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The well-known one-dimensional Frenkel-Kontorova model is modified and generalized to describe topo-
logical point defects and dislocations in anisotropic crystals of higher dimensions. The main point of our
modification is that a substrate periodic potential in the Frenkel-Kontorova model is not considered as a given
external spatially periodic force, but it is constructed in a self-consistent manner, such that any disturbance in
one of the chains causes a violation of spatial periodicity in the adjacent chains of the crystal. Static and
moving soliton(kink and antikink solutions are found numerically in two- and three-dimensional anisotropic
crystals. Bound states of kink-antikink and kink-kiténtikink-antikink pairs and their dynamical properties
are studied. Arrays of soliton states are shown to form dislocations of the edge type and their deformation
energy distribution on the crystal lattice is calculated. In finding the soliton profiles and energy distributions on
the lattice, we apply the minimization scheme that has proven to be an effective numerical method for seeking
solitary wave solutions in complex systems. The collision dynamics of the point defects are also investigated.
[S0163-182698)02221-9

I. INTRODUCTION strate potential should be considered properly. In the present
paper, we study an anisotropic crystal consisting of coupled
The well-known one-dimensional (1D) Frenkel- chains that are considered as identical objects, so that any
Kontorova (FK) model 2 originally introduced for a de- influence of one of the chains on its surrounding chains is
scription of dislocation dynamics in 3D crysthfshas been taken into account. As in the 2D Pouget lattice mddéP
used extensively for modeling nonlinear dynamical pro-only interatomic forces are included in our model. As a con-
cesses in a variety of condensed mé&tfeand biologicdl ~ sequence, on-site potentials are not considered at all. Instead,
systems. As for possible extensions of this model to highewe need to consider long-range interactions between atoms
dimensions, so far little work has been done. In this respecin adjacent chains. The main idea is that because of the shelf
the investigations on the 2D scalat* and vectol***gener-  in the soft slope of a typicale.g., Lennard-Jones or Mopse
alizations of the 1D FK model, including its different quasi- interatomic potential, it is possible to construct numerically
one-dimensional versiort8; " which appear to be also com- an appropriate interchairisubstratg potential in a self-
plicated systems, should be mentioned. Among these studiespnsistent way by summing only fanite number of long-
the Lomdahl-Srolovitz 2D generalizatitin>seems to be the range interactions. In order to simplify this numerical
most relative model for a description of dislocation dynam-scheme, we restrict ourselves in this paper to an anisotropic
ics. crystalline material. In this case, it is sufficient to consider
In the theory of dislocation$® the 1D FK model de- only nearest-neighbor harmonic forces along the anisotropy
scribes the simplest physical situation when a part of a crysaxis and for the construction of a substrate potential we ac-
talline material is displaced with respect to another one alongomplish summation only over the interatomic interactions
a sliding plane. Both these parts, which are separated by tha adjacent chains of the lattice. For any isotropic crystal,
sliding plane, are modeled by chains. The lower chain ighis procedure is more complicated because the summation
considered as a perfect 1D periodic substrate lattice whereabould be performed also in perpendicular directions.
the upper one is assumed to contain a defect, a localized The paper is organized as follows. In the following sec-
rarefaction (kink), or a localized compressiofantikink). tion, we present a model in which only interatomic forces are
However, in realistic crystals, any disturbance in the uppeinvolved. The procedure on how to numerically obtain soli-
chain (in which the formation of defects is assumetias ton solutions is described in Sec. Ill. These solutions are
obviously an influence on the lower lattice, so that the peri-used in Sec. IV to form the initial data for simulations of the
odicity of the substrate potential, in general, will be broken.equations of motion. The numerical results on the soliton
Both the chains should be considered as equivalent objectb/namics are also presented in this section. Finally, Sec. V
and the influence of any local stress deformation on the subsontains a summary and outlook.

0163-1829/98/521)/135649)/$15.00 57 13564 © 1998 The American Physical Society



57 TOPOLOGICAL SOLITONS AND DISLOCATIONSN . .. 13 565

(m—1,n+1,p+1)

(m—1,n—1p+I1)

(m+Ln+1p-1)

(m+1n—1p-1)

FIG. 1. Schematic representation of the 3D anisotropic crystal
structure. Only intrachain bonds are represen{stiown by
springs.

