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Elementary excitations of Heisenberg ferrimagnetic spin chains
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We numerically investigate elementary excitations of the Heisenberg alternating-spin chains with two kinds
of spins, 1 and 1/2, antiferromagnetically coupled to each other. Employing a recently developed efficient
Monte Carlo technique as well as an exact-diagonalization method, we verify the spin-wave argument that the
model exhibits two distinct excitations from the ground state which are gapless and gapped. The gapless branch
shows a quadratic dispersion in the small-momentum region, which is of the ferromagnetic type. With the
intention of elucidating the physical mechanism of both excitations, we make a perturbation approach from the
decoupled-dimer limit. The gapless branch is directly related to spin 1's, while the gapped branch originates
from cooperation of the two kinds of spins.
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l. INTRODUCTION problem!® Recently Fukui and Kawakaffi have made a
nonlineare-model approach for a few models of this kind
Extensive efforts have so far been devoted to verifyingand have discussed a generic criterion for the critical mixed-
Haldane’'s conjectufe that the one-dimensional sp®- Spin chains. Their finding may stimulate many theoreticians
Heisenberg antiferromagnet exhibits qualitatively differentto numerically investigate a variety of mixed-spin Hamilto-
properties according to wheth&ris integer or half odd in- hians and even lead to synthesis of novel mixed-spin-chain
teger. The nontrivial energy gap immediately above thematerials. On the other hand, considering that all the mixed-
ground state was precisely estimated using a number of n§Pin-chain compounds synthesized so far exhibit a finite
merical tools not only in the spin-1 cdsé but also in the ~ground-state magnetizatich,we take a great interest in
spin-2 cas€?® while the valence-bond-solid modeintro- altgrnatlng—spln He|senb.erg antlferromagnets Wlth fern.mag-
duced by Afflecket al. significantly contributed to the under- Netic ground states. This is the subject we discuss in the
standing of the physical mechanism of the so-called HaldanBresent article. o _ _
massive phase. On the other hand, developing Qii8) Let us mtrod'uce a Hamllt.oman of a!ternatlvely a_hgned
nonlineare-model quantum field theory Affleck® pointed WO kinds of spinsS ands which are antiferromagnetically
out that even integer-spin chains should be critical if a cercoupled to each other:
tain interaction is added to the pure%gcseisenberg Hamiltonian. N
Actually various numerical metho revealed that the _
spin quantum number is no longer the criterion for the criti- H—ng (S5 05-S+0), (1.0
cal behavior in a wider Hamiltonian space. Recently several
authord®!” even suggested the appearance of the Haldanavhere S’=S(S+1), s'=s(s+1), andN is the number of
gap phases in half-odd-integer-spin chains with a magnetignit cells. The bond alternatiofi has been introduced for a
field applied. Thus the low-temperature properties of onediscussion presented afterwards. We ass8ms in the fol-
dimensional quantum antiferromagnets with one kind of spidowing without losing generality. Because of the noncom-
have more and more been elucidated. pensating sublattice magnetizations, this system exhibits the
In such circumstances, there has appeared brand-nef@rrimagnetism instead of the antiferromagnetism. Applying
attempt&®-3°to explore the quantum behavior of mixed-spin the Lieb-Mattis theorerif to the Hamiltonian(1.1), we im-
chains with two kinds of spins. These studies are furthemediately find 6—s) N-fold degenerate ground states. The
classified according to their main interests. SeveralGoldstone theorefd further allows us to expect a gapless
authord®2*have been devoting their efforts to finding quan- excitation from the ferrimagnetic ground state. Therefore we
tum integrable Hamiltonians and clarifying their critical be- here take little interest in the simple problem whether the
havior. Although the models considered are generally comsystem is gapped or gapless. Alcaraz and Mal7é ai/es-
plicated, the generic description of a certain family oftigated the two cases of S(s)=(1,1/2) and §,s)
Hamiltonians is interesting in itself and even allows us to=(3/2,1/2) and actually showed that in both cases the chain
guess the essential consequences of mixed-spin chains. i& described in terms of the=1 Gaussian conformal field
distinct attention is directed to mixed-spin chains with thetheory under the existence of exchange anisotropy. Suggest-
simplest interaction between the two kinds of spins.ing that this should be the generic scenario for arbitrary fer-
Alternating-spin Heisenberg antiferromagnets with a singletimagnetic Heisenberg chains, they further predicted the ap-
ground staté?® again present us the nontrivial gap pearance of quadratic dispersion relations at the Heisenberg
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points, which means that the model possesses a ferromag-

netic character. On the other hand, applying the spin-wave H=Eo+ 2 (0 afenct oy BLBK), (2.6)
theory to the model, two grouff&®® have recently predicted .

