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Analysis of a three-component model phase diagram by catastrophe theory

J. Gaite,* J. Margalef-Roig, and S. Miret-Arte´s†

Instituto de Matema´ticas y Fı́sica Fundamental, Serrano 123, 28006 Madrid, Spain
~Received 7 July 1997; revised manuscript received 15 October 1997!

We analyze the thermodynamical potential of a lattice-gas model with three components and five parameters
using the methods of the catastrophe theory. We find the highest singularity, which has codimension five, and
establish its transversality. Hence the corresponding seven-degree Landau potential, the canonical formwig-
wamor A6 , constitutes the adequate starting point to study the overall phase diagram of this model. We also
consider a singularity of lower codimension, which we relate to the phenomenon of critical azeotropy.
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I. INTRODUCTION

The study of phase diagrams of complex systems is
important part of thermodynamics and applied physi
Phase diagrams can be constructed either from experim
data or from theoretical models~for example, molecular
models!. Among these, the wide class of lattice-gas mod
is particularly suitable for a mathematical analysis. Here
will focus our attention on the lattice-gas model for a syst
with three components which simulates, in particular, a
nary fluid mixture. A wide literature has already been d
voted to it from different points of view~Refs. 1–4, and
references therein!. We are mainly interested in attempting
present an overall analysis of its phase diagram, with part
lar attention to its highest multicritical point, that is, the o
with the highest codimension in the five-dimensional para
eter space that we consider.

In the mean-field theory, the Gibbs potential is a functi
of the concentration of two of the three components a
depends on three thermodynamical parameters, which ca
taken as the temperature and the chemical potentials o
two components, and on three molecular parameters.
phase diagram deduced from this function is an accurate
scription of the system, except close to the~multi!critical
points, where fluctuations become important and alter
nificantly the mean-field theory predictions. For this reas
the Gibbs potential has been the basis for determining
overall phase diagram.2,3 The method used in Ref. 2 esta
lishes the qualitative features of the phase diagram, nam
the instability and~multi!critical ~hyper!surfaces which di-
vide its various regions, as well as some coexiste
~hyper!surfaces. Those methods are considerably powe
but not sufficiently rigorous by mathematical standar
However, a well established mathematical theory for
analysis of singularities of potentials and hence the ass
ated phase diagrams does exist, namely, catastrophe o
gularity theory~CT!.

Catastrophe theory has indeed been applied to the des
tion of phase transitions5,6 and, in particular, of phase dia
grams of complex thermodynamical systems including fl
mixtures.6 The philosophy behind these applications is d
ferent from ours: There one starts with a system on wh
some knowledge of the phase diagram is available, perh
its salient features, and surmises a polynomial~Landau! po-
tential from among the variety supplied by the CT class
cation ~called canonical forms!, which is supposed to em
570163-1829/98/57~21!/13527~8!/$15.00
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body the properties of the thermodynamical potential of
system near the phase transition of interest. Usually, this
tential is well analyzed in the mathematical literature and
other properties can be safely assigned to the physical
tem. In summary, this procedure is phenomenological in
ture and amounts to a fitting of phase diagrams. Althoug
utilizes CT, it is only to take advantage of well studied p
tentials. It is very intuitive since one is matching topologic
objects, whose properties can be realized many times by
spection. However, we shall adopt here the approach de
mining the polynomial potentials from a complete singular
analysis of the actual mean-field thermodynamical poten
A big advantage of our approach is that it is presented a
well-defined algorithm leading to a systematic way to an
lyze any general problem susceptible to be studied within
context of CT.

Futhermore, this second alternative agrees with the m
ods of Refs. 4,2, which in fact approach those of CT from
point of view of classical thermodynamics.~See Ref. 4 in
regard to the convergence of both techniques!. We intend to
take the best of both worlds for the problem in hand: to dr
intuition from thermodynamical methods and mathemati
soundness from the theorems of CT. In particular, we e
phasize the study of transversality of the actual thermo
namical potentials which guarantees that those simple fo
~polynomial potentials or canonical forms! represent indeed
up to a diffeomorphism the original thermodynamical pote
tial. We shall give a brief account of the CT algorithm u
lized throughout the paper together with an Appendix
more mathematical details.

