PHYSICAL REVIEW B VOLUME 57, NUMBER 21 1 JUNE 1998-I

Analysis of a three-component model phase diagram by catastrophe theory
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We analyze the thermodynamical potential of a lattice-gas model with three components and five parameters
using the methods of the catastrophe theory. We find the highest singularity, which has codimension five, and
establish its transversality. Hence the corresponding seven-degree Landau potential, the canonigij-form
wamor Ag, constitutes the adequate starting point to study the overall phase diagram of this model. We also
consider a singularity of lower codimension, which we relate to the phenomenon of critical azeotropy.
[S0163-182698)01021-3

[. INTRODUCTION body the properties of the thermodynamical potential of the
system near the phase transition of interest. Usually, this po-
The study of phase diagrams of complex systems is atential is well analyzed in the mathematical literature and its
important part of thermodynamics and applied physicsother properties can be safely assigned to the physical sys-
Phase diagrams can be constructed either from experiment&m. In summary, this procedure is phenomenological in na-
data or from theoretical modeldor example, molecular ture and amounts to a fitting of phase diagrams. Although it
model3. Among these, the wide class of lattice-gas modelaitilizes CT, it is only to take advantage of well studied po-
is particularly suitable for a mathematical analysis. Here weentials. It is very intuitive since one is matching topological
will focus our attention on the lattice-gas model for a systenobjects, whose properties can be realized many times by in-
with three components which simulates, in particular, a bi-spection. However, we shall adopt here the approach deter-
nary fluid mixture. A wide literature has already been de-mining the polynomial potentials from a complete singularity
voted to it from different points of view(Refs. 1-4, and analysis of the actual mean-field thermodynamical potential.
references thereinWe are mainly interested in attempting to A big advantage of our approach is that it is presented as a
present an overall analysis of its phase diagram, with particuwell-defined algorithm leading to a systematic way to ana-
lar attention to its highest multicritical point, that is, the onelyze any general problem susceptible to be studied within the
with the highest codimension in the five-dimensional param-<ontext of CT.
eter space that we consider. Futhermore, this second alternative agrees with the meth-
In the mean-field theory, the Gibbs potential is a functionods of Refs. 4,2, which in fact approach those of CT from the
of the concentration of two of the three components andoint of view of classical thermodynamicéSee Ref. 4 in
depends on three thermodynamical parameters, which can bbegard to the convergence of both techniquige intend to
taken as the temperature and the chemical potentials of thake the best of both worlds for the problem in hand: to draw
two components, and on three molecular parameters. Thatuition from thermodynamical methods and mathematical
phase diagram deduced from this function is an accurate dasoundness from the theorems of CT. In particular, we em-
scription of the system, except close to ttmulti)critical phasize the study of transversality of the actual thermody-
points, where fluctuations become important and alter signamical potentials which guarantees that those simple forms
nificantly the mean-field theory predictions. For this reason(polynomial potentials or canonical forjnepresent indeed
the Gibbs potential has been the basis for determining thap to a diffeomorphism the original thermodynamical poten-
overall phase diagrai® The method used in Ref. 2 estab- tial. We shall give a brief account of the CT algorithm uti-
lishes the qualitative features of the phase diagram, nameljized throughout the paper together with an Appendix for
the instability and(multi)critical (hypepsurfaces which di- more mathematical details.
vide its various regions, as well as some coexistence Our results essentially agree with and support those in
(hypepsurfaces. Those methods are considerably powerfuRef. 2. However, we hinge less on the visualization of the
but not sufficiently rigorous by mathematical standardsphase diagram and more in thiassificationof its singulari-
However, a well established mathematical theory for theies, relying for the construction of the phase diagram on the
analysis of singularities of potentials and hence the assocstraightforward method of gluing patches, each described by
ated phase diagrams does exist, hamely, catastrophe or si-standard canonical form for which the phase diagram can
gularity theory(CT). be found in the literature. Besides, we clearly establish the
Catastrophe theory has indeed been applied to the descripessibility of Landau potentials in two variables, that is, of
tion of phase transition$ and, in particular, of phase dia- corank-2 canonical forms, for the system with three compo-
grams of complex thermodynamical systems including fluidnents. This possibility was dismissed in Ref. 2. Nevertheless,
mixtures® The philosophy behind these applications is dif- this case is sufficiently complex on its own to postpone it for
ferent from ours: There one starts with a system on whicHuture work. The general issue of elimination of extraneous
some knowledge of the phase diagram is available, perhapsriables and the possibility of Landau potentials with sev-
its salient features, and surmises a polynorfli@inday po-  eral order parameters has already been studied.
tential from among the variety supplied by the CT classifi- This work is organized as follows: In Sec. Il we introduce
cation (called canonical forms which is supposed to em- the fundamental concepts of CT, the more technical points of
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which are left for the Appendix. In Sec. Ill we describe theit is a generic property of functions to have only isolated
thermodynamical potential to be analyzed, give its physicatritical points and such functions are stable under perturba-
interpretation and discuss general stability questions whiclions. We warn the reader not to confuse thermodynamical
help connect usual concepts in thermodynamics with those iand mathematical terminology. In thermodynamical terms a
catastrophe theory. In Sec. IV we apply the CT program tacritical point is just an equilibrium point and the word criti-
the potential previously introduced, reducing it first to a one-cal is reserved for a higher singularity. Two manifoldsR3f
variable potential. In Sec. V we show a solution with theintersect transversally if either their intersection is empty or
highest codimension and its transversality, thereby concludthey intersect transversally at all their points of intersection,
ing that it is thewigwam catastropheWe also consider in that is, the direct sum of their tangent spaces at the point has
this section a peculiar singularity of lower codimension, as-dimensionn or they span the tangent spaé at that point.
sociated with the physics of critical azeotropy. The last sec- CT has usually not been applied in a rigorous way using
tion is devoted to a discussion of the previous results and ddill these concepts and theorems needed for its correct imple-
the structure of the phase diagram entailed by them. mentation. We claim in this work that if this is done so, the
procedure proposed by the theory is not by any means cum-
bersome and time consuming. The catastrophe program pro-
IIl. GENERALITIES ABOUT CATASTROPHE THEORY posed here provides a very useful and systematic way to

