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Calculation of the P-T phase diagram of Zr in different approximations
for the exchange-correlation energy
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The full-potential linear muffin-tin orbital method is used within the local density approximation and gen-
eralized gradient approximatiq®GA) to calculate the total energy and equilibrium lattice properties for the
observed phases of Zr. The temperature dependences of the free energy, specific volume, bulk modulus, Debye
temperature, and Gneisen constant are found for these structures within the Debye model. For most quanti-
ties, a good quantitative agreement with experiment is obtainedPThehase diagram constructed from the
calculated thermodynamical Gibbs potentials within the GGA fits well the available room-temperature data on
the a— w andw— g transitions. At ambient pressure, we ggt,,=1193 K,which is close to the observed
value.[S0163-182(08)02514-4

INTRODUCTION present work we calculate from first principles el phase
diagram of Zr in the Debye model and demonstrate that this
The central problem of the microscopic description ofsimplified approach is quite sufficient for the problem under
structural transformations occurring in metals under pressurgonsideration. Earlier, we carried out an analogous investi-
consists in introducing a consistent model for finite gation of the Ti interfaces which gave a good agreement with
temperature$.The simplest way to investigate the structural experiment$. The Zr interfaces, in the case of simulta-
phase transitions on the pasis of first-principles bindingheously high temperature and pressure, are not clearly de-
curves is to use the Debye-Greisen theory. There are two fined as yet. At ambient pressure, with temperature elevation
approaches in using the Debye model for the study of thgr undergoes the transformation from a stable room-
lattice properties based ab initio calculations. In the first temperature hcp structurex(phase into the bcc one g
approach, the pair potential is constructed in terms of cohephasg. The latter persists up to the melting temperature. The
sive energy then the dynamical matrix is calculated, and thetemperatureT*#=1136 K decreases adT/dP~—1.0
Debye temperatur®;, is determined through the mean fre- K/kbar with increasing pressufeThe hcp — w—bcc se-
quency of the vibrational spectrum. The results obtained ifyuence of structural transformations is observed in Zr when
such a way are not always satisfactory, and the temperaturgnvestigating the isothermal compressibility at room tem-
dependences of lattice properties are difficult to calculate. peratures. Thesv— bcc transition has been detected at pres-
In the second approach, after having performed the totadyres of 358: 50 kbar(Ref. 10 and 330 kbafRef. 11).
energy calculation, the characteristic Debye temperdfiye The authors of the most careful first-principles total en-
is calculated in terms of the bulk modul@ and then the ergy calculation aff=0 for different crystalline modifica-
free energyF(T,V) is found as a function 0®p and the tions of zr (Ref. 12 in the local density approximation
volume V. The applicability of this method to the study of (LDA) have found a high-pressug@ phase to arise at 483
particular metals is restricted by the isotropic Debye modekbar. Using the LDA within the framework of density func-
and the assumption of the mean sound velogityEarlier,  tional theory for the exchange-correlation energy calculation
using the averaging of the mean sound velocity for cubigesults, as a rule, in an underestimation of the equilibrium
metals] the authors of Ref. 5 calculated the temperatureyolume magnitude. Fod metals, the generalized gradient
properties of 14 bcc and fcc metals within the Debye modelapproximatioh® (GGA) often considerably improves quanti-
The temperature dependence of the lattice constant and thgtive agreement of the calculated equilibrium volume with
linear thermal expansion coefficient calculated by minimiz-the observed one. We will compare the GGA and LDA ap-
ing the free energy with respect to the volume agree quitgroaches in calculating the total energies andRKE phase
well with the experimental data. Thus the method mentionedliagram of Zr by the Debye model. To achieve this aim, we
seems to be appropriate for cubic metals. Similar investigashould first construct the Debye model for two hexagonal
tions for transition metals, in which the ground state has a&tructures of Zr.
noncubic lattice and the cubic-type structures are high-
pressure and high-temperature phases, were not performed.
The systems considered at high temperatures and high DEBYE MODEL FORMALISM
pressures require the allowance for anharmonic effects which
are very essential in these regions. The Debye form of the Let us define the free energy of the system as a sum of the
harmonic approximation is rather crude theory. Recently, weigid lattice total energy and the free vibrational energy.
suggested a model of instability evolution for the martensiticWith neglect of the electron subsystem entropy, we have
transformation in bcc ZfRef. 6 which takes into account
the anharmonicity effects within the framework of a pseudo-
harmonic self-consistent phonon approximatiomn the F(V,T)=Es(V)+Ep(V,T) - TS (V,T). (1)
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HereE¢(V) is the total energy of the electron subsystem. Inpanding the basis functions in spherical harmonics inside the
the Debye model, the vibrational lattice enefgy and the  MT spheres and reexpanding the MT orbitals outside the MT
entropySp are expressed as spheres, as well as in expanding the crystalline potential and
charge density, the maximum values of the angular momen-