FIG. 3. Positions of the first, second, third, fourth, and fifth
neighbors in adjacent chains interacting through the interatomic po-
tential Vo(r).

We consider a 3D anisotropic crystal consisting of inter-
acting chains of coupled atonfier iong as shown in Fig. 1. {jon, namely, along then axis. The intrachair(i.e., inter-
Each of these chains is directed along theaxis and the  atomic in each chajnforces are considered only between

Il. A MODEL

distances between them in thgerpendiculdrm andp di-  pearest-neighbor atoms whereas the interchain interactions
rections are given by the dimensionless parameteasdb,  include all the forces corresponding to the potentig(r)
respectively,(see Fig. 1 The sites of this crystal structure shown in Fig. 3. But only adjacent chains are considered. In
are defined by the following 3D lattice: this way, we are able to get a self-consistent substrate poten-

5 ) tial for each atom in the crystal. When the atoms in adjacent
I'={(mn,p)eZ°| all mn,p are either even or odd  chains are fixed, this potential will be periodic as shown in
) Fig. 2(c). The interchain potential is constructed by summing

For simplicity of numerical calculations as well as for visual fts interactions with all of the atoms in the nearest-neighbor
plicity .chains(two chains in the 2D case or four chains in the 3D

purposes, the corresponding 2D version, shown in Fig. 2, i ase, see Figs. 1 and. ZTherefore, onlyinteratomic (both

also presented. We consider the simplesalaj case when intrachain and interchajrinteractions contribute to the total

the lattice atoms are constrained to move only in one d'recbotential energy of the crystal. Next, we assume that the

adjacent intrachain interactions are coupled by harmonic

& W@V @-WW- @ W@ forces with some stiffness constdfit whereas the interchain
(a) interactions are given by the pair potenti}(r) with a
W@ WW- @ W@ W@ minimum atr =r, (see Fig. 3. According to geometry given
QI by Fig. 1, the equilibrium distance, between the nearest
I . : . . atoms from adjacent chains is
ro=vh?+1/4, h=\aZ+b? 2
¢ L ¢ ® ®
(b) if the dimensionless spacing constant alongrtexis equals
- WW-@-WWW-@-WWWW-@-WWA-@ unity. However, the presence of long-range interactions
through the potential/(r) will reduce the “bare” equilib-
® ® ® ® ® rium distance between the nearest atoms alongntteis
(equal to 1 by some values because, as shown in Fig. 3, the
0.06 second, third, and next neighbors are found on the soft slope

of the potentiaVy(r). The resulting force of these neighbors
displaces the first neighbors to the hard slope as shown sche-
0.03 (c) matically in Fig. 3. Obviously, this magnitude depends on
the form of the potential/o(r) and in each case it should be
determined directly. We normalize the dimensionless poten-
-4 -2 0 2 4 tial Vo(r) according to the conditions/g(rg)=a and
n Vo()=0 where the dimensionless parametemeasures
FIG. 2. (8 Schematic representation of the 2D anisotropic the ratio of the stiffness constant of the interaction between
crystal structure with only intrachain bonds showln). Single chain  the nearest-neighbor atoms in adjacent chains to the stiffness
with its two adjacent chains, the atoms of which are fixellOn-  constant of the interaction between the nearest-neighbor at-
site potential formed by the adjacent chains with fixed atoms. ~ oms in each chain. The constantan also be referred to as

0
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the discreetness parametiThen the reduction constadt The dimensionless Euler-Lagrange equations of motion that
can be found as a solution of the following minimization correspond to the Hamiltonian given by E¢S).—(8) are ob-
problem: tained in the usual way.

o

8%12+ 2(D—1)J_ > Voldj(8)]—min, 3) lll. SOLITON SOLUTIONS AND POINT DEFECTS
=—0 S

In order to study the equations of motion in a finite do-

whereD (equal to 2 or Bdenotes the spatial dimension and majn of the latticel”, we need to define the boundary condi-
all the distances between atoms in adjacent chdjissde-  tions. We choose a 3D rectanglé={l<m<M, 1<n

pend oné according to <N, 1<p=<P}CT and define its interiorl ={2<m=<M
i 5 — —1,np+1<n<N-ng, 2<p<P-1} whereng is some ap-
di=(j+1/2%(1-6)*+h% (4)  propriate number that is chosen from the computational point