In this section we are going to review very briefly the exa_mine and cl_assify with not very much effort general be-
main concepts of CT. The reader desirous of more technicdl2viors of physical systems. _ ,
details is referred to Refs. 8,9. As is well known, CT deals L€t F(x,A) t;e a real function with state variables
with the singularities of smooth real-valued functions. TheX1. . .- Xn (xeR") and control parameters,, ... A, (A
nature of these singularities is revealed by perturbing thos& R'); that is,F:R™*"—R. We are to proceed as follows:
functions. If as a result of a perturbation the qualitative prop-
erties of the function remain unaffected we will say that this(1) \we pick (xo,Ao) such thatx, is a degenerate critical
function is stable or structurally stable. In other words, a  point of F(x,)\) and we consider the unfoldint(x,\)
function is said to be locally stable at a given point if there is  _ F(X+Xg, A +1g) — F(Xo,\g) andh(x)=f(x,0).

a smooth change of coordinates so that the new function ha@ One calculates the determinacy and codimensioih of
the same structure as the old function. If a function is stable from thek jet of h (see Appendix Of course, ifh is k

at all points then we will say that this function is globally determined theh~j*(h), that is, the functiom is equal
stable. In a more precise way, a given function is a pertur- t0 j*(h) up to a chan é of coo’rdinates and hence the
bation of another one at a given point if the distance between J up 9 o y
both functions is arbitrary small. The concept of distance a'lre.equwalent and have qlt(Jalltatlver the same proper-
leads us to topology. We can define the Taylor-series topol- ties; thergfore, cody() = cod(j ,(h))' . i
ogy in the spac&® whered gives the number of the Taylor- 3 Qne studies th& transversz_;\hty of and if this functl_on
series coefficients. Thus tHejet of a given function at a is k tranversal we can affirm th#& and the canonical
given point is the Taylor series truncated beyond terms of form of the unfolding ofh are isomorphic and we can
degreek. Several definitions of distances can be given and  replace the originaF function for this canonical unfold-
function. ceptible to be studied by CT.

Now the next important question is what information is

lost when we truncate the Taylor series of a function aroun% orlf\?élr?t\i,\g::g‘;?IZxcé\Inplrgg:jaeTaW%rdoMgg\t/vr(]aiegotr?vg]rYt?;l)(ﬂ?w any
a given point, namely, the problem of determinacy. It con- Pie, y

sists of determining whether a function can be truncated an8rder to classify degenerate or non-degenerate critical points

if so, for what value of the degree of the Taylor expansion iton the state variables space. Both conventions are not intrin-
can be truncated without any loss of substantial information>' to CT. Or_1|y When_we d_eal with the time evplunon or
Furthermore, to determine the most general family of func-When dynamical considerations about the physical system

