in spin tunneling, which have b
considered in more detail in Ref. 56.

Formula~2.14! describes the escape from the metasta
~left! to the stable~right! well. In the unbiased or weakly
biased cases the rate of exchange between the two w
which is the observable quantity, is the sum of the esc
rates from both wells into the opposite one~see, e.g., Ref.
76!. Thus, in the unbiased case all the results forG below
should be multiplied by 2, which will be kept in mind but no
done explicitly. For low temperatures it is sufficient to intr
duce a small bias field to suppress the backflow from
stable to the metastable well and to make the considera
neglecting this process absolutely correct. The condition
this is j[SHz /T*1.

III. QUANTUM-CLASSICAL TRANSITION
IN THE UNBIASED CASE

A. Level splitting and transition probability

In the unbiased case,Hz50, the imaginary-time action
S(E) of Eq. ~2.16! can be reduced to elliptic integrals, e.g
by the substitutiony5cosh(x). The appropriate formula is
available in Ref. 77, and the result is

S~E!54S̃@~12h̃x! f 1#1/2I ~a2,k!, ~3.1!

where

f 6[P1h̃x~16A12P!2 ~3.2!

and

P[~Usad2E!/~Usad2Umin! ~3.3!
-

e
for

ri-
-
in
d.
n

on

n

le

lls,
e

e
on
r

@see Eq.~2.7!# is the dimensionless energy variable taki
the values 0 at the top of the barrier and 1 at the bottom
the potential. The quantityI (a2,k) above is given by

I 5~11a2!K2E1~a22k2/a2!@P~a2,k!2K#,

a25~12h̃x!P/ f 1 , k25 f 2 / f 1 , ~3.4!

whereK andE are complete elliptic integrals of the first an
second kind of modulusk andP(a2,k) is the complete el-
liptic integral of the third kind. The latter can be express
through the incomplete elliptic integrals of the first and se
ond kinds, in our case ofa2,k2, as77

P~a2,k!2K5
a@KE~b,k!2EF~b,k!#

A~12a2!~k22a2!
, b5arcsin~a/k!.

~3.5!

The general expression forS(E) simplifies in five limiting
cases. The first case is 12h̃x!1, in which U(x) reduces to
the quartic parabola@see Eq.~2.11! and Fig. 1#. Here the
parametersa andk of Eq. ~3.4! simplify to

a2>
~12h̃x!P

2~11A12P!
, k2>

12A12P

11A12P
. ~3.6!

Expanding Eqs.~3.4! and ~3.5! in powers of a2!1 one
obtains71

S~E!>~2S̃/3!@2~12h̃x!~11A12P!#3/2

3@~11k2!E2~12k2!K#. ~3.7!

For small transverse fields and the energies near the to
the barrier, h̃x;P!1, one can usef 1>P14h̃x and f 2

>P, which results ink2>a2>P/(P14h̃x) andk2/a22a2

>12k2. Now with the help ofP(k2,k)5E/(12k2) one
arrives at the result12

S~E!>8S̃@P14h̃x#
1/2~K2E!. ~3.8!

Here for 4h̃x!P!1 the modulusk of the elliptic integrals is
close to 1. In this case usingK> ln(4/A12k2) andE>1, as
well asP>uEu/(S̃ 2D), one can simplify Eq.~3.8! to12

S~E!>4AuEu
D

lnS 8

e2

E

Usad
D , ~3.9!

whereUsad is given by Eq.~2.7!. Now one can rewrite the
level splitting~2.19! introducing the unperturbed energy le
els Em52Dm2, m52S,2S11, . . . ,S and ignoring the
prefactor in the form

DEm;~mb /m!4m, mb
252S̃ 2h̃x~e2/8!, ~3.10!

which is valid for 1!m!S. The latter is the quasiclassica
limit of the perturbative inh̃x result of Refs. 78, 79, and 56

One can try to continue the perturbative formulas~3.9!
and~3.10! to the very top of the barrier, although the pertu
bation theory breaks down there. It can be seen that, in c
trast toS(E) of Eq. ~3.8! turning to zero atE/Usad51, Eq.
~3.9! turns to zero atE/Usad5e2/850.92. Accordingly, in
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Eq. ~3.10! DEm;1 atm5mb and not atm252S̃ 2h̃x , which
corresponds toEm52Dm25Usad. This can be interpreted
as a shift of the barrier height by the artifacte2/8 in the
perturbative formalism. This factor is close to unity and
not very important. However, the inaccuracy of the pertur
tive method manifests itself much stronger in the quantu
classical transition of the escape rate. The perturbative re
of Ref. 56 for the boundary between the first- and seco
order transitions ish̃xc'0.13, which is about a half of the
actual boundary valueh̃xc51/4.42

Another limiting case of Eq.~3.1! is the case of a smal
transverse field and energy not too close to the top of
barrier, 4h̃x!P;1. This is a purely perturbative case, a
the level splitting for the energy levels labeled bym is given
by the formula78

DEm>
2D

@~2umu21!! #

~S1umu!!
~S2umu!! S Hx

2D D 2umu

. ~3.11!

According to Eq.~2.19! the imaginary-time actionS(E) can
be obtained from the above formula asS(E)5
22ln(pDEm/uvm11,mu), where the energy variableP
5m2/S2 should be introduced. The WKB approximation f
S(E) in this case, which interpolates between Eqs.~3.9! and
~3.19!, was calculated in Ref. 53 with the help of the partic
mapping and it can be found there.

The other two cases in whichS(E) simplifies are those
corresponding to the energy near the top of the barrier or
bottom of the well. For the parametrization it is convenie
to introduce the dimensionless quantities

ṽ[DU/ṽ05S̃~12h̃x!
3/2/~2h̃ x

1/2! ~3.12!

and

v[DU/v05S̃~12h̃x!
3/2/@2~11h̃x!

1/2# ~3.13!

