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Calculation of the P-T phase diagram of Zr in different approximations
for the exchange-correlation energy
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The full-potential linear muffin-tin orbital method is used within the local density approximation and gen-
eralized gradient approximation~GGA! to calculate the total energy and equilibrium lattice properties for the
observed phases of Zr. The temperature dependences of the free energy, specific volume, bulk modulus, Debye
temperature, and Gru¨neisen constant are found for these structures within the Debye model. For most quanti-
ties, a good quantitative agreement with experiment is obtained. TheP-T phase diagram constructed from the
calculated thermodynamical Gibbs potentials within the GGA fits well the available room-temperature data on
thea→v andv→b transitions. At ambient pressure, we getTb→a51193 K,which is close to the observed
value.@S0163-1829~98!02514-4#
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INTRODUCTION

The central problem of the microscopic description
structural transformations occurring in metals under press
consists in introducing a consistent model for fin
temperatures.1 The simplest way to investigate the structu
phase transitions on the basis of first-principles bind
curves is to use the Debye-Gru¨neisen theory. There are tw
approaches in using the Debye model for the study of
lattice properties based onab initio calculations. In the first
approach, the pair potential is constructed in terms of co
sive energy,2 then the dynamical matrix is calculated, and t
Debye temperatureQD is determined through the mean fr
quency of the vibrational spectrum. The results obtained
such a way3 are not always satisfactory, and the temperat
dependences of lattice properties are difficult to calculate

In the second approach, after having performed the t
energy calculation, the characteristic Debye temperatureQD

is calculated in terms of the bulk modulusB, and then the
free energyF(T,V) is found as a function ofQD and the
volume V. The applicability of this method to the study o
particular metals is restricted by the isotropic Debye mo
and the assumption of the mean sound velocityv. Earlier,
using the averaging of the mean sound velocity for cu
metals,4 the authors of Ref. 5 calculated the temperat
properties of 14 bcc and fcc metals within the Debye mod
The temperature dependence of the lattice constant and
linear thermal expansion coefficient calculated by minim
ing the free energy with respect to the volume agree q
well with the experimental data. Thus the method mention
seems to be appropriate for cubic metals. Similar invest
tions for transition metals, in which the ground state ha
noncubic lattice and the cubic-type structures are hi
pressure and high-temperature phases, were not perform

The systems considered at high temperatures and
pressures require the allowance for anharmonic effects w
are very essential in these regions. The Debye form of
harmonic approximation is rather crude theory. Recently,
suggested a model of instability evolution for the martens
transformation in bcc Zr~Ref. 6! which takes into accoun
the anharmonicity effects within the framework of a pseud
harmonic self-consistent phonon approximation.7 In the
570163-1829/98/57~21!/13485~6!/$15.00
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present work we calculate from first principles theP-T phase
diagram of Zr in the Debye model and demonstrate that
simplified approach is quite sufficient for the problem und
consideration. Earlier, we carried out an analogous inve
gation of the Ti interfaces which gave a good agreement w
experiments.8 The Zr interfaces, in the case of simulta
neously high temperature and pressure, are not clearly
fined as yet. At ambient pressure, with temperature eleva
Zr undergoes the transformation from a stable roo
temperature hcp structure (a phase! into the bcc one (b
phase!. The latter persists up to the melting temperature. T
temperatureTa→b51136 K decreases asdT/dP'21.0
K/kbar with increasing pressure.9 The hcp→v→bcc se-
quence of structural transformations is observed in Zr wh
investigating the isothermal compressibility at room te
peratures. Thev→bcc transition has been detected at pr
sures of 350650 kbar~Ref. 10! and 330 kbar~Ref. 11!.

The authors of the most careful first-principles total e
ergy calculation atT50 for different crystalline modifica-
tions of Zr ~Ref. 12! in the local density approximation
~LDA ! have found a high-pressureb phase to arise at 483
kbar. Using the LDA within the framework of density func
tional theory for the exchange-correlation energy calculat
results, as a rule, in an underestimation of the equilibri
volume magnitude. Ford metals, the generalized gradie
approximation13 ~GGA! often considerably improves quant
tative agreement of the calculated equilibrium volume w
the observed one. We will compare the GGA and LDA a
proaches in calculating the total energies and theP-T phase
diagram of Zr by the Debye model. To achieve this aim,
should first construct the Debye model for two hexago
structures of Zr.