Ep(V.T)=3ksTD(xp) + Eo. @ tumI were taken to be 2, 4, and 8, respectively. Three values
_ 3 XD of the MT orbital tail energyone for 4p state$ were chosen
So(V.T)=4ke[ D(xp)—3In(1-e7) ], @ {0 describe the conduction band. In integrating over the irre-

wherexp=0p /T, D(Xp) is the Debye function of the heat ducible part of the Brillouin zon€BZ), we used 145, 165,
capacity normalized to unity in the high-temperature litflit, and 792k points for B, w, anda-Zr, respectively. We inves-
and Eq=2kgOp is the energy of zero-point lattice vibra- tigated the convergence of the total energy on increasing the
tions. number ofk points for each structure. So for hcp Zr an
The final expression for the free energy has the form  increase from 165 to 792 points leads to a total energy dif-
ference less than 0.5 mRy. In all the calculation variants, the
F(V,T)=E¢(V)—kgT[D(xp)—3In(1—e™*)— g Xp]. MT sphere radii were chosen to be equal and corresponding
(4)  to one of the two types ob phase atoms:yr=2.747 a.u.
The ratioc/a was taken to be 0.625 for the phase and
&'593 for thea phase, which corresponds to the experimental
data available. The ratic/a obtained upon optimization for
the w structure is 0.622 for the equilibrium volume, and the
Op=K(aB/M)%5, (5) difference in total energy between the ratios 0.625 and 0.622
is less than 0.07 mRy. We did not optimiz¢a for the
hexagonal phase. As shown in Ref. 10, the rat®for w-Zr
){_emains unchanged from the beginningaof> w transforma-

Let us describe the technique for calculatiBg . Assum-
ing a constant sound velocity, one can write a simple relatio
between® andB:

wherea is the lattice constant in a.lB, is measured in kbar,

M in mass a.u., andk=42.172. In Ref. 5 it was shown that
in cubic nonmagnetic metals a good agreement with the e
perimental®, can be obtained by the use of Anderson’s tion up to 300 kbar.

average for the sound velocityThis makes it possible to ~1he total energy for three phases of Zr was calculated
choose, for cubic metals, a universél value of 26.024 With the GGA (Ref. 13 and LDA for which we used the
which relates quite well the experimental Debye temperaturéXchange-correlation  potential in the Janak-Williams-
and bulk modulus. However, there is no reason to believé1oruzzi (JWM) parametrizationt? The calculated binding
that the same&k may be used for noncubic metals as well. CUrves were analyzed and the equilibrium properties were
The simplest way to define the numerical value koffor defined as in Ref. 5. In interpolating the binding curves we
noncubic metals is the use of relatiés) with the experi- used 8(for the hexagonal structureand 17(for the bce ong
mental values of @) expr aNdBeygr- AS a result, the particu- calculated energy—vs—reduced-volume points. The b'|nd|'ng
lar K values will differ for both different metals and the CUrves for three known structures of Zr are presented in Fig.
crystalline structures of the same metal. Using the obtained- Our total-energy calculations of equilibrium lattice prop-
value of K and the bulk modulus calculated from the total €rties atT=0 for a-Zr are illustrated in Table I. In discuss-
energy, one can find the theoretic®p, and then the free ing the GGA e_:ffect, it should be noted that, _first, the theo-
energy(4). Next, the equilibrium volume, bulk modulus, De- "etical equilibrium volume exceeds the experimental one by
bye temperature, and Greisen constant may be redefined ©Nly 0.3% and, second, the GGA binding curve shape im-
by minimizing F(V,T) for each fixed temperature. Also the P'OVeS the value of the bulk modulus. In Ref. 13 thg bulk
temperature dependences of the above quantities and the ¢godulus fora-Zr was calculated through a combination of
efficient of volume expansion are readily calculatee, €lastic constants, and its valiiy=1.03 Mbar agrees well
e.g., Ref. 5. In our previous pap&rwe showed how the wlth our GGA result. For thes phase, the GGA calculgnon
resulting pointT™P-b< of the phase diagram depends on thedivesBo=1.13 Mbar at the_ total-ene_rgy minimum, while the
value ofK in Ti. A 16% variation of this parameter changes €xPerimental value for this phase is equal to 1.21 Mbar.
the Debye temperature from 288 to 240 K and decreases thd'€ €xperimental estimate of the bulk modulus for fBie
T&~£ by 900 K. Thus the coefficierit may be considered as phase is 2.03 Mbdr whereas our calculation yields 2.18