@see Eqs.~2.8!, ~2.9!, and~2.10!#. The quantityv, in particu-
lar, is a rough estimate of the number of levels in the w
based on the assumption that the levels remain equidistan
to the top of the barrier. It thus measures quantum effect
the system. One can see that forS@1 the system can be
made more quantum by applying a field close to the me
stability boundary, 12h̃x!1. The conditionv@1, which
also entailsṽ@1, should be, however, satisfied for the app
cability of the quasiclassical method. The quantityṽ is re-
lated, as we will see immediately, to the quantum penetra
ity of the barrier near its top and it also measures quan
effects. For conventinal potentials, such as cubic or qua
parabola,v and ṽ can differ only by a numerical factor, an
it is sufficient to introduce one of them~see, e.g., Ref. 36!.
This is not the case for our spin model for small transve
fields, h̃x!1.

Near the top of the barrier,P!1, the result forS(E)
following from Eq.~3.1! or directly from the integral expres
sion ~2.16! reads

S~E!>2p ṽ@P1bP21cP31O~P4!# ~3.14!

with
-
-

ult
-

e

e
t

l,
up
in

-

il-
m
ic

e

b5
1

8S 12
1

4h̃x
D , c5

3

64S 12
1

3h̃x

1
1

16h̃ x
2D .

~3.15!

One can see thatb changes sign ath̃x51/4, whereasc.0
for all h̃x . For small h̃x the coefficientsb, c, etc., become
large, which means that Eq.~3.14! is only applicable forP
!h̃x . For h̃x;P!1, Eq.~3.8! can be used. The latter give
however, accurate results only forh̃x&0.02 ~see
Fig. 2!.

Near the bottom of the potential one obtains

S~E!>S~Umin!2
2~E2Umin!

v0
lnS eqv0

E2Umin
D ~3.16!

with

S~Umin!54S̃F lnS 11A12h̃ x
2

h̃x
D 2A12h̃ x

2G ~3.17!

and

q58S̃~12h̃ x
2!3/2/h̃ x

2 . ~3.18!

For h̃x!1 the bottom-level actionS(Umin) simplifies to

S~Umin!>4S̃$ ln@2/~eh̃x!#1h̃ x
2/4%, ~3.19!

where the first term is the perturbative result,Spert(Umin) ~see
Refs. 8, 78, and 79!. Since the correction term in Eq.~3.19!
is quadratic inh̃x with a small coefficient,Spert(Umin) is a
good approximation toS(Umin) in the whole region of the
first-order escape-rate transition,hx,1/4. In the other limit-
ing case one has

S~Umin!>~4S̃/3!~2e!3/2, e[12h̃x!1 ~3.20!

FIG. 2. Imaginary-time actionS(E) of Eq. ~3.1! for h̃z50 and

different values ofh̃x and the bottom-energy actionS(Umin) vs h̃x .
The asymptotes~3.14! and ~3.16! for S(E), as well asSpert(Umin)

54S̃ln@2/(eh̃x)# and Eq.~3.20! for S(Umin) vs h̃ are shown by the

dotted lines. The result of Eq.~3.8! is plotted forh̃x50.01 with the
dashed line.
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~see, e.g., Ref. 11!. The dependencesS(E) for different val-
ues ofh̃x , as well asS(Umin) vs h̃x are shown in Fig. 2.

The instanton period

t~E!52
dS~E!

dE
5A2mE

x1~E!

x2~E! dx

AU~x!2E
~3.21!

can be easier calculated directly than by the differentiation
Eq. ~3.1!. The result has the form

t~E!5@~12h̃x! f 1#21/24K/~S̃D !, ~3.22!

where bothf 1 andK have the same meaning as above@see
Eqs.~3.2! and~3.4!#. Near the top of the barrier,P→0, one
hasf 1→4h̃x , k→0, K→p/2, and Eq.~3.22! yields the pre-
viously known resultt52p/ṽ0 with ṽ0 given by Eq.~2.10!.
Near the bottom,P→1, one hask→1, andt logarithmically
diverges. The dependencest(E) for different values ofh̃x
are shown in Fig. 3.

One can see that forh̃x>1/4 the periodt(E) monotoni-
cally increases with the amplitude of the oscillations in t
inverted potential2U(x), i.e., with the increase ofP of Eq.
~3.3!. In this case the quantum-classical transition is sec
order.41 For h̃x,1/4 the dependencet(E) is nonmonotonic,
and the transition is first order. Such a behavior oft(E) can
be easily explained qualitatively. Forhx.1/4 the fourth-
order term in Eq.~2.11! is positive, i.e.,U(x) is of the form
2x21x4. The inverted potential2U(x) is hence of the type
x22x4, which results in the increase oft with the oscillation
amplitude ~i.e., with lowering the energyE) and to the
second-order transition. Athx,1/4 the anharmonicity of
2U(x) has the opposite sign,2U(x);x21x4, which leads
to the decrease oft when loweringE for energies below the
top of the barrier. However, with further lowering ofE the
periodt begins to increase and diverges logarithmically
E approaching the bottom of the potential.

The period of the real-time oscillations in the potent
minima can be calculated with the use of the formula diff
ing from Eq.~3.21! by changing sign under the square ro
The corresponding energy-dependent frequency has the

FIG. 3. Instanton periodt(E) of Eq. ~3.22! for h̃z50 and dif-

ferent values ofh̃x .
f

d

r

l
-
.
rm

v~E!52S̃D@~12h̃x! f 1#1/2p/~2K!, ~3.23!

where

K[K~r !, r 254h̃xA12P/ f 1 , ~3.24!

and f 1 is given by Eq.~3.2!. Near the bottom,P→1, one
has f 1→11h̃x , r→0, K→p/2, and the frequencyv(E)
reduces to the previously obtained quantityv0 of Eq. ~2.9!.
Near the top of the barrier,P→0, one hasr→1 andv(E)
goes logarthmically to zero. In the caseHx50 the precession
frequencyv(E) can be calculated for the original spin mod
having the energy levelsEm52Dm2 as the energy differ-
ence between the neighboring levels. The latter is given
vm,m11>2Dm, which results in v(E)52SDAP, if we
identify P5m2/S2. The formula~3.23! yields for h̃x50 the
same result withS⇒S̃, which is an immaterial difference fo
S@1. The dependencesv(E) for different values ofh̃x are
shown in Fig. 4. One can see that they have different ty
for hx>1/4 andhx,1/4.

