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Elementary excitations of Heisenberg ferrimagnetic spin chains

Shoji Yamamoto
Department of Physics, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan
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Institut für Theoretische Physik, Universita¨t Hannover, 30167 Hannover, Germany

~Received 30 October 1997!

We numerically investigate elementary excitations of the Heisenberg alternating-spin chains with two kinds
of spins, 1 and 1/2, antiferromagnetically coupled to each other. Employing a recently developed efficient
Monte Carlo technique as well as an exact-diagonalization method, we verify the spin-wave argument that the
model exhibits two distinct excitations from the ground state which are gapless and gapped. The gapless branch
shows a quadratic dispersion in the small-momentum region, which is of the ferromagnetic type. With the
intention of elucidating the physical mechanism of both excitations, we make a perturbation approach from the
decoupled-dimer limit. The gapless branch is directly related to spin 1’s, while the gapped branch originates
from cooperation of the two kinds of spins.
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I. INTRODUCTION

Extensive efforts have so far been devoted to verify
Haldane’s conjecture1 that the one-dimensional spin-S
Heisenberg antiferromagnet exhibits qualitatively differe
properties according to whetherS is integer or half odd in-
teger. The nontrivial energy gap immediately above
ground state was precisely estimated using a number of
merical tools not only in the spin-1 case2–4 but also in the
spin-2 case,5,6 while the valence-bond-solid model7 intro-
duced by Afflecket al.significantly contributed to the under
standing of the physical mechanism of the so-called Hald
massive phase. On the other hand, developing theO(3)
nonlinear-s-model quantum field theory,1 Affleck8 pointed
out that even integer-spin chains should be critical if a c
tain interaction is added to the pure Heisenberg Hamilton
Actually various numerical methods9–15 revealed that the
spin quantum number is no longer the criterion for the cr
cal behavior in a wider Hamiltonian space. Recently seve
authors16,17 even suggested the appearance of the Halda
gap phases in half-odd-integer-spin chains with a magn
field applied. Thus the low-temperature properties of o
dimensional quantum antiferromagnets with one kind of s
have more and more been elucidated.

In such circumstances, there has appeared brand-
attempts18–30to explore the quantum behavior of mixed-sp
chains with two kinds of spins. These studies are furt
classified according to their main interests. Seve
authors18–21have been devoting their efforts to finding qua
tum integrable Hamiltonians and clarifying their critical b
havior. Although the models considered are generally co
plicated, the generic description of a certain family
Hamiltonians is interesting in itself and even allows us
guess the essential consequences of mixed-spin chain
distinct attention is directed to mixed-spin chains with t
simplest interaction between the two kinds of spin
Alternating-spin Heisenberg antiferromagnets with a sing
ground state26,29 again present us the nontrivial ga
570163-1829/98/57~21!/13610~7!/$15.00
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problem.1,8 Recently Fukui and Kawakami26 have made a
nonlinear-s-model approach for a few models of this kin
and have discussed a generic criterion for the critical mix
spin chains. Their finding may stimulate many theoreticia
to numerically investigate a variety of mixed-spin Hamilt
nians and even lead to synthesis of novel mixed-spin-ch
materials. On the other hand, considering that all the mix
spin-chain compounds synthesized so far exhibit a fin
ground-state magnetization,31 we take a great interest in
alternating-spin Heisenberg antiferromagnets with ferrim
netic ground states. This is the subject we discuss in
present article.