tions of the smallest dimensiahwhich contains the original ﬁ;e gggﬁ;‘jtirﬁgbg?zlfnﬁ]g'f; fr?gs\/:?xgncgﬁvii\t/iggs lfé I::,
function is called the problem of unfolding. The unfolding b P

dimension is the number of parameters describing a generjlent only the two exreme cases in a continuum of possibili-

perturbation and the minimum number to describe it is calle les. The separatrlc_es we _obtaln when a given convention is
the codimension. When all the unfolding terms go to Zeroadopted(from the bifurcation equations for the delay con-

the remainder of the universal unfolding is called ¢fegmof vention or the Cla_lusms-CIapeyron equations for the Maxwell
the canonical form. convention are different and very much related to the local

The next step is to introduce the concept of transversalil%r nonlocal behavior of the physical system, respectively.

as a means to study structure stability and genericity. Thi gg}e}lg’eﬁhe dizgﬁgggg)?notrh;nTiltdeergfuﬁyaﬁ; (iﬁgvreer:('j%?sm?;s_
concept was originally introduced by Théfrand, in general, argely di .
ested in more information is referred to Refs. 10 and 9.

is not widely used to classify physical phenomena in terms
of elementary ca’gastrophes. A prpperty is called generic if Ill. DESCRIPTION OF THE GIBBS POTENTIAL

the subset for which the property is valid is open and dense

in the original set. In other words, when a property is invari-  According to Ref 2 a phenomenological model for a ter-
ant under a perturbation, this property is called generic onary mixture is obtained by assuming the Gibbs potential in
structurally stable. The theorem of transversality shows thathe form
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G= N[a'yz+b'xz+c'xy+RT(x In x+y In y+z In )], Qerlyir)g geometrical structure i.n the total space of variables,
(1) including state and control variables, called@antact struc-

) ture. We address the reader interested in the general formu-
whereN=N,+Ny+N; gives the number of total moles and |ation to the literaturé? How the Legendre transform is
Ny, Ny, andN, are the moles of each component. The vari-implemented in our case will be seen in the next section.
ablesx,y,z are the mole fractions defined by=N,/N, Y  Further singularities are studied afterwards with the one-
=Ny /N, andz=N_/N; and hence we have the constraint variable potential. Next comes what can be called critical
instability, followed by the tricritical point and onwards.

x+y+z=1, 2 Several systems of interest are described by this Gibbs
where O<X,ylz< 1. Fina”y, a’, b’, andc’ are phenomeno- pOtential Eq(l) A ternary mixture at constant volume, for
logical energy parameters. The energy part is the most ge@xample, a mixture of metals; a spin lattice where the mol-
eral quadratic term, given that+y+z=1. This model can €cules have spin one; a binary fluid mixture, where one of
be derived from the mean-field theory of a lattice modelthe three states represents a vacancy instead of a new mol-
Hamiltonian with variables taking three different states, rep-ecule and the corresponding concentration is associated to a
resenting the molecules of the three Componé:h'rg]en a” variable total Volume In the last Case-, the pOSSIb|e phases are
b’, andc’ represent molecular interaction parameters. Let u¥apor, miscible liquid mixture, and inmiscible liquid mix-
consider the Gibbs potential E(L) in a reduced form, di- ture. The convenient extensive variables are the specific vol-
viding by NRT, and thus umev and the relative concentratior= x/(x+y) of the two

fluids and the intensive variables are the pressure and the

G(x,y,z,a,b,c)=ayz+bxz+cxy+xInx+ylIny+zinz  chemical potential of one of the fluids. Moreover, the ther-

(3) modynamical potential Eq1) depends off, v, andx and is

where now the new parameteasb,c are defined with re-  therefore the Helmholtz potenti&(T,v,x). This system is
spect to the old onea’,b’,c’ dividing them byRT. The  perhaps the most interesting for applications, given the great
concentrations are supposed to be determined by somgmount of experimental data on binary fluid mixtuté$?
boundary conditions, such as the values of the chemical padowever, the potentiall) is not the most popular for fitting
tentials of two components, say, andu, . The mean-field data; a related form which has similar dependence on the
theory prescription is then to minimize th®nequilibrium  relative concentration of the two fluids but is of the Van der
Gibbs potential G- u,x—uyy with respect tox andy to  Waals type for the volume is usually considered instead. We
obtain the equilibrium conditions believe that this form, which is much more difficult to ana-

G 9G lyze, gives essentially the same qualitative behavior.

ox Hxe My -

y IV. APPLYING THE CT PROGRAM

They allow us to solve fox andy as functions ofu,., 4y and From Eqgs.(3) and(2), we have a function depending only
the parameters, b, and c, provided that the Jacobian 4, o variablesx andy, namely

detd(uy,m)ld(xy) =detd;G is not zero.