Our results essentially agree with and support those
Ref. 2. However, we hinge less on the visualization of t
phase diagram and more in theclassificationof its singulari-
ties, relying for the construction of the phase diagram on
straightforward method of gluing patches, each described
a standard canonical form for which the phase diagram
be found in the literature. Besides, we clearly establish
possibility of Landau potentials in two variables, that is,
corank-2 canonical forms, for the system with three com
nents. This possibility was dismissed in Ref. 2. Neverthele
this case is sufficiently complex on its own to postpone it
future work. The general issue of elimination of extraneo
variables and the possibility of Landau potentials with se
eral order parameters has already been studied.7

This work is organized as follows: In Sec. II we introduc
the fundamental concepts of CT, the more technical point
13 527 © 1998 The American Physical Society



he
ica
ic
e
t
e

he
lu

as
ec
d

e
ic
al
he
os
p

his
, a
is
h
b
ly
tu
ee
c

po
-

o
n

is
n
n
an

on
nc
l
g
e

lle
ro

li
h

m
c
ns
ri
o

th

ed
ba-
ical
s a
i-

or
on,
has

ing
ple-

he
um-
pro-

to
e-

s

f

ey
er-

l
n

ny

ints
trin-
r

tem
It is
re-
ili-

n is
n-
ell
al
ly.
has
ter-

r-
l in

13 528 57J. GAITE, J. MARGALEF-ROIG, AND S. MIRET-ARTE´ S
which are left for the Appendix. In Sec. III we describe t
thermodynamical potential to be analyzed, give its phys
interpretation and discuss general stability questions wh
help connect usual concepts in thermodynamics with thos
catastrophe theory. In Sec. IV we apply the CT program
the potential previously introduced, reducing it first to a on
variable potential. In Sec. V we show a solution with t
highest codimension and its transversality, thereby conc
ing that it is thewigwam catastrophe. We also consider in
this section a peculiar singularity of lower codimension,
sociated with the physics of critical azeotropy. The last s
tion is devoted to a discussion of the previous results an
the structure of the phase diagram entailed by them.

II. GENERALITIES ABOUT CATASTROPHE THEORY

In this section we are going to review very briefly th
main concepts of CT. The reader desirous of more techn
details is referred to Refs. 8,9. As is well known, CT de
with the singularities of smooth real-valued functions. T
nature of these singularities is revealed by perturbing th
functions. If as a result of a perturbation the qualitative pro
erties of the function remain unaffected we will say that t
function is stable or structurally stable. In other words
function is said to be locally stable at a given point if there
a smooth change of coordinates so that the new function
the same structure as the old function. If a function is sta
at all points then we will say that this function is global
stable. In a more precise way, a given function is a per
bation of another one at a given point if the distance betw
both functions is arbitrary small. The concept of distan
leads us to topology. We can define the Taylor-series to
ogy in the spaceRd whered gives the number of the Taylor
series coefficients. Thus thek jet of a given function at a
given point is the Taylor series truncated beyond terms
degreek. Several definitions of distances can be given a
all of these are expressed in terms of thek jets of each
function.

Now the next important question is what information
lost when we truncate the Taylor series of a function arou
a given point, namely, the problem of determinacy. It co
sists of determining whether a function can be truncated
if so, for what value of the degree of the Taylor expansion
can be truncated without any loss of substantial informati
Furthermore, to determine the most general family of fu
tions of the smallest dimensiond which contains the origina
function is called the problem of unfolding. The unfoldin
dimension is the number of parameters describing a gen
perturbation and the minimum number to describe it is ca
the codimension. When all the unfolding terms go to ze
the remainder of the universal unfolding is called thegermof
the canonical form.

The next step is to introduce the concept of transversa
as a means to study structure stability and genericity. T
concept was originally introduced by Thom10 and, in general,
is not widely used to classify physical phenomena in ter
of elementary catastrophes. A property is called generi
the subset for which the property is valid is open and de
in the original set. In other words, when a property is inva
ant under a perturbation, this property is called generic
structurally stable. The theorem of transversality shows
l
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it is a generic property of functions to have only isolat
critical points and such functions are stable under pertur
tions. We warn the reader not to confuse thermodynam
and mathematical terminology. In thermodynamical term
critical point is just an equilibrium point and the word crit
cal is reserved for a higher singularity. Two manifolds ofRn

intersect transversally if either their intersection is empty
they intersect transversally at all their points of intersecti
that is, the direct sum of their tangent spaces at the point
dimensionn or they span the tangent spaceRn at that point.

CT has usually not been applied in a rigorous way us
all these concepts and theorems needed for its correct im
mentation. We claim in this work that if this is done so, t
procedure proposed by the theory is not by any means c
bersome and time consuming. The catastrophe program
posed here provides a very useful and systematic way
examine and classify with not very much effort general b
haviors of physical systems.

Let F(x,l) be a real function with state variable
x1 , . . . ,xn (xPRn) and control parametersl1 , . . . ,l r (l
PRr); that is,F:Rn1r→R. We are to proceed as follows:

~1! We pick (x0 ,l0) such thatx0 is a degenerate critical
point of F(x,l) and we consider the unfoldingf (x,l)
5F(x1x0 ,l1l0)2F(x0 ,l0) andh(x)5 f (x,0).