The energy levelsEn in the wells satisfy the Bohr-
Sommerfeld quantization rule~see, e.g., Ref. 68!

Sreal~En![2A2mE
x1

x2
dxAEn2U~x!52pS n1

1

2D
~3.25!

and can be found numerically. The total number of levels
one well is generally given by

Nlev5Sreal~Usad!/~2p! ~3.26!

and in the unbiased case has the explicit form

Nlev>
2S

p FarctanA12hx

hx
2Ahx~12hx!G . ~3.27!

In the limit hx→0 one hasNlev>S. This means that one hal
of the total 2S11>2S spin levels are in one well and th
other half are in the other well, thus all the levels above
top of the barrier are unphysical~cf. the end of Sec. II A!. In
the case 12hx!1 Eq. ~3.27! simplifies to

Nlev>~4S/3p!~12hx!
3/2. ~3.28!

FIG. 4. Frequency of the oscillations in the potential wellsv(E)
of Eq. ~3.23! for hz50 and different values ofhx .
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13 646 57GARANIN, MARTÍNEZ HIDALGO, AND CHUDNOVSKY
It can be seen that the quantityv of Eq. ~3.13! underesti-
mates the number of levels in the well by factors of 2 athx
→0 and 16/(3p)'1.70 athx→1.

With the imaginary-time actionS(E) and the oscillation
frequencyv(E) having been determined, the problem
finding the level splittingDEn of Eq. ~2.19! is solved. In
particular, for energies near the bottom of the potential o
has v(E)>v0, and S(E) is given by Eq.~3.16! with En
2Umin5(n11/2)v0. The level splitting~2.19! multiplied by
the factor~2.20! takes on the form71,70,54

DEn>DE0qn/n!, ~3.29!

whereq is given by Eq.~3.18! andDE0 is the ground-state
splitting

DE05
8S̃ 3/2D

p1/2 F expA12h̃ x
2

11A12h̃ x
2G 2S̃

~12h̃ x
2!5/4h̃ x

2S .

~3.30!

The factorh̃ x
2S above signals that the ground-state splitti

arises, minimally, in the 2Sth order of a perturbation theor
in the transverse field.8,78,79 More generally, for the excited
states one obtains from Eq.~3.29! DEn}hx

2(S2n) .78,79 In our

caseS@1 one can go over fromS̃5S11/2 andh̃x[hxS/S̃
to S andhx . This is not an innocent procedure and it cou
in principle, change the prefactor in Eq.~3.30!. However, the
corresponding correction terms cancel each other, and
arrives at the same expression without tilde. The latter
particular case of the result obtained by Enz and Schillin10

for a more general biaxial model with the transverse fi
~see also Ref. 54!. Formula~3.30! can be rewritten in a more
compact form

DE05
v0

p
A2pqexpF2

S~Umin!

2 G , ~3.31!

which looks very similar to the starting formula~2.19!. The
extra factor A2pq}S1/2/hx here appears because in E
~3.31! the action~3.17! corresponds to the bottom of th
potential, whereas in Eq.~2.19! the action corresponds to th
ground-state energy level,E0. This difference due to the
zero-point motion between the two actions, which is d
scribed by Eq.~3.16! is small, but it strongly affects the
prefactor in Eq.~3.31!.

B. Escape rate in the exponential approximation

For T!DU the dominant contribution to the integra
~2.15! is due to the narrow region of energyE where the
product W(E)exp(2E/T) attains its maximum. Neglecting
the prefactor, one can write

G;exp~2Fmin /T!, ~3.32!

where Fmin is the minimal value of the effective ‘‘free
energy’’42

F5E1TS~E!2Umin ~3.33!

with respect toE. Since with the exponential accuracy on
can setS(E)50 for E.Usad, the free energyF(E) has a
downward cusp atE5Usad. Thus the minimum ofF(E) is
e

,

ne
a

d

.

-

attained on the intervalUmin<E<Usad. The classical regime
corresponds, clearly, to the minumum just at the top of
barrier, E5Usad. In the quantum regime the energy of th
minimum shifts down and can be found from the conditio

t~E!51/T, ~3.34!

wheret(E)52dS(E)/dE is the period of oscillations in the
inverted potential2U(x). This condition is familiar from
quantum statistics.80,33,40In the instanton language, it dete
mines the trajectory that dominates the transition rate at t
peratureT.

Above the top of the barrier,P,0, the effective free en-
ergy ~3.33! has the trivial form@see Eq.~3.3!#

F~P!5~12P!DU522p ṽT0
~2!P1DU, ~3.35!

whereas just below the top of the barrier, 0<P!1, it can
with the help of Eq.~3.14! be written as

F~P!>2p ṽT@aP1bP21cP31O~P4!#1DU.
~3.36!

Herea5(T2T0
(2))/T with

T0
~2!5~SD/p!Ahx~12hx! ~3.37!

@see Eqs.~1.2! and~2.10!#, the coefficientsb andc are given
by Eq.~3.15!, andṽ is given by Eq.~3.12!. The analogy with
the Landau model of phase transitions43 described byF
5af21bf41cf61F0, now becomes apparent. The fact
a changes sign at the phase transition temperatureT5T0

(2) .
The factorb changes sign at the field valuehx51/4 deter-
mining the boundary between the first- and second-or
transitions. The factorc remains always positive. The depe
dence ofF on P for the entire range of energy is plotted
Fig. 5 with the use of the general analytical expression
S(E), Eq. ~3.1!.