of view; in order to construct the substrate potential, sum-
ming the interactions between a given atom and all of the
atoms in the adjacent chains, it is sufficient to accomplish the
a§ummation over a finite numbag, of neighbors that depends
on the form of the potentialy(r). Then the boundary of the
rectangleA is dA = A\l. In other words, besides the bound-
ary chains of the rectangl& that cross therf,p)th plane,
H= 2 [%Uﬁmp+ KI2(Umnp+ Vinnp ] (5) the ng boundary planes at the left boundary of the rectangle
(mn,p)el dN_={m, 1=n<ng, p} and then, boundary planes at the
with K being the intrachain stiffness constant artle lattice ~ fight boundary INg={m, N-no+1<n=<N, p} are in-
spacing constant. Herey,,, is the dimensionless displace- cluded into the boundamA. If a soliton (kink or antikink) is
ment of the atom located at thenip)th lattice site(see Fig. found at one of the chains, we call this chain &rchain.
1) along then axis from the new equilibrium position in the Similarly, we define its left and right boundaries & and
renormalized lattice and therefore measured in units of'Sr, respectively.
1— 5. The first term describes the kinetic energy of atoms The kink (antikink) profiles were found by minimization
while the second and third terms give the total deformatiorRnd then were chosen as initial conditions for numerical
energy of the crystal that consists of the intrachain and intersimulations of the equations of motion that correspond to the
chain interaction energies_ Both the intracha[mmclp) and Hamlltonlan(S)—(S). Afterwards, a f|na|- p_I’OfIIE of the -Iatt|Ce
interchain /) potential energy densities are taken in afi€ld Umq(7) under simulations at sufficiently large times
spatially symmetrized form and they are given by the follow-allows us to conclude whether or not the initial condition

Here, in the cas® =3 the parameteh is defined by the
second of Eqs(2) and in the planar caseD(=2) it equals
the distance between adjacent chansee Fig. 2a)].

Summarizing all these arguments, we can write the tot
energy of such a 3D crystal in the form

ing renormalized expressions: found by the minimization procedure is a correct and stable
solution of the equations of motion. The criterion for the
Umnp=Ymnp( 6) method accuracy can be the comparison of a final two-

component kinkKantikink) profile with the corresponding so-
= 7 [(Umnp=Umn-2p)°+ (Unni2p—Unnp?] (6)  lution of the minimization procedure when the kink has
passed a sufficiently large number of chain sites. Note that
and we can use for this purpose the cyclic boundary conditions
for the lattice fielduy,, (7). The main point in such a nu-
merical approach is an appropriate choice of a discrete func-
Vm“P:Vm“P(‘S):j:z_w EV Vo(pyjmnp) ~4Vo(d)) |, tional (i.e., a function of many variablegor minimization
(7y and, as a rule, such a function can be constructed from a
corresponding Lagrangian of the system.

[

wheredis a solution of the minimization proble(ﬁ) and the Wntlng the (dimensionlesﬁ Lagrangian L that corre-

distances,jmnp's are defined by sponds to the Hamiltoniats)—(8) and replacing there the
time derivativeduy,,,/d7 by appropriate spatial difference

Pyjmnp= Prjmnp( 0) of the lattice fielduy,,(7), we can get a function for mini-

— — ' — 72 mization. Such an approximation can be applied to those
VLG +2/2)(1=8)+ Ums1e25+ 121~ Unnnpl +, lattice functions thati) are sufficiently smooth from site to
(8)  site and(ii) have a stationary profile moving with velocity

where the subscript runs over the four values that corre- To do this, we use the approximation

spond to the different signs ah+1 and p*x1, so that
v=(+,+),(+,-),(—,+),(—,—), summing all the inter- d
actions with the four adjacent chains. g7 Umnp= —su'(M,N—=s7,p)=—S(Unn+1p~ Umn-1p)-

For a dimensionless description it is convenient to intro- (10)
duce the dimensionless time and to rescale the spatial vari-
ables as follows:

Then the minimization problem can be formulated as fol-
7=yK/mt. (9 lows:



57 TOPOLOGICAL SOLITONS AND DISLOCATIONSN . ..

—L= [(1_52)Umnp+vmnp]_’
(mn,p)eA

min ,
{Umngd(m,n,p) e A\IN}

11)

where the kink and antikink conditions at the boundaly
= (7N|_U (9NR .