~2! One calculates the determinacy and codimension oh
from thek jet of h ~see Appendix!. Of course, ifh is k
determined thenh; j k(h), that is, the functionh is equal
to j k(h) up to a change of coordinates and hence th
are equivalent and have qualitatively the same prop
ties; therefore, cod(h)5cod„j k(h)….

~3! One studies thek transversality ofF and if this function
is k tranversal we can affirm thatF and the canonica
form of the unfolding ofh are isomorphic and we ca
replace the originalF function for this canonical unfold-
ing. If not, we can claim that theF function is not sus-
ceptible to be studied by CT.

Following this CT program we do not need to invoke a
convention~for example, delay or Maxwell convention! in
order to classify degenerate or non-degenerate critical po
on the state variables space. Both conventions are not in
sic to CT. Only when we deal with the time evolution o
when dynamical considerations about the physical sys
are considered, could a given convention be advisable.
important to have in mind that these two conventions rep
sent only the two extreme cases in a continuum of possib
ties. The separatrices we obtain when a given conventio
adopted~from the bifurcation equations for the delay co
vention or the Clausius-Clapeyron equations for the Maxw
convention! are different and very much related to the loc
or nonlocal behavior of the physical system, respective
However, the adequacy or inadequacy of conventions
been largely discussed in the literature and the reader in
ested in more information is referred to Refs. 10 and 9.

III. DESCRIPTION OF THE GIBBS POTENTIAL

According to Ref. 2 a phenomenological model for a te
nary mixture is obtained by assuming the Gibbs potentia
the form
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Ḡ5N@a8yz1b8xz1c8xy1RT~x ln x1y ln y1z ln z!#,
~1!

whereN5Nx1Ny1Nz gives the number of total moles an
Nx , Ny , andNz are the moles of each component. The va
ablesx,y,z are the mole fractions defined byx5Nx /N, y
5Ny /N, andz5Nz /N; and hence we have the constraint

x1y1z51, ~2!

where 0,x,y,z,1. Finally, a8, b8, andc8 are phenomeno
logical energy parameters. The energy part is the most g
eral quadratic term, given thatx1y1z51. This model can
be derived from the mean-field theory of a lattice mod
Hamiltonian with variables taking three different states, re
resenting the molecules of the three components.11 Thena8,
b8, andc8 represent molecular interaction parameters. Le
consider the Gibbs potential Eq.~1! in a reduced form, di-
viding by NRT, and thus

G~x,y,z,a,b,c!5ayz1bxz1cxy1x ln x1y ln y1z ln z
~3!

where now the new parametersa,b,c are defined with re-
spect to the old onesa8,b8,c8 dividing them byRT. The
concentrations are supposed to be determined by s
boundary conditions, such as the values of the chemical
tentials of two components, saymx andmy . The mean-field
theory prescription is then to minimize thenonequilibrium
Gibbs potential G2mxx2myy with respect tox and y to
obtain the equilibrium conditions

]G

]x
5mx ,

]G

]y
5my .

They allow us to solve forx andy as functions ofmx ,my and
the parametersa, b, and c, provided that the Jacobia
det](mx ,my)/](x,y) 5det]ij

2G is not zero.
Thermodynamical stability further requires that the mat

] i j
2 G be positive definite. This property is calledconvexity

and must hold for any thermodynamical potential, except
the instability hypersurfaces, which are the simplest sin
larities we may encounter in a phase diagram. An instab
can occur only near a phase transition, when two equilibri
states, one unstable—hence unphysical—and the other m
stable coalesce and disappear. In other words, a metas
state becomes unstable and, consequently, we speak of
bility. This is the kind of sudden change in the configurati
of a system to which CT owes its name. In mathemati
terms we say that thecritical point ~equilibrium state! is
degenerate. As a consequence, one cannot solve forx andy
as functions ofmx ,my or the solution is multivalued, corre
sponding to the existence of various equilibrium states. T
simplest instability occurs when only one eigenvalue of
stability matrix vanishes; that is, the instability only affec
one variable. One is to focus on this variable, which is cal
relevant, to consider further singularities. Therefore, it
convenient to transform the potential into a function of ju
the relevant variable by solving the equilibrium conditio
for the other variables and substituting for them. The st
dard thermodynamical procedure that performs this op
tion is the Legendre transform. In fact, this procedure can
used for potentials in other fields, whenever there is an
-
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derlying geometrical structure in the total space of variab
including state and control variables, called acontact struc-
ture. We address the reader interested in the general for
lation to the literature.12 How the Legendre transform i
implemented in our case will be seen in the next secti
Further singularities are studied afterwards with the o
variable potential. Next comes what can be called criti
instability, followed by the tricritical point and onwards.