Let us introduce a Hamiltonian of alternatively aligne
two kinds of spinsS and s which are antiferromagnetically
coupled to each other:

H5J(
j 51

N

~Sj•sj1dsj•Sj 11!, ~1.1!

whereSj
25S(S11), sj

25s(s11), andN is the number of
unit cells. The bond alternationd has been introduced for
discussion presented afterwards. We assumeS.s in the fol-
lowing without losing generality. Because of the nonco
pensating sublattice magnetizations, this system exhibits
ferrimagnetism instead of the antiferromagnetism. Applyi
the Lieb-Mattis theorem32 to the Hamiltonian~1.1!, we im-
mediately find (S2s) N-fold degenerate ground states. Th
Goldstone theorem33 further allows us to expect a gaples
excitation from the ferrimagnetic ground state. Therefore
here take little interest in the simple problem whether
system is gapped or gapless. Alcaraz and Malvezzi22 inves-
tigated the two cases of (S,s)5(1,1/2) and (S,s)
5(3/2,1/2) and actually showed that in both cases the ch
is described in terms of thec51 Gaussian conformal field
theory under the existence of exchange anisotropy. Sugg
ing that this should be the generic scenario for arbitrary f
rimagnetic Heisenberg chains, they further predicted the
pearance of quadratic dispersion relations at the Heisen
13 610 © 1998 The American Physical Society
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57 13 611ELEMENTARY EXCITATIONS OF HEISENBERG . . .
points, which means that the model possesses a ferrom
netic character. On the other hand, applying the spin-w
theory to the model, two groups24,25 have recently predicted
that there exists a gapped branch of elementary excitation
well as a gapless ferromagnetic branch. Their prediction
quite interesting because it implies the coexistence of
ferromagnetism and the antiferromagnetism in the ferrim
nets. This is the motivation for the present study. Employ
a quantum Monte Carlo technique and an exa
diagonalization method, we here calculate energy eigen
ues of the elementary excitations with the total magnet
tion ( j 51

N (Sj
z1sj

z)[M5(S2s)N71, which correspond to
the ferromagnetic and the antiferromagnetic branches,
spectively. The numerical results are compared not only w
the spin-wave calculation but also with a perturbation
proach from the decoupled-dimer limit (d50).

II. THE SPIN-WAVE APPROACH

First, we briefly review the spin-wave-theory result,24,25

which allows us to have a qualitative view of the low-ener
structure. We start from a Ne´el state withM5(S2s)N,
namely, we define the bosonic operators for the spin de
tion in each sublattice as

Sj
15A2Saj , Sj

25A2Saj
† , Sj

z5S2aj
†aj ,

~2.1!

sj
15A2sbj

† , sj
25A2sbj , sj

z52s1bj
†bj .

In order to obtain the dispersion relations of the spin-wa
excitations, we handle the boson Hamiltonian up to quadr
order. We define the momentum representation of
bosonic operators as

ak
†5

1

AN
(
j 51

N

e22ia jkaj
† ,

~2.2!

bk
†5

1

AN
(
j 51

N

e2ia jkbj
† ,

where k5p l /Na ( l 52N/211,2N/212,̄ ,N/2) with a
being the distance between two neighboring spins. We n
that here the unit cell is of length 2a. Carrying out a Bogo-
liubov transformation

ak5e2 ialk/2 coshuk ak1eialk/2 sinhuk bk
† ,

~2.3!

bk5eialk/2 sinhuk ak
†1e2 ialk/2 coshuk bk ,

with

~11d!tan@~k2lk!a#2~12d!tan~ak!50, ~2.4!

tan~2uk!5
2ASs

~11d!~S1s!

3A~11d!2 cos2~ak!1~12d!2 sin2~ak!,

~2.5!

we reach the diagonal Hamiltonian,
g-
e

as
is
e
-

g
t-
l-
-

e-
h
-

a-

e
ic
e

te

H5E01(
k

~vk
2ak

†ak1vk
1bk

†bk!, ~2.6!

where

E052J~11d!SsNJ

1
J

2 (
k

@A~11d!2~S2s!2116dSssin2~ak!

2~11d!~S1s!#, ~2.7!

vk
75

J

2
@A~11d!2~S2s!2116dSssin2~ak!

7~11d!~S2s!#. ~2.8!