a free parameter if the experimental data are not available.MPar atV/Vo=0.7. . .
For the hexagonat andw phases of Zr, the coefficiekt An analysis of the total-energy curves that intersect with

in Eq. (4) was taken equal to 32.90, a value determined fronflecreasing volume shows that both our mode]s reproduce the
the experimenta® (defined by low-temperature specific a—w— f3 sequence of structural transformations in Zr. The
heat measurementandB,, of the equilibriuma phase. The data I|§ted in Table | allow one to perform the quantitative
experimental value a8 for the high-temperaturg-Zr being analysis. For the".ﬁ'g transition, the volume a_nd the vol- .
not available, we used the universal valuekof 26.024 for  YM€ change are in reasonable agreement with the experi-

cubic structures to calculat® for both high-temperature ment, while in the case of t.heﬁ‘” transition we ha_ve ob-
and high-pressur@ phases. tained a somewhat overestimated volume value with respect

to the observed one. The degree of the deviation from the
experimental data for different exchange-correlation poten-
tials is determined by the shift of binding curves towards
To calculate the band structure, we used the full-potentialarger volumes and the intrinsic shape of these curves. The
linear muffin-tin orbital (FP-LMTO) method!® When ex- experimental o— 8 interface has a negative slope of

TOTAL ENERGY CALCULATION
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1 entropy term of the electron subsystem and electron-phonon
> ] interaction.
20—7199.69 ] In accordance with our calculations, the ground state of Zr
v 1 corresponds to the structure. The LDA total-energy differ-
%_7199 51 ence between the minima ef anda phases amounts to 1.43
T mRy, whereas the GGA one is 0.8 mRy. Note that in Ref. 12
= E the total-energy minimum for Zr corresponds to thghase
45 -7199.73 1 as well. Thus, according to the latest initio calculations,
= 1 the openw phase, being not intrinsic for thé metals, is
i realized at high pressures in group-1Va elements and more-
-7199.75 I . L = .
10 over it exhibits the minimum energy. Presumably, model im-

Volume (AS) provements such as the full potential involvement, the rela-
tivistic generalization, or the exchange-correlation potential
FIG. 1. The total energy vs the volume for three phases of Zr fovariation will not change the energetic competition between
the LDA (a) and GGA(b). The solid vertical line corresponds to the the « and w phases. In practice we always carry out inves-
experimental volume for-Zr. tigations at finite temperatures. Therefore the density func-
tional theory is not always apt to reproduce the real situation.
—3.920.5 K/kbar at room temperaturéSwhereas thex  Adding the electron entropy term will probably result in a
—w interface has, on the contrary, a positi#@/dP=16  change of the free energy difference betweenand w-Zr.
K/kbar? In extrapolating the experimental data to lower tem-Such consideration, though being very interesting, is beyond
peratures, better agreement with our interfaces calculated #ie scope of this work.
T=0 may be obtained. But we did not perform extrapolation The competitive behavior of the and » phases in the
as we believe that for lower temperatures the experimentaimbient pressure region can be seen in Fig. 2, where the
slope value will be different. Besides, for the low- density of states at the Fermi lev&l(Eg), is plotted versus
temperature regiom <®p/4 we have to account for the the reduced volume//V, for all the structures of Zr. To
V/IVy=0.94 (P~60 kbap, the density of states & is ac-
TABLE I. The equilibrium volumeV (in A®), the bulk modu-  tyally the same for thee and @ phases. In the range
lus Bq (in Mbar), and the reduced volumes of the structural trans-0. 76<V/V,<0.94, thew structure has the lowest(Eg),
formations ofa-Zr calculated within the GGA and LDA schemes at 5nd for VIV,<0.76 (P>450 kbaj the 8 phase becomes
T=0, as compared to the experimental data and the data Obtain‘iﬁjreferential. The GGA model brings about insignificant
within the Hedin-Lundgvist LDA scheme. changes in Fig. 2.

