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The escape ratE of the large-spin model described by the Hamiltoritas — DS%— H,S,—H,S, is inves-
tigated with the help of the mapping onto a particle moving in a double-well potdd{ig). The transition-
state method yieldd” in the moderate-damping case as a Boltzmann average of the quantum transition
probabilities. We have shown that the transition from the classical to quantum regimes with lowering tempera-
ture is of the first orderdl’/dT discontinuous at the transition temperatdrg for h, below the phase
boundary linen,=hy(h,), whereh, ,=H, ,/(2SD), and of the second order above this line. In the unbiased
case H,=0) the result ish,.(0)=1/4, i.e., one fourth of the metastability bounddmy,,=1, at which the
barrier disappears. In the strongly biased li#t 1—h,<1, one had, = (2/3)%4\/3— \2)8%%=0.2345°?,
which is about one half of the boundary valhe,=(26/3)%?=0.5443°2 The latter case is relevant for
experiments on small magnetic particles, where the barrier should be lowered to achieve measurable quantum
escape rate$S0163-18208)11717-4

[. INTRODUCTION Considering escape at finite temperatures, the first idea is
to sum the tunneling and thermoactivation escape rates as
The two fundamental mechanisms of the escape of a pastemming from independent channels=I"y+I'y,. Since
ticle from a metastable potential well are quantum tunnelinghe thermoactivation rate follows the very steep Arrhenius
through the barrier and the classical thermal activation ovetemperature dependendg,=I"yexp(—AU/T), the transition
the barrier. The first mechanism is closely related to the tunbetween quantum and classical regimes occurs at the tem-
neling level splitting for a particle in a double-well potential, perature T, defined by I'q=I'(To). Writing I
which was considered by Huhdor the ammonia molecule. = Aexp(—B), ignoring prefactors and equating the expo-
Other early studies based on the WKB approxim&tién nents, one obtains the estimation
treated the ionization of atoms in electric fiekdspld emis-
sion of electrons from metal surfackand decay of nucléi. T¥=AU/B, (1.2
Tunneling in spin systems was considered much later: Ko-
renblit and Shend@rcalculated the ground-state splitting in Where the superscript ifiy says that the ground-state tunnel-
the high-spin rare-earth compounds with the help of a highing is considered. ForT>T{ one has practicallyl
order perturbation theory, Chudnovélgpplied the instanton =T'y,(T), whereas below the transitidre=T,, is independent
technique for the Landau-Lifshitz equation to calculate theof temperature. The transition between the two regimes oc-
escape rates. The current broad interest to the spin-tunnelirgyires on the temperature inter\thI'~T§,°)/B. SinceB«xS,
problem was initiated, however, mainly by the application ofthis is much smaller tha@{”) in the quasiclassical limitS
the instanton method by Enz and Schilffigand Chud- 1. The simple scenario above is the prototype for the so-
novsky and Gunther, and the spin-WKB formalism by van called first-order quantum-classical transition of the escape

Hemmen and 96." _ . ~ rate, which is accompanied by the discontinuityddf/dT at
Studying thermally activated escape of a classical particler .
from the metastable minimum of a potentia(x) goes back It turns out, however, that for common metastable or

to Kramers,® who solved the Fokker-Planck equation de- double-well potentials, such as cubic or quartic parabola, an-
scribing the diffusion of the particle over the barrier. For spinother scenario is realized. Below the crossover temperature
systems, the role of thermal agitation in overcoming energyr the particles cross the barrier at the most favorable energy
barriers (described, e.g., by the Stoner-Wohlfart mdflel |evel E(T) which goes down from the top of the barrier to
was stressed by &' Brown'® has derived the Fokker- the hottom of U(x) with lowering temperature. Such a
Planck equation for classical spin systems and calculated th@gime is called thermally assisted tunneliiBAT). The
escape rate in the uniaxial model. transition from the classical regime to TAT is smooth, with

An extensive reference to the thermal activation and tunng discontinuity ofd['/d T at T, and the transition tempera-
neling of particles can be found in Ref. 17, to magnetizationyre is given by*

tunneling in Ref. 18, and to the thermal activation in classi-

cal spin systems in Ref. 19. Spin tunneling was recently TP =a0/(2m), ®o=\]U"(Xsag|/m. (1.2
observed in small magnetic particles such as feffititfand

barium ferrite?® and in high-spin molecules, MpAc?*~28  Here the superscript i, denotes the second-order transi-
(see also Refs. 3%nd Fg.*° tion, X¢,q COrresponds to the top of the barrighe saddle
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point of the potentid| and®, is the so-called instanton fre- u(x)
guency. In fact, the above formula is valid in the moderate- 1 '
damping case, in which the Kramers’ result for the classical
escape rate is independent of the friction constanand
coincides with that of the simple transition-state theory
(TST). In the strong- and weak-damping cadgg<1/n and

I' oo 77, respectively?® and the formulg1.2) should be modi-

fied (see, e.g., Ref. 37 The consideration in the moderate-
damping case is the most simple, and all the results can b
obtained from the simple quantum TST formula neglecting
dissipation and giving the escape rate as a Boltzmann aver-1 4
age of quantum escape rates at different enefgi&sThe
guantum-classical transition of the escape rate including the
dissipation in the strong- to moderate-damping regimes was
described with the help of the Caldeira-Leggett formaffsm

in Refs. 35-39. The results show that in the exponential?
approximation for the escape rate only the second derivative 0 X
d°I'/dT? is discontinuous aﬂ—((JZ)' More accurate calcula- FIG. 1. Reduced effective potential for the spin system, Eq.

tions taking into account the prefactdr®show the smooth- (2.5), in the unbiased case. The boundaries between the spin states

ening of the transition in the vicinity of? due to quantum  and unphysical states are indicated by horizontal dotted lines.

effects and the thermal distribution, so that all the derivatives

of I'(T) behave continuously. anticipated, at least for particles moving in such a potential.
The terms first- and second-order quantum-classical trarHowever, the exact form of the pinning potential is not

sitions of the escape rate used above are due to Larkin aridhown.

Ovchinnikov?® Chudnovsk§* stressed the analogy with the A rather simple and experimentally important system sat-

phase transitions and analyzed the general conditions fdsfying the above requirement is the uniaxial spin model in a

both types of quantum-classical transitions. He has showfield described by the Hamiltonian

that for the second-order transition the period of oscillations

7(E) in the inverted potentiat- U(x) should monotonically H=-DS2—H,S,—H,S,. 1.3

increase with the amplitude of oscillations, i.e., with the low-

ering energyE from the top of the barrier. If(E) is non-  This Hamiltonian can be mapp&d>*onto a particle moving

monotonic, the first-order transition occurs. Quite recently arin the potentialU(x) which has a double-well form in the

effective free energy (E) for quantum-classical transitions region of field variablesFX,ZEHX,Z/(ZNSD), S=5+1/2

of_thg escape rate of a s_pin system was wriffetme mini- satisfying F§’3+F§/3s1, as the original spin mode(l.3)

mization of which determines the escape rate in the exponen e ciassical limit* The first-order escape-rate transition

tial approximation:1'~exp(=Fps/T). The latter has the i, ihe unbiased H,=0) model (1.3 for H, below some

) 4 6 ; ;
form F=a¢®+b¢™+cg°+F,, just as in the Landau model . itica) value was found in Ref. 56. In Ref. 42 the exact value
of phase transition§ Here a=0 corresponds to the Fo—1/4w btained with the helb of th ticle manpin
guantum-classical transition ardd=0 to the boundary be- Oxrﬁe_ can ae? gn ﬁjez of wh ter]eiifs'gor deerpzancsﬁionagﬁou%
tween first- and second-order transitions. 9 y

In a sense, second-order quantum-classical transitions g&l:cur at smallH, from the following simple arguments.

the escape rate are common, whereas the first-order ones gee tunne_llng n '.[he modél.3) is caused:}ntwely by _the
exotic and have to be specially looked for. Nevertheless, #ansverse fielt, , it becomes very small fdn,<1. In this
number of systems and processes showing first-order trandimit the barrier heightAU remains finite, and the form of
tions are already known, e.g., a superconducting quanturh€ potential near the bottoms should also be preserved. The
interference device with two Josephson junctihgalse  only possibility for the vanishing tunneling rate is that the
vacuum decay in field theoriés;“®and depinning of a mas- Parrier becomes very thick, with a very flat tggee, e.g.,
sive string from a linear defeé?:* All these systems have Fig. 1. The latter is just what is needed for the first-order
more degrees of freedom than just a particle, thus the searétiantum-classical escape rate transition.