DEBYE MODEL FORMALISM

Let us define the free energy of the system as a sum of
rigid lattice total energy and the free vibrational energ
With neglect of the electron subsystem entropy, we have

F~V,T!5Ee~V!1ED~V,T!2TSD~V,T!. ~1!
13 485 © 1998 The American Physical Society
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13 486 57S. A. OSTANIN AND V. YU. TRUBITSIN
HereEe(V) is the total energy of the electron subsystem.
the Debye model, the vibrational lattice energyED and the
entropySD are expressed as

ED~V,T!53kBTD~xD!1E0 , ~2!

SD~V,T!54kB@D~xD!2 3
4 ln~12e2xD!# , ~3!

wherexD5QD /T, D(xD) is the Debye function of the hea
capacity normalized to unity in the high-temperature limit14

and E05 9
8 kBQD is the energy of zero-point lattice vibra

tions.
The final expression for the free energy has the form

F~V,T!5Ee~V!2kBT@D~xD!23ln~12e2xD!2 9
8 xD#.

~4!

Let us describe the technique for calculatingQD . Assum-
ing a constant sound velocity, one can write a simple rela
betweenQD andB:

QD5K~aB/M !0.5, ~5!

wherea is the lattice constant in a.u.,B is measured in kbar
M in mass a.u., andK542.172. In Ref. 5 it was shown tha
in cubic nonmagnetic metals a good agreement with the
perimentalQD can be obtained by the use of Anderson
average for the sound velocity.4 This makes it possible to
choose, for cubic metals, a universalK value of 26.024
which relates quite well the experimental Debye tempera
and bulk modulus. However, there is no reason to beli
that the sameK may be used for noncubic metals as we
The simplest way to define the numerical value ofK for
noncubic metals is the use of relation~5! with the experi-
mental values of (QD)expt andBexpt. As a result, the particu
lar K values will differ for both different metals and th
crystalline structures of the same metal. Using the obtai
value of K and the bulk modulus calculated from the to
energy, one can find the theoreticalQD and then the free
energy~4!. Next, the equilibrium volume, bulk modulus, De
bye temperature, and Gru¨neisen constant may be redefin
by minimizing F(V,T) for each fixed temperature. Also th
temperature dependences of the above quantities and th
efficient of volume expansion are readily calculated~see,
e.g., Ref. 5!. In our previous paper8 we showed how the
resulting pointThcp→bcc of the phase diagram depends on t
value ofK in Ti. A 16% variation of this parameter change
the Debye temperature from 288 to 240 K and decreases
TP50

a→b by 900 K. Thus the coefficientK may be considered a
a free parameter if the experimental data are not availab

For the hexagonala andv phases of Zr, the coefficientK
in Eq. ~4! was taken equal to 32.90, a value determined fr
the experimentalQD ~defined by low-temperature specifi
heat measurements! andB0 of the equilibriuma phase. The
experimental value ofB for the high-temperatureb-Zr being
not available, we used the universal value ofK526.024 for
cubic structures to calculateQD for both high-temperature
and high-pressureb phases.

TOTAL ENERGY CALCULATION

To calculate the band structure, we used the full-poten
linear muffin-tin orbital ~FP-LMTO! method.15 When ex-
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panding the basis functions in spherical harmonics inside
MT spheres and reexpanding the MT orbitals outside the
spheres, as well as in expanding the crystalline potential
charge density, the maximum values of the angular mom
tum l were taken to be 2, 4, and 8, respectively. Three val
of the MT orbital tail energy~one for 4p states! were chosen
to describe the conduction band. In integrating over the ir
ducible part of the Brillouin zone~BZ!, we used 145, 165
and 792k points forb, v, anda-Zr, respectively. We inves-
tigated the convergence of the total energy on increasing
number of k points for each structure. So for hcp Zr a
increase from 165 to 792 points leads to a total energy
ference less than 0.5 mRy. In all the calculation variants,
MT sphere radii were chosen to be equal and correspon
to one of the two types ofv phase atoms:r MT52.747 a.u.
The ratio c/a was taken to be 0.625 for thev phase and
1.593 for thea phase, which corresponds to the experimen
data available. The ratioc/a obtained upon optimization fo
the v structure is 0.622 for the equilibrium volume, and t
difference in total energy between the ratios 0.625 and 0.
is less than 0.07 mRy. We did not optimizec/a for the
hexagonal phase. As shown in Ref. 10, the ratioc/a for v-Zr
remains unchanged from the beginning ofa→v transforma-
tion up to 300 kbar.