Figure 3a) displays the dependence of the occupied part

Vo Bo  Vaeo Vuop AVaplV of the conduction band at the point of the BZ,Ex— Esg,
Expt. 2 23.3 083 0997 0.764 1.6 % on the compression. As expected, the width of the conduc-
LDA (H-L)® 225  1.19 tion band and its occupied part increase as the reduced vol-
LDA (H-L) ¢ 222 0.69 ume decreases. But ¥{Vy<0.77, and only for thev andg
LDA JWM) 2207 1.11 0.77 22 0 phases, the occupied part of the conduction band begins to
GGA 2337 1.03 0.764 25 0% diminish, becoming quantitatively close for both structures.

One can suppose that this effect is due to thesthates which

aReference 9. approach the conduction band bottom from below. It might
bReference 17. be useful to illustrate the behavior of upper core states under

‘Reference 12. the lattice compression.
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FIG. 3. The occupied part of the conduction bdag- Esg (a)
and the energetical position of thep4states with respect to the
Fermi levelEg—E,, (b) in Zr against the reduced volume within
the LDA.

In Fig. 3(b), the difference betweel;: and the energy of
the 4p state at thd” point of the BZ is shown as a function
of the reduced volume. The differendg-—E,, changes
only slightly in passing from the LDA to the GGA, and so
we restrict ourselves to the LDA case illustration. When the
specific volume is reduced by 30%, which corresponds to the
region of existence of3-Zr, the position of 4 states ap-
proachesEr, as well as the conduction band bottom, by
~0.1 Ry. Note that the considered energy difference
Er—E4, becomes, at high pressures, actually the same for
the o and B phases. The width of thepdband, which is
found to be 65 mRy at thE point of w-Zr for V,, reaches at
V/Vy=0.7 the value of 179 mRyor 225 mRy from the
density of states calculatipnTo date the isothermal com-
pressibility of Zr at room temperature has been studied in the
pressure range up to 680 kbar. The experimental data ob-
tained in Ref. 11 at 560 kbar have been associated by the
authors with an isostructur@-Zr transition. We have found
no peculiarities in the total energy @3-Zr in the high-
pressure region.

In Ref. 12 the electron density distribution patterns are
presented for the selected cell sections of all Zr structures.
The main distinction of thes phase from the others is the
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FIG. 4. The free energy vs the volume for three phases of Zr
within the GGA. The solid vertical line corresponds to the experi-
mental volume fora-Zr.

spheres is played by the states of the conduction band. In
our opinion, a specific distribution of the electron density
may be responsible for the appearance of a local minimum of
the total energy under distortion of the perfectstructure.
The experimental datd are indicative of the metastable
phase retention after loading zirconium with converging

pronounced covalent character of the chemical bond. This FIG. 5. The calculated dependendegV) of Zr at T=300 for
result is confirmed by our GGA calculation. The decisivethe LDA (a) and GGA(b). Experimental data from Ref. 11: &; 2,
role in the behavior of the electron density outside the MTw; and 3,8 phases.
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FIG. 6. The temperature dependences of the Gibbs energy for different presda@ga), P=0.1 Mbar(b), P=0.16 Mbar(c), and
P=0.36 Mbar(d).

shock waves. In a recent wofkRaman scattering was used The isothermal dependencB§V) were calculated by direct
to study the pressure dependence of lattice modes in Zr tdifferentiation of free energ? = — (dF/3V)+ for each struc-
160 kbar. An additional mode, observed above 80 kbar in theyre.