At hx50.3 @Fig. 5~a!# the minimum ofF remainsDU for
all T.T0

(2) . BelowT0
(2) it continuously shifts from the top to

the bottom of the potential as temperature is lowered. T
corresponds to the second-order transition from thermal
tivation to thermally assisted tunneling, the quantityP play-
ing the role of the order parameter. Athx50.1 @Fig. 5~b!#,
however, there can be one or two minima ofF, depending on
temperature. The transition between classical and quan
regimes occurs when the two minima have the same
energy, which forhx50.1 takes place atT051.078T0

(2) .
One can see that the criterion of the second-order esc

rate transition is the positiveness of the second derivative
the actionS(E) and, hence, the effective free energyF(E)
defined by Eq.~3.33!. Because of the relation

dt

dE
52

d2S

dE2
52

1

T

d2F

dE2
~3.38!

this criterion is equivalent the requirement that the instan
periodt monotonically increases with decreasing energy41

The ‘‘simple’’ estimation for the crossover temperatu
T0 given by Eq.~1.1! can with the use of Eq.~2.8! and B
5S(Umin) of Eq. ~3.17! be explicitly written as
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T0
~0!5

SD

4

~12hx!
2

ln„~11A12hx
2!/hx…2A12hx

2

>
SD

4 5
1

ln@2/~ehx!#
, hx!1

3

23/2
~12hx!

1/2, 12hx!1.

~3.39!

One can see from Fig. 5~b! that T0
(0) underestimates the

crossover temperature. Forhx50.1 one hasT0
(0)51.061T0

(2)

,T0. The estimationT0
(0) becomes, however, accurate in t

limit of small hx . The dependence of the crossover tempe
ture T0 on the transverse field in the whole range, 0,hx
,1, is presented in Fig. 6. The temperature dependenc
the escape rate can be conveniently written in the formG
;exp(2DU/Teff), where the dependence ofTeff
[TDU/Fmin on T is presented in Fig. 7 for differenthx . It
can be seen from Fig. 7 that the most significant differe
between the estimationT0

(0) and the actual transition tem

FIG. 5. Effective ‘‘free energy’’ for the escape rate:~a! hx

50.3, second-order transition;~b! hx50.1, first-order transition.
-

of

e

peratureT0 arises in the limit of a small barrier, that is, fo
hx→1. The former is described by the intersection of t
dotted Arrhenius line with the horizontal line correspondi
to the value ofTeff(T)/T0 at T50. From Eqs.~1.2! and
~3.39! for hx→1 one obtainsT0

(0)/T0
(2)53p/(8A2)'0.833.

The first-order escape-rate transition considered abov
the transition from thermal activation to thermally assist
tunneling near the bottom of the potential andnot directlyto
the ground-state tunneling. This is due to the logarithm
divergence of the instanton periodt for the energies nea
Umin . In some field-theoretical models, as, e.g., the redu
nonlinearO(3)-s model,t approaches 0 near the bottom
the potential. Accordingly, the second derivative ofS(E) and
F(E) is negative everywhere, as for the rectangular poten
for particles. In such a situation, as it is clear from Fig. 5~b!,
the minimun ofF(E) can only be atE5Usad or E5Umin .
That is, thermal activation competes directly with th
ground-state tunneling, and the estimationT0

(0) for T0 is ex-

FIG. 6. Dependence of the crossover temperatureT0 on the
transverse field.

FIG. 7. Dependences of the effective temperatureTeff on T for
different values of the transverse field.
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13 648 57GARANIN, MARTÍNEZ HIDALGO, AND CHUDNOVSKY
act. Field theories showing this extreme case of the fi
order escape-rates transition were called ‘‘type-II theorie
in contrast to the ‘‘type-I theories’’ showing a second-ord
transition. In Ref. 48 it was shown that adding a sm
Skyrme term to the reduced nonlinearO(3)-s model causes
t to diverge near the bottom of the potential, with the a
cordingly small amplitude. This is, in a sense, similar to t
situation realized in our spin model for very smallhx ~see
Fig. 3!.

C. Beyond the exponential approximation

To obtain the escape rateG with prefactor, one should
perform integration in Eq.~2.15! or, at lower temperatures
summation in Eq.~2.14!. This is of a general interest in th
situation where the second-order quantum-classical esc
rate transition is realized in the exponential approximati
Here the effect of thermal distribution leads to quantum c
rections in the classical region of temperature and it smo
ens the transition to a usual crossover without any singu
ties of G(T).

In the case of a second-order transition, i.e.,b.0 in Eq.
~3.36!, there are forS@1 four overlapping temperatur
ranges where analytical expressions forG(T) are available.
Above T0

(2) , which exactly meansa@@b/(2p ṽ)#1/2;S21/2

@see Eqs.~3.36! and~3.12!#, one can neglect the terms withb
andc in Eq. ~3.14! and extend the integration in Eq.~2.15! to
6`. This leads to the expression33

G>
ṽ0

2p

sinh@v0 /~2T!#

sin@ṽ0 /~2T!#
expS 2

DU

T D , ~3.40!

having the asymtote

G>
v0

2pS 11
v0

21ṽ 0
2

24T2 D expS 2
DU

T D , ~3.41!

for T@T0
(2) , i.e., for a@1. For T approachingT0

(2) from
above the prefactor in Eq.~3.40! diverges because of th
unlimited contribution from the rangeE,Usad, i.e., P.0,
into the integral in Eq.~2.15!.

