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Modifications to alloy chemistry are often used to tailor the intrinsic flow behavior of structural materials.
Models of solution strengthening, high-temperature yield stress and creep must relate the effects of chemistry
to the mechanisms which influence these material properties. In ordered alloys, additional information regard-
ing the crystallographic site occupancy of substitutional solid solutions is required. The energy of intrinsic and
substitutional point defects b1, TiAl are calculated within a first principles, local density functional theory
framework. We calculate the relaxed structures and energies of vacancies, antisites, and substitutional defects
using a plane-wave pseudopotential method. The results of these total energy calculations are incorporated into
a simple thermodynamic model in order to determine the density of point defects as a function of temperature
and stoichiometry. Defect densities are presented as a function of alloy chemistry and temperature for binary
TiAl and ternary addition$Si, Nb, Mo, Ta, and W. Defect formation energies are calculated using the derived
chemical potentials of each atomic species for several alloy compositions. The predicted site selection of the
solutes are in excellent agreement with recent x-ray emission experiments using a quantitative statistical
method for atom location by channelling enhanced microanalyS#163-182@08)06818-0

I. INTRODUCTION signers have taken great strides in moving from precipitation
hardened multicomponent materials, the so-called superal-
The local density functional theory provides a robustloys, to intgrmetallic glloys such as TiAl anq NiAl. In some
framework for calculating the cohesive properties of a widecases the mt_ermetalllc alloys offer substantially better struc-
variety of materials. As methods and computational perforiural properties than superalloysHowever, the body of
mance improve, it has become possible to accurately calcinowledge regarding these materials is still somewhat lim-
late an increasing number of intrinsic properties of metaldt€d in comparison to the materials that are currently in ser-
and nonmetals. The advent of iterative diagonalizationViCe- Establishing a better fundamental understanding of the
schemes for plane-wave psuedopotential methods have efftéchanisms that influence flow and fracture is needed.
abled calculations in semiconductors of surface LIS well established that point defects can have a strong
reconstructior}, ab initio molecular dynamic&,and disloca- influence on the flow and fracture behavior of intermetallics.

tion dissociatior’. Existing conjugate-gradient methods have B2 NiAl .and L.lo .T'AI have a strong de'pendence of yield
: stress with stoichiometry and alloy designers regularly use
been extended to treat metals and have been applied to poin o . : - .
: e ternary additions to achieve solid solution strengthering.
defect§ and grain boundariésin simple metals and bulk

ties i dered int talli&aAvhil tial band For ordered alloys, additional information regarding the
properties in ordered intermetallitsivhiie partial band oc- crystallographic site occupancy of ternary elements is re-
cupancy and multiplk-point sampling increase the com-

3 ’ : ) ’ 227 quired. In this work the sublattice site selection and the for-
plexity of the calculation, the iterative diagonalization pation energy of ternary elements is estimated using defect
method remains quite stable for even large superdaliger  energies that are calculated within the local density approxi-

than 100 atoms Intermetallic alloys often require larger su- mation. These energies include the relaxation of the lattice in
percells and by their nature imply a multicomponent crystakhe proximity of the point defect.
bonding (i.e., metallic and covalent bonding The plane-
wave basis is well suited for treating local and nonlocal
bonding while at the same time permitting an efficient
method for evaluating the Hellmann-Feynman forces. In this The point defects in TiAl are calculated using an iterative
paper we use the conjugate-gradient plane-wavepreconditioned conjugate-gradient method based on a plane-
pseudopotential method to study the electronic structure ofvave expansion for the electronic orbitals and a pseudopo-
point defects irL 1, TiAl including the substitutional ternary tential representation of the electron ion interactith$his
elements Si, Nb, Mo, Ta, and W. method, originally introduced by Tetat al,, has been ex-
The TiAl alloys are representative of an emerging class ofended to treat metals and has been used previously in cal-
high-temperature structural materials. These materials are awlations of the formation energies and lattice relaxation of
attractive alternative for aerospace applications due to impoint defects in Li and Af. Convergence of the Kohn-Sham
provements in alloy density and flow behavfohlloy de-  orbitals was achieved using charge density mixing and the

IIl. METHOD AND COMPUTATIONAL DETAILS
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TABLE |. Cutoff radii (a.u) for the pseudopotentials in this In order to test the transferability of the pseudopotentials
study. the logarithmic derivative of the pseudo and all electron
: : atomic wave functions were compared. Also the lattice pa-

Channel Al Si Ti Nb Mo Ta W  rameters, bulk modulusk(), and elastic constants were cal-
R 180 190 248 248 248 242 245 culated for TiAl, Si, and the respective simple bcc metals.