Several systems of interest are described by this Gi
potential Eq.~1!: A ternary mixture at constant volume, fo
example, a mixture of metals; a spin lattice where the m
ecules have spin one; a binary fluid mixture, where one
the three states represents a vacancy instead of a new
ecule and the corresponding concentration is associated
variable total volume. In the last case, the possible phases
vapor, miscible liquid mixture, and inmiscible liquid mix
ture. The convenient extensive variables are the specific
umev and the relative concentrationx̄5x/(x1y) of the two
fluids and the intensive variables are the pressure and
chemical potential of one of the fluids. Moreover, the th
modynamical potential Eq.~1! depends onT, v, andx̄ and is
therefore the Helmholtz potentialF(T,v,x̄). This system is
perhaps the most interesting for applications, given the g
amount of experimental data on binary fluid mixtures.13,14

However, the potential~1! is not the most popular for fitting
data; a related form which has similar dependence on
relative concentration of the two fluids but is of the Van d
Waals type for the volume is usually considered instead.
believe that this form, which is much more difficult to an
lyze, gives essentially the same qualitative behavior.

IV. APPLYING THE CT PROGRAM

From Eqs.~3! and~2!, we have a function depending onl
on two variables,x andy, namely,

H~x,y,a,b,c!5ay~12x2y!1bx~12x2y!1cxy1x ln x

1y ln y1~12x2y!ln~12x2y!. ~4!

Now consider the functionHy(x,y,a,b,c)2m2 ~where
the subindices indicate derivatives with respect to the v
able explicitly written and m2[my! and let the point
(x0 ,y0 ,a0 ,b0 ,c0 ,m2

0) be such thatHy(P0)2m2
050 and

Hyy(P0).0, whereP05(x0 ,y0 ,a0 ,b0 ,c0). The first condi-
tion is the equilibrium condition fory and the second one i
required by stability in they direction. Then, by the implicit
function theorem, there exists a unique functi
c(x,a,b,c,m2) defined in a neighborhood o
(x0 ,a0 ,b0 ,c0 ,m2

0) with values in a neighborhood ofy0 such
that Hyy(x,y,a,b,c).0, in these neighborhoods, an
Hy„x,c(x,a,b,c,m2),a,b,c…2m250 in the domain ofc and
c(x0 ,a0 ,b0 ,c0 ,m2

0)5y0 .
By solving for y as a function ofm2 and substituting into

H2m2y we have performed a Legendre transformation,
fectively eliminating the variabley. Next we substractm1x
~wherem1[mx! to obtain the function

L~x,a,b,c,m1 ,m2!5H„x,c~x,a,b,c,m2!,a,b,c…

2m2c~x,a,b,c,m2!2m1x, ~5!
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representing a one variable nonequilibrium Gibbs poten
In order to have a function defined in a neighborhood ō
5(0,0,0,0,0,0) we consider the new function

L1~x,a,b,c,m1 ,m2!5L~x1x0 ,a1a0 ,b1b0 ,c

1c0 ,m11m1
0 ,m21m2

0!

2L~x0 ,a0 ,b0 ,c0 ,m1
0 ,m2

0!. ~6!

Then we have the following equations:

L1~ 0̄!50 ~7!

and

L1,x~x,a,b,c,m1 ,m2!5Hx@x1x0 ,c~x1x0 ,a1a0 ,b1b0 ,c

1c0 ,m21m2
0!,a1a0 ,b1b0 ,c1c0#

1Hycx2~m21m2
0!cx2~m11m1

0!,

~8!

so that

L1,x~ 0̄!5Hx~P0!2m1
0 . ~9!

Suppose now thatHx(P0)2m1
050 ~the remaining equi-

librium condition!. Then 0 would be called acritical point of
L1(x,0,0,0,0,0)~in mathematical terminology!. This function
will be denoted byg1(x), which is thegerm to be studied.
Of course,g1(0)50 andg18(0)50 from Eqs.~7! and ~9!.
The two first derivatives ofg1 are

g18~x!5Hx@x1x0 ,c~x1x0 ,a0 ,b0 ,c0 ,m2
0!,a0 ,b0 ,c0#2m1

0

~10!

and

g19~x!5Hxx@x1x0 ,c~x1x0 ,a0 ,b0 ,c0 ,m2
0!,a0 ,b0 ,c0#

1Hxy~2 !cx~2 !. ~11!

In particular

g19~0!5Hxx~P0!1Hxy~P0!cx~x0 ,a0 ,b0 ,c0 ,m2
0! ~12!

with

cx~x0 ,a0 ,b0 ,c0 ,m2
0!5

2Hxy~P0!