In the temperature range2b!a!1, i.e., across the tran
sition region, one can neglect the contribution of the sta
with E.Usad in Eq. ~2.15! and write it in the form

G>
DUe22p ṽ

2pZ0
E

0

`

dP exp@22p ṽ~aP1bP21cP3!#,

~3.42!

where 2p ṽ[DU/T0
(2) . If b is not close to zero, one can s

c50 and obtain the result33

G>
ṽ0

2pZ0
A ṽ

2b
expF2

DU

T0
~2!S 12

a2

4bD GerfcS aAp ṽ
2b D .

~3.43!

For lower temperaturesa&2b, i.e.,T&T0
(2) , one can no

longer use the expansion ofS(E) or F(E) near the top of the
barrier, but in this case the integral in Eq.~2.15! is domi-
nated by its stationary point. One can extend, again, the
tegration range to6` and obtain the result33
t-
’’
r
l

-
e

pe-
.
-

h-
i-

s

n-

G>
1

Z0

1

A2pudt/dEu
expS 2

Fmin

T D , ~3.44!

where Fmin and dt/dE are determined by Eqs.~3.33! and
~3.34! and can be calculated numerically.

It can be seen that Eq.~3.43! describes the crossover be
tween Eqs.~3.40! and ~3.44! in the narrow regionDa
;@2b/(p ṽ)#1/2;S21/2 arounda50. In this region the erfc
function in Eq.~3.43! changes from 2 belowT0

(2) to small
values aboveT0

(2) . One can check that the main part of E
~3.43!, except for the erfc function, is the concrete form
Eq. ~3.44! in the temperature region just belowT0

(2) . Thus,
Eq. ~3.44! can be extended up toT0

(2) by multiplying it by the
erfc function. It cannot however, be extended aboveT0

(2)

since in this regionFmin in Eq. ~3.44! does not have the sam
form as its equivalent in Eq.~3.43!. At the boundary between
first- and second-order transitions one hasb50, and the term
with c in Eq. ~3.42! should be taken into account. This lea
to qualitatively similar results; the crossover between E
~3.40! and ~3.44! occurs in a narrower regionDa
;c1/3/(2p ṽ)2/3;S22/3. In the range of transverse fields co
responding to the first-order escape-rate transition the w
of the crossover between the classical and quantum reg
is even narrower:Da;B21;S21 @see the discussion afte
Eq. ~1.1!#.

In the range of the lowest temperatures one should t
into account quantization of levels in the well and use E
~2.14! where summation runs near the bottom of the pot
tial. Using the oscillator energy levelsEn5(n11/2)v0
1Umin and Eqs.~2.22! and ~3.29!, one can write

G>~12e2v0 /T!
p~DE0!2

2v0
(
n50

`
@qe2v0 /~2T!#2n

~n! !2
,

~3.45!

where the sum is the modified Bessel functionI 0. With the
help of Eq.~3.31! the result can be put into the final form

G>qv0~12e2v0 /T!e2S~Umin!I 0@2qe2v0 /~2T!#.
~3.46!

Using the asymptotic formulaI 0(x)>ex/A2px for x@1 one
can check that Eq.~3.46! goes over with raising temperatur
to Eq. ~3.44! with the parameters calculated from the acti
~3.16!. The argument of the Bessel function in Eq.~3.46! is
of order unity forT;T00, where

T005
v0

2lnq
5

SD~12hx
2!1/2

ln@8S~12hx
2!3/2/hx

2#
~3.47!

@cf. Eq. ~6.1! of Ref. 56#. The temperatureT00 characterizes
the crossover from thermally assisted tunneling to
ground-state tunneling; forT&T00 Eq. ~3.46! yields G0 of
Eq. ~2.14!, multiplied by the correction factor~2.20! squared.
For S@1 the crossover temperatureT00 is lower thanT0
given by Eq.~3.37! or Eq. ~3.39! because ofS under the
logarithm.

The results obtained above can be conveniently rep
sented in terms of the effective temperatureTeff defined by
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G5
v0

2p
QexpS 2

Fmin

T D5
v0

2p
expS 2

DU

Teff
D , ~3.48!

where the factorQ accounts for the deviation of the prefact
from that of the simple TST. One has, explicitly,

Teff5TDU/~Fmin2 lnQ!. ~3.49!

The dependenceTeff(T) is represented in the situation of th
second-order transition in Fig. 8. One can see that all
analytical curves smoothly join each other. The escape
with the accurate prefactor is always higher than that in
exponential approximation. For temperatures above
quantum-classical transition this is due to the nonvanish
quantum transparency of the barrier. At zero temperature
escape rate is higher because tunneling occurs from
ground-state level which is slightly above the bottom of t
potential. The derivativedTeff /T is represented in Fig. 9
where the smoothening of the second-order escape-rate
sition beyond the exponential approximation can be clea
seen.

IV. THE BIASED CASE

In the general biased case,HzÞ0, the imaginary- and
real-time actions of Eqs.~2.16! and ~3.25! can be still ex-
pressed in terms of elliptic integrals, sinceU(x) of Eq. ~2.5!
is proportional to the fourth-order polynom iny5exp(x). We
will not do it here because the turning pointsx1,2(E) for the
motion in the potentials6U(x), as well as the extrema o
U(x), are given by the solution of the fourth-degree alg
braic equation and have a cumbersome analytical form
this section we also restrict ourselves to the exponential
proximation, since the effects associated with the prefa
of the escape rateG do not differ qualitatively from those
analyzed in the unbiased case above. We will therefore

FIG. 8. Effective temperature for the escape rate in the ex
nential approximation and beyond. Curve 1 uses Eqs.~3.40! and
~3.43! and describes the crossover from the classical regime
quantum corrections to thermally assisted tunneling~TAT!. Curve 2
uses Eq.~3.44! and describes the TAT regime in the continuou
level approximation. Curve 3 uses Eq.~3.45! for the discrete levels
and describes the crossover from TAT to the ground-state tun
ing.
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glect the difference betweenS̃ andS, as well as betweenh̃x,z
andhx,z here.