Thus the spin-wave approach suggests the coexistence o
ferromagnetism and the antiferromagnetism in the pres
system. In the ferromagnetic branch (vk

2), the spin wave
reduces the total magnetization and exhibits a quadratic
persion relation in the small-momentum region:

vk→0
2 5

JdSs~2ak!2

~11d!~S2s!
, ~2.9!

while in the antiferromagnetic branch (vk
1), the spin wave

enhances the total magnetization and have the gapped
tation spectrum:

vk→0
1 5J~11d!~S2s!1

JdSs~2ak!2

~11d!~S2s!
. ~2.10!

As long asS ands are different from each other, the mod
keeps the two aspects of low-lying excitations. We furth
note that the qualitative character of the model remains
changed over the whole region ofd. It is the purpose in this
article to confirm this scenario employing efficient numeric
methods.

III. A PERTURBATION APPROACH

Second, prior to the numerical approach, let us carry o
perturbation calculation with the intention of elucidating t
nature of the elementary excitations. In the decoupled-dim
limit, we can easily find the low-lying eigenstates. Figur
1~a!, 1~b!, and 1~c! represent, respectively, the ground sta
uC&, the ferromagnetic excitation at an arbitrary unit cellj ,
uC j
↓&, and the antiferromagnetic excitation at an arbitra

unit cell j , uC j
1&, of the Hamiltonian ~1.1! with (S,s)

5(1,1/2) atd50. When we turn on the exchange interacti
between the dimers, the localized excitations can hop
neighboring unit cells with an amplitude proportional tod.
We take account of this effect using the degenerate per
bation. We introduce a representation of the matrix-prod
type as

uC&5g1
↑s

^ h1
s

^¯^ gN
↑s

^ hN
s , ~3.1!

uC j
↓&5g1

↑s
^ h1

s
^¯^ gj

↓s
^ hj

s
^¯^ gN

↑s
^ hN

s , ~3.2!

uC j
1&5g1

↑s
^ h1

s
^¯^ gj

↑1
^ hj

1
^¯^ gN

↑s
^ hN

s , ~3.3!

where
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gj
↑s5@ u0& j &u1& j ], gj

↓s5@&u2& j u0& j ],

gj
↑15@2&u1& j 0], ~3.4!

hj
s5F2u↑& j

u↓& j
G , hj

↑15F2u↑& j

0 G , ~3.5!

with u6& j , u0& j being theSj
z eigenstates andu↑& j , u↓& j thesj

z

eigenstates. Now the dispersion relations of the eigenst
with M5N/271, vk

7 , are calculated as

vk
25

^Ck
↓uHuCk

↓&

^Ck
↓uCk

↓&
2EG5

4

9
Jd@12cos~2ak!#1O~d2!,

~3.6!

vk
15

^Ck
1uHuCk

1&

^Ck
1uCk

1&
2EG5

3

2
J1

1

18
Jd@7212 cos~2ak!#

1O~d2!, ~3.7!

where uCk
↓&5N21/2( j 51

N e22ia jkuC j
↓& and uCk

1&
5N21/2( j 51

N e22ia jkuC j
1& are the Fourier transforms ofuC j

↓&
and uC j

1&, respectively, and EG5^CuHuC&/^CuC&5
2J(11d/9)N is the ground-state energy within the first o
der of d. Although the Heisenberg point (d51) is far from
the decoupled-dimer limit, it is interesting enough that t
qualitative characters of both branches remain unchange
d increases: The ferromagnetic branchvk

2 is gapless and
proportional tok2 in the small-k region, while the antiferro-
magnetic branchvk

1 is gapped.
For an arbitrary combination of (S,s), the similar argu-

ment can be developed and qualitatively the same resu
obtained. For example, in the case of (S,s)5(3/2,1/2), we
find the dispersion relations

vk
25

5

8
Jd@12cos~2ak!#1O~d2!, ~3.8!

vk
152J1

1

8
Jd@726 cos~2ak!#1O~d2!, ~3.9!

with EG52(5/4)J(11d/4)N, considering the elementar
excitations shown in Fig. 2. Thus we are more and m