Hyy~P0!
, ~13!

as deduced fromHy2m250 by taking the derivative with
respect tox. Suppose that the Hessian ofH is such that

Hxx~P0!Hyy~P0!2Hxy
2 ~P0!50, ~14!

then g19(0)50 and 0 is a degenerate critical point ofg1 .
Finally, we also assume thatg1-(0)5g1

iv(0)5g1
v(0)

5g1
v i(0)50. Then we have imposed five conditions ong1

altogether and we should be able to solve
(x0 ,y0 ,a0 ,b0 ,c0). In this case, we say that we have reach
the highest codimension. We will see in the next section t
there is indeed such a solution.
l.

r
d
at

V. RESULTS

A. Highest singularity

Now we look for a point which fulfills the five conditions
for the highest singularity mentioned above. We succesiv
have that

y05122x0 , ~15!

b05x0
21 , ~16!

a05c05
112x0

8x0~122x0!
, ~17!

and

36x0
214x02150. ~18!

Thus from the last equation we have thatx05(A1021/)18
50.120 127. Moreover,

g1
v i i ~0!56x0

22S c5x2
1472

27
x0

24DÞ0,

where

c5x5
256

162
x0

22F157

10
x0

22217~122x0!215
3x0

224x011

x0
2~122x0!2 G .

The ensuing values of the control parameters area05c0

53(512A10)/2051.698 68, b052(11A10)58.324 56
and m1

05(2217A10)/455.033 99, m2
05(12A5/2)/2

1 ln@2A10#51.553 87.
Now we apply results of singularity theory:10,15

~i! The 7 jet of g1 is j 7(g1)51/7!g1
v i i (0)x7 with

g1
v i i (0)Þ0.

~ii ! The essence ofg1 respect the identity is 7 and there
fore s(g1)>7, wheres(g1) is the determinacy ofg1

~see the Appendix for the definition of this concept!.
~iii ! The codimension of j 7(g1) is cod„j 7(g1)…

5dim vect(̂ x&/^x6&)55 ~see the Appendix! and
s„j 7(g1)…<7. Thus j 7(g1) is 7 determinate,j 7(g1)
;g1 andg1 is 7 determinate. Moreover, cod(g1)55
ands(g1)57. A basis of this quotient vector space
given by the set $@x#, . . . ,@x5#%. Then
ḡ1(x,l1 , . . . ,l5)5g1(x)1l1x1l2x21 . . . 1l5x5

is a canonical unfolding ktransversal of thegerm g1

for every k.0; in particular, fork57. Finally g1

;x7.
~iv! The L1 function is an unfolding 7 transversal ofg1

because one can prove~see the Appendix!

^x&5^x6&1VL1
1^x&711, ~19!

whereVL1
is the real linear space generated by

$L1,a~x,0̄!2L1,a~0,0̄!, . . . ,L1,m2
~x,0̄!2L1,m2

~0,0̄!%,

where the subindicesa, . . . ,m2 denote derivatives
with respect to the corresponding parameters. N
that Eq.~19! has the following expression:
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^x&5^x6&1H x~2112x0!1x2
2

3
x0

21~123x0!1x3S 2

3
x0

211
4

9
x0

22~2113x0! D
1x4S 2x0

22 8

9
1~3x021!x0

23 2352

1080D1x5S c5x~3x021!
1

5!
1

1

4!

352

45
x0

231
16

27
x0

23D ,

2
1

3
x21x3

2

9
x0

211x4S 2
4

9
x0

221
1

24

352

45
x0

22D1x5S 1

24

352

45
x0

232x0

1

5!
c5xD ,

x~122x0!2
2

3
x21x3

22

9
x0

211x4
1

24

128

45
x0

221x5
1

5! S x0c5x2
352

9
x0

23D ,

2x,x2
2

3
x0

212x3
4

9
x0

221
1

4!
x4x0

23 352

45
1

1

5!
x5~2c5x!J , ~20!
t
a

rm
n
s

ar
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where the Taylor expansions inVL1
have been truncated a

x5 because the terms of degree sixth and higher are alre
included in^x6&. Solving Eq.~20! amounts to proving that a
generic fifth-degree polynomial with no independent te
can be generated as a linear combination of the five poly
mials between the curly brackets. Hence it implies the re
lution of a linear system whose determinant isx0

(258944x0
21729c5x)Þ0.

Finally, this equality, Eq.~20!, holds and consequentlyḡ1

andL1 are isomorphic as unfoldings andL1 can be qualita-
tively studied by the polynomial

x71l1x1l2x
21l3x

31l4x
41l5x

5,
which in the terminology of CT corresponds to thewigwam
or A6 catastrophe.

