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Topological solitons and dislocations in two- and three-dimensional anisotropic crystals
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The well-known one-dimensional Frenkel-Kontorova model is modified and generalized to describe topo-
logical point defects and dislocations in anisotropic crystals of higher dimensions. The main point of our
modification is that a substrate periodic potential in the Frenkel-Kontorova model is not considered as a given
external spatially periodic force, but it is constructed in a self-consistent manner, such that any disturbance in
one of the chains causes a violation of spatial periodicity in the adjacent chains of the crystal. Static and
moving soliton~kink and antikink! solutions are found numerically in two- and three-dimensional anisotropic
crystals. Bound states of kink-antikink and kink-kink~antikink-antikink! pairs and their dynamical properties
are studied. Arrays of soliton states are shown to form dislocations of the edge type and their deformation
energy distribution on the crystal lattice is calculated. In finding the soliton profiles and energy distributions on
the lattice, we apply the minimization scheme that has proven to be an effective numerical method for seeking
solitary wave solutions in complex systems. The collision dynamics of the point defects are also investigated.
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I. INTRODUCTION

The well-known one-dimensional ~1D! Frenkel-
Kontorova ~FK! model1–3 originally introduced for a de-
scription of dislocation dynamics in 3D crystals4,5 has been
used extensively for modeling nonlinear dynamical p
cesses in a variety of condensed matter6,7 and biological8

systems. As for possible extensions of this model to hig
dimensions, so far little work has been done. In this resp
the investigations on the 2D scalar9–11 and vector12,13 gener-
alizations of the 1D FK model, including its different quas
one-dimensional versions,14–17which appear to be also com
plicated systems, should be mentioned. Among these stu
the Lomdahl-Srolovitz 2D generalization12,13seems to be the
most relative model for a description of dislocation dyna
ics.

In the theory of dislocations,4,5 the 1D FK model de-
scribes the simplest physical situation when a part of a c
talline material is displaced with respect to another one al
a sliding plane. Both these parts, which are separated by
sliding plane, are modeled by chains. The lower chain
considered as a perfect 1D periodic substrate lattice whe
the upper one is assumed to contain a defect, a local
rarefaction ~kink!, or a localized compression~antikink!.
However, in realistic crystals, any disturbance in the up
chain ~in which the formation of defects is assumed!, has
obviously an influence on the lower lattice, so that the pe
odicity of the substrate potential, in general, will be broke
Both the chains should be considered as equivalent ob
and the influence of any local stress deformation on the s
570163-1829/98/57~21!/13564~9!/$15.00
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strate potential should be considered properly. In the pre
paper, we study an anisotropic crystal consisting of coup
chains that are considered as identical objects, so that
influence of one of the chains on its surrounding chains
taken into account. As in the 2D Pouget lattice model,18,19

only interatomic forces are included in our model. As a co
sequence, on-site potentials are not considered at all. Ins
we need to consider long-range interactions between at
in adjacent chains. The main idea is that because of the s
in the soft slope of a typical~e.g., Lennard-Jones or Morse!
interatomic potential, it is possible to construct numerica
an appropriate interchain~substrate! potential in a self-
consistent way by summing only afinite number of long-
range interactions. In order to simplify this numeric
scheme, we restrict ourselves in this paper to an anisotr
crystalline material. In this case, it is sufficient to consid
only nearest-neighbor harmonic forces along the anisotr
axis and for the construction of a substrate potential we
complish summation only over the interatomic interactio
in adjacent chains of the lattice. For any isotropic crys
this procedure is more complicated because the summa
should be performed also in perpendicular directions.