for a physical system equivalent to a particle in a potential The aim of this article is to generalize the approach for
U(x) leading to the first-order transition of the escape ratdhe biased cast,#0 and to compute the entire phase dia-
seems to be quite actual. Qualitatively it is clear hiox) gram with the boundary liné,(h,) below which the tran-
should look: The top of the barrier should be rather flat,sition is first order. We will use the simple damping-
whereas the bottom should not. In this case, as for the rectrdependent quantum TST formula as the starting point for
angular barrier, tunneling just below the top of the barrier iscalculations. This requires justification for our spin system. It
unfavorable, the TAT mechanism is suppressed, and this known that for the model without the transverse field the
thermal activation competes with the ground-state tunnelingthermoactivation escape rate is proportional to the damping
leading to Eq(1.1). Such a requirement is satisfied, e.g., for constantI'y #, for all values of.1® The models consider-
the pinning potential®>® which consists of periodically ing hopping over discrete levels for moderate valuesSof
spaced narrow pits. Here the qualitative results can be easiljield the same resutt:>® Such a situation can be thought of

-2
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as the weak- and strong-damping regimes at the same timparticle problem(2.1), in the stationary case with the same
(This is not a contradiction, since according to the Landauenergy levelE€,, n=0,1, . ..,%. The potentialJ (x) in Eq.
Lifshitz equatior?® but not according to the Gilbert (2.1) is given by

equatiort? larger values ofy always lead to a faster relax-

ation) This situation is different from that of a particle, be- U(x)=§ 2Du(x),
cause, in terms of polar angl#sand ¢, in the axially sym- _ ~ ~
metric caseéH, =0 the spins cross the barrier not through the u(x)=[hysinh(x) —h,]2— 2h,coshx). (2.5

vicinity of a saddle point but through the ridge= 6* , where
the energy of the spin has a maximum. If the transverse fiel
is applied, the spins flow over the vicinity of a saddle point
0=6*, ¢=0. This brings the system closer to the usual T 28T 28 1 2.6
situation with particles, and the moderate-damping regime xm® T zm :

with the damping-independent, appear§'~® The cross- This simple formula derived 50 years ago has been only
over from the strong- to moderate-damping regimes wasecently tested in experiment on individual single-domain
confirmed recently by a numerical solution of the Fokker-partic|e5§6

Planck equation for classical spins in the oblique field in Ref. Finding the extrema oU(x) requires the solution of the
65. The boundaries of the moderate-damping regime for thesurth-order algebraic equation fgr=exp) and it can be
spin system depend, in addition tg onH, andH, and they  petter done numerically. In the unbiased ca$g=0, the top

are not yet well established. Accordingly, an accurate deof the barrier is ak=0 and it corresponds to the saddle point

scription of spin tunneling with dissipation is an open prob-of the classical spin Hamiltoniafil.3. The mininum of
lem. For this reason we restrict ourselves in this work to theU(x) is attained ah,cosh)=1. One has
X | "

simple damping-independent quantum TST approach.
The structure of the main part of this article is the follow- _ _532nF 2 T 2

ing. In Sec. Il the fundamentals concerning the particle map- Usag=—2S"Dhy,  Umin==S"D(1+h3), (2.7)
ping, WKB approximation and the quantum TST are re-which yields the barrier height

viewed. In Sec. lll the quantum-classical transition of the _ _

escape rate in the unbiased case is studied, and the escape AU=Ug g Umin=S2D(1-h,)?, (2.8
rate is calculated in the whole temperature range includin
the prefactor. In Sec. IV the results are generalized for th
biased case. The possibilities of the experimental observatio®®

4 has a double-well form foH, and H, inside the region
closed by the metastability boundary cutte

%s for the original spin problem. The frequency of small
cillations near the bottom &f(x) (the attempt frequengy

of different types of the escape-rate transition are discussed ~ =
v P 0o= U (X M=23D 1 2 2.9
coincides with the ferromagnetic resonance frequency in the
Il. PARTICLE MAPPING AND ESCAPE RATE classical limit S—. The instanton frequenc¥, of Eg.
(1.2) reads

A. Particle mapping

The spin problem with the Hamiltoniafil.3) can be ®0=25D Vh(1-h,). (2.10

mapped —°onto a particle problem - o
It becomes much smaller thasy for h,<1, which signifies

p2 d 1 the flat top of the barrier in this limit. The expansion of the
H=-—=+UX), p=-ig=, m=_-=. (2.2 potential near the top of the barrier in the unbiased case has
2m dx 2D
the form
The mapping makes a correspondence between the spin- F 1
: _5S H ~ ~ ~ ~
wave function¥s=X;__Cp[m), where|m) are the eigen- u(x)=—2h,—h(1-F)x2+ =| h— _) NG
states ofS,, and the coordinate wave function 3 4
S CneXp(MX) +2le (R N 2.1
w(x)=e 0 S m , (2.2 25| o0 (211
m=-S \/(S—m)! (S+m)! . L
where the change of the sign of the coefficient inxA¢erm
where is responsible for the first-order escape-rate transitioh, at
=1/4* The behavior ofu(x) for different values of the
f(x)zé[ﬁxcoshx)_ﬁzx] (2.3 transverse field is represented in Fig. 1.
The particle wave function$2.2) imaging those of the
and spin system are proportional to polynomials of pow&rig
y=exp), thus they can have up toSR2zeros and they
S=s+1/2, hy,=H,,/(25D). (2.4  describe B+ 1 spin states. The corresponding solutions of

the particle’s Schidinger equation for the potenti&?.5) in
It can be shown that if the coefficien®, satisfy the Schro  the unbiased case were studied by RaZwyithout a ref-
dinger equation for the spin proble.3), the coordinate erence to the spin problem. He has found explicit analytical
wave function(2.2) satisfies the Schdinger equation for the solutions corresponding t8=1/2,1, and 3/2, as well as for-
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mally to S=0. The particle problen{2.1) possesses, how- (2.16) says that the integral is taken over the whole period of
ever, an infinite number of states with the energy eigenvaluesscillations, i.e., the particle crosses the barrier twice. The
above those of the spin problem. These additional unphysicAWKB approximation fails for energies near the top of the
states could, in principle, mix together with the true spinbarrier, but the result folW(E) can be improved and ex-
states and affect the results. This does not happen if theended for the energies above the barrier, if the barrier is
unphysical states are much less thermally populated than thEarabolic near the tofy:*333The result can be conveniently
spin states near the top of the barrier=Ug,~—2S?°Dh,  written as
[hereh, is defined by Eq(2.4) without the tildg. The crite-

rium for neglecting the unphysical states can be formulated,

if one notices that the boundary between the two groups of

states corresponds, in the quasiclassical limit, to the maximal , ,
energy of the spin modélL.3), where S(E) goes linearly through zero fdE crossing the

barrier top level and it should be analytically continued into
U max=2S?Dh, . (2.12  the regionE>Ug,q. In the latter case formul&2.17) de-
ri ntum reflections for rticl ing over th r-
Thus, the unphysical states do not affect the results and ”}S‘r‘cer,b\?v?tr? 1\1/3(2; sligh'ﬁ;tlgwsercthnpi.tI(r:wetr?g clgsosice:altliﬁ”litt)a
analogy with the particle is complete if W(E)= 6(E—U,,), where 6(x) is the step function,
a2 whereas the partition functi iven by Eq.(2.14) simpli-
T<Umax~Usag=4S"Dhy 213 fies to T/ wy. E)I'hen integrati((;zr:0 i?l Eq(Z.)gLS)qyieIds the ?or-
This criterium can be violated, if the field, is small and mula
temperature is not low enough. However, we are mainly in-
terested here in the temperature range about the quantum- I'=Toexp(—AU/T),
classical transition temperatufigg~SD. For such tempera-
tures the complete analogy with the particle is justified by l—exp{ 3 Umax_Usad>
the large spin valué&. T '

W(E)= (2.1

1
1+exd S(E)]’

(2.18

wo
Fo=521

If the condition(2.13 is satisfied, the second exponential in
Eq. (2.18 can be neglected, and the well-known moderate-
The simple quantum transition-state theory postulates thdamping result for particlé$ is recovered. In the opposite

escape rate in the quasiclassical case and in the temperatwase the prefactdr, in Eq. (2.18 becomes proportional to