Thermodynamical stability further requires that the matrix j(x v, a,b,c) =ay(1—x—y)+bx(1—x—y)+cxy+x In x
aisz be positive definite. This property is callebnvexity
and must hold for any thermodynamical potential, except on +y Iny+(1-x=y)In(1-x-y). (4)
the instability hypersurfaces, which are the simplest singu-
larities we may encounter in a phase diagram. An instability Now consider the functiorH(x,y,a,b,c)—u, (where
can occur only near a phase transition, when two equilibriunthe subindices indicate derivatives with respect to the vari-
states, one unstable—hence unphysical—and the other met@ble explicitly written and u,=u,) and let the point
stable coalesce and disappear. In other words, a metastahiba),yo,ao,bo,co,,ug) be such thatHy(Po)—,ug=O and
state becomes unstable and, consequently, we speak of instdy,(Po) >0, wherePy=(Xq,Yo,20,Pq,Co). The first condi-
bility. This is the kind of sudden change in the configurationtion is the equilibrium condition foy and the second one is
of a system to which CT owes its name. In mathematicatequired by stability in the direction. Then, by the implicit
terms we say that theritical point (equilibrium statg is  function theorem, there exists a unique function
degenerate. As a consequence, one cannot solvedady y(x,a,b,c,u,) defined in a neighborhood of
as functions ofu,,u, or the solution is multivalued, corre- (xg,a9,bg,Cq,13) with values in a neighborhood gf, such
sponding to the existence of various equilibrium states. Thenhat H,,(x,y,a,b,c)>0, in these neighborhoods, and
simplest instability occurs when only one eigenvalue of theH (x, ¢(x,a,b,c, 1,),a,b,c)— u,=0 in the domain ofy and
stability matrix vanishes; that is, the instability only affects llf(Xo,ao,bO,Co,Mg)Iyo-
one variable. One is to focus on this Variable, which is called By soiving fory as a function Otu'Z and substituting into
relevant to consider further singularities. Therefore, it is 4 — /.y we have performed a Legendre transformation, ef-

convenient to transform the potential into a function of justfectively eliminating the variablg. Next we substract;x
the relevant variable by solving the equilibrium conditions yhere 1, = u,) to obtain the function

for the other variables and substituting for them. The stan-

dard thermodynamical procedure that performs this opera- L(x,a,b,C, i1, 0) =H (X, h(x,a,b,C, 115),a,b,C)

tion is the Legendre transform. In fact, this procedure can be

used for potentials in other fields, whenever there is an un- — potp(X,a,b,C o) — X, (5)
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representing a one variable nonequilibrium Gibbs potential

In order to have a function defined in a neighborhood_of 0
=(0,0,0,0,0,0) we consider the new function

Li(x,a,b,c,uq,u0)=L(X+Xy,a+ag,b+bg,C

0 0
+Coy gt g, phpt pp)

_L(X01a01bOICO!Mg!Mg)' (6)
Then we have the following equations:
L1(0)=0 (7)

and

Lix(X,a,b,C, 1, 12) =Hy[X+Xq,p(x+Xq,a+ag,b+bg,C
+Co, i+ 13),a+ag,b+bg,c+Col

+Hyghy— (ot w9 = (1),
8

so that

L1,(0)=H(Pg)— u!. (9)

Suppose now thdt-IX(Po)—,u2=O (the remaining equi-
librium condition. Then 0 would be called eritical point of
L,(x,0,0,0,0,0)(in mathematical terminologyThis function
will be denoted byg,(x), which is thegermto be studied.
Of course,g;(0)=0 andg;(0)=0 from Egs.(7) and (9).
The two first derivatives ofj; are

91(X) =Hy[ X+ X, $(X+X0,80,D0,Co, 43),80, b ,Co] _(,“(1))
10

and
97(X) = Hyo X+ Xo, ¥(X+Xg,80,b0,Co,13),80,b0,Co]
+ny(_)¢x(_)- (11)
In particular
941(0)=Hy(Pg) +Hyy(Po) thx(X0,80,b0,Co,143) (12)
with
- ny(PO)
Hyy( PO) ,

as deduced fronH,—u,=0 by taking the derivative with
respect tax. Suppose that the Hessian ldfis such that

lﬂX(XOIa()vbOlCOuu’g): (13)

Hyx(Po)Hyy(Po) —Hz,(Po) =0, (14

then gj(0)=0 and O is a degenerate critical point @f.