The lattice parameters and bulk modulus can be determined
by fitting the energy as a function of hydrostatic strain to
Murnaghan’s equation of stat®1ES).}’” Similarly the elastic
constants can be determined by applying symmetry-

. . restricted strains to the lattice and fitting the energy depen-
positions of atoms surrounding the defect centers were OPthance to second and fourth order polynomials. This proce-

mized using a quasi-Newton method. The band-by-band opy, o requires strains in excess of 5% of the lattice parameter.

timization method for the electronic orbitals is well docu- An alternative procedure, which we have used here, is to

mented, other relevant details regarding this set Ofevaluate the stress tensor for symmetry-restricted

calculations are reviewed briefly below. strainst®=2° This has several advantages over traditional

Psgudopotentia}s for this study were generated .“5"?9 thl%ethods for determining the elastic constantsFirst,
Troullier and Martins soft-core methdd.The expansion in smaller strains, which are within the elastic limit, can be

nonlocal components is truncatedl at2, with thes scatter- employed. Typically these strains range from 0.2-0.5 % of
ing channel being approximated by the local pseudopotenya™ |attice constant. Second, far fewer calculations are

tial. Pseudopotentials are generated from the nonspin pOIaFfeeded because sevei@); can be determined from one
) X . " i

ized yalence ground state _conflgurafuons_. The cutoff radii fo_rstrain tensor calculation. For example, to determineGhe
the different pseudopotentials used in this study are shown Bt TiAl using traditional methods of fitting energy as a func-

Table 1. This set of cutoff radii represents a balance be’[ion of strain, approximately thirty energy minimization cal-

tween transferability of the pseudopotentials and the CONVels |ations are required. Using the stress tensor only two

gence of the goheswe energy W't.hm a plane-wave basis. Thcealculations are required, including a third reference calcula-
pseudopotentials are then cast in a fully separable form t

S . : flon for the unstrained lattice. Details of this method are
minimize computational overhead in the

lculation<2 In this studv the Ti dopotential SuP_erce"described in Appendix A. The calculated lattice parameters,
calculations.”In this study the 11 pseudopotential requires ap, . modyli, and elastic constants for TiAl are shown in

plane-wave cutoff of approximately 60 Ry in order to CON" Table II. The elastic constants for TiAl were calculated us-

Verge tlheF(;iefelctTiner?r;es to bztter ;rhatn AO-ZS'mI\I;y- l\?t?e, fc?ﬁg the traditional and stress tensor methods and we find
_elz_xampde, 9. b €o ter ps”eu oyi)offen( B. "f 0, 20' 40good agreement between the two methods. The lattice con-
a, and W can be run at smaller cutoffs ranging from 20— - stants andC;; are in good agreement with previous local-

Ry. Galissian .broade.mng |s_used to perform the B“ll.ou'ndensity approximatioiLDA) calculations and available ex-
zone energy integrations with Monkhorst-Pack spedial perimental results

pointfstlci sample Fhe irreducible wedge in the first Brillouin Similar preliminary calculations were performed on Si,
zone:>*" A Gaussian broadening parameter of 0.030 Ry Waf1o Nb, Ta, and W the results of which are presented in

employed throughout these calculations. The point defect .. ;| 'The elastic constants were calculated from the

calculations in TiAl are based on a 32 atom supercell with (_Sstress tensor and the bulk moduli were calculated two ways,

specialk points. The test calculations on the elastic modul|using MES and the elastic constants. Lattice parameters are
of TiAl and the simple bcc metals, described below, typically, : : -
employed (8,8.8 k-point sampling grids. The exchange- in good agreement Wlth experimental results_. T )
lati ' t tial of C | 4 Ald | (MES) results for the lattice constants are consistently larger
correlation potential of Leperiey an er was emp Oyedthan those predicted by the stress tensor. The bulk modulus
for boﬁh tTe Ige_nergll(gn of the pseudopotentials and the Styjriyeq from MES tends to fall between the experimental
percell calculations. and the results derived from the elastic constants. The differ-
ences between the calculated and measured elastic constants
01 are consistent with the results of other LDA studies on the

p 200 190 29 289 289 288 284
d 200 190 213 198 188 151 1.86

§ 0 . elastic constants of metals.