The paper is organized as follows. In the following se
tion, we present a model in which only interatomic forces a
involved. The procedure on how to numerically obtain so
ton solutions is described in Sec. III. These solutions
used in Sec. IV to form the initial data for simulations of th
equations of motion. The numerical results on the soli
dynamics are also presented in this section. Finally, Sec
contains a summary and outlook.
13 564 © 1998 The American Physical Society
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II. A MODEL

We consider a 3D anisotropic crystal consisting of int
acting chains of coupled atoms~or ions! as shown in Fig. 1.
Each of these chains is directed along then axis and the
distances between them in the~perpendicular! m and p di-
rections are given by the dimensionless parametersa andb,
respectively,~see Fig. 1!. The sites of this crystal structur
are defined by the following 3D lattice:

G5$~m,n,p!PZ3u all m,n,p are either even or odd%.
~1!

For simplicity of numerical calculations as well as for visu
purposes, the corresponding 2D version, shown in Fig. 2
also presented. We consider the simplest~scalar! case when
the lattice atoms are constrained to move only in one dir

FIG. 1. Schematic representation of the 3D anisotropic cry
structure. Only intrachain bonds are represented~shown by
springs!.

FIG. 2. ~a! Schematic representation of the 2D anisotro
crystal structure with only intrachain bonds shown.~b! Single chain
with its two adjacent chains, the atoms of which are fixed.~c! On-
site potential formed by the adjacent chains with fixed atoms.
-

l
is

c-

tion, namely, along then axis. The intrachain~i.e., inter-
atomic in each chain! forces are considered only betwee
nearest-neighbor atoms whereas the interchain interact
include all the forces corresponding to the potentialV0(r )
shown in Fig. 3. But only adjacent chains are considered
this way, we are able to get a self-consistent substrate po
tial for each atom in the crystal. When the atoms in adjac
chains are fixed, this potential will be periodic as shown
Fig. 2~c!. The interchain potential is constructed by summi
its interactions with all of the atoms in the nearest-neigh
chains~two chains in the 2D case or four chains in the 3
case, see Figs. 1 and 2!. Therefore, onlyinteratomic ~both
intrachain and interchain! interactions contribute to the tota
potential energy of the crystal. Next, we assume that
adjacent intrachain interactions are coupled by harmo
forces with some stiffness constantK, whereas the interchain
interactions are given by the pair potentialV0(r ) with a
minimum atr 5r 0 ~see Fig. 3!. According to geometry given
by Fig. 1, the equilibrium distancer 0 between the neares
atoms from adjacent chains is

r 05Ah211/4, h5Aa21b2, ~2!

if the dimensionless spacing constant along then axis equals
unity. However, the presence of long-range interactio
through the potentialV0(r ) will reduce the ‘‘bare’’ equilib-
rium distance between the nearest atoms along then axis
~equal to 1! by some valued because, as shown in Fig. 3, th
second, third, and next neighbors are found on the soft s
of the potentialV0(r ). The resulting force of these neighbo
displaces the first neighbors to the hard slope as shown s
matically in Fig. 3. Obviously, this magnitude depends
the form of the potentialV0(r ) and in each case it should b
determined directly. We normalize the dimensionless pot
tial V0(r ) according to the conditionsV09(r 0)5a and
V0(`)50 where the dimensionless parametera measures
the ratio of the stiffness constant of the interaction betwe
the nearest-neighbor atoms in adjacent chains to the stiff
constant of the interaction between the nearest-neighbo
oms in each chain. The constanta can also be referred to a

al

FIG. 3. Positions of the first, second, third, fourth, and fif
neighbors in adjacent chains interacting through the interatomic
tential V0(r ).
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13 566 57P. L. CHRISTIANSEN, A. V. SAVIN, AND A. V. ZOLOTARYUK
the discreetness parameter.20 Then the reduction constantd
can be found as a solution of the following minimizatio
problem:

d2/212~D21! (
j 52`

`

V0@dj~d!#→min
d

, ~3!

whereD ~equal to 2 or 3! denotes the spatial dimension an
all the distances between atoms in adjacent chainsdj ’s de-
pend ond according to

dj5A~ j 11/2!2~12d!21h2. ~4!