Finally, we also assume thag(0)=g(0)=g%(0)

=g%(0)=0. Then we have imposed five conditions gn

altogether and we should be able to solve for

(X0,Y0,a9,bg,Co). In this case, we say that we have reached
the highest codimension. We will see in the next section that

there is indeed such a solution.

J. GAITE, J. MARGALEF-ROIG, AND S. MIRET-ARTB

V. RESULTS

A. Highest singularity

Now we look for a point which fulfills the five conditions
for the highest singularity mentioned above. We succesively
have that

y0: 1 - 2X0, (15)
bo=Xo*, (16)
142 .
ao-%-m, (17

and
36x2+4xo—1=0. (18)

Thus from the last equation we have thxgt= (1/10—1/)18
=0.120 127. Moreover,

i -2 1472 _,
g1 (0)=6X%, | ¥sx— —55 %o | #0,
27
where
256 (157 , 11— 212 53x3—4x0+1
¥sx=1g7%0 | 70 X0 ( Xo)“+ R1-2x)?|'

The ensuing values of the control parameters aje cg
=3(5+2110)/20=1.698 68, by=2(1+ /10)=8.324 56
and ud=(-2+7y10)/4=5.03399, ud=(1—/5/2)/2
+In[2\/10]=1.553 87.

Now we apply results of singularity theo#:'°

The 7 jet of gy is j’(g1)=1/7'9;"(0)x" with
97" (0)#0.
The essence aj; respect the identity is 7 and there-
fore o(g1)=7, whereo(g,) is the determinacy aof;
(see the Appendix for the definition of this concdept
The codimension of j’(g;) is codj’(gy))
=dim vect(x)/(x®))=5 (see the Appendjx and
o(j'(91))<7. Thusj’(g,) is 7 determinatej’(g,)
~g, andg, is 7 determinate. Moreover, caglf) =5
anda(g,)=7. A basis of this quotient vector space is
given by the set {[x],...[x°]}. Then
91N 1y - Ag) =01(X) F A X+ A X2+ ..+ AsX®
is a canonical unfolding Kransversal of thgerm g;
for every k>0; in particular, fork=7. Finally g4
~x7.
The L, function is an unfolding 7 transversal gf
because one can proysee the Appendijx

()= + Vi, +0" M, (19)
whereV,_l is the real linear space generated by

{L1a(x,0)=L14(0,0), ... L1 ,,(x,0)~L;,, (0,0},
where the subindices, ... ,u, denote derivatives
with respect to the corresponding parameters. Note
that Eqg.(19) has the following expression:

0]
(i)

(iii)

(iv)
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— (x5 22 1 A
(X)=(x°)+1{ x(—=1+2xq) +x 3%o0 (1—-3xq) +x 3%t g%o (—1+3xp)
iy _28+3 1‘3_52+5 . 11+1352_3+16_3
X X0 g T (3%0 L%o " 7agp) X Y3~ L gyt gy g %o 7% 7).
1 2 4 1 352 1 352 1
_ 2 3”1 a4 _ y—2, — 77,2 5 — "3 _y
31T gXo T T gXo T 5450 ) X (24 25 %0 ~Xogy Vs
-2 1128 1 352
_ _ _y2 3__—~y-1 4 — 7,72 5 __—=y-3
X(1—2Xq) 3X +X g %o +X 52 25 X0 +X 51 Xo sy 9 %o )
2 4 1 352 1
2oyl 30 2, A, -390 5
XX“3Xg ~X g5%o +4!x Xo 45+5!x( ¢5X)], (20)

where the Taylor expansions W_ have been truncated at

x® because the terms of degree sixth and higher are already
included in(x®). Solving Eq.(20) amounts to proving that a NOW the bifurcation set is obtained by a projection onto the
generic fifth-degree polynomial with no independent termParameter space, that is, by eliminating the variabie this
can be generated as a linear combination of the five polyngsyStém of two equations.

mials between the curly brackets. Hence it implies the reso-

42u5+ 2\ ,+ 6\ gu+ 12\ u?+ 20N su3=0.

lution of a linear system whose determinant ig
(—58944x3+ 729s,) # 0.
Finally, this equality, Eq.(20), holds and consequently;
andL, are isomorphic as unfoldings amd can be qualita-
tively studied by the polynomial

X+ MXA N AP+ A+ N,
which in the terminology of CT corresponds to tiwggwam
or Ag catastrophe

B. Critical azeotropy as a singularity

In the process of solving the equations that lead to the
highest singularity one goes through singularities of lower
codimension. They have no particular interest by themselves
except in one case, which we proceed to describe.