that there exists a gapped branch of elementary excitations agere

well as a gapless ferromagnetic branch. Their prediction is

quite interesting because it implies the coexistence of the ~ Eo=—J(1+8)SsNJ

ferromagnetism and the antiferromagnetism in the ferrimag-

nets. This is the motivation for the present study. Employing + 2 > [V(1+ 6)%(S—s)?+166Sssir(ak)
a (quantum Monte Carlo technigue and an exact- 2%
diagonalization method, we here calculate energy eigenval- —(1+8)(S+9)] 2.7

ues of the elementary excitations with the total magnetiza-
tion {L,(Sf+s)=M=(S—s)N+1, which correspond to

_J
the ferromagnetic and the antiferromagnetic branches, re- wk+=§[\/(1+ 5)%(S—s)?+ 165Sssir’(ak)
spectively. The numerical results are compared not only with
the spin-wave calculation but also with a perturbation ap- T(1+6)(S-9)]. (2.9

proach from the decoupled-dimer limis€ 0). . .
Thus the spin-wave approach suggests the coexistence of the

ferromagnetism and the antiferromagnetism in the present

system. In the ferromagnetic branch,(), the spin wave
First, we briefly review the spin-wave-theory resiit® reduces the total magnetization and exhibits a quadratic dis-

which allows us to have a qualitative view of the low-energypersion relation in the small-momentum region:

structure. We start from a Né state withM =(S—s)N, s

namely, we define the bosonic operators for the spin devia- 0o = JoSq2ak)

tion in each sublattice as k=07 (1+6)(S—5s)’

Il. THE SPIN-WAVE APPROACH

(2.9

while in the antiferromagnetic branctwf), the spin wave
(2.2 enhances the total magnetization and have the gapped exci-
tation spectrum:

_ -_ 1 _ T
Sf—\/Z_Saj, S; —\/Z—Saj, S=S-aja,
s =v2sb, s =\2sb, si=-s+b/b;.

_ o _ _ . J8Sq2ak)?
In order to obtain the dispersion relations of the spin-wave o _o=J(1+6)(S—s)+ 1755 s
excitations, we handle the boson Hamiltonian up to quadratic ( )(S=9)
order.' We define the momentum representation of the\s long asS ands are different from each other, the model
bosonic operators as keeps the two aspects of low-lying excitations. We further
note that the qualitative character of the model remains un-
1 o changed over the whole region éfIt is the purpose in this
al=— 2 e—Zlajka)‘ . . . . . ) .
kTN = j o article to confirm this scenario employing efficient numerical
(2.2 methods.

(2.10
N

N
b‘r:i 2 2iajkpyt Ill. A PERTURBATION APPROACH
: N j=1 © I

N j Second, prior to the numerical approach, let us carry out a
where k=l/Na (I=—N/2+1,—N/2+2;-- ,N/2) with a  Perturbation calculation with the intention of elucidating the

that here the unit cell is of lengtha2 Carrying out a Bogo- limit, we can easily find the low-lying eigenstates. Figures
liubov transformation 1(a), 1(b), and 1c) represent, respectively, the ground state,

|¥), the ferromagnetic excitation at an arbitrary unit gell
a,=e M2 coshy, a,+ e sinhg, b| |\Ifji), and the antiferromagnetic excitation at an arbitrary
(2.3 unit cell j, |¥), of the Hamiltonian(1.1) with (S,s)
Bi= M2 sinhg, al+e” @2 costy, by, =(1,1/2) até6=0. When we turn on the exchange interaction
between the dimers, the localized excitations can hop to
with neighboring unit cells with an amplitude proportional o
We take account of this effect using the degenerate pertur-
(1+do)tarf (k—rpa]—(1—d)tanlak)=0, (2.4  bation. We introduce a representation of the matrix-product
type as