Here, in the caseD53 the parameterh is defined by the
second of Eqs.~2! and in the planar case (D52) it equals
the distance between adjacent chainsa @see Fig. 2~a!#.

Summarizing all these arguments, we can write the to
energy of such a 3D crystal in the form

H5 (
~m,n,p!PG

@ 1
2 u̇mnp

2 1Kl 2~Umnp1Vmnp!# ~5!

with K being the intrachain stiffness constant andl the lattice
spacing constant. Hereumnp is the dimensionless displace
ment of the atom located at the (mnp)th lattice site~see Fig.
1! along then axis from the new equilibrium position in th
renormalized lattice and therefore measured in units
12d. The first term describes the kinetic energy of ato
while the second and third terms give the total deformat
energy of the crystal that consists of the intrachain and in
chain interaction energies. Both the intrachain (Umnp) and
interchain (Vmnp) potential energy densities are taken in
spatially symmetrized form and they are given by the follo
ing renormalized expressions:

Umnp5Umnp~d!

5 1
4 @~umnp2um,n22,p!21~um,n12,p2umnp!

2# ~6!

and

Vmnp5Vmnp~d!5 (
j 52`

` F(
n

V0~rn jmnp!24V0~dj !G ,
~7!

whered is a solution of the minimization problem~3! and the
distancesrn jmnp’s are defined by

rn jmnp5rn jmnp~d!

[A@~ j 11/2!~12d!1um61,n12 j 11,p612umnp#
21h2,

~8!

where the subscriptn runs over the four values that corre
spond to the different signs atm61 and p61, so that
n5(1,1),(1,2),(2,1),(2,2), summing all the inter-
actions with the four adjacent chains.

For a dimensionless description it is convenient to int
duce the dimensionless time and to rescale the spatial
ables as follows:

t5AK/mt. ~9!
al

f
s
n
r-

-

-
ri-

The dimensionless Euler-Lagrange equations of motion
correspond to the Hamiltonian given by Eqs.~5!–~8! are ob-
tained in the usual way.

III. SOLITON SOLUTIONS AND POINT DEFECTS

In order to study the equations of motion in a finite d
main of the latticeG, we need to define the boundary cond
tions. We choose a 3D rectangleL5$1<m<M , 1<n
<N, 1<p<P%,G and define its interiorI 5$2<m<M
21, n011<n<N2n0 , 2<p<P21% wheren0 is some ap-
propriate number that is chosen from the computational p
of view; in order to construct the substrate potential, su
ming the interactions between a given atom and all of
atoms in the adjacent chains, it is sufficient to accomplish
summation over a finite numbern0 of neighbors that depend
on the form of the potentialV0(r ). Then the boundary of the
rectangleL is ]L5L\I . In other words, besides the boun
ary chains of the rectangleL that cross the (m,p)th plane,
the n0 boundary planes at the left boundary of the rectan
]NL5$m, 1<n<n0 , p% and then0 boundary planes at the
right boundary ]NR5$m, N2n011<n<N, p% are in-
cluded into the boundary]L. If a soliton~kink or antikink! is
found at one of the chains, we call this chain anS chain.
Similarly, we define its left and right boundaries as]SL and
]SR , respectively.

The kink ~antikink! profiles were found by minimization
and then were chosen as initial conditions for numeri
simulations of the equations of motion that correspond to
Hamiltonian~5!–~8!. Afterwards, a final profile of the lattice
field umnp(t) under simulations at sufficiently large timest,
allows us to conclude whether or not the initial conditio
found by the minimization procedure is a correct and sta
solution of the equations of motion. The criterion for th
method accuracy can be the comparison of a final tw
component kink~antikink! profile with the corresponding so
lution of the minimization procedure when the kink h
passed a sufficiently large number of chain sites. Note
we can use for this purpose the cyclic boundary conditio
for the lattice fieldumnp(t). The main point in such a nu
merical approach is an appropriate choice of a discrete fu
tional ~i.e., a function of many variables! for minimization
and, as a rule, such a function can be constructed fro
corresponding Lagrangian of the system.