Thus we analyze now the five conditions one by one. The
equilibrium conditions allow one to expresg andy, as
functions of the parameters, resulting iny,
= zp(xo,ao,bo,co,,ug), already used to defing;(x), and an

As a result of this analysis we can affirm that there areequation forx, derived from equating Eq9) to zero. How-

three changes of coordinates, ¢,, and ¢; and a pertur-
batione of parameters such that

Ly(x,a,b,C, 1, 2)=U"+Nu+AuZ+---+Au®
+8(a,b,C,,LLl,,LL2) (21)

with
u= QD3p1QDl(X,a,b,C,M1 11“2)1

. 1)\5)1

where p; means thdirst projection p;:R**°>—=R, that is,
P1(X1, ... Xe) =Xy.

Moreover, the bifurcation set of E¢6) and that corre-
sponding to

¢Z(a1bicwu’1 1/"’2):()\11 v

U N U+ Au% 4+ Agu® (22)

are diffeomorphic and we work rather with E@2) due to
its simplicity. The equilibrium manifold in,\, ... A\5) is

ever, we prefer to keey, andyy in the equations to follow,
for it is simpler, understanding that they are to be substituted
in the end.

The first condition org,(x) is g7(0)=0 or

detHij=H(Po)Hyy(Po) —HZ,(Po)=0. (23
The Hessian matrix is
_ aszt+ag ag
(Hij)= s st ay)’ (24)
with ag=c—a—b+z1, ay=a—c—b+x"%, and a,=b

—a—c+y 1. We have reinstated=1—x—y for the sake

of symmetry and we suppress the subindices zero relative to

P, in the next equations. From E(R4),
detHj;=azai+ aza,+ aa,;=0, (25

which is a quadratic equation on eithasb,c or x,y. The

obtained from Eq.(22) by equating the first derivative to next conditiong?’(0)=0 is equivalent to

Zero

7ub+ N+ 20 u+ 3\ guP+ 4N u3+5Agut=0,

1

1 1 1

3 3 3_
;zaz-l- —a]— X_Z(a1+ ay)°=0

y (26)

and, furthermore, instability occurs if the second derivative

also vanishes,

or



13532 J. GAITE, J. MARGALEF-ROIG, AND S. MIRET-ARTB 57

1, 1 . 1 obtain two other solutions from this one by using the sym-
2o plasta)’+ —5a1=0 (27)  metry of the original potentiaB(x,y,z,a,b,c) under simul-
y z . .
taneous permutations okfy,z) and @,b,c). The way in
or which they arise is clear in the last subsection. It is clear as
well that there are no further solutions with codimension
1 s, L 5.1 4 five
- = (aztay)’+ a3+ =a;=0. (28 y
X y z Some readers may be concerned by the fact that our so-

lution, Eq.(22), is a Landau potential which is not bounded
Next we considegilv(O)=0. Again this equation can be below. This means that the equilibrium states are actually not