It is convenient to start the qualitative analysis from t
strongly biased case,d[12hz!1. Here the metastability
boundary curve of Eq.~2.6! is given by

hxm5~12hz
2/3!3/2>~2d/3!3/2>0.5443d3/2. ~4.1!

The reduced potentialu(x) of Eq. ~2.5! simplifies in the
region of its metastable minimum and maximum to

u~x!>hz
21hx@~hx/4!e22x2de2x22ex#. ~4.2!

In the above expression the term withe2x which is respon-
sible for the formation of the stable minimum ofu(x) and is
small in the region of interest was dropped. It can be chec
that the metastable minimum of Eq.~4.2! disappears forhx
.hxm . For ex[(hxm2hx)/hxm!1 the potentialu(x) can be
approximated by a cubic parabola, which will be done in
more general form below. This is a standard case,81 in which
the second-order escape-rate transition takes place. If, on
contrary, the transverse field is removed, the barrier he
retains a finite value but tunneling should disappear, wh
means that the barrier becomes infinitely thick. Indeed,
hx!hxm the third-degree algebraic equation determining
extrema of the potential~4.2! simplifies to yield

ymin>hx /~2d!@11hx
2/~2d3!#,

ysad>~d/2!1/2@11hx /~2d!3/2#, ~4.3!

with ymin, sad[exp(xmin, sad) and

umin2hz
2>2d2@11hx

2/d3#,

usad2hz
2>223/2hxd

1/2@12hx /~25/2d3/2!#. ~4.4!

One can see that in the limithx→0 the pointxsad is fixed,
xmin goes to2`, and the barrier height

-

th

-

l-

FIG. 9. Derivative of the effective temperature for the esca
rate in the exponential approximation and beyond. The small cir
represent the numerical derivative of theTeff(T) curve obtained by
joining the curves 1, 2, and 3 in the figure above. The crosso
boundaries correspond to the argument of the erfc function in
~3.43! taking the values61.
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13 650 57GARANIN, MARTÍNEZ HIDALGO, AND CHUDNOVSKY
DU>S2Dd2F12S 4

3D 3/2 hx

hxm
1

4

9S hx

hxm
D 2G ~4.5!

remains finite@cf. Eq. ~2.8!#. As in the unbiased case, th
very flat top ofU(x) favors the first-order escape-rate tra
sition. The solution given by Eqs.~4.3! and ~4.4! becomes
invalid for hx;hxm , where xmin;xsad. In this region the
crossover from first- to second-order transition is expec
The form of the potentialu(x) for different values ofhx in
the strongly biased case is shown in Fig. 10.Its remarkable
feature is that both first- and second-order transitions a
realized for whatever small barrier, DU&S2Dd2, with the
arbitrarily small d. This is especially interesting for the ex
periments on small magnetic particles,S;1052106, where
the barrier should be reduced to achieve measurable es
rates.

In the general biased case simple analytical results for
quantum-classical transition temperatureT0 can be obtained
in two limiting cases: for small transverse fields and for t
fields near the metastability boundary curve. In the first c
the quantum-classical transition is of the first order, an
good estimation of the transition temperatureT0 is given by
Eq. ~1.1!, where in the exponential approximationB
5S(Umin). The analytical expression for the bottom-lev
action S(Umin) can be found for smallhx and arbitraryhz
from the general formula~2.16!. In the most interesting
strongly biased case this can be done for the arbitraryhx
,hxm with the result

S~Umin!>2SA2hxymin8 @23A12r min1~r min12!

3arctanhA12r min#, ~4.6!

wherer min[ymin /ymin8 ,1 andymin8 [exp(xmin8 ) is the turning
point on the right side of the barrier corresponding to
energy umin of Eq. ~4.4!. For hx!hxm one has ymin8
>@d2/(2hx)#(12hx

2/d3) and r min>hx
2/d3!1. In this case

Eq. ~4.6! simplifies to

FIG. 10. Reduced potentialu(x) of Eq. ~4.2! for different values
of hx and d[12hz!1. The valuehx50.2345d3/2 corresponds to
the boundary between the first- and second-order escape-rate
sitions.
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S~Umin!>2SdH lnF 27

2e3S hxm

hx
D 2G1

22

27S hx

hxm
D 2J . ~4.7!

It is instructive to findS(Umin) for small hx in the whole
range ofhz with the use of the general perturbative expre
sion for the level splitttings in the biased case82,56

DEmm85
2D

@~m82m21!! #2

3A~S1m8!! ~S2m!!

~S2m8!! ~S1m!!
S Hx

2D D m82m

~4.8!

@cf. Eq. ~3.11!#, where m,0 and m852m2Hz /D is the
matching level on the other side of the barrier. For t
ground-state level in the metastable well one hasm52S
and m85S(122hz). Now, in the exponential approxima
tion, one can use, according to Eq.~2.19!, Spert(Umin)>
22lnDE2S,S(122hz)

. Then with the help of the Stirling for-

mula n! >(n/e)n one arrives at the result

Spert~Umin!>2S$d ln@4d3/~ehx!
2#1hzlnhz%. ~4.9!

One can check that in the unbiased case (hz50, i.e.,d51)
the first ~perturbative! term of Eq.~3.19! is reproduced, and
in the strongly biased case that of Eq.~4.7! is recovered. The
accuracy of Eq.~4.9! is not so high as that of Eq.~4.7!,
which contains the important correction term quadratic
hx /hxm . Finally, in the strongly biased case the estimation
the escape-rate transition temperature for small transv
fields isT0>T0

(0)5DU/S(Umin) with DU andS(Umin) given
by Eqs.~4.5! and ~4.7!.