B. Escape rate and level splitting

rangeT<AU in the plausible form h, and vanishes in the limi,—0. In fact, in this case dis-
sipation should be taken into account, and the well-known
r= iz r ex;{ B En_Umin) result isT'goc % for all values of the damping constamt'®
Zo5 " T ' The meaning of this result is that in the axially symmetric

case precession of a spin around the anisotropy axis does not
w(E,) 1 bring it closer to the barrier, and the role e E) as the
=% W(EW, Z= 2sinffwg/(2T)]" (2.14  attempt frequency is lost. In this situation spin can overcome
0 the barrier only via the diffusion in the energy space.
where w(E,) is the frequency of oscillations at the energy  The level splittingAE,, is related to the barrier transpar-
level E,,, W(E,) are quantum transition probabilities, afg  encyW(E,), and in the WKB approximation it is given B
is the partition function in the well calculated far<AU
over the low-lying oscillatorlike states withE,=(n AE. = w(Ep) ex;{ _ S(En)
+1/2)wg+Unin- Since the transition probabilityV(E,) n T 2
usually increases rapidly with enerdy, the sum in Eq. ) i
(2.14) extends for not too low temperatures over many leveld O the lowest energy levels this WKB result becomes in-
and can be replaced by the integral according tovalid. AO more accurate can|derat|on <_Jf Weiss and
S....=[dEp(E) ... with the density of states(E) Haeffner® using the func'glonal-lntegral technique, as well as
— 1/w(E) %8 This leads to that of Shepartt improving the u_sual WKB(RefS. 2-4
scheme shows that for the potentials parabolic near the bot-

Ly

. (2.19

1 (U E— Ui tom the result above should be multiplied by
r=s— f dE\N(E)ex;{—#) (2.1
TL0J Unin \/;(Zn_,’_ 1)n+l/2 X 2@
For particles .= >, and the usual expressiricis recov- e onehnl 2.

ered. The barrier transparen®/(E) is determined in the _ o )
WKB approximation by the imaginary-time actiésee, e.g., This factor approaches 1 ast1L/(24n) with increasingn
Ref. 68 and it is, in fact, very close to 1 for afl: 1.0750 forn=0,

1.0275 forn=1, 1.016 66 fom=2, 1.011 92 fom=3, etc.
x2(E) Equating the expression in E€R.20 to 1 defines an ap-
S(E)=2 VszX ©® dxyU(x)—E, (218 proximation forn! which is more accurate than the leading
! term of the Stirling formula. The correction fact¢2.20),
wherex, (E) are the turning points for the particle oscillat- however, does not change much in front of the exponentially
ing in the inverted potential-U(x). The factor 2 in Eq. small action term in Eq(2.19.
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The formula(2.19 has the meaning of the level splitting [see Eq.(2.7)] is the dimensionless energy variable taking
only if the levels in the two wells are degenerate. More genthe values 0 at the top of the barrier and 1 at the bottom of
erally, Eq.(2.19 yields the transition amplitude between the the potential. The quantity{ «?,k) above is given by
levels on both sides of the barrier, and the expression for the

escape rate should be sensitive to the resonance condition for | =(1+&®)K—E+(a®—k*/a?)[TI(a? k) K],
the levels in the two wells. Therefore, the quaniityin Eq. ) _ )
(2.14) should be replaced B5%°° a?=(1-hy)P/f,, K=f_If,, (3.9

2 whereK andE are complete elliptic integrals of the first and
:(AEH) T (2.21) second kind of moduluk andII(a? k) is the complete el-
" 2 T (E,~E,)%+T2)] liptic integral of the third kind. The latter can be expressed

o n . through the incomplete elliptic integrals of the first and sec-
where AE,, is given by Eq.(2.19, n’ are the levels in the ond kinds, in our case af?<k?, ad”’

other well andl",,,, is the sum of the linewidths of theth
andn’th levels. IfT",,, substantially exceeds the level spac- a[KE(B,k)—EF(B,k)]
ing w, =E,,,—E,, the sum in Eq(2.21) can be approxi- 11(a?,k)—K= —

mated by the integral and one obtains VA= a?) (k= a?)

. B=arcsinalk).
3.9

The general expression f&E) simplifies in five limiting
The latter is by virtue of Eq(2.19 equivalent tol',, in Eq.  cases. The first case is-h,<1, in whichU(x) reduces to
(2.14), and the reasoning above can be considered as a dethe quartic parabolgsee Eq.(2.11) and Fig. 1. Here the
vation of it. However, such a situation implies that the sys-parametersy andk of Eq. (3.4) simplify to

tem is so strongly damped that the free precession of the spin

I'=m(AEy)?[2w(E,)]. (2.22

decays long before the period of the precession is completed. - (1-hy)P , 1- v1-P
This is hardly the case for magnetic systems, which is known a = 2(1+ \/ﬁ_) ' = —1+ Ji-p (3.6

both from experiments and from theoretical estimatiths.
Indeed, resonant tunneling was observed in experiments daxpanding Egs(3.4) and (3.5 in powers of @*<1 one
high-spin magnetic moleculé8 as well as orunderdamped ~ obtaing!
Josephson junctiorf4:” In this paper we will, however, ig- ~ _
nore resonance effects in spin tunneling, which have been S(E)=(25/3)[2(1~hy)(1+J1-P)]3?
considered in more detail in Ref. 56. 2 2

Formula(2.14) describes the escape from the metastable X[(1+k)HE=(1-kIK]. (3.7
(left) to the stable(right) well. In the unbiased or weakly — pqr small transverse fields and the energies near the top of
biased cases the rate of exchange between the two We”§1e barrier Fr.~P<1. one can usd.=PpP+4F. and f
which is the observable quantity, is the sum of the escap o L, t e
rates from both wells into the opposite ofeee, e.g., Ref. =P, W?'Ch results ink“=a EF’/(F’+24hx) andk /C; —a
76). Thus, in the unbiased case all the resultsobelow ~ =1—k%. Now with the help ofll(kk)=E/(1—k) one
should be multiplied by 2, which will be kept in mind but not arrives at the resuft
done explicitly. For low temperatures it is sufficient to intro- ~ = o
duce a small bias field to suppress the backflow from the S(E)=8Y P+4h,]"(K-E). (3.9
stable to the metastable well and to make the consideratio

neglecting this process absolutely correct. The condition forl_[]ere for n,<P<1 the modulu of the elliptic integrals is

this is £=SH,/T=1. close to 1. In thi~s case usingEIn(.4/\/1.—k2) and Eil, as
well asP=|E|/(S ?D), one can simplify Eq(3.8) to
11l. QUANTUM-CLASSICAL TRANSITION |E| 8 E
IN THE UNBIASED CASE S(E)=4/—In| — , 3.9
D 82 Usad

A. Level splitting and transition probability
whereU,qis given by Eq.(2.7). Now one can rewrite the
level splitting(2.19 introducing the unperturbed energy lev-
els E,=—Dm? m=-S,—-S+1,....,S and ignoring the
prefactor in the form

In the unbiased casé&{,=0, the imaginary-time action
S(E) of Eq. (2.16 can be reduced to elliptic integrals, e.g.,
by the substitutiony=cosh§). The appropriate formula is
available in Ref. 77, and the result is

AE~(my/m)*™,  mZ=2S%h,(e%8), (3.10

S(E)=45(1-h)f. 1" (a? k), (3.
where which is valid for I<m<S. The latter is the quasiclassical
limit of the perturbative irh, result of Refs. 78, 79, and 56.
f.=P+h 1+ V1—P)2 3.2 One can try to continue the perturbative formul(8s9)
- « ) 32 and(3.10 to the very top of the barrier, although the pertur-
and bation theory breaks down there. It can be seen that, in con-

trast toS(E) of Eq. (3.8) turning to zero aE/U.,+~1, Eq.
P=(Usag= E)/(Usag=Umin) (3.3 (3.9 turns to zero aE/Ug,e%/8=0.92. Accordingly, in
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Eq.(3.10 AE,,~1 atm=m, and not am?=2S h,, which SENS(Unin)
corresponds tdE,,= —Dm?= U, This can be interpreted L
as a shift of the barrier height by the artifaet/8 in the 1 h,=001,0.1,0.25,0.99
perturbative formalism. This factor is close to unity and is 084 L
not very important. However, the inaccuracy of the perturba-
tive method manifests itself much stronger in the quantum- Ao
classical transition of the escape rate. The perturbative result 0.6 001~ i
of Ref. 56 for the boundary between the first- and second- 1 ~ ,"‘(')99
order transitions i,.~0.13, which is about a half of the 0.4 ' o
actual boundary valub,.= 1/442 7
Another limiting case of Eq(3.1) is the case of a small 0.2 .
transverse field and energy not too close to the top of the I - SUmin)/(308) s b,
barrier, /,<P~1. This is a purely perturbative case, and 0.0 / T
the level splitting for the energy levels labeled tyis given 00 02 04 06 08 10
by the formuld® P = (UagEW(U aqUnin)
2D (S+|m]! [ Hy 2|m| FIG. 2. Imaginary-time actio$(E) of Eq. (3.1) for h,=0 and
AEn= [(2]m|—1)!] (S—|m|)! \ﬁ . (31D different values oh, and the bottom-energy acti®(U ) vs hy.