As a result of this analysis we can affirm that there
three changes of coordinatesw1 , w2 , andw3 and a pertur-
bation« of parameters such that

L1~x,a,b,c,m1 ,m2!5u71l1u1lu21¯1lu5

1«~a,b,c,m1 ,m2! ~21!

with

u5w3p1w1~x,a,b,c,m1 ,m2!,

w2~a,b,c,m1 ,m2!5~l1 , . . . ,l5!,

where p1 means thefirst projection, p1 :R115→R, that is,
p1(x1 , . . . ,x6)5x1 .

Moreover, the bifurcation set of Eq.~6! and that corre-
sponding to

u71l1u1l2u21¯1l5u5 ~22!

are diffeomorphic and we work rather with Eq.~22! due to
its simplicity. The equilibrium manifold in (u,l1 , . . . ,l5) is
obtained from Eq.~22! by equating the first derivative to
zero

7u61l112l2u13l3u214l4u315l5u450,

and, furthermore, instability occurs if the second derivat
also vanishes,
dy

o-
o-

e

e

42u512l216l3u112l4u2120l5u350.

Now the bifurcation set is obtained by a projection onto t
parameter space, that is, by eliminating the variableu in this
system of two equations.

B. Critical azeotropy as a singularity

In the process of solving the equations that lead to
highest singularity one goes through singularities of low
codimension. They have no particular interest by themse
except in one case, which we proceed to describe.

Thus we analyze now the five conditions one by one. T
equilibrium conditions allow one to expressx0 and y0 as
functions of the parameters, resulting iny0

5c(x0 ,a0 ,b0 ,c0 ,m2
0), already used to defineg1(x), and an

equation forx0 derived from equating Eq.~9! to zero. How-
ever, we prefer to keepx0 andy0 in the equations to follow,
for it is simpler, understanding that they are to be substitu
in the end.

The first condition ong1(x) is g19(0)50 or

det Hi j 5Hxx~P0!Hyy~P0!2Hxy
2 ~P0!50. ~23!

The Hessian matrix is

~Hi j !5S a31a1

a3

a3

a31a2
D , ~24!

with a35c2a2b1z21, a15a2c2b1x21, and a25b
2a2c1y21. We have reinstatedz512x2y for the sake
of symmetry and we suppress the subindices zero relativ
P0 in the next equations. From Eq.~24!,

det Hi j 5a3a11a3a21a1a250, ~25!

which is a quadratic equation on eithera,b,c or x,y. The
next conditiong1-(0)50 is equivalent to

1

x2 a2
31

1

y2 a1
32

1

x2 ~a11a2!350 ~26!

or
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1

x2 a3
32

1

y2 ~a31a1!31
1

z2 a1
350 ~27!

or

2
1

x2 ~a31a2!31
1

y2 a3
31

1

z2 a2
350. ~28!

Each of these is an equation of third degree ina,b,c.
Next we considerg1

iv(0)50. Again this equation can b
separated into three symmetric options. Each one impo
new conditions ona i and hence on the elements of the He
sian matrix. Furthermore, they can only be fulfilled if tw
new quantities vanish. In other words, the codimension
creases by two units with only one condition, a nongene
situation. We choose the solutiona35a150 such that
Hxx(P0)5Hxy(P0)50. There are two more solutions, ob
tainable by cyclic permutation of the labels of thea’s. As a
counterpart of the previous extra increase of the codimen
by one unit, the next condition is identically fulfilled
g1

v(0)[0. Finally, from g1
v i(0)50 one obtains the solution

quoted in the subsection above.
Let us compare the foregoing analysis with the one in

previous literature on this model.11,2 This analysis goes a
follows. The first conditiong19(0)50 or, equivalently, that
the Hessian ofH be null has two types of solutions, namel
a simple solution,a1

211a2
211a3

2150, and a second triple
solution that requires that two of thea i vanish simulta-
neously. The first type is more generic but, unfortunate
does not lead to a high codimension singularity, since
equationg1

iv(0)50 has no solution for it. One of the secon
type solutions is the one we have considered in the prev
subsection. They are called symmetric solutions because
additional condition on the Hessian matrix elements imp
a symmetry in the phase diagram, for example,a5c in our
solution.

Alternatively, we can avoid making any choice on t
type of solution until the last moment, namely, when w
demandg1

iv(0)50. Then this condition implies by itsel
g1

v(0)50. In other words, the singularities given by the
two conditions are inextricably linked: the first one enta
the second one. Moreover, the first condition led us to t
Hxx(P0)5Hxy(P0)50 in addition to detHij50. We may re-
call here that the vanishing of these two elements of
stability matrix for a binary fluid mixture has a thermod
namical interpretation: It occurs when there is critical aze
ropy ~Ref. 13, pp. 197–199!. Azeotropy is not a singularity
on its own but when it superposes on a critical point it e
hances its singularity producing a new one. We see w
kind of singularity it is in our case, namely, the one given
g1

v(0)50—a tricritical point. At this moment, we are no
able to say if this is just a peculiarity of the particular thre
component model we study or in fact constitutes a gen
feature.

