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Nonequivalence of general tensor force and Clark, Gazis, and Wallis angular force models
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The general tensor ford&TF) model, the general scalar for@8SH model as well as the Clark, Gazis, and
Wallis (CGW) angular force model are analyzed by resolving the atomic displacements along three mutually
perpendicular directions. It is shown that the GTF model that neglects three-body and mixed neighbor inter-
actions confined to the plane of a triangle but incorporates two-body interactions perpendicular to the plane, is
not equivalent to the CGW model that incorporates the former while neglecting the latter. However, the
relations between the tensor force constants of the former and the scalar constants of the latter, deduced by
exploiting the basic differences in their transformation properties, reveal that the GTF model is equivalent to
the GSF model in the case of bcc and fcc structures, and all earlier claims regarding its equivalence with the
CGW model are therefore spurious. The role played by the coordinate axes transformations, the relations
between these and other force constant models, as well as the equivalence between their force constants, are
discussed[S0163-182808)00710-3

[. INTRODUCTION rameters associated with various sets of neighbors in one
model being the same as those in the other model, does not
The general tensor ford&TF) modef that is used exten- seem to have any significanteFurther, the above men-
sively in the analysis of experimental phonon frequencies ofioned differences in the nature of atomic interactions and
a variety of solids, is not at all invariant with respect to rigid their manifestations invariably contradict the claim of Moore
body rotations even in the case of high symmetry cubic crysand Upadhyay4 that the GTF model is identical to the
tals. The distinguishing feature of this model is that the sym-CGW model for cubic systems. Nevertheless, according to
metry operations of the lattice determine the number of inMoore® the force constants of the former are composite
dependent force constants needed to specify completely thrguantities arising from the elementary or semimicroscopic
short-range ion-ion interactions. Irrespective of the differ-force constants of the latter. Upadhyagal 1° have there-
ences in their assumptions regarding the nature and the ranfmre equated the force constants of the GTF model to arbi-
of interatomic forces, other lattice dynamical models such asrarily assorted algebraic sum of central and angular force
the De Launay angular ford®AF) model? the axially sym-  constants of the CGW model in the case of bcc and fcc
metric force (AS) model?® the modified axially symmetric structures. In this scheme, the GTF constants associated with
force (MAS) modef and the central pair potentidCPP first, second, and third nearest neighbors in fcc structures and
modeP that are approximate forms of the GTF model, sufferthird nearest neighbors in bcc structures are linked with the
from the same deficiency. The harmonic force constants oforresponding CGW constants associated with all neighbors,
the GTF model comply with Born-Huang conditiérso long ~ while the second neighbor GTF constants in bcc structures
as the crystal is in equilibrium, but they fail to satisfy the are linked with first and second neighbor CGW constants. As
additional conditions that reduce the change in potential ena consequence, the former become invariant with respect to
ergy to zerd. As a consequence, this model becomes elasticoordinate axes transformation. In addition, it is necessary
cally inconsistent and gives rise to two different expressiongor these authors to presume thatthe force constants de-
for C4 in the case of noncubic crystdlsBesides, the fining the additional three-body forces between first or sec-
Cauchy discrepancies due to short-range interactions reducsd set of nearest neighbors in bcc structures will contribute
to zero whenever this model complies with all invarianceto the forces on the ion at the origin in the same manner as
conditions’ On the contrary, the elastic consistency of Clark,the two-body forces? (i) neglect of second-order contribu-
Gazis, and WalligCGW) model® is not destroyed by the tion in the rotation vectow destroys the rotational invari-
transition from cubic to tetragonal or hexagonal symmétry. ance of the DAF and CPP mod&snd(iii ) three-body non-
The characteristic feature of this model is that the angulacentral forces contribute to the ion-ion interaction of the GTF
forces that arise from the resistance to deformation of thenodel® in order to justify a superficial claim regarding the
angles formed by three atoms, incorporate a component @&quivalence between the GTF and CGW models.
three-body forces confined to the plane of the triafgEhe On the contrary, Ramamurthy and his co-worRérs1’
Cauchy discrepancies of a solid are not disturbed because thave established by systematically analyzing the differences
potential energy associated with the change in CGW angleis the nature of interatomic forces of several lattice dynami-
is independent of the orientation of the coordinate axes. cal models in the case of cubic, tetragonal, and hexagonal
The equivalence between two lattice dynamical modelstructures that the CGW model is unique as it incorporates
based on either the comparison of dynamical matrix eleadditional contributions fron{i) same neighbor three-body
ments in the long-wavelength limit as well as at theinteractions,(ii) mixed neighbor two-body interactions as
Brillouin-zone boundary or the number of independent pawell as(iii) mixed neighbor three-body interactions, whereas
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FIG. 1. Angles subtended by atomic displacements normal to the position vBgtersd R at the origin. Components parallel to the
plane: df, anddfz. Components perpendicular to the plan€i¢, andd¢g .