Near the metastability boundary curve the considerat
begins with the location of the latter from the conditio
u8(xm)50 andu9(xm)50, which yields the equations

cosh3~xm!5
1

hxm
, sinh3~xm!52

hzm

hxm
, ~4.10!

where from Eq.~2.6! follows. Then for the field

hx5hxm~12ex!, hz5hzm~12ez!, ~4.11!

whereex,z!1 and $hxm ,hzm% are related by Eq.~2.6!, one
can expand the potentialu(x) of Eq. ~2.5! nearxm in powers
of x2xm . If hz is not very small, one can restrict oneself
the third-order terms and obtain

u~x!>u~xm!1A1~x2xm!2A3~x2xm!3 ~4.12!

with

A152ēhxm
2/3hzm

1/3, A35hxm
4/3hzm

1/3, ~4.13!

and

ē[hxm
2/3ex1hzm

2/3ez . ~4.14!

The cubic parabola~4.12! is symmetric aboutxm and it is
characterized by the barrier height

DU54S2D~2ē/3!3/2~hxmhzm!2/3 ~4.15!

and the equal real and instanton oscillation frequencies

an-
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v05ṽ052SD~6ē !1/4hxm
1/2hzm

1/6, ~4.16!

where the latter defines the quantum-classical transition t
perature:T05T0

(2)5ṽ0 /(2p). Equation ~4.16! can be put
into the form

v05ṽ052SD~6ē !1/4cot1/6uH /~11cot2/3uH!, ~4.17!

if one setshxm5hmsinuH andhzm5hmcosuH , where, by vir-
tue of Eq.~2.6!, hm5(sin2/3uH1cos2/3uH)23/2. If, as in Ref.
81, the field changes along the lineuH5const, one hasex
5ez5e, which results inē5e. In this case Eq.~18! of Ref.
81 is recovered, where, by definition,v0 is twice as small as
here. In the strongly biased case, however, it is more con
nient to havehz fixed and swipehx across the narrow regio
where the barrier exists. Thus one can sethzm>1, hxm

>(2d/3)3/2, ez50, andē5hxm
2/3ex5(2d/3)ex to obtain

DU5~16S2D/9!~2ex/3!3/2d2 ~4.18!

and

v05ṽ05~4SD/3!~6ex!
1/4d. ~4.19!

Note that at the applicability boundary of the prese
aproach,ex51, one hasDU50.97S2Dd2, which is very
close to the exact valueDU5S2Dd2 for hx!hxm obtained
above ~see Fig. 11!. That is, the barrier height scales
DU}d2 in the strongly biased cased!1. Similarly, the
quantum-classical transition temperature scales asT0}d. In
fact, as will be shown by the numerical calculations belo
this scaling holds not only in the strongly biased case,
practically in the whole region ofhz , excluding that of very
small hz .

As a pendant to Eq.~4.6!, one can calculate the real-tim
action given by Eq.~3.25! for the energyUsadin the strongly
biased case. The result reads

Sreal~Usad!>2SA2hxysad8 @23Ar sad211~r sad12!

3arctanAr sad21#, ~4.20!

FIG. 11. The numerically calculated reduced barrier heightDu
Du[DU/(S2D) in the strongly biased case. Asymptotes~4.5! and
~4.18! shown by the dotted lines reproduce the accurate nume
result practically in the whole range ofhx /hxm .
-

e-

t

,
t

where r sad[ysad/ysad8 .1 and ysad8 [exp(xsad8 ) is the turning
point on the left side of the metastable well corresponding
the energyusad of Eq. ~4.4!. The top-level real-time action
above determines according to Eq.~3.26! the number of lev-
els in the well. Forhx!hxm one hasysad8 >hx /(4d) and
r sad>(2d)3/2/hx@1. Thus in this limit

Sreal~Usad!>2pSd@128/~33/4p!Ahx /hxm# ~4.21!

@cf. Eq.~4.7!# andNlev5Sd for hx50. Near the metastability
boundary the potentialu(x) can be approximated by the cu
bic parabola~4.12!. From Eq.~4.10! one obtainsymin8 >ysad8
>exp(xm)5(12hzm

1/3)/hxm
1/3>d/(3hxm

1/3). More accurately,
xsad, min>xm6AA1 /(3A3)5xm6A2ex/3 and xsad, min8 >xm

72A2ex/3. This yields 12r min512exp(xmin2xmin8 )>A6ex,
and the same forr sad21. Expanding now Eqs.~4.6! and
~4.20! for ex!1 results in

S~Umin!>Sreal~Usad!>~16Sd/45!~6ex!
5/4. ~4.22!

The behavior ofS(Umin) andSreal(Usad) given by Eqs.~4.6!
and ~4.20! in the strongly biased case in the whole range
hx /hxm is shown in Fig. 12.

The order of the quantum-classical escape-rate trans
is determined, as we have seen, by the sign of the the c
ficient b in the expansion of the imaginary-time actionS(E)
near the top of the barrier@see Eqs.~3.14! and~3.36!#. In the
general biased case this coefficient is given by

b5
DU

~2m!32ṽ 0
6FUsad9 Usad99 2

5

3
~Usad- !2G ~4.23!

@see Eqs.~1.2! and ~2.1!#. It reduces to that of Eq.~3.15! in
the casehz50 whereUsad- 50. In the strongly biased case th
potential of the spin system simplifies to Eq.~4.2!, and there
is a simple analytical solution for the linehxc(hz) separating
the first- and second-order escape-rate transitions. To ob
this line, one can calculate all needed derivatives ofu(x) at
the top of the barrier from Eq.~4.2!, equateb50 in Eq.
~4.23!, and eliminate the terms withhx with the help of the

al

FIG. 12. Imaginary- and real-time actions in the strongly bias
case, Eqs.~4.6! and ~4.20!. Asymptotes of Eqs.~4.7!, ~4.21!, and
~4.22! are shown by the dotted lines.
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relation hxe
22x52(22ex1de2x) following from usad8 50.