The total energy for three phases of Zr was calcula
with the GGA ~Ref. 13! and LDA for which we used the
exchange-correlation potential in the Janak-William
Moruzzi ~JWM! parametrization.16 The calculated binding
curves were analyzed and the equilibrium properties w
defined as in Ref. 5. In interpolating the binding curves
used 8~for the hexagonal structures! and 17~for the bcc one!
calculated energy–vs–reduced-volume points. The bind
curves for three known structures of Zr are presented in F
1. Our total-energy calculations of equilibrium lattice pro
erties atT50 for a-Zr are illustrated in Table I. In discuss
ing the GGA effect, it should be noted that, first, the the
retical equilibrium volume exceeds the experimental one
only 0.3% and, second, the GGA binding curve shape
proves the value of the bulk modulus. In Ref. 18 the bu
modulus fora-Zr was calculated through a combination
elastic constants, and its valueB051.03 Mbar agrees wel
with our GGA result. For thev phase, the GGA calculation
givesB051.13 Mbar at the total-energy minimum, while th
experimental value for this phase is equal to 1.21 Mba11

The experimental estimate of the bulk modulus for theb
phase is 2.03 Mbar,11 whereas our calculation yields 2.1
Mbar atV/V050.7.

An analysis of the total-energy curves that intersect w
decreasing volume shows that both our models reproduce
a→v→b sequence of structural transformations in Zr. T
data listed in Table I allow one to perform the quantitati
analysis. For thev→b transition, the volume and the vol
ume change are in reasonable agreement with the ex
ment, while in the case of thea→v transition we have ob-
tained a somewhat overestimated volume value with res
to the observed one. The degree of the deviation from
experimental data for different exchange-correlation pot
tials is determined by the shift of binding curves towar
larger volumes and the intrinsic shape of these curves.
experimental v→b interface has a negative slope
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57 13 487CALCULATION OF THE P-T PHASE DIAGRAM OF Zr . . .
23.960.5 K/kbar at room temperatures,10 whereas thea
→v interface has, on the contrary, a positivedT/dP516
K/kbar.9 In extrapolating the experimental data to lower te
peratures, better agreement with our interfaces calculate
T50 may be obtained. But we did not perform extrapolati
as we believe that for lower temperatures the experime
slope value will be different. Besides, for the low
temperature regionT,QD /4 we have to account for th

FIG. 1. The total energy vs the volume for three phases of Zr
the LDA ~a! and GGA~b!. The solid vertical line corresponds to th
experimental volume fora-Zr.

TABLE I. The equilibrium volumeV0 ~in Å 3), the bulk modu-
lus B0 ~in Mbar!, and the reduced volumes of the structural tra
formations ofa-Zr calculated within the GGA and LDA schemes
T50, as compared to the experimental data and the data obta
within the Hedin-Lundqvist LDA scheme.

V0 B0 Va→v Vv→b DVv→b /V

Expt. a 23.3 0.83 0.997 0.764 1.6 %
LDA ~H-L! b 22.5 1.19
LDA ~H-L! c 22.2 0.69
LDA ~JWM! 22.07 1.11 0.77 2.2 %
GGA 23.37 1.03 0.764 2.5 %

aReference 9.
bReference 17.
cReference 12.
-
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entropy term of the electron subsystem and electron-pho
interaction.