Unnp=0 if (m,n,p)e IN\dSz and
Unnp=1 if (m,n,p)edSg (kink),
Unnp=1 if (m,n,p)edS. and
Umnp=0 if (m,n,p)e IN\S, (antikink), (12
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are supposed to be fixed under the minimization process. In
order to be certain that the kink solution corresponds to a FIG. 4. Single kink and antikink defect&a) kink and (b) anti-

minimum (or maximum of the LagrangiarL given by Eq.
(11), we accomplish the substitution

2
d — 2y _
P Umnp=S"U"(m,n—s7,p)

:sz(um,n+2,p_2umnp+um,n—2,p) (13

in the equations of motion and find that the resulting differ-
ence equations are nothing more than the extremum cond

tions JL/dUp,,=0 for all (m,n,p) e A.

Finally, the dimensionless kink enerdy , as a function
of the dimensionless velocity, as well as its distribution
(i.e., the energy densityE,,, on the lattice domairk were
calculated according t@compare with the Lagrangian)

Ex=Ex(s)= 2

Emnpv Emnp:(1+SZ)Umnp+anp-
(m,n,p)e A

(14
Note that at the boundary chains, the tefdyg,, andVpn,

kink u,,, profiles and total energy distributidfy,,, on the 2D lattice
of (c) kink and(d) antikink.

function with the corresponding values 0 or 1 on the bound-
ariesdS, anddSg. The total energy distribution on the 2D
lattice E,, is plotted for the kink in Fig. &) and for the
antikink in Fig. 4d). As follows from these figures, the en-
ergy of the kink and the antikink is the same and it is dis-
ributed not only in the longitudinah direction, but also
along the transverse axis.

The accuracy of thémoving kink profiles, found by the
minimization procedure and taken to be initial conditions for
solving the equations of motion, was examined from their
comparison with the final profiles obtained at those times
when the kinks have passed a long lengthousands of
chain sites A perfect coincidence of the initial and final
profiles was observed. Note that when investigating only
wide kinks, we may omit interesting effects due to
discreetnes®?! In order to treat highly discrete solutions,
we should use more complicated numerical techniques such

in Egs. (11) and (14) should be redefined properly, taking as the pseudospectral method suggested by Eilbeck and
into account that the interchain interactions exist only fromflesctf? and further developed by Duncat al %

the internal side of the rectangle

The main part of numerical calculations has been per-

formed for the 2D anisotropic lattice shown in FigaPwith

IV. DEFECT DYNAMICS AND DISLOCATIONS

a=0.1. The distances between the atoms in adjacent chains The kink dynamics within one chain does not introduce

are given by{compare with Eq(8)]

Prvimn= \/[(J + %)(1_ o)+ Un+in+2j+1~ umn]2+ a2,
(15
where the subscript runs over the two signaturds-) and
(—). The Morse potentiafplotted in Fig. 3

o
Vo(r)= I {zexd —2B(r—ro)l-exd —B(r—ro)l}
(16)
with positive dimensionless constantsand 8 was used for
the construction of the substrate potential.

The solutions of the minimization problefil) that de-
termine the profilesi.e., the displacement field,,,) on the

new effects compared to the 1D theory and the collision
dynamics of defects of the same or opposite polarity should
have the similar behavior as for the 1D FK model. However,
in our case, since kink defectef the same or opposite po-
larity) can be found in adjacent chains, the topological situ-
ation changes essentially. Thus, defects of opposite polarity
being situated in adjacent chains cannot annihilate as in the
1D theory; they form a bound state. Bound states can also be
formed by defects of the same polarity. Their energy is dis-
tributed along both then andn directions as illustrated by
Fig. 5. Moreover, kinks of the same or opposite polarity can
also form a bound state even in the case when they are lo-
cated not in adjacent chains, but through ¢as shown in
Fig. 6) or more chains.