The asymptote$3.14 and (3.16 for S(E), as well asSP*(U i)
According to Eq.(2.19 the imaginary-time actio®(E) can  =4SIn[2/(eh,)] and Eq.(3.20 for S(U,,;,) vsh are shown by the
be obtained from the above formula aS(E)=  dotted lines. The result of E¢3.9) is plotted forh,=0.01 with the
—2In(mAE/|omi1ml), where the energy variableP  dashed line.
=m?/S? should be introduced. The WKB approximation for

S(E) in this case, which interpolates between Egs9) and 1 1 3 1 1
(3.19, was calculated in Ref. 53 with the help of the particle b= —( 1- T) , C= —( -+ — 2) .
mapping and it can be found there. 8 4hy 64" 3h, 16n;

The other two cases in whicB(E) simplifies are those (3.19
corresponding to the energy near the top of the barrier or th

bottom of the well. For the parametrization it is convenientgne can see that changes sign &= 1/4, whereax>0

to introduce the dimensionless quantities for all h,. For smallh, the coefficientsb, c, etc., become
large, which means that E3.14) is only applicable forP
F=AUloy=3(1-h)¥¥(2h 1?) 3.12  <hy. Forh,~P<1, Eq.(3.8) can be used. The latter gives,
however, accurate results only forh,<0.02 (see
and Fig. 2.

5 3 - Near the bottom of the potential one obtains
v=AUlwy=5(1-h)%¥[2(1+h)¥?  (3.13

[see Eqgs(2.8), (2.9), and(2.10]. The quantityv, in particu- S(E)=S(Uin) —
lar, is a rough estimate of the number of levels in the well,

based on the assumption that the levels remain equidistant wgth

to the top of the barrier. It thus measures quantum effects in

the system. One can see that 81 the system can be ~
made more quantum by applying a field close to the meta- S(Umin) =4S

stability boundary, +h,<1. The conditionv>1, which

also entail§ > 1, should be, however, satisfied for the appli- and
cability of the quasiclassical method. The quaniitys re-

lated, as we will see immediately, to the quantum penetrabil- q=8S(1—-h $)%%h 2. (3.18
ity of the barrier near its top and it also measures quantum

effects. For conventinal potentials, such as cubic or quarti€or h,<1 the bottom-level actio®(U ,,) simplifies to
parabolapy andv can differ only by a numerical factor, and

it is sufficient to introduce one of theifsee, e.g., Ref. 36 S(Umin =4S{In[2/(eh,) ]+ 2/4}, (3.19

This is not the case for our spin model for small transverse . ) )
fields F.<1 where the first term is the perturbative res6R(U ) (see
H X .

Near the top of the barrieP<1, the result forS(E) Refs. 8, 78, and 79 Since the correction term in E¢3.19

following from Eq.(3.1) or directly from the integral expres- S quadratic inh, with a small .coefficient,Spe”(U.mm) is a
sion (2.16) reads good approximation t&(U i) in the whole region of the

first-order escape-rate transitidm,<<1/4. In the other limit-
S(E)=2#3[P+bP?+cP3+0O(P%]  (3.14 g case one has

2(E=Upin) ( eqwo
In

E_Umin) (3-16

o

i T2
|n<1+ﬁ—lhx)—\/1—ﬁ 3] (3.17

with S(Upmin)=(4S/3)(2€)%?,  e=1-h,<1 (3.20
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FIG. 3. Instanton period(E) of Eq. (3.22 for T12=0 and dif-
ferent values of,.

(see, e.g., Ref. 11 The dependenceX E) for different val-

ues ofh,, as well asS(U,,,) vs h, are shown in Fig. 2.
The instanton period

__ds(E) x2(E)  dx
"(E)=-—" —ﬁLl(E)—_U(X)_E (3.2

FIG. 4. Frequency of the oscillations in the potential wel(€)
of Eq. (3.23 for h,=0 and different values difi, .

w(E)=23D[(1-hy)f.1¥%x/(2K), (3.23
where
K=K(r), r?=4h,J1-P/f,, (3.29

andf, is given by Eq.(3.2). Near the bottomP—1, one

hasf,—1+h,, r—0, K—/2, and the frequency(E)
reduces to the previously obtained quantity of Eq. (2.9).

can be easier calculated directly than by the differentiation oNear the top of the barrieR—0, one hag —1 andw(E)

Eq. (3.1). The result has the form

(E)=[(1-hy)f, ] Y24K/(SD), (3.22

where bothf . andK have the same meaning as abgsee
Egs. (3.2 and(3.4)]. Near the top of the barrieB—0, one
hasf, —4h,, k—0, K—7/2, and Eq(3.22 yields the pre-
viously known resultr=27/%q with ®q given by Eq.(2.10.

Near the bottomP— 1, one hak— 1, andr logarithmically

diverges. The dependence6E) for different values ofh,
are shown in Fig. 3.

One can see that fdr,= 1/4 the periodr(E) monotoni-

goes logarthmically to zero. In the cadge=0 the precession
frequencyw(E) can be calculated for the original spin model
having the energy levelE,,= —Dm? as the energy differ-
ence between the neighboring levels. The latter is given by
®Ommi1=2Dm, which results inw(E)=2SD\P, if we
identify P=m?/S?. The formula(3.23 yields forh,=0 the
same result witts='S, which is an immaterial difference for
S>1. The dependenceas(E) for different values oﬁx are
shown in Fig. 4. One can see that they have different types
for hy=1/4 andh,<1/4.

The energy levelsE, in the wells satisfy the Bohr-
Sommerfeld quantization rulgsee, e.g., Ref. 68

cally increases with the amplitude of the oscillations in the

inverted potentiak-U(x), i.e., with the increase d® of Eq.

(3.3. In this case the quantum-classical transition is second

order®! For h,< 1/4 the dependence(E) is honmonotonic,
and the transition is first order. Such a behaviot-(&) can
be easily explained qualitatively. Fdr,>1/4 the fourth-
order term in Eq(2.1]) is positive, i.e.U(x) is of the form
—x?+x*. The inverted potentiat U(x) is hence of the type
x?2—x*, which results in the increase ofwith the oscillation
amplitude (i.e., with lowering the energye) and to the
second-order transition. Ah,<<1/4 the anharmonicity of
—U(x) has the opposite sign; U(x) ~x2+ x*, which leads
to the decrease af when loweringE for energies below the
top of the barrier. However, with further lowering &f the

L1
nvs

X
srea'(En)szx/sz “IxVE,—U(x) =2
X1

(3.29

and can be found numerically. The total number of levels in
one well is generally given by

Njev= Sreak Usad/(27)
and in the unbiased case has the explicit form

arctam/ 1; M_ Vhe(1— hx)} (3.27

In the limit hy,— 0 one hasN,,,=S. This means that one half

(3.26

2S5
NlevE ?

period 7 begins to increase and diverges logarithmically forof the total 25+ 1=2S spin levels are in one well and the

E approaching the bottom of the potential.

other half are in the other well, thus all the levels above the

The period of the real-time oscillations in the potential top of the barrier are unphysicaif. the end of Sec. Il A In
minima can be calculated with the use of the formula differ-the case +h,<1 Eq.(3.27 simplifies to

ing from Eqg.(3.2) by changing sign under the square root.
The corresponding energy-dependent frequency has the form

Niev=(4S/37)(1—h,)%2 (3.28
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It can be seen that the quantity of Eq. (3.13 underesti- attained on the interval ,;,<E<U.,q. The classical regime

mates the number of levels in the well by factors of hat  corresponds, clearly, to the minumum just at the top of the

—0 and 16/(3r)~1.70 ath,—1. barrier, E=Ug,q. In the quantum regime the energy of the
With the imaginary-time actioi5(E) and the oscillation  minimum shifts down and can be found from the condition

frequency w(E) having been determined, the problem of

finding the level splittingAE, of Eq. (2.19 is solved. In 7(E)=1/T, (3.39

particular, for energies near the bottom of the potential one ) ) o )

has w(E)=w,, and S(E) is given by Eq.(3.16 with E,  Wherer(E)=—dS(E)/dE s the period of oscillations in the

— U in= (N+1/2)w,. The level splitting2.19 multiplied by ~ inverted potential—U(x). This condition is familiar from

the factor(2.20) takes on the forrt-705 quantum statistic¥®>3%|n the instanton language, it deter-
mines the trajectory that dominates the transition rate at tem-
AE,=AEyq"/n!, (3.29  peratureT.