FIG. 1. Schematic representations of the ground state~a!, the
elementary excitation in the subspace ofM5N/221 ~b!, and the
elementary excitation in the subspace ofM5N/211 ~c! of the
ferrimagnetic chain with spin 1 and spin 1/2 in the decoupled-dim
limit. The arrow~the bullet symbol! denotes a spin 1/2 with its fixed
~unfixed! projection value. The solid~broken! segment is a single
~triplet! pair. The circle represents an operation of constructin
spin 1 by symmetrizing the two spin 1/2’s inside.
tes

e
as

is

e

convinced that the scenario of the low-energy struct
should be valid for an arbitrary Heisenberg ferrimagnet. A
tually, recent numerical studies22,24 on the present Hamil-
tonian reported that the low-temperature properties are
sentially the same regardless of the values ofS ands as long
as they differ from each other. Alcaraz and Malvezzi22 found
that the model with exchange anisotropy is described
terms of the Gaussian critical theory in both cases of (S,s)
5(1,1/2) and (S,s)5(3/2,1/2). In such circumstances, w
restrict our numerical investigation to the case of (S,s)
5(1,1/2).

IV. NUMERICAL PROCEDURE

In order to calculate the low-lying eigenvalues of th
model, we here use two numerical tools, which possess
spectively, both advantageous and weak points of their o
and are complementary to each other. One is the ex
diagonalization method employing the Lanczos algorith
Calculation of the energy levels reduces to the diagonal
tion of the 6N36N matrix representing the Hamiltonian. I
constructing basic states, we use direct products of
single-spin states indicated by the projection values. T
present Hamiltonian commutes with the total magnetizat
M and therefore splits into 3N11 blocks labeled byM ~on
the assumption thatN is even!. Since we perform the calcu
lation under the periodic boundary condition, each eig
value is further classified by its total wave numberk.

We treat the chains ofN58,10,12, where we restrict th
calculation to the lowest energy level in each subspa
Since our main interest is to reveal the nature of the elem
tary excitations, we investigate the subspaces ofM5N/2 and
M5N/271 for all the chain lengths we treat. We calcula
the subspaces ofM<N/222 as well forN58,10 in order to
further elucidate the ferromagnetic nature of the model. D
to the two kinds of spins, the construction of the basic sta
is somewhat complicated. The base dimension reaches
million in the case ofN512 andM5N/221.

The chain length we can reach with the diagonalizat
method is much smaller than one with a Monte Carlo te
nique. However, having in mind the small correlation leng
of the present system,24,25 the diagonalization result is fruit
ful enough to obtain a general view of the low-energy stru

r

a

FIG. 2. Schematic representations of the ground state~a!, the
elementary excitation in the subspace ofM5N/221 ~b!, and the
elementary excitation in the subspace ofM5N/211 ~c! of the
ferrimagnetic chain with spin 3/2 and spin 1/2 in the decoupl
dimer limit. The notation is the same as one in Fig. 1 except for
circle representing an operation of constructing a spin 3/2 by s
metrizing the three spin 1/2’s inside.
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ture. Actually, the ground-state energy forN512 coincides
with theN→` extrapolated value within the first five digits
We further note that even the ground-state energy forN58
is so close to the thermodynamic-limit value as to show
coincidence within the first three digits. This fact is qu
helpful in estimating the dispersion relations in the lon
chain limit, although the eigenvalues for different cha
lengths should be distinguished.