In accordance with our calculations, the ground state o
corresponds to thev structure. The LDA total-energy differ
ence between the minima ofv anda phases amounts to 1.4
mRy, whereas the GGA one is 0.8 mRy. Note that in Ref.
the total-energy minimum for Zr corresponds to thev phase
as well. Thus, according to the latestab initio calculations,
the openv phase, being not intrinsic for thed metals, is
realized at high pressures in group-IVa elements and m
over it exhibits the minimum energy. Presumably, model i
provements such as the full potential involvement, the re
tivistic generalization, or the exchange-correlation poten
variation will not change the energetic competition betwe
the a andv phases. In practice we always carry out inve
tigations at finite temperatures. Therefore the density fu
tional theory is not always apt to reproduce the real situati
Adding the electron entropy term will probably result in
change of the free energy difference betweena- and v-Zr.
Such consideration, though being very interesting, is bey
the scope of this work.

The competitive behavior of thea and v phases in the
ambient pressure region can be seen in Fig. 2, where
density of states at the Fermi level,N(EF), is plotted versus
the reduced volumeV/V0 for all the structures of Zr. To
V/V050.94 (P;60 kbar!, the density of states atEF is ac-
tually the same for thea and v phases. In the range
0.76,V/V0,0.94, thev structure has the lowestN(EF),
and for V/V0,0.76 (P.450 kbar! the b phase becomes
preferential. The GGA model brings about insignifica
changes in Fig. 2.

Figure 3~a! displays the dependence of the occupied p
of the conduction band at theG point of the BZ,EF2E5s ,
on the compression. As expected, the width of the cond
tion band and its occupied part increase as the reduced
ume decreases. But atV/V0,0.77, and only for thev andb
phases, the occupied part of the conduction band begin
diminish, becoming quantitatively close for both structur
One can suppose that this effect is due to the 4p states which
approach the conduction band bottom from below. It mig
be useful to illustrate the behavior of upper core states un
the lattice compression.

r

-

ed

FIG. 2. The density of states at the Fermi level vs the redu
volume for different structures of Zr within the LDA.
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13 488 57S. A. OSTANIN AND V. YU. TRUBITSIN
In Fig. 3~b!, the difference betweenEF and the energy of
the 4p state at theG point of the BZ is shown as a functio
of the reduced volume. The differenceEF2E4p changes
only slightly in passing from the LDA to the GGA, and s
we restrict ourselves to the LDA case illustration. When
specific volume is reduced by 30%, which corresponds to
region of existence ofb-Zr, the position of 4p states ap-
proachesEF , as well as the conduction band bottom,
;0.1 Ry. Note that the considered energy differen
EF2E4p becomes, at high pressures, actually the same
the v and b phases. The width of the 4p band, which is
found to be 65 mRy at theG point of v-Zr for V0, reaches at
V/V050.7 the value of 179 mRy~or 225 mRy from the
density of states calculation!. To date the isothermal com
pressibility of Zr at room temperature has been studied in
pressure range up to 680 kbar. The experimental data
tained in Ref. 11 at 560 kbar have been associated by
authors with an isostructuralb-Zr transition. We have found
no peculiarities in the total energy ofb-Zr in the high-
pressure region.

In Ref. 12 the electron density distribution patterns a
presented for the selected cell sections of all Zr structu
The main distinction of thev phase from the others is th
pronounced covalent character of the chemical bond. T
result is confirmed by our GGA calculation. The decisi
role in the behavior of the electron density outside the M

FIG. 3. The occupied part of the conduction bandEF2E5s ~a!
and the energetical position of the 4p states with respect to th
Fermi levelEF2E4p ~b! in Zr against the reduced volume withi
the LDA.
e
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e
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spheres is played by thep states of the conduction band. I
our opinion, a specific distribution of the electron dens
may be responsible for the appearance of a local minimum
the total energy under distortion of the perfectv structure.
The experimental data19 are indicative of the metastablev
phase retention after loading zirconium with convergi

FIG. 4. The free energy vs the volume for three phases of
within the GGA. The solid vertical line corresponds to the expe
mental volume fora-Zr.