Above the top of the barrieR <0, the effective free en-

whereq is given by Eq.(3.18 andAEj, is the ground-state ergy (3.33 has the trivial forfsee Eq(3.3)]

splitting
6% 3’ZD[expW 7 F(P)=(1-P)AU=-2a3T'P+AU, (3.35
_ X T 2\5/47 2S
Eo= 2 h W (1=h3) h x whereas just below the top of the barriess@<1, it can
+ x (3.30 with the help of Eq(3.14 be written as
The factorh 2° above signals that the ground-state splitting F(P)=273T[aP+bP?+cP3+O(P%)]+AU.
arises, minimally, in the 8th order of a perturbation theory (3.36

in the transverse fielti’®’° More generally, for the excited
states one obtains from E(B.29 AE,xch2(5™M 7879 oyr

caseS>1 one can go over fros= S+ 1/2 andh,= hz(S/S T =(SDIm)Jh(1—hy) (3.3

to Sandh,. This is not an innocent procedure and it could,

in principle, change the prefactor in E®.30. However, the  [see Eqs(1.2) and(2.10], the coefficientd andc are given
corresponding correction terms cancel each other, and orngy Eq.(3.15), andd is given by Eq(3.12. The analogy with
arrives at the same expression without tilde. The latter is ghe Landau model of phase transitibhslescribed byF
particular case of the result obtained by Enz and Schiffing =a¢’+bep*+cep®+F,, now becomes apparent. The factor
for a more general biaxial model with the transverse fieldy changes sign at the phase transition temperafard(? .

(see also Ref. 34Formula(3.30 can be rewritten in a more The factorb changes sign at the field valig=1/4 deter-
compact form mining the boundary between the first- and second-order

transitions. The factor remains always positive. The depen-
wo S(U min)
AE0=?\/21TQEX — 2

, (3.30) dence ofF on P for the entire range of energy is plotted in
Fig. 5 with the use of the general analytical expression for

which looks very similar to the starting formu(@.19. The S(E), Eq.(3.1. ) . i
extra factor y2mqxSY4h, here appears because in Eq. At h,=0.3[Fig. 5@] the minimum ofF remainsAU for
(3.31) the action(3.17) corresponds to the bottom of the @l T>T) . BelowT{? it continuously shifts from the top to
potential, whereas in E¢2.19 the action corresponds to the the bottom of the potential as temperature is lowered. This
ground-state energy leveE,. This difference due to the corresponds to the second-order transition from thermal ac-
zero-point motion between the two actions, which is de-tivation to thermally assisted tunneling, the quangtylay-

scribed by Eq.(3.16 is small, but it strongly affects the ing the role of the order parameter. Af=0.1[Fig. 5b)],
prefactor in Eq.(3.31). however, there can be one or two minimaFgfdepending on

temperature. The transition between classical and quantum
regimes occurs when the two minima have the same free
) o ) energy, which foth,=0.1 takes place afy= 1.078]'62).

For T<AU the dominant contribution to the integral  one can see that the criterion of the second-order escape-
(2.19 is due to the narrow region of enerdy where the 46 transition is the positiveness of the second derivative of
product W(E)exp(—E/T) attains its maximum. Neglecting he actionS(E) and, hence, the effective free enefg(E)

Herea=(T—T{)/T with

B. Escape rate in the exponential approximation

the prefactor, one can write defined by Eq(3.33. Because of the relation
I'~exp(—Fmin/T), 3.3
. _.p( min/ T) .( 2 dr  d’S  1d°%F 33
where Fyy is the minimal value of the effective “free dE- g2 Tq@ (3.38
energy
F=E+TSE)-U, (3.33 this criterion is equivalent the requirement that the instanton

period r monotonically increases with decreasing enéYgy.
with respect toE. Since with the exponential accuracy one The “simple” estimation for the crossover temperature
can setS(E)=0 for E>Ug,q, the free energf(E) has a Ty given by Eq.(1.1) can with the use of Eq2.8) andB
downward cusp aE=Ug,y. Thus the minimum of(E) is =S(U,,) of Eq. (3.17) be explicitly written as
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FIG. 6. Dependence of the crossover temperafliyeon the
transverse field.

peratureT, arises in the limit of a small barrier, that is, for
h,—1. The former is described by the intersection of the
dotted Arrhenius line with the horizontal line corresponding
to the value of Te(T)/To at T=0. From Egs.(1.2) and
(3.39 for h,—1 one obtainsT"/ T =37/(8/2)~0.833.
The first-order escape-rate transition considered above is
the transition from thermal activation to thermally assisted
tunneling near the bottom of the potential amat directlyto
the ground-state tunneling. This is due to the logarithmic
divergence of the instanton periadfor the energies near
Unmin- In some field-theoretical models, as, e.g., the reduced
nonlinearO(3)-o model, 7 approaches 0 near the bottom of
the potential. Accordingly, the second derivativeSgE) and
F(E) is negative everywhere, as for the rectangular potential
for particles. In such a situation, as it is clear from Fifh)5
the minimun of F(E) can only be aE=Ug,q0r E=U .
That is, thermal activation competes directly with the

T(O)—SD (1—hy? ground-state tunneling, and the estimatigfl) for T, is ex-
DRt
4 In((1+V1-h2)/h)—1—h2
Tesi/To
1 1.1 ! ! ! ! 1.1
T ne=1
sp| In[2/(ehy)]
4 i(1—h )M, 1-he<1. hy =0.01
2312 X 1.04—— - 1.0
(3.39
One can see from Fig.(B) that T") underestimates the
crossover temperature. Fog=0.1 one hasT{"’=1.061T{"
<T,. The estimatiom") becomes, however, accurate in the 0-9- -0.9
limit of small h,. The dependence of the crossover tempera-
ture Ty on the transverse field in the whole ranges 1@,
<1, is presented in Fig. 6. The temperature dependence ¢ 0999
the escape rate can be conveniently written in the férm 08 ] ; 0.8
~exp(—AU/Ts), where the dependence ofT ' o4 06 o8 '

=TAU/F i, onT is presented in Fig. 7 for differet, . It

4 !
T/Ty 10

can be seen from Flg 7 that the most significant difference FIG. 7. Dependences of the effective temperaflygon T for
between the estimatio{’) and the actual transition tem- different values of the transverse field.
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act. Field theories showing this extreme case of the first- 1 1 F min
order escape-rates transition were called “type-Il theories,” I'=— —exp( — —) (3.49
in contrast to the “type-I theories” showing a second-order Zo \2m|d7/dE]| T

transition. In Ref. 48 it was shown that adding a small
Skyrme term to the reduced nonlinga¢3)-o- model causes

7 to diverge near the bottom of the potential, with the ac—(3'?4) ant:l) can be (;]aICLIJEIa;eS ngmeri%ally.h b
cordingly small amplitude. This is, in a sense, similar to the t can be seen that E¢3.43 describes the crossover be-

o : ; . tween Egs.(3.40 and (3.44 in the narrow regionAa
;lit;.ag)c.)n realized in our spin model for very smhl (see [ 2b/(5) ]2~ S 2 arounda=0. In this region the erfc
function in Eq.(3.43 changes from 2 below? to small
values abovel ). One can check that the main part of Eq.
) ] (3.43, except for the erfc function, is the concrete form of

To ob.taln the_ escape ralé with prefactor, one should Eq. (3.44) in the temperature region just belov{gz). Thus,
perform integration in Eq(2.15 or, at lower temperatures, Eq.(3.44 can be extended up tEf)z) by multiplying it by the

summation in Eq(2.14. This is of a general interest in the erfc function. It cannot however, be extended abd@
situation where the second-order quantum-classical escapé-

rate transition is realized in the exponential approximation?'nce in .tth's reglorlFm{n_lnéEqé f;?;tdt%esbnot r:jave t)het same
Here the effect of thermal distribution leads to quantum coriorm as Its equivaient in 43.43. € boundary between

rections in the classical region of temperature and it smoot first- and second-order transitions one has0, and the term

ens the transition to a usual crossover without any singulariWIth cin E_q. (3'4.2’ §hould be tgken into account. This leads
ties of I'(T). to qualitatively similar results; the crossover between Eqgs.