By minimization, we have calculated the binding energy

2D lattice for a single kink and a single antikink are pre-of kinks and antikinks(kink-kink, Ey; antikink-antikink,
sented in Figs. @) and 4b), respectively. As usual, the soli- Eaa; kink-antikink, Ex) and its dependence on the relative

ton solution is referred to as a kinfantikink) if its profile
along then axis is a monotonically increasinglecreasing

distance between kinks and antikinRs=|nf,, ; —n|, being
located in the adjacemhth and (n+1)th chains. The posi-
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FIG. 5. Bound states of defects of the same and opposite polar-

ity located in adjacent chainga) kink-kink and (b) kink-antikink
U, profiles, and energy distributiok,,, on the 2D lattice of
(c) kink-kink and (d) kink-antikink bound states.

tion of the soliton(kink or antikink) center in themth chain
ng, which, in general, depends on time was numerically
calculated according to

n—En

To calculate each of the binding energiBgyx, Eaa, OF
Exa, We solve the minimization probleifi1) with the con-
ditions that fix the boundary particl¢s both themth and
(m-+1)th chaing in the corresponding statéfor a kink or

um n— 2 (17)

umN Umi

P. L. CHRISTIANSEN, A. V. SAVIN, AND A. V. ZOLOTARYUK 57
1
0.12}
S
Lu
M 0.)
X
s
&
0.08 . . .
0 10 20 30 40
R

FIG. 7. Total potential energy of the bound states against dis-
tance between two kink&urve 1, solid, two antikinks(curve 2,
dashegl and kink and antikinKcurve 3, solid.

(m+1)th chains, one can get any given distaftand the
corresponding interaction energy. The distance between the
chosen particles and the fixed values of their displacements
uniquely determine the distané® The relative motion of
kinks and antikinks caused by this interaction will be studied
below.

As shown in Fig. 7, the behavior of the kink-kinfor
antikink-antikink and kink-antikink interaction energies
Exk(R) and Exa(R) essentially differ each from other.

an antikink. Besides these bounda_ry conditions_,, we also fixThus, the kink-antikink interaction enerdgA(R) has a be-
any two nonzero values from the interval of displacementsavior similar to the 1D case. It is interesting that the inter-
0<u<1 (choosing these values close to 1 is more conveaction energy of solitons of the same polaryy(R) or

nient for the proceduje one for some particle in thenth
chain and the other for some particle in the< 1)th chain.
Having solved the minimization probleiil), according to
Eq. (17), we find a certain value for the distané® that

Eaa(R), as illustrated in Fig. 7 by the curves 1 and 2, sig-
nificantly exceeds the kink-antikink interaction eneigy,

for small R, while for largeR a repulsion appears in the
interaction of solitons of opposite polarity. Note also that

appears to be fixed because both the particle displacemendfce the interatomic interaction potentid) contains an-
are fixed during the minimization procedure. In this way, harmonicity, so that the symmetry between its compression

fitting an appropriate pair of the particles in threh and the
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FIG. 6.(a,0 Bound state of two kinks an(,d) bound state of
kink and antikink situated through one chai@ kink-kink and
(b) kink-antikink u,,, profiles and energy distributiorE,,, of
(c) kink-kink and (d) kink-antikink bound states.

and repulsion parts is broken, tRedependences &k and
Eaa differ slightly each from other.

We have also constructed bound states of several kinks of
either the same polaritysee Fig. 8a,0] or with the stagger
formation[see Fig. &,d)]. As shown in Fig. &), the total
deformation energy of a linear array of kinks of the same
polarity is concentrated only at the edges of this array; inside
it the deformation energy is dissolved around. Contrary,
in the case of the stagger arrangemggge Fig. &)], the
effect of spreading out the deformation inside the array is
absent and the energy is uniformly distributed along the axis
of this array as illustrated in Fig(&. Therefore, in the latter
case, the solitary plane-wave profile is stalslee Fig. &)],
forming a linear defectdislocatior). Note that in the former
case of arrays of kinks or antikinks, the degree of the energy
dissolution increases with the growth of the array length and
this behavior is clearly demonstrated in Fig. 9. The edge
dislocation can be constituted from kinks of the same polar-
ity and such a state is presented in Fig. 10 where the Burgers
vectorb is oriented along tha axis. The kink profile has the
standard form only in the vicinity of the edge and it com-
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m 40 100 m 40 100

FIG. 8. Linear defects constituted of single kink and antikink
defects: theu,,, profiles of (a) kink formation and(b) staggered
kink-antikink formation and deformation energy distributigg,, of
(c) kink and (d) staggered kink-antikink arrangements.

pletely dissolves into the linear slope at the boundary of the
lattice domain[see the boundary plot at the 100th chain in
Fig. 10a)]. As shown in Fig. 1(b), the deformation energy

is mainly concentrated at the edge.
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FIG. 9. Energy distributiorE,,, for (a) single kink, (b) five
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coupled kinks, andc) ten coupled kinks on the 2D lattice.