Writing the ~dimensionless! Lagrangian L that corre-
sponds to the Hamiltonian~5!–~8! and replacing there the
time derivativedumnp/dt by appropriate spatial differenc
of the lattice fieldumnp(t), we can get a function for mini-
mization. Such an approximation can be applied to th
lattice functions that~i! are sufficiently smooth from site to
site and~ii ! have a stationary profile moving with velocitys.
To do this, we use the approximation

d

dt
umnp52su8~m,n2st,p!.2s~um,n11,p2um,n21,p!.

~10!

Then the minimization problem can be formulated as f
lows:



.
o

er
n

g
m

e

a

e-
i-

nd-

-
is-

for
eir
es

l
nly
to
,
uch
and

ce
ion
uld
er,
-
tu-
rity
the

o be
is-

an
lo-

gy

e

57 13 567TOPOLOGICAL SOLITONS AND DISLOCATIONS IN . . .
2L5 (
~m,n,p!PL

@~12s2!Umnp1Vmnp#→ min
$umnpu~m,n,p!PL\]N%

,

~11!

where the kink and antikink conditions at the boundary]N
5]NLø]NR :

umnp50 if ~m,n,p!P]N\]SR and

umnp51 if ~m,n,p!P]SR ~kink!,

umnp51 if ~m,n,p!P]SL and

umnp50 if ~m,n,p!P]N\SL ~antikink!, ~12!

are supposed to be fixed under the minimization process
order to be certain that the kink solution corresponds t
minimum ~or maximum! of the LagrangianL given by Eq.
~11!, we accomplish the substitution

d2

dt2 umnp5s2u9~m,n2st,p!

.s2~um,n12,p22umnp1um,n22,p! ~13!

in the equations of motion and find that the resulting diff
ence equations are nothing more than the extremum co
tions ]L/]umnp50 for all (m,n,p)PL.

Finally, the dimensionless kink energyEK , as a function
of the dimensionless velocitys, as well as its distribution
~i.e., the energy density! Emnp on the lattice domainL were
calculated according to~compare with the LagrangianL!

EK5EK~s!5 (
~m,n,p!PL

Emnp, Emnp5~11s2!Umnp1Vmnp.

~14!

Note that at the boundary chains, the termsUmnp andVmnp
in Eqs. ~11! and ~14! should be redefined properly, takin
into account that the interchain interactions exist only fro
the internal side of the rectangleL.

The main part of numerical calculations has been p
formed for the 2D anisotropic lattice shown in Fig. 2~a! with
a50.1. The distances between the atoms in adjacent ch
are given by@compare with Eq.~8!#

rn jmn5A@~ j 1 1
2!~12d!1um61,n12 j 112umn#

21a2,
~15!

where the subscriptn runs over the two signatures~1! and
~2!. The Morse potential~plotted in Fig. 3!

V0~r !5
a

b2 $ 1
2 exp@22b~r 2r 0!#2exp@2b~r 2r 0!#%

~16!

with positive dimensionless constantsa andb was used for
the construction of the substrate potential.

The solutions of the minimization problem~11! that de-
termine the profiles~i.e., the displacement fieldumn! on the
2D lattice for a single kink and a single antikink are pr
sented in Figs. 4~a! and 4~b!, respectively. As usual, the sol
ton solution is referred to as a kink~antikink! if its profile
along then axis is a monotonically increasing~decreasing!
In
a

-
di-

r-

ins

function with the corresponding values 0 or 1 on the bou
aries]SL and]SR . The total energy distribution on the 2D
lattice Emn is plotted for the kink in Fig. 4~c! and for the
antikink in Fig. 4~d!. As follows from these figures, the en
ergy of the kink and the antikink is the same and it is d
tributed not only in the longitudinaln direction, but also
along the transversem axis.