the DAF, AS, MAS, CPP, and GTF models do not. More- _ 1 ~ 2.7 2
] I} [} I} V_ = . — + . —
over, the force constants of the CGW model as well as those d (2)Bilpa: (sa=S0) "+ [ps- (S5 =50) I}
of the DAF, AS, MAS, and CPP models are invariant with + (5 e[ (dpp) 2+ (dbg)2]+(2) y(d6)? 1)

respect to a coordinate axes transformation, but those of the

GTF model transform as the components of a second rankhereg is the central force constantand y are the angular

tensor:® The present author has therefore extended the preorce constants, perpendicular and parallel to the plane of the

vious analysis? hereinafter referred to as I, up to third near- triangle OAB, respectively. Further, the last term of Ha)

est neighbors in the case of bcc and fcc structures to detefay be expanded as

mine the degree of equivalence that exists between the CGW

model and the GTF model and exploited the transformation 1 2_1 2 2

properties of force constants to deduce the correct relations (2)7(d0)"=(2)y[(d6a) "+ (dbg)"+2(d6a)(dbp)]. (2)

between them. It is the purpose of this paper to describe

these investigations that reveal that there is no way of ex- |+ should be obvious from Fig. 1 that the third term of Eq.

pressing the contributions from three-body forces in terms ofy) inyolves the coordinates of all the three atoms and there-

two-body forces in the case of any crystal structure. fore represents the excess energy associated with three-body
forces'® whereas the remaining terms of E() and (2)

Il. THEORY represent the corresponding potential energies associated
To facilitate the analysis of different lattice dynamical With two-body forces. Following the Eroquure adopted in |,

models and the comparison of the GTF model with the CGWN€X components ofi) central forces, , (ii) angular forces

model, the dynamical matri®(q) is split into an ionic part Perpendicular to the plar, (iii) two-body angular forces

D' and an electronic paid® representing the contributions parallel to the plané=; and (iv) three-body angular forces

from the short-range ion-ion interactions and the long-rangearallel to the plané&: are, respectively, given by

electron-ion interactions, respectively. We consider three at-

oms O, A, andB, shown in Fig. 1, which form a triangle  F;=—B{lA[(Ug—Up) s+ (vo—va)Ma+ (Wo—Wa)Na]

with angle @ at the origin. The relative displacements of the

atomsA and B are resolved along three mutually perpen- +1g[(Uo—up)lg+(vo—ve)Me+(Wo—Wp)Ns]},

dicular directions, denoted by unit vectgss o, and 7 that (3)

form a right-handed system, in order to express the elements

of D' in terms of central and angular forces. It was shown ing1_ _ _ _

| that the change in the potential energy of the ator® alue & €l(Pal(Uo = UnPAT (Vo VA dn

to displacementsg, s, andsg of these atoms from their +(Wo—Wa)r Al/R2) + (pg[ (Uo— Ug) P+ (vo—ve)ds

equilibrium positions, in the harmonic approximation, is )

given by +(wo—wg)rgl/Re)}, (4)
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F2= — (AN Al (Un—UMNa+ (0 a—0 TABLE I. CGW angles and the characteristic unit vectors asso-
X HAAL(Uo™ Unkat (Vo= va) a ciated with the first, second, and third nearest neighbors of the bcc
+(Wo—Wa) val/R) + (N[ (Uo—Ug)\g lattice.
+(vo—vg)ugt (Wo—Wg) vgl/RE)} 5 Unit vectors
and Neighbor Triangle Angle p _o' 1
First Iy 6, [111] [21]  [on]
F2=—y{\al (Uo—Up)Ag+ (vo—vp) s+ (Wo—Wg) vg] 2 6,  [111  [21]  [on]
=~ ¥ al(Uo~Ug)h e+ (Vo—ug)ug ™+ (Wo W) ve Second I 9,  [200] [011 [ou]
T Ap[(Uo—Up)AAT (Vo—vA) A I f6 [200] [010]  [001]
B l, 65 [220] [00Y] [110]
+(Wo—Wa) val}/|RallRgl, ®  thirg I, o, 220 [10] [00
E, 6, [2200 [12] [111]

where (, m, n) (p,q,r), and(\,u,v) are the direction co-
sines ofp, 7, o.