FIG. 10. 2D edge dislocatiorfa) displacement profilel,,, and
(b) energy distributiorg,,.

The methods of calculation of the kink energy, kink size,
and Peierls-Nabarro relief used previodéfP for 1D models
can be extended to the present 2D and 3D cases in a straight-
forward way. Thus, in thenth chain(for the 2D casg the
kink width (diametey is given by

Dk =Dk(s)

=2 \/En: (n— nfn)z(umn_ um,nfz)/(umN_ uml)r

(18

where the kink centenf, is given by Eq.(17). In order to
examine the effects of our self-consistent approach, we also
calculated the parameters for a kink in o8echain when
atoms in its adjacent chains were fixge., the standard 1D

FK chain. For the 2D lattice the results of numerical calcu-
lations of the kink parameters in the two casa®ms in the

two adjacent chains are mobile and immop#ee presented

in Figs. 11 and 12. Thus, Fig. 11 describes the dependence of
the kink width D¢ and the PN barrier heighAE on the
relative magnitude of the intrachain and interchain stiffness
constants given by the parameter We observe that the
width of the kink profile in the 2D case significantly exceeds
that in the 1D case, when atoms in the adjacent chains are
fixed as illustrated by Fig. 14&). In spite of this, the PN
barrier ishigher in the former cas¢compare the curves 3
and 4 in Fig. 11a)]. This unexpected result is due to the
self-consistency of the interchain interaction. Due to this in-
teraction the kink energy is dissolved, so that its propagation
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FIG. 13. Kink-kink and kink-antikink collisions with initially
FIG. 11. (@ Kink width D¢ and(b) decimal logarithm of the given different velocities(a) reflection of kinks at small velocities
PN barrier height\E againsta~!. The case when atoms in adja- (s=0.1), (b) kink-kink coupling at larger velocities s&0.4),
cent chains are allowed to move is represented by solid curves () passage of kinks through each other=(.5), and(d) kink-
and 3 and the dashed curves 2 and 4 describe the situation whemtikink collision (s=0.1). The solid curves represent the trajecto-
atoms in adjacent chains are fixed. ries of one kink located in thenth chain and the dashed lines the
trajectories of the other kink or the antikink located in tihe# 1)th
becomes more difficult, despite it is of larger radius. Thechain.
energy and width of a kink against its velocsyare plotted  anq in Fig. 12d) for the kink-antikink interaction. Due to the
in Fig. 12. Here we have found a behavior similar to the 1Dyenisive part in the kink-kinkor antikink-antikink interac-

FK model. o , n tion shown in Fig. 7 by the curve (or 2), the reflection of
The results presented in Fig. 7 predict the coII|S|on_ Pro-inks each from other occufsee Fig. 183)]. However, if
The kinks collide with higher incoming velocities, the activa-
tion barrier in the energi«x (see the curves 1 and 2 in Fig.
7) can be overcome, resulting in a coupled state as shown in
Fig. 13b). The further increase of the incoming velocities
leads to passage of the kinks through each other. As for the
kink-antikink collision, due to the interaction given by the

curve 3in Fig. 7, a kink and an antikink always pass through

are presented in Fig. 18b,9 for the kink-kink interaction

0.3

« 0.2r each other as shown in Fig. (b3.
N The results of numerical studies for the 3D lattice are
presented in Fig. 14. We have found the kink solution&jn
01 a singleS chain,(b) severalS chains staggering to form a 2D

stripe, and(c) several stripes 08 chains staggering in a 3D
rectangle. The deformation energy per or& chain

0 0.25 0.5 0.75 1 Emp=2nEmnp is plotted in Fig. 14. These defects can be
' ' ' classified as follows: @oint (elementary defect, andinear

and plane defects constituted from the elementary defects.
Since the 3D lattice is a realistic case for dislocation patterns,
we may describe the array of solitons represented by Fig.
14(c) as aredgedislocation. The closed rectangle dislocation
line passes along the maximum of the deformation energy
and the Burgers vectdr is oriented along the axis.