The other approach is based on a quantum Monte C
technique12,34–36which one of the authors has recently d
veloped. The idea is summarized as extracting the lo
edge of the excitation spectrum from imaginary-time qu
tum Monte Carlo data at a low enough temperature. T
imaginary-time correlation functionS(q,t) is generally de-
fined as

S~q,t!5^eHtOq
ze2HtO2q

z &, ~4.1!

whereOq5N21( j 51
N Oje

iq ja0 is the Fourier transform of an
arbitrary local operatorOj with a0 being the length of the
unit cell, and ^A&[Tr@e2bHA#/Tr@e2bH# denotes the ca
nonical average at a given temperatureb215kBT. While
S(q,t) as a function oft generally exhibits a complicate
multiexponential decay, it may efficiently be evaluated a
sufficiently low temperature as34

S~q,t!5(
l

u^1;k0uSq
zu l ;k01q&u2e2t@El ~k01q!2E1~k0!#,

~4.2!

whereu l ;k& ( l 51,2,̄ ) andEl(k) (E1(k)<E2(k)<¯) are
the l th eigenvector and eigenvalue of the Hamiltonian in
k-momentum space, andk0 is the momentum at which th
lowest-energy state in the subspace is located. Now it is
sonable to approximateE1(k01q)2E1(k0) by the slope
2] ln@S(q,t)#/]t in the large-t region satisfying

t@E2~k01q!2E1~k01q!#@ ln
u^1;k0uSq

zun;k01q&u2

u^1;k0uSq
zu1;k01q&u2 ,

~4.3!

for an arbitraryn.
In case the lower edge of the spectrum is separated f

the upper bands or continuum by a finite gap, or in case o
spectral weightsu^1;k0uOq

zu1;k01q&u2 being relatively large,
the inequality~4.3! is well justified even at smallt’s and a
logarithmic plot ofS(q,t) is expected to exhibit fine linear
ity in a wide region oft. Actually, for single-spin Heisen
berg chains with an arbitrary spin quantum number or a c
tain bond alternation, it was shown12,34–36 that the t
dependence ofS(q,t) is essentially approximated by
single exponent at each momentumq at a sufficiently low
temperature.

Here, due to the two kinds of spins in a chain,Oj is not
uniquely defined. We show in Fig. 3 logarithmic plots
S(q,t) as a function oft setting several operators forOj .
We have set (bJ)21 andn equal to 0.02 and 200, which are
respectively, low and large enough36 to remove the finite-
temperature effect and the finite-n effect. In order to estimate
eachS(q,t), we have carried out a few million Monte Carl
steps spending several days on a supercomputer or a
weeks on a fast workstation. Energy difference between
e

-

lo

er
-
e

a

e

a-

m
ts

r-

ew
e

ground state and the lowest state with an arbitraryq is ob-
tained throughS(q,t) calculated in the subspace ofM50.

In Fig. 4 we plot the excitation energies as a function oq
obtained by estimating the slope2] ln@S(q,t)#/]t in the
largest-t region available. In the case ofOj5sj

z , the multi-
exponential behavior ofS(q,t) is remarkable even in the
large-t region and thus prevents us from precisely estimat
the energy eigenvalues. In all the other cases, we obtain
ful data within the numerical precision. With the prese
data, we can at least conclude that spin-1/2’s do not h
much effect on the lowest-lying excitations, which sugge
that the elementary excitations of ferromagnetic nature m
qualitatively be described by the simple picture shown
Fig. 1~b! even at the Heisenberg pointd51. While Oj5Sj

z

1sj
z brings somewhat higher energies thanOj5Sj

z and Oj

5Sj
z2sj

z , we find no difference beyond the numerical acc
racy between the cases ofOj5Sj

z andOj5Sj
z2sj

z . It will be

FIG. 3. Logarithmic plots ofS(q,t) versus the imaginary timet
at several choices ofOj taking a few values of momentumq for the
Heisenberg ferrimagnetic chain ofN532 with (S,s)5(1,1/2) and
d51: ( (2aq/p516/64), 1 (2aq/p548/64) with Oj5Sj

z ; ,

(2aq/p516/64), 3 (2aq/p548/64) with Oj5sj
z ; L (2aq/p

516/64), h (2aq/p548/64) with Oj5Sj
z1sj

z ; n (2aq/p
516/64),s (2aq/p548/64) withOj5Sj

z2sj
z . The numerical un-

certainty is all within the size of the symbols.