However, a GSF model takes into account restoring IIl. CALCULATIONS
forces due to all components of displacements without mak-
ing any arbitrary assumptions regarding its scalar force con-
stants, but fails to incorporate either the three-body interac- An atom at the origin forms 12 isosceles trianglesSof
tions or the two-body interactions from the triangles formedtype and 24 isosceles trianglesMf type, respectively, with
by “mixed” neighbors® The CGW model, on the other its (i) first neighbors separated by second neighbor distance
hand, includes the latter interactions at the expense of thend first and second neighbors separated by first neighbor
angular forces perpendicular to the plane of the triangledistance (), (ii) first neighbors separated by third neighbor
Hence, the ionic part of the dynamical matrices of theselistance and first and third neighbors separated by first

A. bcc structure

models are given by neighbor distancel§) and (iii) second neighbors separated
by third neighbor distance and second and third neighbors
[D']gs=DC+ D+ D2 (7)  separated by second neighbor distantg s well as 24

equilateral triangles with its third neighbors separated by
third neighbor distanceH;) when the short-range ion-ion
interactions are restricted to first three nearest neighbors. The
_ isosceles triangles o6 type formed by joining the same
[D']cew=D°+D?+ D"+ D3+ D3, (8 neighbors are characterized by a nonisosceles angle denoted
by an odd subscript, whereas those Mftype formed by
where the additional superscriggsand m denote the corre- joining the mixed neighbors are characterized by an isosceles
sponding contributions from triangles formed by the “same” angle denoted by an even subscript, at the origin. The direc-
neighbors and “mixed” neighbors. Nevertheless, it is not attions ofp, o, T associated with first, second, and third neigh-
all clear whetherD' of the GTF model incorporates the bor distances as well as the angtgsthey subtend in differ-
three-body interactions or the “mixed” neighbor interac- ent triangles, are given in Table I. The elements of the matrix
tions, especially because the CGW model includes both udd' that are split in the manner described in Sec. Il, obtained
ing the same angular force constants. It is therefore necessdby summing over these four sets of triangles, are given by
to isolate the three-body and the “mixed” neighbor contri-
butions to the elements of the dynamical matrix and to as-
certain the characteristic Iimitati())/ns of the GTF model in MDix:(g)ﬁl[l_CXCYCZ]Jr‘lﬁZ[SE]
order to judge its e_quwalence with the_CG_\N model or any +2B4[2— Cp{Coy+Co1, 9)
other model. For this purpose, the contributions from various
restoring forces to the elements Bf are evaluated in Sec.
IIl, with the range of ion-ion interactions extended up to MDj3=8(e;1+ €+ €3+ €4)[1— C,C,C,]
third nearest neighbors in the case of bcc and fcc structures.
Further the force constants of the GTF model associated with +8(est 66)[Sy+ Sz]
each set of nearest neighbors are represented byaBa- 16
trix. It is desirable to reduce each of these matrices to a +(3) €7[{2— Cox(Cpy+ C3p)} +{1-C5,Cy,} 1,
diagonal form by making use of the principal axes. The de- (10
gree of equivalence between the GTF model and the CGW
model could be ascertained by comparing the diagonal ele-
ments of the former with the corresponding scalar force con-

and

MDZ=8(y;+ ¥o+ v+ v4)[1—C,C,C,]

stants of the latter. The force constant matrices of the GTF +8(ys+ 76)[832/_" 2]
model, referred to the crystallographic axes as well as to the z
principal axes, associated with the first, second, and third +(2)y7[{2— Ca(Cpy+Cy)}

nearest neighbors of the bcc structure and the fcc structure
are given, respectively, in Appendixes A and B. +4{1-C5,Cy}1, (11
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MD35=(5)(y3— y)[1—C(C,C,]+4[ 28}~ S~ ]
—(3)y7[{2—Cx(Cpy+Cyy)} +4{1—C5,Cy,}],
(12
MD ¢ =MD;5+12€,[ S)+ S7]+3€,[ 2~ Cypx(Cpy+ Cy,)]
+8es[1—CyyCo,l, 13
MDZ7=MDZ+ 12y,[ S;+ S2]+4y6[2— Cpu Coy+Cypy)]

+67,[1—-CyCyl, (14

MD3N=MD %+ ({471 [SE]— (y1+372)[S;+S2]
—(2y3+3y4t v7)[1-C5Co,]}

+(3) (73— 376+ 477)[2— Cp(Cpy+C3))1,

(19
M DS =(3) Bl SiSyCyl+ 2B3[ Sy Szy - (16)

MDS=—4(e1+ €+ €3+ €2)[ SS,C,1— (5) €70 SuxSay 1,

17
MDZ=—4(y1+ y2+ 3+ n)[sxs,cz]—(%)w[sasz(yié)
MDE=(5){(71—¥3) +3(272+ 7)}[SS,C,]
+(5) v7l SaxSay s (19
MD;'=MD;5— 3eq[ SpSay . (20
M D= M D5~ 476l SxSayl, (21)

and

MD3'=MD3>+($){ys+3( s+ y6>+5v7}[82xszy](, )
22

where S,=sin(@,a), S,,=sin(y,a), C,=cos@,a) and C,,
=cos(3,a) etc., 2a being the lattice parameter ail is the
mass of the atom. The force constardgsand y, associated

with the angled, have been divided by a normalizing factor,
square of the isosceles side of the appropriate triangle,
order to make them dimensionally equal to the central forc
constantsp,, associated with theth nearest-neighbor dis-

tance. Further, the diagonal and off-diagonal elemen®®'of
of the GSF model could be written, using E@), as