V. SUMMARY AND OUTLOOK

There is still a little progress in realistic generalizations of
§ the standard 1D Frenkel-Kontorou&K) model that was
FIG. 12. (8 Kink energyEy and (b) kink width Dy against ~ Originally suggested to describe dislocations in 3D crystals.
kink velocity s for two cases: atoms in adjacent chains are allowedAmong the worR™*3in this direction, the Lomdahl-Srolovitz
to move (solid curves 1 and)3and atoms in adjacent chains are model seems to be the most realistic. In the present paper, we
fixed (dashed curves 2 and.4 attempted to attack this problem by constructing a substrate
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25 ”0 ’o::g:::::§:§:§:§:§§§§§§ 25 Our approach of constructing a substrate potential by us-
15 .‘:’:igg?‘g::i ing a pair interatomic potential seems to be very promising

in treatingvector isotropicmodels as well. We believe that
in such a way one can obtain topological isotropic solitons
on a 3D lattice. These objects would not be in contradiction
with the Derrick theorei{?®because in the continuum limit
they become generalized functiéhsis can be easily seen
from Figs. 4—6, 8, and 10 of this paper. Thus, the kiak-
tikink) solution which describes a point topological defect
(see Fig. 4 becomes a-distributed(along the transverse
axis) function in the continuum limit. Nevertheless, solutions
analyzed here might be of interest from the point of view of
families of 3D solitons studied in the field theory, for in-
stance, in the problem of the classical 't Hooft-Polyakov
monopolé® and its quantum relatives.

The quasi-one-dimensional model suggested and studied
in this paper is interesting from the point of view of the
dynamics of topological solitons. Since the total deformation
energy of a single defect is also distributed transverse direc-
tions, kinks and antikinks can interact even being in different
(adjacenk chains, forming coupled states. Because of topo-
logical reasons they obviously cannot annihilate, even they
are of opposite polarity. On the other hand, kinks or anti-
kinks of the same polarity being placed in adjacent chains
can be coupled as well. It is interesting that the coupling in
the latter case exceeds that of kink-antikink pairs. The next
important result is that the deformation energy of an array of
coupled kinks or antikinks is mainly focused at the array
edges. In the interior surrounded by these edges, the defor-

FIG. 14. Energy distribution per one ChaE;np [in the (m,p) mation energy dissolves and the area of this region is en-
plane of the 3D lattickfor (a) single kink, (b) 1D array of (200  larged with the growth of the total number of the pofat-
coupled kinks, andc) 2D array of (20<15) coupled kinks. ementary defects. This set of all the elementary defects can

be identified with a dislocation that in our case is of Huge
potential that is not given as an external source; instead, ati/pe because the Burgers vechois oriented perpendicularly
the chains of crystal structure without any exception are conto the line linking all the edgegalled a dislocation line
sidered equally and a defect may be considered in any of One should emphasize that any straightforward generali-
them. The main reason for adopting this point of view is aszation of the 1D FK model, using a loc@dn-site potential
follows: since any distortion of an atom in one of the chainscannot satisfactorily describe the point defects. Thus, the 2D
(subjected to the adjacent chaimsakes obviously an influ- versions suggested and studied previously cannot be used for
ence on its surrounding atoms, the on-site potential used asthese purposes. For instance, compared with the 2D model
basic point in the FK theory cannot be assumed anymore astudied by Pougett al,’° our model is discrete in the trans-
a strictly given periodic function. Instead of the periodic sub-verse direction as well because we consider lattices consist-
strate potential, a deformable potential that is sensitive tang of arrays of chains. In order to have the displacive limit
displacements of atoms in adjacent chains should be inn the longitudinal direction, we need to have sufficiently
volved. Such a substrate potential will be a periodic functionstrong stiffness along this direction rather than in the perpen-
only in the case if the arrangement of all atoms in the adjadicular one. The Lomdahl-Srolovitz mod&l also does not
cent chains is fixed. Clearly, the periodicity will be broken if allow us to consider point defects. However, domain walls
the atoms are allowed to move. Therefore we give up fromand edge dislocations can be constructed in the frame of our
the standard approach when some effective external periodimodel as arrays of point defects. The dynamics and structure
substratelon-site potential is a necessary ingredient of the of such domain walls was shown to be interesting and unex-
theory. Contrary, we deal only witimteratomicinteractions pected results on their dynamics have been obtained. It was
and long-range forces must be considered in our approach ghown that the domain wall constructed from the point de-
construct properly an interchain substrate potential. Morefects has nonuniform deformation energy distribution, while
over, such an approach can be accomplished only if, at leaghe domain wall consisting of a stagger arrangement of kinks