2+/Ss
. fV2= V)=gl*oh’®---0glah, 3.1
tan(26,) (1% 6)(5+5) |¥)=g; 1 In (3.9

WN—qnl | T
x 1+ 8)2 cod(ak) + (1— 5)Z si(ak), Vp=grehie:-sg eheagyehy, (62

(2.5 [¥)=gl’ehi®- @9/ "eh/ e -aglfehy, (3.3

we reach the diagonal Hamiltonian, where
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FIG. 1. Schematic representations of the ground stiethe
elementary excitation in the subspaceMf=N/2—1 (b), and the
elementary excitation in the subspace Mf=N/2+1 (c) of the
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FIG. 2. Schematic representations of the ground d@tethe
elementary excitation in the subspaceMf=N/2—1 (b), and the
elementary excitation in the subspace Mf=N/2+1 (c) of the

ferrimagnetic chain with spin 1 and spin 1/2 in the decoupled-dimeferrimagnetic chain with spin 3/2 and spin 1/2 in the decoupled-
limit. The arrow(the bullet symbgldenotes a spin 1/2 with its fixed ~dimer limit. The notation is the same as one in Fig. 1 except for the

(unfixed projection value. The solidbroken segment is a singlet

circle representing an operation of constructing a spin 3/2 by sym-

(triplet) pair. The circle represents an operation of constructing ametrizing the three spin 1/2s inside.

spin 1 by symmetrizing the two spin 1/2’s inside.

g,°=[10); v2[+)]. gi*=[v2|-); )],

9] "=[-v2|+); 0], (3.9
[0 D] e

with | =);, |0); being theS] eigenstates and ); , ||); thes]

eigenstates. Now the dispersion relations of the eigenstates

with M=N/2%1, w, , are calculated as

_ (WHTy 4 ,
Wy = W—EG—§J5[1—COSZHK)]+O(5 ),
(3.6
*-M—E —§J+ iJ(S[7—12 cog2ak)]
Ty o2 18
+0(8%), (3.7
where  |[Wp)=N"Y25{ e 2Rl and  [¥))

=N"25N e 2w 1) are the Fourier transforms o¥})
and |¥/"), respectively, andEg=(V|H|V)/(V|¥)=

convinced that the scenario of the low-energy structure
should be valid for an arbitrary Heisenberg ferrimagnet. Ac-
tually, recent numerical studi€s* on the present Hamil-
tonian reported that the low-temperature properties are es-
sentially the same regardless of the valueS ahds as long

as they differ from each other. Alcaraz and MalvéZfhund
that the model with exchange anisotropy is described in
terms of the Gaussian critical theory in both cases)s)
=(1,1/2) and §,s)=(3/2,1/2). In such circumstances, we
restrict our numerical investigation to the case &9
=(1,1/2).

IV. NUMERICAL PROCEDURE

In order to calculate the low-lying eigenvalues of the
model, we here use two numerical tools, which possess, re-
spectively, both advantageous and weak points of their own
and are complementary to each other. One is the exact-
diagonalization method employing the Lanczos algorithm.
Calculation of the energy levels reduces to the diagonaliza-
tion of the 8'x 6N matrix representing the Hamiltonian. In
constructing basic states, we use direct products of the
single-spin states indicated by the projection values. The

—J(1+ 8/9)N is the ground-state energy within the first or- present Hamiltonian commutes with the total magnetization

der of 8. Although the Heisenberg poinbE 1) is far from

M and therefore splits intol8+ 1 blocks labeled by (on

the decoupled-dimer limit, it is interesting enough that thethe assumption thay is even. Since we perform the calcu-
qualitative characters of both branches remain unchanged #fion under the periodic boundary condition, each eigen-
S increases: The ferromagnetic brandlj is gap|ess and value is further classified by its total wave numlber

proportional tok? in the smallk region, while the antiferro-
magnetic branchw, is gapped.
For an arbitrary combination ofys), the similar argu-

We treat the chains dfi=8,10,12, where we restrict the
calculation to the lowest energy level in each subspace.
Since our main interest is to reveal the nature of the elemen-

ment can be developed and qualitatively the same result {&Y excitations, we investigate the subspaceldl efN/2 and

obtained. For example, in the case &%) =(3/2,1/2), we
find the dispersion relations

w;=§J5[1—cos(2ak)]+0(52), (3.9

1
w, =2J+ §J5[7—6 cog2ak)]+0(5%), (3.9

M=N/2%1 for all the chain lengths we treat. We calculate
the subspaces &l <N/2—2 as well forN=28,10 in order to
further elucidate the ferromagnetic nature of the model. Due
to the two kinds of spins, the construction of the basic states
is somewhat complicated. The base dimension reaches ten
million in the case oN=12 andM =N/2—-1.