M Di(x: 8{(3)B1+ (€1 €3+ €3 €4) +(y1+ ya+ ya+ya)}
X[1~CCyC,]+4B[S{]+8{(e5+ €5)
+ (st Ye) LSS+ ST1+ (%) (674 2y7)[1— CpyCoy]
+(5){3B3+8e;,+4y7}[2—Cxi(Cyy+C3)]1 (29

and
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MDixy:4{(%)ﬁl_(el+ €2+ €3t €)= (y1t+ v2t vat va)}

X[S8/C, ]+ (5){3B3— 87— 4y7}[SnSyyl. (29

Corresponding elements of the CGW model could be writ-
ten, using Eq(8), as

MDly=(3){B1+4(y1+273) +6(y2+ v4)}[1—C,C,C,]
+4{By+(3) y1+4y6)[SE
+4{= (51t yot 475+2'}’6}[S§+S§]

+2{B3+(5) y3t4y7}[2—Cu(Cpy+Cpy)]

+4{= (%) y3— (3) vat+2y7}[1-CyCp,] (25
and
MDjy=(3){B1~271+ 372~ 473}[SS,C,]
+2{B3+(5) v3+2y5+ 27} [SnSyyl.  (26)

When the range of ion-ion interactions is extended up to
third nearest neighbors, the diagonal and off-diagonal ele-
ments of the matriXD' of the GTF model are given BY

MDiy=801[ 1~ C,C,C,]+ 40 S+ 4N [ S2+ ]
+4N3[1—CyyCp ]+ 403[2—Cyi(Cpy+Cy,) ]
27

and

MD}, =81 S,S,C,]+ 43 SySyy 1, (28)

where oy, \,, and v, are thenth neighbor tensor force
constants.

It is obvious from these expressions that the CGW model
for bce structures is not equivalent to the GSF model except
for the contributions from central forces. Thus, the corre-
sponding matrix elements of all these models contain the
same number of terms that have nothing in common.

B. fcc structure

An atom at the origin forms 24 equilateral triangles each
with its (i) first neighbors separated by first neighbor distance
(Ey) and (ii) third neighbors separated by third neighbor

iHistance E,), 12 isosceles triangles & type and 24 isos-

celes triangles dM type, respectively, with it§) first neigh-

%ors separated by second neighbor distance and first and sec-

ond neighbors separated by first neighbor distarigl (ii)

first neighbors separated by third neighbor distance and first
and third neighbors separated by first neighbor distahge (

(iii ) third neighbors separated by first neighbor distance and
third and first neighbors separated by third neighbor distance
(I3) and (iv) third neighbors separated by second neighbor
distance and third and second neighbors separated by third
neighbor distancelf) as well as 72 nonisosceles triangles
with its first, second and third neighbor distancé&g)(when

the short-range ion-ion interactions are restricted to first three
nearest neighbors. An isosceles angle at the origin character-
izes theM type triangles while a nonisosceles angle charac-
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TABLE Il. CGW angles and the characteristic unit vectors associated with the first, second, and third

nearest neighbors of the fcc lattice.

Unit vectors

Neighbor Triangle Angle p o T
= 0, [110] [112] [111]
I 03 [110] [110] [oo1]
First I, 0 [110] [112] [111]
T, 0g [110] [001] [110]
I3 04 [110] [332] [113]
I 6, [200] [010] [001]
Second T, 07 [200] [011] [011]
la 611 [200] [021] [012]
[P 04 [211] [011] [111]
T b6 (211 [111] [o11]
Third I3 610 [217] [471] [113]
l4 012 [21]] [251] [102]
E, 013 [211] [011] [111]

terizes thesS type triangles. The directions @f, o, 7 associ-
ated with first, second, and third neighbor distances as well
as the angleg, they subtend in different triangles are given
in Table Il. The elements of the matiX' that are split in the
manner described in Sec. Il, obtained by summing over these

seven sets of triangles, are given by

MDS,=2B1[2— C,(Cy+C,)]+4B,[S{]
+ ( %):83[6 - Cx( C2ycz+ CyCZZ)
- 4C2nyCz]a (29)

MD}=4({(3)(€1+ €4+ €5) + 3(€s+ €7)}[2— C,(Cy+C,)]
+3(est €g)[ S+ SI1+{(5)(e1+ €4+ €5)
+2(e;1 €3)}[1-C,C, ]+ H[(eg+ €10)/11]
+[(€117F €19)/5]+[(€19/3]}[1— C5,C,C,]
+{(e7+ €g) +4[ (1) (€ot €10 +(§) (€11t €12)