13572 P. L. CHRISTIANSEN, A. V. SAVIN, AND A. V. ZOLOTARYUK 57

and antikinks has the straight line configuration with an uni- ACKNOWLEDGMENTS

form energy distribution along the line. Our microscopic This work was partially carried out with the financial sup-

model does not contain noncentral or bending interactionf)Ort from the European Economic Communi§EC) under
and therefore on its basis we cannot constitute screw dislghe |NTAS Grant No. 96-158. Both of ugA.V.S. and

cations (for which the Burgers vectob is parallel with a A v.Z.) would also like to express our gratitude to the
dislocation ling from the elementary defects. For these pur-MIDIT Center and the Department of Mathematical Model-
poses the present model should be generalized to includig of the Technical University of Denmark for financial
such interactions. The work in this direction is in progress. support and hospitality.

13. Frenkel and T. Kontorova, Phys. Z. Sowjetunis) 1 (1938. 16p_ . Christiansen, A. V. Savin, and A. V. Zolotaryuk, Phys. Rev.
2F. C. Frank and J. H. van der Merwe, Proc. R. Soc. London, Ser. B 54, 12 892(1996.

A 198 205(1949. 17p. L. Christiansen, A. V. Savin, and A. V. Zolotaryuk, J. Comput.
3For a review, see, e.g., A. M. KosevicRhysical Mechanics of Phys.134, 108 (1997.
Realistic Crystal§Naukova Dumka, Kyiv, 1981 183, Pouget, Phys. Rev. 83, 3575(1991).
“See, e.g., A. H. CottrellTheory of Crystal DislocatioriBlackie, 193 Pouget, Phys. Rev. 86, 10 554(1992.
] London, 1964 _ _ _ 20M. Peyrard and M. D. Kruskal, Physica Dt, 88 (1984.
J. P. Hirth and J. LOtheTheory of DlSlOC&tloniW"ey, New 21Y. Zolotaryuk, J. C. Eilbeck, and A. V. Savin, PhySlCﬁlDa 81
York, 1968 (1997)

6S. Aubry, inSolitons in Condensed Matter Physieslited by A.
R. Bishop and T. SchneidéSpringer, Berlin, 1978 p. 264.
"A. R. Bishop, J. A. Krumhansl, and S. E. Trullinger, Physica,D

223, C. Eilbeck and R. Flesch, Phys. Lett.149, 200(1990.
23D, B. Duncan, J. C. Eilbeck, H. Feddersen, and J. A. D. Wattis,
Physica D68, 1 (1993.

1(1980. 24 ;
8 . . . M. Peyrard and M. Remoissenet, Phys. Re\2@ 2886 (1982.
For a review, see, e.g., L. V. Yakushevich, Physicar® 77 } ) )
(1994 9 ysicar® 25st, Pnevmatikos, A. V. Savin, A. V. Zolotaryuk, Yu. S. Kivshar,

and M. J. Velgakis, Phys. Rev. 43, 5518(1991).

SW. T. Sanders, J. Appl. Phy86, 2822(1965. 2 ; ! _ _
103 pouget, S. Aubry, A. R. Bishop, and P. S. Lomdahl, Phys. Rev. I. M. Gelfand and G. E. ShilovGeneralized Functions, Part 1:

B 39, 9500(1989. Properties and OperationgAcademic, New York, 1964
113 M. Tamga, M. Remoissenet, and J. Pouget, Phys. Rev.1%tt. 2’R. RajaramanSolitons and InstantonéNorth-Holland, Amster-
357 (1995. dam, 1982
12p_ 5. Lomdahl and D. J. Srolovitz, Phys. Rev. L&, 2702  “°G. H. Derrick, J. Math. Phys5, 1252(1964.
(1986. 29G. 't Hooft, Nucl. Phys. B79, 276 (1974; A. M. Polyakov, Zh.
13p. J. Srolovitz and P. S. Lomdahl, Physica2B, 402 (1986. Eksp. Teor. Fiz. Pis’'ma Re@0, 430(1974 [JETP Lett.20, 194
140. M. Braun and Yu. S. Kivshar, Phys. Rev.48, 7694 (1991). (1974)].

150. M. Braun, O. A. Chubykalo, Yu. S. Kivshar, and L. &tiez,  3°H. Flyvbjerg, Nucl. Phys. BL84, 351 (1981).
Phys. Rev. B48, 3734(1993.