The accuracy of the~moving! kink profiles, found by the
minimization procedure and taken to be initial conditions
solving the equations of motion, was examined from th
comparison with the final profiles obtained at those tim
when the kinks have passed a long length~thousands of
chain sites!. A perfect coincidence of the initial and fina
profiles was observed. Note that when investigating o
wide kinks, we may omit interesting effects due
discreetness.20,21 In order to treat highly discrete solutions
we should use more complicated numerical techniques s
as the pseudospectral method suggested by Eilbeck
Flesch22 and further developed by Duncanet al.23

IV. DEFECT DYNAMICS AND DISLOCATIONS

The kink dynamics within one chain does not introdu
new effects compared to the 1D theory and the collis
dynamics of defects of the same or opposite polarity sho
have the similar behavior as for the 1D FK model. Howev
in our case, since kink defects~of the same or opposite po
larity! can be found in adjacent chains, the topological si
ation changes essentially. Thus, defects of opposite pola
being situated in adjacent chains cannot annihilate as in
1D theory; they form a bound state. Bound states can als
formed by defects of the same polarity. Their energy is d
tributed along both them and n directions as illustrated by
Fig. 5. Moreover, kinks of the same or opposite polarity c
also form a bound state even in the case when they are
cated not in adjacent chains, but through one~as shown in
Fig. 6! or more chains.

By minimization, we have calculated the binding ener
of kinks and antikinks~kink-kink, EKK ; antikink-antikink,
EAA ; kink-antikink, EKA! and its dependence on the relativ
distance between kinks and antikinksR5unm11

c 2nm
c u, being

located in the adjacentmth and (m11)th chains. The posi-

FIG. 4. Single kink and antikink defects:~a! kink and ~b! anti-
kink umn profiles and total energy distributionEmn on the 2D lattice
of ~c! kink and ~d! antikink.
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tion of the soliton~kink or antikink! center in themth chain
nm

c which, in general, depends on timet, was numerically
calculated according to

nm
c 5(

n
n

umn2um,n22

umN2um1
. ~17!

To calculate each of the binding energiesEKK , EAA , or
EKA , we solve the minimization problem~11! with the con-
ditions that fix the boundary particles@in both themth and
(m11)th chains# in the corresponding states~for a kink or
an antikink!. Besides these boundary conditions, we also
any two nonzero values from the interval of displaceme
0,u,1 ~choosing these values close to 1 is more con
nient for the procedure!, one for some particle in themth
chain and the other for some particle in the (m11)th chain.
Having solved the minimization problem~11!, according to
Eq. ~17!, we find a certain value for the distanceR that
appears to be fixed because both the particle displacem
are fixed during the minimization procedure. In this wa
fitting an appropriate pair of the particles in themth and the

FIG. 5. Bound states of defects of the same and opposite p
ity located in adjacent chains:~a! kink-kink and ~b! kink-antikink
umn profiles, and energy distributionEmn on the 2D lattice of
~c! kink-kink and ~d! kink-antikink bound states.

FIG. 6. ~a,c! Bound state of two kinks and~b,d! bound state of
kink and antikink situated through one chain:~a! kink-kink and
~b! kink-antikink umn profiles and energy distributionEmn of
~c! kink-kink and ~d! kink-antikink bound states.
x
s
-

nts
,

(m11)th chains, one can get any given distanceR and the
corresponding interaction energy. The distance between
chosen particles and the fixed values of their displacem
uniquely determine the distanceR. The relative motion of
kinks and antikinks caused by this interaction will be stud
below.