+(%)613]}[2_CX(CZyCZ+CyCZZ)])1 (30

MDZ=(5){2(y1+ vat ¥5)+3(y2+ v3)}
X[2=Cy(Cy+C)1+9( v+ ¥s)[ S+ S]]
+2[{4(y1+ vat vs) +9(ve+ ¥7)}H1-C\C,]
+H{(y7+ v8) + (1) (vo T 710
+(8) (vt 7121 CoCyCol H{(v7+ 7o) +(H
X(Yet+ 710+ (5)(y11+ v1) + 3713
X[2=C,(CpyCyt C,Co11), (31)

MDZE=($){~ 71+ 7a+ ys+378}[2—C4(Cy+C))]

+6(2y/[S{1— el i+ SED +2({— 2711274
—¥5— 3y} [1-CyC,]+{— 37— (5) 79+ 9710
+(%)711}[1_CZXCyCz])_3{78+(%)79+ 3710

+(8) 11+ 713[2— Cy(CxC,+CyCo) 11, (32

MDI'=MDi5+($)ead 11~ C4(Cy+C,) —9C,C,]
+16(e3+3€1)[ S5+ S2]
+ (%)65[{1_C2XCyCZ}
+{2_ CX(CZyCZ+ CyCZZ)}]y (33)

MDZ'=MDZ+ (12)y,d 9{2— C,(Cy+C,)}
+4{1-C,C,}]+8(y3+6y1)[S;+ 5]

+ (%) 75[ 2= C4(C2yC,+C,Cy)) ], (39

MDIN=MD3+ ($)[{2y1+ (1) (28y9—27y10)}

X[2=C(Cy+CI~{y1+ (1) (7ot 12y10)}
X[1=CyCol+ {37+ 10y1[S{]—{(3) y2+ 373
+yut 6712}[5512+ S +{ya+3713
X[1-C5C,C,] —{2y,+3ys}
X[2—=Cy(CyC,+C,Cp) 1], (35
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MDZ=2B1[S,S,1+ (5) B3l 2Co(SpSy + ScSzy) MD;y' =MD~ (33) e1d SSy1+ (¥) es[ S,S,Co.
+58,Ca.l, (36) —CASuS+ 58], (40)

1s__ 4
MPw= et et e 3leat ) HSS) MDZ=MDZ~ () 7:d S8 1~ (£) 7SS Cal
—4{(e7+ €g) + (1) (egt €10 — (3) €13 SS,Casl (4D)
—16{[(eg+ €10)/11] +[ (€11t €15)/5] +[(€13)/3]} and

X[CASnS,+SS)], 37
MD3M=MD+ (35){5(11y1+ 13yg) +54y10[S,S)]

+4{(3) 74+ 275+ 713[SS,C2]

+({ 74+ 37138 (S8 + SS2y)C.
+4{3y6+2y7+ v5— (3) (7o~ ¥11)

—4(2y10~ 712 H (SxSy = ScSzy) Co ], (42)

MDZ=—(){2(y1+ 74t ¥5) +3(72+ ¥3)}[SS)]
+(${(y7+ v8) + (51) (ot Y10
—(y11+ ¥12+ 3719 SSyCozl = (5){(y7+ 7s)

(1) (Yot ¥10 + (5) (Y11t ¥12}

X[CA(SxSy+5Spy) 1, (38) _ _
where S, =sin(g,a), S,x=sin(,a), C,=cosf,a) and C,,
MD33=(4/3){(y1— ya+27s)+3(ya+ 79)}[SS,] =cos(3),a) etc., 2a being the lattice parameter ail is the
* mass of the atom. The force constaatsand y, associated
— 4 yg— (&) Yo+ 2y10— 2y12— y13[5:S,Ca.] with the angled, have been divided by a normalizing factor,
square of the isosceles side of the appropriate triangle, in
+4{(%)y9+5m_(115)71]}[32X5ycz] order to make them dimensionally equal to the central force
constantsB,, associated with thath nearest-neighbor dis-
+4{3y+ 27+ v+ (1) Yo— 310 tance. In addition, using Eq(7) the diagonal and off-
diagonal elements db' of the GSF model could be written
+(8) vyt 4713[58,Cl, (39 as

MD},={28;+(3)[2(e1+ €xt €5) + (Y2t Yat ¥6)]+ 12 €6+ €7) +4(v2+ ¥3)}[2— Cx(Cy+ C)1+8{(3)[ (€1 + €4+ €5)
+2(y1+ vat v5) ]+ (21 €3) +3(yve+ y2)}[1— CyCol + 4B S(1+ 12{(e6+ €g) + (76 v8) { So+ S2]
+(2){Bat () (ot €10 +(2)(enrt €10+ €13+ (1) (77+ v8) + (£) (Yo 710 + (3) (Y11 712 [1~CC,Cy
(DU Ba+ () (er+ €g) + () €0+ €10 + () €11+ €10 + 215t (¥7+ ¥8) + () (yo+ ¥10)