FIG. 5. The calculated dependencesP(V) of Zr at T5300 for
the LDA ~a! and GGA~b!. Experimental data from Ref. 11: 1,a; 2,
v; and 3,b phases.
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FIG. 6. The temperature dependences of the Gibbs energy for different pressures:P50 ~a!, P50.1 Mbar~b!, P50.16 Mbar~c!, and
P50.36 Mbar~d!.
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shock waves. In a recent work,20 Raman scattering was use
to study the pressure dependence of lattice modes in Z
160 kbar. An additional mode, observed above 80 kbar in
unloading cycle, is assigned tov-Zr. This fact can be inter-
preted in favor of the existence of a metastablev phase.

P-T PHASE DIAGRAM

Consider now the improvements brought about by the
of the Debye model in studying the structural stability of Z
Figure 4 plots the free energy versus the specific volume
three structures of Zr within the GGA. Thea phase has the
lowestF(V,T) at room temperature, and this ensures qu
tative agreement of the calculated phase diagram with
experimental one. The Debye temperature and the Gru¨neisen
constant we calculated for the theoretical equilibrium volu
of a-Zr at T5300 K within the GGA were 285.7 K and 0.67
whereas the LDA values were found to be 279.1 K and 1.
respectively. For comparison, the corresponding experim
tal values are 291 K and 0.77.22

To construct the phase diagram, the thermodynam
Gibbs potentialsG(P,T) should be calculated and compar
for three structures on a fixed mesh of independent par
eters (P,T):

G~P,T!5F~V,T!1PV. ~6!
to
e

e
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e

e
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n-
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-

The isothermal dependencesP(V) were calculated by direc
differentiation of free energyP52(]F/]V)T for each struc-
ture.

The P(V) curves obtained atT5300 K within the GGA
and LDA approaches are shown in Fig. 5. The experime
curves in these figures are taken from Ref. 11 in which th
were constructed by the method of least squares in suc
manner as to satisfy the Birch-Marnaghan equation21 by fit-
ting the parametersB0 andB08 for each phase. On the bas
of theoretical curves for the equation of state, the spec
volume was found at fixed values of temperature and p
sure and then used in calculating the Gibbs energies~6!.

The procedure for defining the points of interfaces is
lustrated by Fig. 6 displaying the temperature dependen
of the Gibbs energy forP50, P50.1 Mbar, P50.16
Mbar, and P50.36 Mbar. At P50, in the range
0,T,1193 K, the Gibbs potential is minimum for thea
phase; further, atT.1193 K theb phase is realized. The
points of intersection of the curves in Fig. 6 determine t
interfaces of theP-T diagram. Figure 6 forP50.16 Mbar
corresponds to the triple point of the phase diagram. T
figure for P50.36 Mbar demonstrates the formation of
high-pressureb phase.

The calculatedP-T phase diagram is presented in Fig.
The theoretical temperature of thea→b transition at zero



lue

p

es

he
tions
ts,
us,

ity
-
de-
the
ith

ich
ys-
ub-
g-
the

TO
for
P.
n.

13 490 57S. A. OSTANIN AND V. YU. TRUBITSIN
pressure within the GGA differs from the experimental va
by only 60 K. The magnitude ofK for all structures in this
work was assumed to be temperature and pressure inde
dent. The characteristic points of theP-T phase diagram are
listed in Table II. Within the GGA the diagram reproduc

FIG. 7. TheP-T diagram of Zr for the LDA~a! and GGA~b!.
n

s.

r

re

v.

p

en-

quite well the available experimental data on t
temperature- and pressure-induced structural transforma
in Zr. The triple point estimated from the experimen
though being distant in temperature from that obtained by
nevertheless belongs to the calculateda→b interface.

CONCLUSION

In this work we tried to demonstrate, first, the possibil
of calculating theP-T phase diagram of Zr within the frame
work of a rather simple Debye model and, second, the
pendence of the calculation results on the choice of
exchange-correlation potential. Quantitative agreement w
experiments was obtained only when using the GGA, wh
scheme does not seem to be universal for all metallic s
tems. Zirconium, however, proved to be an appropriate s
ject of investigation by the GGA. We expect that the su
gested model may be successfully applied in calculating
phase diagrams of more complex systems as well.
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TP50
a→b PT5300

a→v PT5300
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LDA 1034 180 60 650
GGA 1193 54 270 160 620
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