As shown in Fig. 7, the behavior of the kink-kink~or
antikink-antikink! and kink-antikink interaction energie
EKK(R) and EKA(R) essentially differ each from other
Thus, the kink-antikink interaction energyEKA(R) has a be-
havior similar to the 1D case. It is interesting that the int
action energy of solitons of the same polarityEKK(R) or
EAA(R), as illustrated in Fig. 7 by the curves 1 and 2, s
nificantly exceeds the kink-antikink interaction energyEKA
for small R, while for large R a repulsion appears in th
interaction of solitons of opposite polarity. Note also th
since the interatomic interaction potential~16! contains an-
harmonicity, so that the symmetry between its compress
and repulsion parts is broken, theR dependences ofEKK and
EAA differ slightly each from other.

We have also constructed bound states of several kink
either the same polarity@see Fig. 8~a,c!# or with the stagger
formation @see Fig. 8~b,d!#. As shown in Fig. 8~c!, the total
deformation energy of a linear array of kinks of the sam
polarity is concentrated only at the edges of this array; ins
it the deformation energy is ‘‘dissolved’’ around. Contrary,
in the case of the stagger arrangement@see Fig. 8~b!#, the
effect of spreading out the deformation inside the array
absent and the energy is uniformly distributed along the a
of this array as illustrated in Fig. 8~d!. Therefore, in the latter
case, the solitary plane-wave profile is stable@see Fig. 8~d!#,
forming a linear defect~dislocation!. Note that in the former
case of arrays of kinks or antikinks, the degree of the ene
dissolution increases with the growth of the array length a
this behavior is clearly demonstrated in Fig. 9. The ed
dislocation can be constituted from kinks of the same po
ity and such a state is presented in Fig. 10 where the Bur
vectorb is oriented along then axis. The kink profile has the
standard form only in the vicinity of the edge and it com

r-

FIG. 7. Total potential energy of the bound states against
tance between two kinks~curve 1, solid!, two antikinks~curve 2,
dashed!, and kink and antikink~curve 3, solid!.
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57 13 569TOPOLOGICAL SOLITONS AND DISLOCATIONS IN . . .
pletely dissolves into the linear slope at the boundary of
lattice domain@see the boundary plot at the 100th chain
Fig. 10~a!#. As shown in Fig. 10~b!, the deformation energy
is mainly concentrated at the edge.

FIG. 8. Linear defects constituted of single kink and antiki
defects: theumn profiles of ~a! kink formation and~b! staggered
kink-antikink formation and deformation energy distributionEmn of
~c! kink and ~d! staggered kink-antikink arrangements.

FIG. 9. Energy distributionEmn for ~a! single kink, ~b! five
coupled kinks, and~c! ten coupled kinks on the 2D lattice.
e

The methods of calculation of the kink energy, kink siz
and Peierls-Nabarro relief used previously24,25for 1D models
can be extended to the present 2D and 3D cases in a stra
forward way. Thus, in themth chain~for the 2D case!, the
kink width ~diameter! is given by

DK5DK~s!

52A(
n

~n2nm
c !2~umn2um,n22!/~umN2um1!,

~18!

where the kink centernm
c is given by Eq.~17!. In order to

examine the effects of our self-consistent approach, we
calculated the parameters for a kink in oneS chain when
atoms in its adjacent chains were fixed~i.e., the standard 1D
FK chain!. For the 2D lattice the results of numerical calc
lations of the kink parameters in the two cases~atoms in the
two adjacent chains are mobile and immobile! are presented
in Figs. 11 and 12. Thus, Fig. 11 describes the dependenc
the kink width DK and the PN barrier heightDE on the
relative magnitude of the intrachain and interchain stiffne
constants given by the parametera. We observe that the
width of the kink profile in the 2D case significantly excee
that in the 1D case, when atoms in the adjacent chains
fixed as illustrated by Fig. 11~a!. In spite of this, the PN
barrier ishigher in the former case@compare the curves 3
and 4 in Fig. 11~a!#. This unexpected result is due to th
self-consistency of the interchain interaction. Due to this
teraction the kink energy is dissolved, so that its propaga

FIG. 10. 2D edge dislocation:~a! displacement profileumn and
~b! energy distributionEmn .
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becomes more difficult, despite it is of larger radius. T
energy and width of a kink against its velocitys are plotted
in Fig. 12. Here we have found a behavior similar to the
FK model.