(3.40 and (3.44 occurs in a narrower regionAa
~cY¥(277)?2~ S 25, In the range of transverse fields cor-
responding to the first-order escape-rate transition the width

ranges where analytical expressions FdiT) are available. ; .
Above T@  which exactly meang [ b/(2775) |42~ S /2 pf the crossover between the classical and_quant!,lm regimes
: is even narrowerAa~B~1~S™! [see the discussion after

[see Eqgs(3.36 and(3.12)], one can neglect the terms with Eq. (1.1)]
andc in Eq. (3.14) and extend the integration in E@.15) to o
+ oo, This leads to the expressitin

where F, and d7/dE are determined by Eq$3.33 and

C. Beyond the exponential approximation

In the case of a second-order transition, ite»0 in Eq.
(3.36), there are forS>1 four overlapping temperature

In the range of the lowest temperatures one should take
into account quantization of levels in the well and use Eg.
-~ (2.14 where summation runs near the bottom of the poten-
Eﬂwex% _ A_U> (3.40 tial. Using the oscillator energy levelE,=(n+1/2)wg

27 sif®o/(2T)] T +Upmin and Egs(2.22 and(3.29, one can write
having the asymtote

AE)2Z e~ ©o/(2T)72n
P o TAED 5 [0 "

=24 wit+® 5 [{ AU 34 209 #=0 (n!)2
=Z +W ex T, (3.4 (3.49

where the sum is the modified Bessel functign With the
help of Eq.(3.31) the result can be put into the final form

for T>T?, i.e., fora>1. For T approachingT{?) from
above the prefactor in Eq3.40 diverges because of the
unlimited contribution from the range<Ug,q, i.e., P>0, B _ _ w
into the integral in Eq(2.15. > F=quo(1—e “0'Ne SUmwl[2qe”*0/2D],

In the temperature rangeb<a<1, i.e., across the tran- (3.46

sition region, one can neglect the contribution of the State%sing the asymptotic formulky(x) =€/ 2 for x>1 one
with E>Ussqgin Eq. (2.19 and write it in the form can check that Eq3.46) goes over with raising temperature

AUe 27 (o to Eq. (3.44 with the parameters calculated from the action
FE—J dP exf —27%(aP+bP?+cP?)], (3.16. The argument of the Bessel function in Eg.46) is
21Zy Jo of order unity forT~Tg,, where
(3.42
where 275=AU/T{). If b is not close to zero, one can set Lo @ SD(1—h?)12 (3.47
c=0 and obtain the resdft 00~ = .
2Ing  In[8S(1—h?2)%h2]
~ ~ 2 ~
= @o . /Lex _ A_U< 1 a” erfc(a /ﬂ) [cf. Eq. (6.1) of Ref. 56. The temperaturd, characterizes
2wZy ¥V 2b T82> 4b 2b)" the crossover from thermally assisted tunneling to the

(3.43  ground-state tunneling; fof <Tg, Eq. (3.49 yields I'y of
Eq. (2.14), multiplied by the correction factd2.20 squared.
For lower temperaturegs=< — b, i.e., T<T?, onecanno For S>1 the crossover temperatuiigy, is lower thanT,
longer use the expansion 8(E) or F(E) near the top of the given by Eq.(3.37 or Eq. (3.39 because ofS under the
barrier, but in this case the integral in E@.15 is domi-  logarithm.
nated by its stationary point. One can extend, again, the in- The results obtained above can be conveniently repre-
tegration range ta- and obtain the resdft sented in terms of the effective temperatilitg defined by
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FIG. 8. Effective temperature for the escape rate in the expo- FIG. 9. Derivative of the effective temperature for the escape
nential approximation and beyond. Curve 1 uses Eg<t0 and rate in the exponential approximation and beyond. The small circles
(3.43 and describes the crossover from the classical regime wittiepresent the numerical derivative of thig{(T) curve obtained by
guantum corrections to thermally assisted tunnefigT). Curve 2 joining the curves 1, 2, and 3 in the figure above. The crossover
uses Eq.3.44 and describes the TAT regime in the continuous- boundaries correspond to the argument of the erfc function in Eq.
level approximation. Curve 3 uses Hg.45 for the discrete levels (3.43 taking the valuest 1.
and describes the crossover from TAT to the ground-state tunnel-
ing. glect the difference betweéhandS, as well as betweeh, ,

andh, , here.
o Fminl  ®o AU It is convenient to start the qualitative analysis from the
I'= ﬁQeXF‘( T ) = Zex;{ - T_ﬁ) . (348 strongly biased casej=1-h,<1. Here the metastability
© boundary curve of E¢2.6) is given by
where the facto accounts for the deviation of the prefactor
from that of the simple TST. One has, explicitly, hem=(1—h2®)¥2=(25/3)%?=0.5443°2  (4.1)

The reduced potential(x) of Eq. (2.5 simplifies in the
region of its metastable minimum and maximum to

Teg=TAU/(Fin—INQ). (3.49

The dependencé.4(T) is represented in the situation of the .2 5 _
second-order transition in Fig. 8. One can see that all the ux)=hz+h[(hJ/de =—-se *-2e. (4.2

analytical curves smoothly join each other. The escape ratg, ihe above expression the term witR* which is respon-
with the accurate prefactor is always higher than that in thejjpie for the formation of the stable minimum fx) and is
exponential approximation. For temperatures above thenin the region of interest was dropped. It can be checked
guantum-classical transition this is due to the nonvanlshlnghat the metastable minimum of E¢¢.2) disappears foh
guantum transparency of the barrier. At zero temperature thgh . Fore,=(h,—hy)/h, <1 the potentiali(x) can bxe
escape rate is higher because tunneling occurs from t'@ppxrrgximateﬁ byxéncut))(ic p;(:rabola which will be done in a
ground-state level which is slightly above the bottom of the,) e qeneral form below. This is a standard &sa which
potential. The derivatived Te/T is represented in Fig. 9,0 second-order escape-rate transition takes place. If, on the
where the smoothening of the second-order escape-rate ral5niary the transverse field is removed, the barrier height
sition beyond the exponential approximation can be clearlyetainga finite value but tunneling should disappear, which

seen. means that the barrier becomes infinitely thick. Indeed, for
h,<h,, the third-degree algebraic equation determining the
IV. THE BIASED CASE extrema of the potentight.2) simplifies to yield
In the general biased casH,,+#0, the imaginary- and —h /(28 1+h2/(283
real-time actions of Eq92.16 and (3.25 can be still ex- Ymin =P/ (2O)[ 1+ Pl (257)],
pressed in terms of elliptic integrals, sindgx) of Eq. (2.5 Vea= (812) Y7 140, /(25)¥2], 4.3

is proportional to the fourth-order polynom yr=expx). We
will not do it here because the turning poinsy(E) for the  with v, sai™ €XP&min sad and
motion in the potentials-U(x), as well as the extrema of ’ ’

U(x), are given by the solution of the fourth-degree alge- Umin— hZ=— 67[1+h?/ 6],
braic equation and have a cumbersome analytical form. In
this section we also restrict ourselves to the exponential ap- Ugaq— h2=—2%n, 8V 1—h, /(2525%7)]. (4.4

proximation, since the effects associated with the prefactor
of the escape rat€ do not differ qualitatively from those One can see that in the limit,—0 the pointxg,qis fixed,
analyzed in the unbiased case above. We will therefore ne,,;, goes to—o, and the barrier height
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) [e(x)—h,21/8% SUy=253] 27<hxm>2 22( hy )2 wn
1 N 1 1 " 1 N 1 " 1 )= n| —| — + — — i i
8=1-k,=0.01, mn 263 hx 27 hxm
h/8%2=0.5,02345,0.1,001 | . . . .
i It is instructive to findS(U;,) for smallh, in the whole
od i range ofh, with the use of the general perturbative expres-
sion for the level splitttings in the biased c&s®
AE. = 2D
2] I " LM —m-1)17?
Cubic parabola
S+m)I(S—m)l [ H\™ ™
(S+m)I(S=m)!( Hy “s
(S—m')!(S+m)!\ 2D
-4