Then the conditionb50 yieldse2x5d/A6, and forhx5hxc
one finds

hxc>~2/3!3/4~A32A2!d3/2>0.2345d3/2, ~4.24!

i.e., hxc>0.4308hxm . Further, for hx5hxc one hasusad9 >
22d2(4A2/323) resulting in the transition temperature
the boundary between first- and second-order transitions

T0
~c!5~SD/p!~4A2/323!1/2d, ~4.25!

where (4A2/323)1/2>0.5157@see Eq.~1.2!, cf. Eq. ~3.37!#.
The maximum ofT0 is attained within the range of trans

verse fields corresponding to the second-order escape
transition. In the unbiased case Eq.~3.37! yields evidently
T0

(max)5SD/(2p) for hx5hx
(max)50.5. In the strongly biased

case using the conditionsdu9@hx ,x(hx)#/dhx50 and
u8@hx ,x(hx)#50 for x(hx) corresponding to the maximum
of the potential~4.2! one obtainse2x5d/3 and

T0
~max!5~SD/p!d/A3 ~4.26!

for hx
(max)5hxm /A2>0.3849d3/2.

Numerical calculation of the escape rateG in the general
biased case in the exponential approximation poses no p
lems. The minimum of the effective free energyF(E) of Eq.
~3.33! with respect toE can be found using the imagimary
time actionS(E) numerically calculated from Eq.~2.16!. For
any fieldH one can establish the transition temperatureT0,
such as forT,T0 the minimum ofF(E) no longer corre-
sponds to the top of the barrier, as it is in the classical c
Analyzing the dependenceF(E) for different fields allows
one to determine the order of the quantum-classical esc
rate transition~see Fig. 5!. The boundary between the firs
and the second-order transitions can be found the most e
from the conditionb50 in Eq. ~4.23!, where the derivatives
of U(x) are calculated at the numerically determined top
the barrier. This method yields the same results forhxc(hz)
as that described above. The resulting phase diagram fo
escape-rate transition is shown in Fig. 13. The 3d plot of
T0(hx ,hz) is shown in Fig. 14. The dependenceT0(hx) in
the strongly biased case is given in Fig. 15.

V. DISCUSSION

We have presented a comprehensive study of the the
and quantum decay of a metastable spin state of the unia
spin system in the arbitrarily directed magnetic field. T
moderate damping regime has been studied, in which
damping does not influence the dynamics of the spin sys
but provides the thermal equilibrium with the environme
The method employed is the mapping of a spin system o
the particle in a double-well potential, with the subsequ
use of the WKB approach. The explicit dependence of
escape rate, including the prefactor, on temperature, fi
and anisotropy constant has been worked out and comp
with limiting cases obtained by others. This calculati
shows how formulas describing different regimes join
temperature down to lowest temperatures where quantiza
of levels becomes significant. The crossover from therm
assisted tunneling to the ground-state tunneling atT;T00 is
ate
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described quantitatively and discussed in detail@see Eqs.
~3.46! and~3.47!#. The fascinating new feature of this anal
sis is the existence for spin systems of both, first- a
second-order, transitions from thermal activation to th
mally assisted tunneling atT5T0. The kind of transition
depends on the strength and the direction of the magn
field. We have calculated the boundary in theHx ,Hz plane
separating the two different regimes.

The direct analogy with phase transitions exists in
limit of a very large spinS. In that limit the dependence o
the transition rate on temperature changes abruptly atT0,
pretty much as thermodynamic quantities do in the theory
phase transitions. For finiteS, both the first- and second
order transitions of the escape rate are smeared, similar to

FIG. 13. Phase diagram for the quantum-classical escape
transition. The dashed line corresponds to the maximum ofT0 as
function ofhx . The asymptotes of Eqs.~4.24! and~4.26! are shown
by the dotted lines.

FIG. 14. 3d plot of T0(hx ,hz). In the main part of the interva
0<hz<1 the transition temperatureT0 scales withd[12hz .
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smearing of the phase transition in a finite-size system.
reduced width of the crossover between the classical
quantum regimesDT/T0 is of the order ofS21/2 for the
second-order transition andS21 for the first-order transition.

For a moderately large spin,S;10, one can explore in
experiment the entire phase diagram shown in Fig. 13. T
is the case of molecular magnets like Mn12Ac. If greater

FIG. 15. DependenceT0(hx) in the strongly biased case~cf. Fig.
6!. Asymptotes based on Eqs.~1.1!, ~4.5!, and~4.7!, on the left side,
and on Eqs.~1.2! and ~4.17!, on the right side, are shown by th
dotted lines. The analytically calculated values of Eqs.~4.24!–
~4.26! are shown by diamonds.
he
nd

is

spins are studied, the external magnetic field must be
justed such that the energy barrier becomes small enoug
provide a significant tunneling rate. In terms of the pha
diagram this means that one has to work close to the m
stability boundary line, Eq.~2.6!, separating the field range
with and without the barrier. According to Fig. 13, for
uniaxial spin close to the metastability boundary, both fir
and second-order transitions coexist only in the lower rig
corner of the phase diagram. In this region, close to
boundary between first- and second-order transitions,
temperatureT0 is of orderBD/(4p2), whereB is the expo-
nent in the expression for the rate. In a typical tunneli
experiment with a macroscopic lifetime of a metastable sta
B;4p2, so thatT0;D. The latter constant can be express
in terms of the anisotropy field and the total spin of th
particle: D5gmBHA /(2S). For HA;1 T and S;100 the
transition temperature will be of the order of 10 mK. This
within experimental reach. Notice that the smallness ofT0 in
our model comes, in part, from the fact that the noncomm
tation of Sz with the Hamiltonian is small in the lower righ
corner of the phase diagram, where the effect is to
searched for. One can expect that in models with transve
anisotropy observable first- and second-order transitions
coexist at higher temperatures, since the transverse an
ropy, rather than the required small transverse field, w
drive the decay of the metastable state. Such a model
quires a different approach and will be worked out els
where.
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