The results presented in Fig. 7 predict the collision p
cesses of kinks and antikinks. The results of such collisi
are presented in Fig. 13~a,b,c! for the kink-kink interaction

FIG. 11. ~a! Kink width DK and ~b! decimal logarithm of the
PN barrier heightDE againsta21. The case when atoms in adja
cent chains are allowed to move is represented by solid curv
and 3 and the dashed curves 2 and 4 describe the situation
atoms in adjacent chains are fixed.

FIG. 12. ~a! Kink energyEK and ~b! kink width DK against
kink velocity s for two cases: atoms in adjacent chains are allow
to move ~solid curves 1 and 3! and atoms in adjacent chains a
fixed ~dashed curves 2 and 4!.
-
s

and in Fig. 13~d! for the kink-antikink interaction. Due to the
repulsive part in the kink-kink~or antikink-antikink! interac-
tion shown in Fig. 7 by the curve 1~or 2!, the reflection of
kinks each from other occurs@see Fig. 13~a!#. However, if
the kinks collide with higher incoming velocities, the activ
tion barrier in the energyEKK ~see the curves 1 and 2 in Fig
7! can be overcome, resulting in a coupled state as show
Fig. 13~b!. The further increase of the incoming velocitie
leads to passage of the kinks through each other. As for
kink-antikink collision, due to the interaction given by th
curve 3 in Fig. 7, a kink and an antikink always pass throu
each other as shown in Fig. 13~d!.

The results of numerical studies for the 3D lattice a
presented in Fig. 14. We have found the kink solutions in~a!
a singleS chain,~b! severalS chains staggering to form a 2D
stripe, and~c! several stripes ofS chains staggering in a 3D
rectangle. The deformation energy per oneS chain

Ēmp5(nEmnp is plotted in Fig. 14. These defects can
classified as follows: apoint ~elementary! defect, andlinear
and plane defects constituted from the elementary defec
Since the 3D lattice is a realistic case for dislocation patte
we may describe the array of solitons represented by
14~c! as anedgedislocation. The closed rectangle dislocatio
line passes along the maximum of the deformation ene
and the Burgers vectorb is oriented along then axis.

V. SUMMARY AND OUTLOOK

There is still a little progress in realistic generalizations
the standard 1D Frenkel-Kontorova~FK! model that was
originally suggested to describe dislocations in 3D crysta
Among the work9–13 in this direction, the Lomdahl-Srolovitz
model seems to be the most realistic. In the present paper
attempted to attack this problem by constructing a subst

1
en

d

FIG. 13. Kink-kink and kink-antikink collisions with initially
given different velocities:~a! reflection of kinks at small velocities
(s50.1), ~b! kink-kink coupling at larger velocities (s50.4),
~c! passage of kinks through each other (s50.5), and~d! kink-
antikink collision (s50.1). The solid curves represent the trajec
ries of one kink located in themth chain and the dashed lines th
trajectories of the other kink or the antikink located in the (m11)th
chain.
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potential that is not given as an external source; instead
the chains of crystal structure without any exception are c
sidered equally and a defect may be considered in an
them. The main reason for adopting this point of view is
follows: since any distortion of an atom in one of the cha
~subjected to the adjacent chains! makes obviously an influ-
ence on its surrounding atoms, the on-site potential used
basic point in the FK theory cannot be assumed anymor
a strictly given periodic function. Instead of the periodic su
strate potential, a deformable potential that is sensitive
displacements of atoms in adjacent chains should be
volved. Such a substrate potential will be a periodic funct
only in the case if the arrangement of all atoms in the ad
cent chains is fixed. Clearly, the periodicity will be broken
the atoms are allowed to move. Therefore we give up fr
the standard approach when some effective external peri
substrate~on-site! potential is a necessary ingredient of t
theory. Contrary, we deal only withinteratomicinteractions
and long-range forces must be considered in our approac
construct properly an interchain substrate potential. Mo
over, such an approach can be accomplished only if, at le