FIG. 4. Quantum Monte Carlo estimates of excitation energ
as a function ofq for the chain ofN532. Heres, h, L, and3

have, respectively, been obtained fromS(q,t)’s with Oj5Sj
z , Oj

5sj
z , Oj5Sj

z1sj
z , andOj5Sj

z2sj
z at the subspace ofM50. The

error bars are attached to the data obtained withOj5sj
z and Oj

5Sj
z1sj

z . The numerical uncertainty of the rest of the data is
within the size of the symbols. GS denotes the ground state.
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shown in the next section that the thus-obtained lowest-ly
energy eigenvalues are in good agreement with the ex
diagonalization result. This method is applicable to rat
long chains but is not successful in obtaining the high
lying eigenvalues except for the special fortunate case34

Thus the diagonalization technique is necessary and us
for the antiferromagnetic branch withM.N/2 even though
it is inferior to the Monte Carlo method in treating lon
chains.

V. NUMERICAL RESULTS AND DISCUSSION

We plot in Fig. 5 the quantum Monte Carlo and the exa
diagonalization calculations of the excitation energies a
function of momentumq for the chain without bond alterna
tion, where the results of the spin-wave theory and the fi
order perturbation from the decoupled-dimer limit are a
shown. The lower band is the lower edge of the excitat
spectrum and consists of the lowest-lying eigenvalues w
M5N/221. It exhibits a quadratic dispersion at smallq’s as
was expected. The upper band consists of the lowest-ly
eigenvalues withM5N/211 and is separated from th
ground state by a finite gap. It is the scenario predicted
the analytic approaches that we here observe. The quan
Monte Carlo finding is in good agreement with the diagon
ization result. The diagonalization calculation indicates t
the chain-length dependence of the dispersion relation
quite weak even in the vicinity of the zone boundary and
zone center, which is consistent with the extremely sm
correlation length.24,25

In order to perform a quantitative comparison between
numerical findings and the analytic results, let us consi
the curvature of the dispersion,v, which is defined by

vk
25v~2ak!2. ~5.1!

The quantum Monte Carlo method, the spin-wave calcu
tion, and the perturbation approach, respectively, g
vQMC/J50.37(1), vSW/J51/2, andvpert/J52/9. The spin-
wave theory overestimates the true value, while the per

FIG. 5. Quantum Monte Carlo and exact-diagonalization cal
lations of the lowest energies as a function of momentum in
subspaces ofM5N/271 for the Heisenberg ferrimagnetic chain
N532 with spin 1 and spin 1/2. The numerical uncertainty is
within the size of the symbols. The results of the spin-wave the
and the first-order perturbation from the decoupled-dimer limit
also shown by solid and broken lines, respectively. GS denotes
ground state.
g
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e
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e
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e

r-

bation approach underestimates that. We have made a
tempt to obtain another estimate ofv using the exact-
diagonalization result. Although the Lanczos algorith
results in much more precise raw data than the Monte C
technique, yet the attempt was not as successful as one u
the Monte Carlo data because of the lack of data poi
However, we have confirmed that the diagonalization e
mate ofv possibly coincides withvQMC within the numerical
accuracy. We note that the spin-wave estimatevSW accords
with one for the Heisenberg ferromagnet of spin 1/2 in t
unit of the unit-cell length being equal to unity. Furthermo
the calculation of the lowest levels in the subspace ofM
5N/222 results in energy eigenvalues below the tw
magnon continuum. The obtained state should be a t
magnon bound state.37 All these facts again emphasize th
ferromagnetic aspect of the present model. However, in c
trast with the ferromagnet, the true valuevQMC is reduced
from vSW due to the quantum effect. Thus the elementa
excitations in the sector ofM,N/2 can be regarded as sp
waves modified by quantum fluctuations.