+ () (y1rt+ 712 + 3713 [2— CCoyC,+ CyCp)] (43
and

MD},={281~($)[2(e1+ €4+ €5) + (y1t Yat ¥5) 1= 4L(v2+ ¥3) + (st eSS 1+ (D {5 B3~ 3(er+ )]

—(13)(€9+ €10) +2€13+ (71 ¥8) + (1) (Yo Y10 — (Y11+ ¥12) — 3713 [ SSyC 2] +{B3— (1) €9+ €10)

—(2)(ent €1 —2€13— (y7+ v8) = (33) (Yot ¥10) — (8) (v11+ ¥12) [ (SixSy + SS2y) C ). (44)

Making use of Eq(8), corresponding elements of the CGW model could be written as

MDj,={2B1+8[(y1+ y2+ va+ yat vs+ ve) +(33) ¥o+ (13) Y10l [2— C(Cy+ C 1+ 8{y1 + 4y, + 25+ 66+ 4y~ (11)
X[(3)¥9—20y10]}[ 1~ C,C 1+ 4{ Bo+ 272+ 877+ (B) vt [S{+4{~ v2+ 676+ 275~ (5) vt 871 [ S+ S2]
+(3)({2B3+ v4— 2(2y7— vs) — (F)(12y9— 115y10) + (£)(2y11+ y12) + 3713 1— CC,C,]

+{(2)Ba=274= vs+ 27~ va+ (31)(23y9— 49y10) + () (y11+ 1371 + 3713 [2— Cx(C5yC,+ C,Cy)) 1) (49
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and neighbors of a fcc lattice. Further, it is not at all essential to
: introduce additional force constants in order to incorporate
MDy,=2{B1+2y1—4(v2+ 74— vs) the contributions from the former into the matrix elements of
10\p 18y . 4 either lattice. In this context, use of extra force constants by

+(I(F) 79~ 18710} SSy ]+ (5)({ B3+ 574 Upadhyayaet al® to express the three-body interactions is

2 _ _ wrong and inconsistent with their own claim that these inter-

+275+2(2y7= ve) ¥ (1) (1779~ 52710 ~47n actions can be expressed in terms of two-body interactions.

+8y15—3713{SS,Cort +{2B3+ 4+ 9vs The identical lattice dynamical results, obtained in the case
of the bcce structuré??? are cited in support of this spurious

+ (27— v8) +(7)(2¥9+ ¥10 — (£)(3y11— 11y1)) claim. However the procedure adopted by these authors is
not capable of identifying the three-body contributions and

+3713[(S2S +$Sy)Cal). (48)  the consequent superficial bifurcation of ion-ion interactions

On the other hand, the diagonal and off-diagonal elements c5:§oes”not serve any purpose. Incll_Jsion of terms with “three-
the matrixD' of the GTF model that incorporates the short- Pody” force constants is an arbitrary means employed to

range interactions from the first three nearest neighbors, af@ich the dynamical matrix elements of the CGW model
given by with those of the GTF model, ignoring the intrinsic differ-

ences between them. It was established in | that the corre-
MD! =40,[2— Cyx(Cy+C)]+4n[1— CyCz]+402[5>2<] sponding(two-body) central force constants of the DAF and
CGW models become unequal while assorted combination of
+47\2[S§+ S§]+803[1—C2XCyCZ] central and angular force constants of the former become
equal to those of the latter as a consequence of artificially

F8h3[ 2= Cy(CyyC,+ CyCr)) ] (47) matching the matrix elements of these models. The errone-
and ous interpretation of the readjustments in the numerical val-
_ ues of the force constants together with the absurd presump-
M DIXy:4V1[SxSy] +8v3[ (S S+ SSyy) C, ] tion that the entire three-body contributions in the case of the
bcc and fce structures are incorporated using only one and
+8u3[SSCal, (48 three extra force constants, respectively, cast a serious doubt
where o, N, v, and u, are thenth neighbor tensor ©n the cIaims4 rleegarding the equivalence between CGW and
force constants. GTF models:*-

These expressions invariably make it clear that the CGW__It may be recalled in this context that the nature of the
model for fcc structures is not equivalent to the GSF modelGTF constants is quite different from that of central and
except for the contributions from central forces. The only@ngular force constants. The second derivative of the poten-
common feature among these three models that differ signifii@l energy of a crystal with respect to atomic displacements

cantly is that the corresponding matrix elements have thés: in general, a tensor of second rank which can be repre-
same number of terms. sented by a &3 matrix. Most lattice dynamical models

make use of some arbitrary assumptions regarding the nature
of short-range ion-ion interactions whereas the GTF model
exploits the symmetry elements associated with the crystal