The chain length we can reach with the diagonalization
method is much smaller than one with a Monte Carlo tech-
nigue. However, having in mind the small correlation length

with Eg=—(5/4)J(1+ 8/4)N, considering the elementary of the present systeAt;” the diagonalization result is fruit-
excitations shown in Fig. 2. Thus we are more and mordul enough to obtain a general view of the low-energy struc-
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ture. Actually, the ground-state energy fidr=12 coincides 12.0 = .
with the N— oo extrapolated value within the first five digits. 3;2;21;:2;212‘:'; w X >D< ¢
We further note that even the ground-state energyNfer8 10.0 - 016/64“8/64@@5;) X Koo
is so close to the thermodynamic-limit value as to show the AI664048/64(5750) | a .
coincidence within the first three digits. This fact is quite T 80} gg80°288 © ]
helpful in estimating the dispersion relations in the long- > g & ® < o 0 ° N
chain limit, although the eigenvalues for different chain E 600 & 50 ¢ . b RS
lengths should be distinguished. ' 1o¢9 " z X ¥ ¥ TX X aad
The other approach is based on a quantum Monte Carlo 40L X @ f § X i
techniqué?®*~*which one of the authors has recently de- §Y+ co000000000
veloped. The idea is summarized as extracting the lower 2.0% 009 , ,

edge of the excitation spectrum from imaginary-time quan- 0 5 10 15

tum Monte Carlo data at a low enough temperature. The nt/B

imaginary-tim rrelation functi i nerall -

finzg az y-time correlation functio(q,7) is generally de FIG. 3. Logarithmic plots 05(q, 7) versus the imaginary time

at several choices @; taking a few values of momentumqfor the
— AT\ Za—HT\Z Heisenberg ferrimagnetic chain df=32 with (S,s)=(1,1/2) and
,7)=(e’""0ge” "0 ), 4.1 4
S(q,7)=(e™"0q o 4D 52170 (2aqm=16/64). + (2aq/7—48/64) with 0,=§; v
whereO,=N"'=].,0,e'%% is the Fourier transform of an (2ad/m=16/64), X (2ag/m=48/64) with Oj=sj; ¢ (2ad/m
arbitrary local operatoD; with a, being the length of the =16/64), O (2ag/w=48/64) with O;=Si+s;; A (2ad/w
unit cell, and(A)ETr[e*ﬁHA]/Tr[e*BH] denotes the ca- =16/_64),_O (2aq/7=48/64) withO;= Sf—sj. The numerical un-
nonical average at a given temperatlﬁé1= ksT. While certainty is all within the size of the symbols.
S(q,7) as a function ofr generally exhibits a complicated

multiexponential decay, it may efficiently be evaluated at aground state and the lowest state with an arbiting ob-
sufficiently low temperature &5 tained throughS(q, 7) calculated in the subspace Bf=0.

In Fig. 4 we plot the excitation energies as a functiom of
_ _ obtained by estimating the slope d In[§q,7n)]/dr in the
S(q,7)=§|: [(1ikol Sil1; kot )| 26 TEtkoT @™ Eatkol], largests region available. In the case @f;=s’, the multi-
(4.2) exponential behavior 08(q,7) is remarkable even in the
large-r region and thus prevents us from precisely estimating
where|l;k) (I1=1,2;--) andE (k) (E1(k)<Ex(k)<---) are  the energy eigenvalues. In all the other cases, we obtain use-
thelth eigenvector and eigenvalue of the Hamiltonian in they| data within the numerical precision. With the present
k-momentum space, arkj is the momentum at which the gata, we can at least conclude that spin-1/2's do not have
lowest-energy state in the subspace is located. Now it is regnych effect on the lowest-lying excitations, which suggests
sonable to approximaté&;(ko+d) —Ei(ko) by the slope that the elementary excitations of ferromagnetic nature may
—d In[S(q,7)J/d7 in the larger region satisfying qualitatively be described by the simple picture shown in
(1:ko| SE sk + )2 Fig. 1(b) even at the Heisenberg poiat=1. While OJ:S]-Z
Kol 5glM Ko™ +5s{ brings somewhat higher energies th@p=S/ and O;
|(1:ko| S5l 1;ko+ )|’ =S/—sf, we find no difference beyond the numerical accu-
(4.3 racy between the cases©f=S/ andO;=S{—s/. It will be

7[Ea(ko+d)—E1(Kg+g)]>In

for an arbitraryn.
In case the lower edge of the spectrum is separated from 20 ' ' ' T '

the upper bands or continuum by a finite gap, or in case of its
spectral weight$(1;ko| Og|1;ko+ q)|? being relatively large,
the inequality(4.3) is well justified even at smal’'s and a
logarithmic plot ofS(q,7) is expected to exhibit fine linear-
ity in a wide region ofr. Actually, for single-spin Heisen-
berg chains with an arbitrary spin quantum number or a cer-
tain bond alternation, it was showit*3 that the 7 i i
dependence ofS(q,7) is essentially approximated by a é i
single exponent at each momentwmat a sufficiently low é
0.