unloading cycle, is assigned to-Zr. This fact can be inter- The P(V) curves obtained af =300 K within the GGA

preted in favor of the existence of a metastabl@hase. and LDA approaches are shown in Fig. 5. The experimental
curves in these figures are taken from Ref. 11 in which they
P-T PHASE DIAGRAM were constructed by the method of least squares in such a

_ . manner as to satisfy the Birch-Marnaghan equétiduy fit-
Consider now the_lmprovgments brought about_b_y the us‘ﬁng the parameterB, and B/, for each phase. On the basis
of the Debye model in studying the structural stabilty of Zr. f theoretical curves for the equation of state, the specific

Figure 4 plots the free energy versus the specific volume fof . q ' b
three structures of Zr within the GGA. The phase has the volume was found a.t fixed valyes of temperature and pres-
lowestF(V,T) at room temperature, and this ensures quaIi-Sure and then used in ca_lc_ulatlng the_ Gibbs _ener@)as -
tative agreement of the calculated phase diagram with the 1h€ Procedure for defining the points of interfaces is il-
experimental one. The Debye temperature and tha@sen lustrated _by Fig. 6 displaying the temperature dependences
constant we calculated for the theoretical equilibrium volume®f the Gibbs energy fo=0, P=0.1 Mbar, P=0.16
of a-Zr atT=300 K within the GGA were 285.7 K and 0.67, Mbar, and P=0.36 Mbar. At P=0, in the range
whereas the LDA values were found to be 279.1 K and 1.020<T<1193 K, the Gibbs potential is minimum for the
respectively. For comparison, the corresponding experimerphase; further, alT>1193 K the 8 phase is realized. The
tal values are 291 K and 0.77. points of intersection of the curves in Fig. 6 determine the
To construct the phase diagram, the thermodynamicahterfaces of theP-T diagram. Figure 6 foP=0.16 Mbar
Gibbs potential$&G (P, T) should be calculated and compared corresponds to the triple point of the phase diagram. The
for three structures on a fixed mesh of independent paranfigure for P=0.36 Mbar demonstrates the formation of a
eters P,T): high-pressures phase.
The calculated®-T phase diagram is presented in Fig. 7.
G(P,T)=F(V,T)+PV. (6)  The theoretical temperature of the— 8 transition at zero
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TABLE II. The basic points of thé®-T diagram of Zr @ in
Q ] kbar, T in K).
] +xxxx Cale.
\,/1 200 & a— a—w w—
) ? ﬁééﬁﬁ Eg;}? Tp:é; I:)T=300 PT=3%0 Ptriple Ttriple
~ ]
3 900 SDPED Ref.9 Expt. 1136 33-67 35850 ~90  ~1100
© 1he LDA 1034 180 60 650
é}' 600 GGA 1193 54 270 160 620
[} ]
% 300 A DA
e ] quite well the available experimental data on the
N temperature- and pressure-induced structural transformations
0.0 0.1 0.2 0.3 0.4 in Zr. The triple point estimated from the experiments,
Pressure (Mbar) though being distant in temperature from that obtained by us,
nevertheless belongs to the calculated 8 interface.
Zr GGA 9 p
TS v se Cale. CONCLUSION
V12OOE ansss Ref. 10 . . 3 il
v ] ooooo Ref.11 In this work we tried to demonstrate, first, the possibility
%‘ 900 DOEOD Ref.9 of calculating theP-T phase diagram of Zr within the frame-
e ] work of a rather simple Debye model and, second, the de-
o ] pendence of the calculation results on the choice of the
o ] exchange-correlation potential. Quantitative agreement with
= 1 A OA experiments was obtained only when using the GGA, which
& ] \ scheme does not seem to be universal for all metallic sys-
1 o tems. Zirconium, however, proved to be an appropriate sub-
0.0

FIG. 7. TheP-T diagram of Zr for the LDA(a) and GGA(b).

o

Pressure (Mbar)

ject of investigation by the GGA. We expect that the sug-
gested model may be successfully applied in calculating the
phase diagrams of more complex systems as well.
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