It is obvious from the present analysis that the diagonabtructure to reduce the number of independent parameters
and off-diagonal matrix elements of the CGW model as wellassociated with each set of nearest neighbors. As a conse-
as those of the GSF model are expressed as a sum of figence, the central and angular force constants of the DAF
terms and two terms, respectively, in the case of the bcand CGW models as well as the radial and tangential force
lattice and as a sum of six terms and three terms, respeconstants of the AS and MAS models become scalar quanti-
tively, in the case of the fcc lattice. Each of these waveties while the GTF constants retain the characteristics of a
vector-dependent terms includes an algebraic sum of centraecond rank tensor. The matrices representing these tensors
and angular force constants. Corresponding matrix elemengssociated with the first, second, and third nearest neighbors
of the GTF model for the bce latti€eand the fcc lattic®  of the bce structure and the fcc structure are given, respec-
are obtained when either sum of scalar force constants igvely, in Appendixes A and B. However, it is essential to
replaced by an appropriate second rank tensor force constarigduce these matrices to their diagonal form, by means of
In spite of the basic differences in their assumptions regardappropriate unitary transformations, in order to express the
ing the nature of ion-ion interactions, all these models giveGTF constants in terms of the central and angular force con-
identical lattice dynamical results by simply adjusting thestants. The eigenvalues and the eigenvectors of the diagonal
numerical values of their force constants. However, it ismatrices corresponding to different sets of neighbors, deter-
wrong to judge the equivalence between two models usingnined by exploiting their transformational properties, are
this criterion. The apparent equivalence, based on the nun&lso included in Appendixes A and B. It is obvious from
ber of terms or independent force constants associated withese results that one of these eigenvect¥s, which is
their matrix elements, is therefore devoid of any significanceoriented along the line joining the reference atom witmits

The present analysis reveals that there is no means ofearest neighbor, is identical with the corresponding unit
expressing the three-body and mixed neighbor interactions isector p, given in Tables | or Il, in each and every case. As
terms of two-body interactions, even in the case of first orm consequence, the remaining orthogonal eigenvec¥grs,
second nearest neighbors of a bcc lattice and second nearestdZ,,, are confined to a plane that passes through the unit

IV. DISCUSSION
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vectorso, and7, . Besides, a coordinate axes transformationseparating three-body interactions from two-body interac-
that rotatesr, and 7, through an angley, aboutp, orients  tions and mixed neighbor interactions from same neighbor
these vectors alony,, andZ,, respectively’® The s and~  interactions, is of no consequence. On the contrary, the elas-
components of atomic displacements, which are, respedic inconsistency of the GTF model in the case of noncubic
tively, parallel and perpendicular to the plane of the CGWstructure§unequwocally establishes that this model does not
triangle, are resolved along the eigenvectdts and Z,.  incorporate any contributions from the three-body interac-
Thus the central and angular force constants that are equiviOns or mixed neighbor interactions and hence it is not in-

lent to these eigenvalues of diagonal matrix are determined/@Mant ‘t’;’ith respe;ct to rigri]d lz:og\);vrotago?s. Suchha mr?dﬁl
in all cases, by invoking the invariance of the former with cannot be equivalent to the model, even though the

: : ; . cubic symmetry restores the elastic consistency to all lattice
respect to coordinate axes rotations. The physically meanin namical models. It should therefore follow from this dis-

ful relations between the GTF constants and the scalar forc ssion that the GTF model is equivalent to the GSF model

constants, deduced by adopting this procedure in the case Qﬁd the DAF. AS. MAS. CPP. and other models that do not
bee and fee structures, are given in Appendix C. incorporate three-body or mixed neighbor interactions, are

It should therefore be clear from these relations that the,, ximate forms of the GSF model. The relations between
elements of the dynamical matri®, of the GTF model are  hejr force constants acquire their physical significance from

transformed into those of the GSF model in the case of bcghe fact that different two-body forces associated with these
and fcc structures, so long as the latter makes no other aggdels are inter-related.