VI. DISCUSSION

The solution with the highest codimension, namely, fiv
which has been found above must be isolated; that is
cannot belong to a continuos family of solutions. Neverth
less, there can be a discrete set of solutions. Indeed, we
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obtain two other solutions from this one by using the sy
metry of the original potentialG(x,y,z,a,b,c) under simul-
taneous permutations of (x,y,z) and (a,b,c). The way in
which they arise is clear in the last subsection. It is clear
well that there are no further solutions with codimensi
five.

Some readers may be concerned by the fact that our
lution, Eq. ~22!, is a Landau potential which is not bounde
below. This means that the equilibrium states are actually
stable but metastable. The catastrophe pointP0 corresponds
to a degenerate instability rather than to a multicritical poi
To be precise, it arises as a tricritical point, with Land
potentialx6, merges with an unstable equilibrium state a
disappears, for which the appropriate name is tricritical u
stable point. Sinceg1

v i i (0)Þ0, there is no tetracritical poin
in the phase diagram. In this we disagree with Ref. 2, wh
they assert to have three tetracritical points withg1

v i i (0)
50. The conditions they obtain for their tetracritical poin
are precisely the same five conditions we have for our t
ritical unstable point but the codimension of a generic tetr
ritical point is six. Thus it seems that they are calling tetra
ritical points what actually are tricritical unstable points.

In some contexts the existence of potentials not boun
below is perfectly natural; for example, in optics, whe
caustics can be studied as stationary values~not necessarily
minima! of the eikonal18 with the CT algorithm we have
followed. However, in thermodynamics the presence
metastable states must imply the existence of lower sta
equilibrium states. We must remember that the Landau
tential is a local object and provides no information on t
behavior of the thermodynamical potential far from the po
P0 . Whether there is an absolute minimum or not is a glo
question beyond the methods of CT. To check the prese
of other minima for the values of the paramete
(a0 ,b0 ,c0 ,m1

0 ,m2
0) which produce thewigwam catastrophe

we may solve the equationsHx(x,y,a0 ,b0 ,c0)2m1
050 and

Hy(x,y,a0 ,b0 ,c0)2m2
050 for the whole range of the vari

ablesx and y. Since they are trascendental equations, th
must be solved numerically. The result is that there are
more solutions. However, there is in fact anabsolutemini-
mum on the boundary atx51, y50, which does not show
with the previous equations because the derivatives of
potential diverge on it. Nevertheless, it can be found by
numerical study ofH(x,y,a0 ,b0 ,c0). That minimum corre-
sponds to the phase with a pure first component, far from
valuex0.0.12. If one does not want to deal with metastab
states, one may choose two ways: The first is to consider
highest singularity unphysical and to restrict to lower co
mension singularities which are bounded below, as is s
sible for binary fluid mixtures—see the next paragraph. T
other is to complicate the original model adding new cont
parameters in the potential—like with energy terms of high
degree—and look for the next~or higher! codimension sin-
gularity.

The topology of the overall phase diagram is formed
gluing three patches, each corresponding to the phase
gram of thewigwam catastrophe, as given in the literature.17

The Taylor-series expansions on which the CT is based
supposed to be valid in each patch. The coordinates on e
patch are not related and therefore we can only obtain to
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logical information. Even the topological matching is not
trivial matter when we deal with high-dimensional spac
Since the highest singularities in our analysis are essent
the same as those in Ref. 2, so is the phase diagram.
phase diagram is of great utility for experimentalists and
should like to obtain some more concrete information. W
must notice that in a particular model, for example, a bin
fluid mixture, the energy parameters are fixed and one
only tune the chemical potentials—one of which is to
interpreted as pressure in the binary mixture—and the t
perature. Therefore, one is interested in three-dimensi
sections of the overall phase diagram. In these sections
not generic to have a tricritical point,~which has codimen-
sion four,! a fact well known to experimentalists. Gener
and nongeneric sections of the phase diagram of thewigwam
catastropheare expected to cover all the possibilities. In r
gard with the nonboundness below of thewigwam catastro-
phe pointed out above, codimension-four sections prov
the physically meaningful information, including generic t
critical points.