8 6 4 2 0 .02 [cf. Eq. (3.1D)], wherem<0 andm’=—m—H,/D is the
matching level on the other side of the barrier. For the
FIG. 10. Reduced potentialx) of Eq.(4.2) for different values  ground-state level in the metastable well one has —S

of h, and 6=1-h,<1. The valueh,=0.2345% corresponds to  and m’=S(1—2h,). Now, in the exponential approxima-

the boundary between the first- and second-order escape-rate trafpn, one can use, according to E(R.19, SP(U )=

sitions. —2INAE_gg1-2n)- Then with the help of the Stirling for-
mulan!=(n/e)" one arrives at the result
4\32h, 4/ h,\?
AU=SD&?|1—-| 5| —+ =l (4.5 SPE(U min) =2S{8IN[45% (eh)?]+h,inh,}. (4.9
3/ hym 9\ hynm

One can check that in the unbiased cdsg=0, i.e.,6=1)

remains finite[cf. Eq. (2.8)]. As in the unbiased case, the _the first (perturbativg term of Eq.(3.19 is reproduced, and

very flat top ofU(x) favors the first-order escape-rate tran-'" the strongly biased case that of B4.7) is recovered. The

sition. The solution given by Eq$4.3) and (4.4) becomes accuracy of'Eq.(4.9). is not so high as that of Ec(.4.7),. .
invalid for h.~h Where X~ Xe.g- [N this region the which contains the important correction term quadratic in
X Xm min saa-

crossover from first- to second-order transition is expecteo?ﬁ é hégéalggizgrlrta?r?sistti(r)?\ngt]éymbplyz‘:‘:gfeasfgrthsemeasllth;ggg\r/leorge
The form of the potentlaiu_(x) for dlffere_nt values oh, in fields isT ET(°)=AU/S(U ) with AU andS(U..) given
the strongly biased case is shown in Fig. k8.remarkable 0= 10 min. min) G
feature is that both first- and second-order transitions arePy Eds-(4.5 and(4.7). , ,
realized for whatever small barrieA U= S2D &2, with the Near the metastab!llty boundary curve the con5|der_at|on
arbitrarily small 8. This is especially interesting for the ex- b?gms_wnh theﬂlocatl_on of the latter from the conditions
periments on small magnetic particlé®; 10°— 10°, where Y’ (Xm) =0 andu”(xy) =0, which yields the equations
the barrier should be reduced to achieve measurable escape 1 h
rates. cosf(xp) = p—.  sinF(xp) = - hi“ (4.10

In the general biased case simple analytical results for the xm xm
guantum-classical transition temperatligcan be obtained \yhere from Eq.2.6) follows. Then for the field
in two limiting cases: for small transverse fields and for the
fields near the metastability boundary curve. In the first case hy=hyn(1—¢€), h,=h,(1—¢,), (4.1

the quantum-classical transition is of the first order, and 3,
L - SN heree, ,<1 and{h,,,h,,} are related by Eq(2.6), one
good estimation of the transition temperatigis given by .- eXp)(é.Zl’ld the po{te>|('1nt1ia(zxn)]}of Eq.(2.5 negrxmqin powers

Eqs' L(Jl'l)’ _\Il_vhhere Ilnt'th(Ia expongntla]l aﬁf)roglrgatlo? Iof X—Xm- If h; is not very small, one can restrict oneself to
=(Umin). The analytical expression for the botiom-leve the third-order terms and obtain

action S(U ;) can be found for smalh, and arbitraryh,
from the general formulg2.16). In the most interesting U(X)=U(Xm) T AL (X—Xm) —Ag(X—Xm)®  (4.12
strongly biased case this can be done for the arbitrary

<hym With the result with
Ar=2ehiThit,  Ag=hithis, (4.13
S(Umin)EZS\/thyr’nin[_3 VI=T mint (Fmint 2) and
X R/il=r .. . —
arctantyL= minl, 48 e=h23e,+h2e, . (4.14

The cubic parabol#4.12) is symmetric abouk,, and it is

wherer in=VYmin/Yrmin<1l andy’. =expk . ) is the turnin
min' =Y min’ Ymin Yin™= €XPCmin) g cCharacterized by the barrier height

point on the right side of the barrier corresponding to th
energy Uy, of Eq. (4.4. For h,<h,, one hasy/,, D T 312 213
~[8%(2h)](1~h2/6%) and r=h2/5*<1. In this case AU=4SD(2€/3) ™Mz (4.19
Eq. (4.6) simplifies to and the equal real and instanton oscillation frequencies
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AM/SZ 4 . 1 . 1 . 1 . 1
10 " 1 2 1 2 1 " L 2

1 — 87U, D/(2RSE) = Ny, /(53)

2- S(Umln)/(zTCSS)
0.8 - r
0.6 - i
0.4 ™ =
0.2 _

- 0 d T d T d — T v
0.0 — 0.0 0.2 0.4 0.6 08 p /p. 1.0
0.0 0.2 0.4 0.6 0.8 1.0 v

hh,,
e FIG. 12. Imaginary- and real-time actions in the strongly biased

FIG. 11. The numerically calculated reduced barrier height  case, Eqs(4.6) and (4.20. Asymptotes of Egs(4.7), (4.2, and
Au=AU/(S?D) in the strongly biased case. Asymptotdss) and ~ (4.22 are shown by the dotted lines.
(4.18 shown by the dotted lines reproduce the accurate numerical

result practically in the whole range bf /h,. Where r o =Ysad Yead™ 1 @andyl,=expii,d is the turning
o point on the left side of the metastable well corresponding to
w0=Z)0=ZSD(6e)1/4h)1(/m2h%/£, (4.16 the energyug,q of EqQ. (4.4). The top-level real-time action

above determines according to £g8.26) the number of lev-
where the latter defines the quantum-classical transition temis in the well. Forh,<h,, one hasy/,=h,/(46) and
perature:To=T{=,/(27). Equation(4.16 can be put r_ =(25)%%h>1. Thus in this limit
into the form

S U g=27So[1—-8/(3%*m)\hy/hy]  (4.2D)

- oo _ . [cf. Eq.(4.7)] andN,,= Sé for h,=0. Near the metastability
If one sets= hmﬂnaﬂ a,’;dhzm‘ h;gcosq,%}zwhere,_by V™ boundary the potential(x) can be approximated by the cu-
tue of Eq.(2.6), h,= (sirf30,+ cos®6,) ~32. If, as in Ref. ) o, ,

81, the field changes along the lii = const, one hag,  PIC parabola(4.13). Frl%m Eq.(4i/130) one obtaiNgy min=Ysaq
=€,= €, Which results ine= e. In this case Eq(18) of Ref. =expfm) = (1—hym) /hym= &/(3hym). More  accurately,
81 is recovered, where, by definition, is twice as small as  Xsad, mi=Xm® VA1/(3A3) =Xm* V26,43 and Xgag. mie=Xm
here. In the strongly biased case, however, it is more conve+ 22¢,/3. This yields t-r = 1—expmin— X/in) = J6é,,
nient to haveh, fixed and swipeh, across the narrow region and the same forg,q— 1. Expanding now Eqgs(4.6) and
where the barrier exists. Thus one can ket=1, h,, (4.20 for ¢,<1 results in

=(2613)%?, €,=0, ande=h22¢,=(25/3)e, to obtain

wo=wo=2SD(6€)Ycot®o,, /(1+cofy), (4.17)

~ qreal ~ 5/4

AU (168D19)(26,/3925% @18 S(Unin) =S Ugad = (1655/45)(6€,) ™. (4.22

The behavior ofS(U,,;,) andS®¥(U,) given by Eqs(4.6)

and (4.20 in the strongly biased case in the whole range of

= 14 h, /hy, is shown in Fig. 12.