separated into three symmetric options. Each one imposedaPle but metastable. The catastrophe pBintorresponds
new conditions ory; and hence on the elements of the Hes-10 @ degene_rate _mste_lblllty rather_thg_n toa r_nultlcr_ltlcal point.
sian matrix. Furthermore, they can only be fulfilled if two T P€ Precise, it arises as a tricritical point, with Landau
new quantities vanish. In other words, the codimension inPotentialx®, merges with an unstable equilibrium state and
creases by two units with only one condition, a nongeneridisappears, for which the appropriate name is tricritical un-
situation. We choose the solutiong=a;=0 such that stable point. Sinc@}" (0)#0, there is no tetracritical point
Hyx(Po) =Hyy(Po)=0. There are two more solutions, ob- in the phase diagram. In this we disagree with Ref. 2, where
tainable by cyclic permutation of the labels of this. As a  they assert to have three tetracritical points witH'(0)
counterpart of the previous extra increase of the codimensior:0. The conditions they obtain for their tetracritical points
by one unit, the next condition is identically fulfilled, are precisely the same five conditions we have for our tric-
07(0)=0. Finally, fromg3j'(0)=0 one obtains the solution ritical unstable point but the codimension of a generic tetrac-
quoted in the subsection above. ritical point is six. Thus it seems that they are calling tetrac-
Let us compare the foregoing analysis with the one in theitical points what actually are tricritical unstable points.
previous literature on this mod&!? This analysis goes as In some contexts the existence of potentials not bounded
follows. The first conditiong7(0)=0 or, equivalently, that below is perfectly natural; for example, in optics, where
the Hessian oH be null has two types of solutions, namely, caustics can be studied as stationary valies necessarily
a simple solutionp; *+ o, *+ a3 =0, and a second triple minima) of the eikonal® with the CT algorithm we have
solution that requires that two of the; vanish simulta- followed. However, in thermodynamics the presence of
neously. The first type is more generic but, unfortunately metastable states must imply the existence of lower stable
does not lead to a high codimension singularity, since th&quilibrium states. We must remember that the Landau po-
equationg}’(0)=0 has no solution for it. One of the second- tential is a local object and provides no information on the
type solutions is the one we have considered in the previoudehavior of the thermodynamical potential far from the point
subsection. They are called symmetric solutions because tH&- Whether there is an absolute minimum or not is a global
additional condition on the Hessian matrix elements impliegiuestion beyond the methods of CT. To check the presence
a symmetry in the phase diagram, for example,c in our ~ Of other minima for the values of the parameters
solution. (ag,bg,Co, 1Y, u9) which produce thavigwam catastrophe
Alternatively, we can avoid making any choice on thewe may solve the equations,(x,y,aq,bo,Co) —#3=0 and
type of solution until the last moment, namely, when weHy(x,y,aO,bO,co)—,ugzo for the whole range of the vari-
demandg}’(0)=0. Then this condition implies by itself ablesx andy. Since they are trascendental equations, they
g7(0)=0. In other words, the singularities given by thesemust be solved numerically. The result is that there are no
two conditions are inextricably linked: the first one entailsmore solutions. However, there is in fact ahsolutemini-
the second one. Moreover, the first condition led us to takénum on the boundary at=1, y=0, which does not show
Hyx(Po) =Hyy(Po) =0 in addition to det;; =0. We may re- with the previous equations because the derivatives of the
call here that the vanishing of these two elements of thépotential diverge on it. Nevertheless, it can be found by a
stability matrix for a binary fluid mixture has a thermody- numerical study oH(x,y,a,,bq,Cg). That minimum corre-
namical interpretation: It occurs when there is critical azeotsponds to the phase with a pure first component, far from the
ropy (Ref. 13, pp. 197-199 Azeotropy is not a singularity valuexy=0.12. If one does not want to deal with metastable
on its own but when it superposes on a critical point it en-states, one may choose two ways: The first is to consider the
hances its singularity producing a new one. We see whéhtighest singularity unphysical and to restrict to lower codi-
kind of singularity it is in our case, namely, the one given bymension singularities which are bounded below, as is sen-
g5(0)=0—a tricritical point. At this moment, we are not sible for binary fluid mixtures—see the next paragraph. The
able to say if this is just a peculiarity of the particular three-other is to complicate the original model adding new control
component model we study or in fact constitutes a generdbarameters in the potential—like with energy terms of higher
feature. degree—and look for the nexor highey codimension sin-
gularity.
V1. DISCUSSION The topology of the overall phase diggram is formed b)_/
gluing three patches, each corresponding to the phase dia-
The solution with the highest codimension, namely, five,gram of thewigwam catastropheas given in the literatur¥.
which has been found above must be isolated; that is, iThe Taylor-series expansions on which the CT is based are
cannot belong to a continuos family of solutions. Neverthesupposed to be valid in each patch. The coordinates on each
less, there can be a discrete set of solutions. Indeed, we cg@atch are not related and therefore we can only obtain topo-

Each of these is an equation of third degreajh,c.
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logical information. Even the topological matching is not athe operations +g and\-f with A e R give to E(n) the

Since the highest singularities in our analysis are essentiallm(n) is generated byxi, ... X,, that is, M(n)={fyx;
the same as those in Ref. 2, so is the phase diagram. The... " ¢ y /f, faeE(M}. In general, if fq,....f,
phase diagram is of great utility for experimentalists and we_ E(n), we designate byf,, ... f,) to the ideal generated
should like to obtain some more concrete information. Weoy f,, £, that is,

must notice that in a particular model, for example, a binary

fluid mixture, the energy parameters are fixed and one can (fq,...,f)={f19:+---+f,9,/91,....9n e E(N)}.