=
[
T

X & O O
L0 . 0. .00
[T
v v »
+
w
A —F—
®o1 F—a—

(E(q)-E)/T

temperature. 0.06°8 é
Here, due to the two kinds of spins in a chay, is not 0.0
uniquely defined. We show in Fig. 3 logarithmic plots of

S(a,7) as a func_tilon ofr setting several operators f@; . FIG. 4. Quantum Monte Carlo estimates of excitation energies
We have setgJ) ~ andn equal to 0.02 and 200, which are, a5 3 function ofy for the chain ofN=32. HereO, [J, ¢, and X

respectively, low and large enoufjito remove the finite- have, respectively, been obtained fr@fu, 7)’s with O;=S!, O,
temperature effect and the finiteeffect. In order to estimate -g¢? 0;=Si+s?, andO;=S{—/ at the subspace dil =0. The
eachS(q,7), we have carried out a few million Monte Carlo error bars are attached to the data obtained Wik s; and O;
steps spending several days on a supercomputer or a fews;+sf. The numerical uncertainty of the rest of the data is all
weeks on a fast workstation. Energy difference between theithin the size of the symbols. GS denotes the ground state.

2 04 0.6 0.8 1.0
2aq/m




13614 SHOJI YAMAMOTO, S. BREHMER, AND H.-J. MIKESKA 57

3.0 . . . . 1.0 . . .
X QMC(N=32) o 00 4 o a o a exact(N=8)
o exact{N=8) o O 00O <¢ & exact(N=10)
O exacttN=10) ® 08} OOO A exact(N=12)
O exaetN=ID] o I -+ X QMC(N=32)
N : ——  spinwave
~ R 0.6 - perturbation
3] Y
S S 04
= R R ¢ A P U=
02 g
0.0 = 0.0
0.0 0.2 0.0 0.2 0.4 0.6 0.8 1.0
2aq/m
FIG. 5. Quantum Monte Carlo and exact-diagonalization calcu- 3.0 ——— o= 8‘) ' '
lations of the lowest energies as a function of momentum in the 000 A exact(N=10) .0
subspaces d¥1 =N/25 1 for the Heisenberg ferrimagnetic chain of OOOA exact(N=12) O

N=32 with spin 1 and spin 1/2. The numerical uncertainty is all
within the size of the symbols. The results of the spin-wave theory
and the first-order perturbation from the decoupled-dimer limit are
also shown by solid and broken lines, respectively. GS denotes the
ground state.

(E(q)-E_)/J

shown in the next section that the thus-obtained lowest-lying
energy eigenvalues are in good agreement with the exact-
diagonalization result. This method is applicable to rather
long chains but is not successful in obtaining the higher-
lying eigenvalues except for the special fortunate cases. . . .
Thus the diagonalization technique is necessary and useful FIG. 6. The lowest energies as a function of momentum in the

. . . Subspaces oM =N/2—1 (a) and M=N/2+1 (b) for the bond-
for the antiferromagnetic branch witid >N/2 even though alternating Heisenberg ferrimagnetic chainsNof 32 with spin 1

it is inferior to the Monte Carlo method in treating long and spin 1/2. Her® (), 01 (~), O (+), andA (x) represent the

chains. exact-diagonalizatioiiquantum Monte Carloestimates atp=0.8,
6=0.6, 6=0.4, and5=0.2, respectively. The numerical uncer-
V. NUMERICAL RESULTS AND DISCUSSION tainty is all within the size of the symbols. The results of the spin-

We plot in Fig. 5 the quantum Monte Carlo and the exact-Wave theory and the first-order perturbation from the decoupled-