wo=o=(4SD/3)(6ey) 0. 4.19 " Tﬁg order of the qgantum-classical escape-rate transition
Note that at the applicability boundary of the presentis determined, as we have seen, by the sign of the the coef-
aproach,e,=1, one hasAU=0.973?D §?, which is very ficientb in the expansion of the imaginary-time actiB(E)
close to the exact valuAU=S?D §? for h,<h,,, obtained near the top of the barri¢see Eqs(3.14) and(3.36)]. In the
above (see Fig. 11 That is, the barrier height scales as general biased case this coefficient is given by
AUx 8% in the strongly biased casé<1. Similarly, the

and

guantum-classical transition temperature scale¥@ss. In AU 5

fact, as will be shown by the numerical calculations below, = 3= 5| Ysaddsad™ §(U’S’;()2 (4.23
this scaling holds not only in the strongly biased case, but (2m)°2w ¢

practically in the whole region dfi,, excluding that of very _
smallh,. [see Eqgs(1.2) and(2.1)]. It reduces to that of Eq3.15 in

n

As a pendant to Eq4.6), one can calculate the real-time the casé1,=0 whereUg,~0. In the strongly biased case the
action given by Eq(3.25 for the energy,qin the strongly ~ potential of the spin system simplifies to 4.2, and there

biased case. The result reads is a simple analytical solution for the ling(h,) separating
the first- and second-order escape-rate transitions. To obtain
S U ;0 =2Sv2h,y . d — 3V eaq 1+ (T saqt 2) this line, one can calculate all needed derivativesi(of) at

the top of the barrier from Eq4.2), equateb=0 in Eq.
Xarctan/r g, 1], (4.20 (4.23), and eliminate the terms with, with the help of the
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relation h,e™2*=2(—2e*+ se™*) following from u,~0. 10
Then the conditiorb=0 yieldse®= §/\/6, and forh,=h,,
one finds

hee=(2/34(\3~2)6%%=02345"2  (4.24

i.e., hy:=0.4308,,,. Further, forhy=h,. one hasug,& 0.6
—26%(4+/2/13—3) resulting in the transition temperature at h{max)
the boundary between first- and second-order transitions

0.8 1 .
no barrier

2-nd order .

hxc

0.01
1-st order

0.00

04 080 085 090 095 j100|

T = (SD/)(4/2/3-3)125, (4.29

where (4/2/3—3)Y2=0.5157[see Eq(1.2), cf. Eq.(3.37)]. 02

The maximum ofT is attained within the range of trans-
verse fields corresponding to the second-order escape-rate 1 first order T
transition. In the unbiased case HB.37) yields evidently 0.0 e
T{"=5D/(27) for hy=h{"™=0.5. In the strongly biased 0.0 0.2 0.4 0.6 08 p, 1.0
case using the conditiongdu’[h,,x(h,)]/dh,=0 and
u'lhy,x(hy)]=0 for x(h,) corresponding to the maximum
of the potential(4.2) one obtaine?*= §/3 and

no barrier [

FIG. 13. Phase diagram for the quantum-classical escape-rate
transition. The dashed line corresponds to the maximuri,oés
function ofh, . The asymptotes of Eq&4.24) and(4.26) are shown

TgmaX)Z(SD/Tr)él\/g (4.26 by the dotted lines.

(max)_ ~ /2 . T . . .

for hy __hxm/\/z—oz3849§ : ] described quantitatively and discussed in defade Egs.

_Numerical calculation of the escape rdtan the general (3 46 and(3.47)]. The fascinating new feature of this analy-
biased case in the exponential approximation poses no Prolis is the existence for spin systems of both, first- and
I%rgs. Th?} mlnlmumc())Efthe egfegtlve;ree.enern?yl_z) of_Eq. second-order, transitions from thermal activation to ther-
(. 33 wit éeépectt _ca|r|1 elouln (ijsflng tEezlrrllagllr:nary- mally assisted tunneling ai=T,. The kind of transition
time action (E) numerica y calculated from 42.16. For depends on the strength and the direction of the magnetic
any fieldH one can establish the transition temperaflige field. We have calculated the boundary in tHe,H, plane
such as forT<T, the minimum ofF(E) no longer corre- separating the two different regimes v
spond; to the top of the barrier, as i? isin thg classical case. The direct analogy with phase transitions exists in the
Analyzing the dependende(E) for different fields allows ;i of 5 very large spinS. In that limit the dependence of
one to de;e_zrmlne th? order of the quantum-classical €SCaPRie transition rate on temperature changes abruptiyoat

rate transition(see Fig. 3 T_h_e boundary between the first- pretty much as thermodynamic quantities do in the theory of
and the second-order transitions can be found the most eas@hase transitions. For finit&. both the first- and second-
from the conditiorb=0 in Eq.(4.23, where the derivatives o1 transitions of the escape rate are smeared, similar to the
of U(x) are calculated at the numerically determined top of
the barrier. This method yields the same resultshggh,)
as that described above. The resulting phase diagram for th 2T;T0/(SD)
escape-rate transition is shown in Fig. 13. The 8ot of ——
To(hy,h,) is shown in Fig. 14. The dependentg(h,) in
the strongly biased case is given in Fig. 15.

1.0

V. DISCUSSION 0.8

i
i

We have presented a comprehensive study of the therme ; g ‘ T
and quantum decay of a metastable spin state of the uniaxic M"“ ;
spin system in the arbitrarily directed magnetic field. The 0.4 i ‘ i
moderate damping regime has been studied, in which the ™" | \\
damping does not influence the dynamics of the spin systen M‘H“M
but provides the thermal equilibrium with the environment. .

The method employed is the mapping of a spin system ontc '

the particle in a double-well potential, with the subsequent 0-0

use of the WKB approach. The explicit dependence of the 02

escape rate, including the prefactor, on temperature, field : ' =10
and anisotropy constant has been worked out and compare :

with limiting cases obtained by others. This calculation :

shows how formulas describing different regimes join on : hx

temperature down to lowest temperatures where quantization

of levels becomes significant. The crossover from thermally FIG. 14. 31 plot of To(hy,h,). In the main part of the interval
assisted tunneling to the ground-state tunneling-affggis  0<h,<1 the transition temperatufg, scales with6=1—h,.
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2rTo/(SDO) spins are studied, the external magnetic field must be ad-

1.2 : ' ' y ' justed such that the energy barrier becomes small enough to
provide a significant tunneling rate. In terms of the phase

104 first order second order | diagram this means that one has to work close to the meta-

stability boundary line, Eq(2.6), separating the field ranges

. with and without the barrier. According to Fig. 13, for a
L uniaxial spin close to the metastability boundary, both first-
' and second-order transitions coexist only in the lower right
corner of the phase diagram. In this region, close to the
boundary between first- and second-order transitions, the
temperaturél, is of orderBD/(4?), whereB is the expo-

- nent in the expression for the rate. In a typical tunneling
experiment with a macroscopic lifetime of a metastable state,
B~42, so thafTy~D. The latter constant can be expressed

0.8

0.6

0.4

021 i in terms of the anisotropy field and the total spin of the
particle: D=gugHA/(2S). For Hy,~1 T and S~100 the
0.0 y T g T g T g T y transition temperature will be of the order of 10 mK. This is
0.0 0.2 0.4 0.6 0.8 1.0

within experimental reach. Notice that the smallness pin

h.th, .
wm our model comes, in part, from the fact that the noncommu-

FIG. 15. Dependencgy(h,) in the strongly biased cagef. Fig.
6). Asymptotes based on Eq4.1), (4.5), and(4.7), on the left side,

and on Eqgs(1.2) and (4.17), on the right side, are shown by the

dotted lines. The analytically calculated values of E@s24—

tation of S, with the Hamiltonian is small in the lower right

corner of the phase diagram, where the effect is to be
searched for. One can expect that in models with transverse
anisotropy observable first- and second-order transitions will

(4.26) are shown by diamonds. coexist at higher temperatures, since the transverse anisot-

ropy, rather than the required small transverse field, will

smearing of the phase transition in a finite-size system. Thérve the decay of the metastable state. Such a model re-
reduced width of the crossover between the classical anltiréS @ different approach and will be worked out else-
quantum regimeAT/T, is of the order ofS Y2 for the ~ WNere.
second-order transition ar@l ! for the first-order transition.

For a moderately large spirg~ 10, one can explore in
experiment the entire phase diagram shown in Fig. 13. This This work has been supported by the U.S. National Sci-
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