FIG. 14. Energy distribution per one chainĒmp @in the (m,p)
plane of the 3D lattice# for ~a! single kink, ~b! 1D array of ~20!
coupled kinks, and~c! 2D array of (20315) coupled kinks.
all
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n
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-
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two dimensions are involved into consideration, so that i
necessary to consider a lattice of two or three dimension
is impossible to develop our scheme in the frame of a
chain. In the simplest case, an anisotropic 2D crystal cons
ing of arrays of interacting chains of harmonically coupl
particles may be considered.

Our approach of constructing a substrate potential by
ing a pair interatomic potential seems to be very promis
in treatingvector isotropicmodels as well. We believe tha
in such a way one can obtain topological isotropic solito
on a 3D lattice. These objects would not be in contradict
with the Derrick theorem27,28 because in the continuum limi
they become generalized functions26 as can be easily see
from Figs. 4–6, 8, and 10 of this paper. Thus, the kink~an-
tikink! solution which describes a point topological defe
~see Fig. 4! becomes ad-distributed~along the transversem
axis! function in the continuum limit. Nevertheless, solutio
analyzed here might be of interest from the point of view
families of 3D solitons studied in the field theory, for in
stance, in the problem of the classical ’t Hooft-Polyak
monopole29 and its quantum relatives.30

The quasi-one-dimensional model suggested and stu
in this paper is interesting from the point of view of th
dynamics of topological solitons. Since the total deformat
energy of a single defect is also distributed transverse di
tions, kinks and antikinks can interact even being in differe
~adjacent! chains, forming coupled states. Because of to
logical reasons they obviously cannot annihilate, even t
are of opposite polarity. On the other hand, kinks or an
kinks of the same polarity being placed in adjacent cha
can be coupled as well. It is interesting that the coupling
the latter case exceeds that of kink-antikink pairs. The n
important result is that the deformation energy of an array
coupled kinks or antikinks is mainly focused at the arr
edges. In the interior surrounded by these edges, the de
mation energy dissolves and the area of this region is
larged with the growth of the total number of the point~el-
ementary! defects. This set of all the elementary defects c
be identified with a dislocation that in our case is of theedge
type because the Burgers vectorb is oriented perpendicularly
to the line linking all the edges~called a dislocation line!.

One should emphasize that any straightforward gene
zation of the 1D FK model, using a local~on-site! potential
cannot satisfactorily describe the point defects. Thus, the
versions suggested and studied previously cannot be use
these purposes. For instance, compared with the 2D m
studied by Pougetet al.,10 our model is discrete in the trans
verse direction as well because we consider lattices con
ing of arrays of chains. In order to have the displacive lim
in the longitudinal direction, we need to have sufficien
strong stiffness along this direction rather than in the perp
dicular one. The Lomdahl-Srolovitz model12,13 also does not
allow us to consider point defects. However, domain wa
and edge dislocations can be constructed in the frame of
model as arrays of point defects. The dynamics and struc
of such domain walls was shown to be interesting and un
pected results on their dynamics have been obtained. It
shown that the domain wall constructed from the point d
fects has nonuniform deformation energy distribution, wh
the domain wall consisting of a stagger arrangement of ki
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and antikinks has the straight line configuration with an u
form energy distribution along the line. Our microscop
model does not contain noncentral or bending interacti
and therefore on its basis we cannot constitute screw d
cations ~for which the Burgers vectorb is parallel with a
dislocation line! from the elementary defects. For these p
poses the present model should be generalized to inc
such interactions. The work in this direction is in progres
Se
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