only tune the chemical potentials—one of which is to bel_n particular,M(n) = (xy., . . . Xo)-

interpreted as pressure in the binary mixture—and the tem It is possible to define powers & (n) asM(n). It can
perature. Therefore, one is interested in three-dimension%le proven thaM (n)¥ is equal to the ideal dE(n) génerated
sections of the overall phase diagram. In these sections it g the monomials i of deareek. In particular. for
not generic to have a tricritical poinfwhich has codimen- y 2 oYt 'Z’X” 9 - N particu K+1
sion four) a fact well known to experimentalists. Generic eixe:cmpée&x/,g?f—o(x_g(y;yk). V\Le havg r?lljsio thail (n) h
and nongeneric sections of the phase diagram ofigezam (;e;{rinti\Eg)of de(gr)e; i<k}, where wit we mean the

catastropheare expected to cover all the possibilities. In re- | il define t £ dioh
gard with the nonboundness below of tveggwam catastro- |nasimrar way, we cann. € |nne germsol dipheomor-
hisms of classe from R" in R" which transform 0 in O.

phe pointed out above, codimension-four sections provid hi t is denoted b W that t
the physically meaningful information, including generic tri- IS SeL 1S denote _ﬁ(n). € say that twogermsare
equivalent if there exists a change of coordinatesG(n)

itical points.
griica’ points such thatf =g¢ and it is denoted by~g. When thek jets

Another solution of deH;;=0 is, of course, that all the ke ™) of ¢ . | hat th P
matrix elements be null so the matrix has rank zero or coran& eh) o tWO_ unctions are equal we say that t ese func-
tions arek equivalent f~,g). A germ fis k determinate if

2. This means that one cannot use the implicit function theo ;
rem to reduce to a function of one variable and one is tdOf €verygerm gsuch that botlk jets are equal we have that
proceed with the CT program for a function of two variables.! ~9- The determinacy of germ fis the smallest number
The next step is to analyze the 3 jet of this function, that isk€ ' such thatf is k determinate and it is callec_tk(f )
the form given by the third derivatives. According to its sig- Therefore, we notice that if is k determinate them~j*f, if
nature, given by the sign of its discriminant, there are thred 1S k determinate and~\g theng is k determinate, iff is
possible cases: If it is negative, the canonical fornkis K determinate and~g theng is k determinate.

—3xy?, called theelliptic umbilic catastrophe; if it is posi- The ideal of Jacobi of germ fis defined by

tive the canonical form isc+3xy?, called thehyperbolic

umbilic catastrophe; if it is null, the 3 form is degenerate, and A(f )=(Dy f,....Dy f),

one is to analyze the 4 jet to determine the type of singular- ! n

ity, which may be theparabolic umbiliccatastrophe or a type whereD, , ... Dy are the partial derivatives with respect to
even more complex. The calculations driving at establishinghe x, , . .. x, variables. Iff ~g thenA(f )=A(g).

the highest singularity in our five-dimensional parameter Now let us assume thdte M(n)2. Then A(f )CM(n)
space are complicated and the results for corank 2 shall bghd we can speak of the quotient vector spiside)/A(f ).

reported in the futuré? The dimension of this vector space is called a codimension
of f, cod(f ). It can be proven that if e M(n) then codf )
ACKNOWLEDGMENTS is finite if and only if o(f ) is finite and in this case(f )

—2=<cod(f ). Moreover, if f~g then codf )=cod(g).
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folding of f if g(x,0)=f(x) (with r parameters which we

define ag/q, . ...y,). Now let us assume thgte M(n+r) is

an unfolding off e M(n)? andke N. We say thatg is k
In this Appendix we are going to present the main math-transversal if

ematical concepts widely introduced in Refs. 15, 16, and it is

necessary to follow the main steps developed in Sec. _ k+1

V. Let us consider real functions of classand defined in MM =4 )+ M)+ Vg,

a neighborhood of @ R". We establish that two functions WhereV is the real vector subset & (n) generated by the

are equivalent if they coincide in a neighborhood of 0. ThevectorsDy g(x,0)— Dy, g(0,0), ... .Dy g(x,0)—Dy g(0,0).

classes we obtain are callgdrmsof functions and the set of Finally, the theorem ok transversality for unfoldings can

germsis denoted byE(n). The operationd+g andf-g be stated as follows: Let us considee M(n)? k determi-

give to E(n) the structure of a ring andM(n)={f nate andg and h two unfoldings of f with r parameters

e E(n)/f(0)=0} is a maximal ideal of this ring. Moreover, which arek tranversal. Them andh are isomorphic.

APPENDIX
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