Another solution of detHij50 is, of course, that all the
matrix elements be null so the matrix has rank zero or cor
2. This means that one cannot use the implicit function th
rem to reduce to a function of one variable and one is
proceed with the CT program for a function of two variable
The next step is to analyze the 3 jet of this function, that
the form given by the third derivatives. According to its si
nature, given by the sign of its discriminant, there are th
possible cases: If it is negative, the canonical form isx3

23xy2, called theelliptic umbilic catastrophe; if it is posi-
tive the canonical form isx313xy2, called thehyperbolic
umbilic catastrophe; if it is null, the 3 form is degenerate, a
one is to analyze the 4 jet to determine the type of singu
ity, which may be theparabolic umbiliccatastrophe or a type
even more complex. The calculations driving at establish
the highest singularity in our five-dimensional parame
space are complicated and the results for corank 2 sha
reported in the future.19
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APPENDIX

In this Appendix we are going to present the main ma
ematical concepts widely introduced in Refs. 15, 16, and
necessary to follow the main steps developed in S
V. Let us consider real functions of class̀and defined in
a neighborhood of 0PRn. We establish that two function
are equivalent if they coincide in a neighborhood of 0. T
classes we obtain are calledgermsof functions and the set o
germs is denoted byE(n). The operationsf 1g and f •g
give to E(n) the structure of a ring andM (n)5$ f
PE(n)/ f (0)50% is a maximal ideal of this ring. Moreover
.
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the operationsf 1g and l• f with lPR give to E(n) the
structure of a real vector space of dimension`. The ideal
M (n) is generated byx1 , . . . ,xn , that is, M (n)5$ f 1x1
1¯1 f nxn / f 1 , . . . ,f nPE(n)%. In general, if f 1 , . . . ,f n
PE(n), we designate bŷf 1 , . . . ,f n& to the ideal generated
by f 1 , . . . ,f n , that is,

^ f 1 , . . . ,f n&5$ f 1g11¯1 f ngn /g1 , . . . ,gnPE~n!%.

In particular,M (n)5^x1 , . . . ,xn&.
It is possible to define powers ofM (n) asM (n)k. It can

be proven thatM (n)k is equal to the ideal ofE(n) generated
by the monomials inx1 , . . . ,xn of degreek. In particular, for
example,^x,y&25^x2,xy,y2&. We have also thatM (n)k11

5$ f PE(n)/Di f (0)50,i<k%, where withDi we mean the
derivative of degreei .

In a similar way, we can define thegermsof dipheomor-
phisms of class̀ from Rn in Rn which transform 0 in 0.
This set is denoted byG(n). We say that twogermsare
equivalent if there exists a change of coordinateswPG(n)
such thatf 5gw and it is denoted byf ;g. When thek jets
(kPN) of two functions are equal we say that these fun
tions arek equivalent (f ;kg). A germ f is k determinate if
for everygerm gsuch that bothk jets are equal we have tha
f ;g. The determinacy of agerm f is the smallest numbe
kPN such thatf is k determinate and it is calleds( f ).
Therefore, we notice that iff is k determinate thenf ; j kf , if
f is k determinate andf ;kg theng is k determinate, iff is
k determinate andf ;g theng is k determinate.

The ideal of Jacobi of agerm f is defined by

D~ f !5^Dx1
f , . . . ,Dxn

f &,

whereDx1
, . . . ,Dxn

are the partial derivatives with respect

the x1 , . . . ,xn variables. If f ;g thenD( f )[D(g).
Now let us assume thatf PM (n)2. Then D( f ),M (n)

and we can speak of the quotient vector spaceM (n)/D( f ).
The dimension of this vector space is called a codimens
of f , cod(f ). It can be proven that iff PM (n) then cod(f )
is finite if and only if s( f ) is finite and in this cases( f )
22<cod(f ). Moreover, if f ;g then cod(f )5cod(g).
Thus the codimension generally coincides with the num
of conditions necessary to specify a function germ up
diffeomorphisms, which is the usual geometrical concept

If gPM (n1r ) and f PM (n)2, we say thatg is a r un-
folding of f if g(x,0)5 f (x) ~with r parameters which we
define asy1 , . . . ,yr!. Now let us assume thatgPM (n1r ) is
an unfolding of f PM (n)2 and kPN. We say thatg is k
transversal if

M ~n!5D~ f !1M ~n!k111Vg ,

whereVg is the real vector subset ofM (n) generated by the
vectorsDy1

g(x,0)2Dy1
g(0,0), . . . ,Dyr

g(x,0)2Dyr
g(0,0).

Finally, the theorem ofk transversality for unfoldings can
be stated as follows: Let us considerf PM (n)2 k determi-
nate andg and h two unfoldings of f with r parameters
which arek tranversal. Theng andh are isomorphic.



r-

-

si

-

rs

-

3

n

13 534 57J. GAITE, J. MARGALEF-ROIG, AND S. MIRET-ARTE´ S
*Also at Departamento de Fı´sica, Facultad de Ciencias, Unive
sidad de Oviedo, c/ Calvo Sotelo s.n., 33007 OVIEDO.

†Also at Max-Planck-Institut fu¨r Strömungsforschung, Bunsen
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