. R ; - - dimer limit are also shown by solid and broken lines, respectively,
d|agqnallzat|0n calculations of thg exgltatlon energies as @ nore the values of are 0.8, 0.6, 0.4, and 0.2 from top to bottom
f_unCt'on of momentuny for the Cha'n without bond altema_' except for the perturbation result for the antiferromagnetic branch
tion, where the results of the spin-wave theory and the firsty, e smallg region with the values o being 0.2, 0.4, 0.6, and
order perturbation from the decoupled-dimer limit are alsog g from top to bottom. GS denotes the ground state.
shown. The lower band is the lower edge of the excitation
spectrum and consists of the lowest-lying eigenvalues witthation approach underestimates that. We have made an at-
M=N/2—1. It exhibits a quadratic dispersion at snl as  tempt to obtain another estimate of using the exact-
was expected. The upper band consists of the lowest-lyingjagonalization result. Although the Lanczos algorithm
eigenvalues withM=N/2+1 and is separated from the resyits in much more precise raw data than the Monte Carlo
ground state by a finite gap. It is the scenario predicted byechnique, yet the attempt was not as successful as one using
the analytic approaches that we here observe. The quantuiRe Monte Carlo data because of the lack of data points.
Monte Carlo finding is in good agreement with the diagonal-However, we have confirmed that the diagonalization esti-
ization result. The diagonalization calculation indicates thainate ofy possibly coincides witl @M€ within the numerical
the chain-length dependence of the dispersion relation iéccuracy. We note that the spin-wave estimst¥ accords
quite weak even in the vicinity of the zone boundary and th&yjith one for the Heisenberg ferromagnet of spin 1/2 in the
zone center, which is consistent with the extremely smalnt of the unit-cell length being equal to unity. Furthermore
correlation lengtf" o _ the calculation of the lowest levels in the subspaceVif

In order to perform a quantitative comparison between the- Nj2— 2 results in energy eigenvalues below the two-
numerical findings and the analytic results, let us considefnagnon continuum. The obtained state should be a two-
the curvature of the dispersion, which is defined by magnon bound staf.All these facts again emphasize the

w0 =v(2ak)? (5.1) ferromqgnetic aspect of the present model. Hc_)wever, in con-
k ' ' trast with the ferromagnet, the true valu&VC is reduced
The quantum Monte Carlo method, the spin-wave calculafrom vSW due to the quantum effect. Thus the elementary
tion, and the perturbation approach, respectively, giveexcitations in the sector d¥l <N/2 can be regarded as spin
vMC13=0.371), vSMI=1/2, andv®®YJ=2/9. The spin- waves modified by quantum fluctuations.
wave theory overestimates the true value, while the pertur- For the antiferromagnetic branch, on the other hand, both
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spin-wave analysis and perturbation calculation are not aalternation. The ferromagnetic branch is gapless and shows a

successful as ones for the ferromagnetic branch. Considerirguadratic dispersion in the small-momentum region, while

that quantum effects are, in general, much more remarkablihe antiferromagnetic branch is separated from the ground

in antiferromagnets than in ferromagnets, the most naive picstate by a finite gag@\. A/J in the thermodynamic limit is

ture of the elementary excitations illustrated in Figs. 1 and 2stimated to be 1.759 (1 at the Heisenberg poinf=1.

may have to be significantly modified for the antiferromag-We made an attempt to understand the low-lying excitations

netic branch. through the first-order perturbation calculation from the
Finally in this section, we show in Fig. 6 the calculation decoupled-dimer limit. The ferromagnetic excitations are

for the chains with bond alternation. Although the quantummore or less dominated by spin 1's, whereas the mechanism

Monte Carlo calculation is generally in good agreement withof the antiferromagnetic excitations was less revealed. Quan-

the diagonalization result, the agreement seems to be somgsm Monte Carlo snapshdfsmay help us to inquire further

what poorer in the smal-region. This is convincing keep- into the antiferromagnetic fluctuations.

ing in mind that the decrease éfmay cause the freezing of We have further carried out the diagonalization calcula-

the spin configuration in Monte Carlo sampling and thereforetion in the subspace oM =N/2—2 and found the two-

a huge number of Monte Carlo steps are needed to refine thmagnon bound state below the continuum. This fact empha-

data accuracy in the smaflregion. It is needless to say that sizes the ferromagnetic aspect of the sectdvief N/2 in the

the perturbation calculation is more justified in the sndall- ferrimagnet. We expect that the Heisenberg ferrimagnet be-

region. As the model approaches the decoupled-dimer limithaves like a ferromagnet at low enough temperatures, while

both ferromagnetic and antiferromagnetic bands become flaits antiferromagnetic aspect may appeakgf=A.

ter and approach 0 and (3[R)respectively. The spin-wave

result is fairly good in the ferromagnetic branch but rela-

tively poor in the antiferromagnetic branch. This is convinc- ACKNOWLEDGMENTS
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