For the antiferromagnetic branch, on the other hand, b

FIG. 6. The lowest energies as a function of momentum in
subspaces ofM5N/221 ~a! and M5N/211 ~b! for the bond-
alternating Heisenberg ferrimagnetic chains ofN532 with spin 1
and spin 1/2. Heres ~u!, h ~2!, L ~1!, andn ~3! represent the
exact-diagonalization~quantum Monte Carlo! estimates atd50.8,
d50.6, d50.4, andd50.2, respectively. The numerical unce
tainty is all within the size of the symbols. The results of the sp
wave theory and the first-order perturbation from the decoup
dimer limit are also shown by solid and broken lines, respective
where the values ofd are 0.8, 0.6, 0.4, and 0.2 from top to botto
except for the perturbation result for the antiferromagnetic bra
in the small-q region with the values ofd being 0.2, 0.4, 0.6, and
0.8 from top to bottom. GS denotes the ground state.
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spin-wave analysis and perturbation calculation are no
successful as ones for the ferromagnetic branch. Conside
that quantum effects are, in general, much more remark
in antiferromagnets than in ferromagnets, the most naive
ture of the elementary excitations illustrated in Figs. 1 an
may have to be significantly modified for the antiferroma
netic branch.

Finally in this section, we show in Fig. 6 the calculatio
for the chains with bond alternation. Although the quantu
Monte Carlo calculation is generally in good agreement w
the diagonalization result, the agreement seems to be so
what poorer in the small-d region. This is convincing keep
ing in mind that the decrease ofd may cause the freezing o
the spin configuration in Monte Carlo sampling and theref
a huge number of Monte Carlo steps are needed to refine
data accuracy in the small-d region. It is needless to say tha
the perturbation calculation is more justified in the smald
region. As the model approaches the decoupled-dimer li
both ferromagnetic and antiferromagnetic bands become
ter and approach 0 and (3/2)J, respectively. The spin-wav
result is fairly good in the ferromagnetic branch but re
tively poor in the antiferromagnetic branch. This is convin
ing considering that the spin wave correctly describes
low-lying excitations of the ferromagnets, while it is valid
most qualitatively for the antiferromagnets.

VI. SUMMARY

We have investigated the low-energy structure of the
rimagnetic alternating-spin chains with spin 1 and spin 1
Motivated by the spin-wave analysis of the model, we ha
mainly calculated the eigenvalues with an arbitrary mom
tum of the one-magnon states, namely, the lowest-lying
genvalues in the subspaces ofM5N/271. The chain-length
dependence of the dispersion relations is extremely we
which is consistent with the considerably small correlat
length of the system,j,2a.24,25The qualitative character o
the model remains unchanged under the existence of b
v.
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alternation. The ferromagnetic branch is gapless and sho
quadratic dispersion in the small-momentum region, wh
the antiferromagnetic branch is separated from the gro
state by a finite gapD. D/J in the thermodynamic limit is
estimated to be 1.759 14~1! at the Heisenberg pointd51.
We made an attempt to understand the low-lying excitati
through the first-order perturbation calculation from t
decoupled-dimer limit. The ferromagnetic excitations a
more or less dominated by spin 1’s, whereas the mechan
of the antiferromagnetic excitations was less revealed. Qu
tum Monte Carlo snapshots38 may help us to inquire furthe
into the antiferromagnetic fluctuations.

We have further carried out the diagonalization calcu
tion in the subspace ofM5N/222 and found the two-
magnon bound state below the continuum. This fact emp
sizes the ferromagnetic aspect of the sector ofM,N/2 in the
ferrimagnet. We expect that the Heisenberg ferrimagnet
haves like a ferromagnet at low enough temperatures, w
its antiferromagnetic aspect may appear atkBT*D.
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