sumptions regarding the nature of ion-ion interactions. Not-
withstanding the invariance of individual scalar force con- V. CONCLUSIONS
stants with respect to coordinate axes transformations, the

sor whereas those of the CGW model or any other sums Qfjane of the CGW triangle are not equal to the three-body
scalar force constants do not. Hence the present investigand mixed neighbor contributions confined to the plane. The
tions reveal that the GTF model for cubic structures isassorted sums of central and angular force constants of the
equivalent to the corresponding GSF model in all respectssSF model for bcc and fce structures transform as the ele-
Further, the irreconcilable differences between E@sand ments of a second rank tensor whereas those of the CGW
(8) make it abundantly clear that there is hardly any equivamodel do not, and hence the former is equivalent to the GTF
lence between the GTF model and the CGW model. Corremodel. All the previous claims regarding the equivalence
sponding expressions for GTF constants, obtained by matcletween the GTF and CGW models for cubic structures as
ing the matrix elements of the former with those of thewell as the presumption that the former incorporates the
latter1*1® do not comply with the transformation properties three-body interactions are inconsistent with the transforma-
of a second rank tensor. Thus it is wrong to equate the GT#ON properties of tensor force constants and therefore have
constants to the algebraic sums of central and angular ford@0 physical significance. Nevertheless, all models give iden-
constants of the CGW model or to ignore the basic differ-tical lattice dynamical results by readjusting the numerical
ences between these two models. Under these circumstanc¥glues of their force constants.

the claim of Moore and Upadhya¥fsand Upadhyayat al®

that the GTF model is identical to the CGW model or their ACKNOWLEDGMENT

assertion that the GTF model incorporates three-body inter- The author is greatly indebted to Dr. D. Ranganathan for
actions, based on the investigations that are incapable ehany valuable and stimulating discussions.

APPENDIX A: FORCE CONSTANT MATRICES AND EIGEN VECTORS OF THE BCC LATTICE

Force constant matrix

Representative Crystallographic Principal axes Eigenvectors

Neighbor atom axes §,Y,2) (X<Y<2) [X], [Y] [Z]
o1 V1 £ (U'l+21/1) 0 0 [111]
First (a,a,a) v, oy W 0 (01— vy) 0 [El 1
vy 1 0y 0 0 (01— 1) [ OTl]
(o] O 0 (o) 0 0 [200]
Second (2,0,0,) 0 N, O 0 N, O [010]
0 N\ 0 0 X [001]
o3 V3 0 (0’3+ V3) 0 0 [220]
Third (2a,2a,0) vz o3 O 0 (03—v3) O [TlO]

0 0 X 0 0 A3

[001]
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APPENDIX B: FORCE CONSTANT MATRICES AND EIGENVECTORS OF THE FCC LATTICE

Force constant matrix

Representative Crystallographic Principal axes Eigenvectors

Neighbor atom axes k,y,z) (X<Y<2) [X], [Y], [Z]
oo v O (o1+vy) 0 0 [110]
First (@a,0) v o O 0  (op—w) O [110]
Second (2,0,0) 0 N, O 0 XN, O [010]
0 0 X 0 0 X, [001]
o3 V3 13 (o3t 1) 0 0 [211]
Third (2a,a,a) v3 A3 g 0 A3+ pz—v3) 0 [111]
vz pm3 Mg 0 0 Ng—u3) [OTl]

APPENDIX C: EQUIVALENCE BETWEEN THE GTF

_ (4
CONSTANTS AND THE SCALAR FORCE CONSTANTS M=Glat et es] T2yt yatrsl+2lete]

(a) bee structure: +6[yet vl (C10
=p2, C11
01=(3)Br+ert €2+ est €4l + [yt vat vt val, 2= Pz (€19
(CY) No=3[eg+ €]+ 3[ v5+ vel, (C12
V1=(%)Bl—(%)[el+ez+63+e4]—(%)[y1+72+73+Ey4],) 03=(3){2B3+ (&) €+ €10) + () €11+ €15] + 2€13
Cc2
+[y7+ vsl+ (D[ Yo+ Y10l + (2 + ,
P (C3) [y7+ vsl+ (D[ Yot Y10l + () y11 ’)’1ﬂ}(Cl3)
No=2[ €5+ €]+ 2[ 5+ Vel (CH . . .
v3=(3){Bs— () €9t €10l = (3)[ €117F €12] — 2€13
=(3)Ba+(3)[2e;+ v4], C5
7= (2)fa+ (3] 2€r+ 1] (< —[ 2+ v8l= () Yo+ y10l = () y1a+ y12l},
v3=(3)B3— (5)[2€7+ /] (Co) (C19
and Na=(}){Ba+3([er+ eg]+ (2 e+ ex0]+ (D) en1+ €15])
Na=(5)[€&r+2v7]. (C7) +2(2€15+ [ 7+ v8]+ (B Yot 10l
(b fee structure: F D)yt v} 7is (c19
o01=(3)B1+(5){2[ €1+ €4+ €]+ [ y1+ ya+ 5]} and
+y2+ val+ 3 est ), ©8  ha=(D{BsBert eal}— () ot erol + (3H2ers
v1=(3)B1— (3){2[ €1+ 4+ €5]+[y1+ vat+ ¥s]} +[y7+ vsl+ (Z)[ Yo+ Y10l — [ Y11+ Y121} — V13-
—[v2+ v3]l—3[ et €71, (C9 (C16)
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