E ®

> N °

g 01 *t Ill. RESULTS

o 02 The y phase of TiAl is an orderedl1, fcc derivative

2 -0.3] structure consisting of alternatin@01) layers of Ti and Al.

3 The primitive cubic cell is body centered tetragonal and the

<_(i: -0.4- conventional unit cell has the lattice parameters listed in Ta-
05 s ble 1l. We find the calculated band structure in very good

50 55 60 65 70 75 80 85 agreement with previous full-potential linear muffin-tin-

orbital (FP-LMTO) results®? Figures 2a) and 2b) show
the characteristic? and p-d hybrid bonding found in this
FIG. 1. Convergence of Al defect energy with plane-wave cut- intermetallic alloy. In thg001) plane consisting of Ti atoms
off energy. The defect energy at a plane wave cutoff of 80 Ry isthere is hybridd? bonding between nearest-neighbor Ti sites.
used as a reference energy. Also, there is ap, charge polarization about the Al site

Plane Wave Cutoff (Ry)
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TABLE II. Calculated equilibrium lattice parameters and elastic moldMbar) for TiAl using the
pseudopotentials in this study. The results of previous full potential LAPW and experimental studies are also

included.

Method a(a.u) cla K Ci1 Ci Cis Ca3 Cus Ces
E(eij) 7.484 1.026 1.25 1.77 0.99 0.93 1.81 111 0.85
o(eij) 7.460 1.020 1.20 1.71 096  0.91 1.75 1.11 0.84
FLAPW? 7.467 1.01 1.26 1.90 1.05 0.90 1.85 1.20 0.50
FLAPW® 7.372 1.037 1.27 1.88 0.98 0.96 1.90 1.26 1.00
FP-LMTO¢® 1.25 1.76 0.99 0.98 1.79 1.21 0.60
Exp.d 7.571°¢ 1.016° 1.09 1.86 0.72 0.74 1.76 1.01 0.77
Exp.f 7.514 1.023 1.11 1.87 0.75 0.75 1.82 1.09 0.81

%Reference 22.
bReference 21.
‘Reference 23.
dreference 24.
®Reference 25.
fReference 26.

which has been linked to strong cohesion of the Al and TiRy. Next the positions of the first nearest-neighbor atoms
(001) planes. This is in excellent aggreement with previouswere optimized using a quasi-Newton method until the vec-
full-potential linear augmented plane wavELAPW) and  tor components of the force on any atom was less than 1.0
layered Korringa-Kohn-RostokékKKR) calculations>>3* % 10~2 Ry/Bohr. This converges the total energy to better
The structure and energy of the point defects were calcuthan 0.3 mRy. Results for these calculations are shown in
lated in two steps. First the point defects were introducedrable IV. The defect energies are defined as the energy dif-
into an otherwise perfect lattice represented by a 32-atorference between the defect cell and the perfect lattice. Opti-
supercell. The self consistent electronic structure was calcumizing the nearest-neighbor positions around the defect can
lated for this configuration using a plane-wave cutoff of 60reduce the defect energies by as much as 5 mRy. Changes in

TABLE IIl. Calculated equilibrium lattice parameters and elastic moduli for Si and the simple bcc metals
using the pseudopotentials developed for this study. The results of previous electronic structure and experi-
mental studies are included when available. Calculatiof€gf in Si requires information regarding the
internal strain parameter. These calculations gave the value shown in parentheses.

Property Method Si Nb Mo Ta W
E(e;)) 10.1931 6.245 5.981 6.215 5.988
o(e;) 10.1934 6.207 5.967 6.182 5.978
a (a.u) APW-MTA 2 6.161 5.904 6.225 5.983
FPLMTOP 6.139 5.879 6.070 5.879
Exp.°© 10.2659 6.2506 5.9486 6.228 5.974
E(ej) 0.985 1.88 2.70 2.16 3.26
(C11+2C1p)/3 0.953 1.97 2.81 2.23 3.24
K (Mbar) APW-MTA 2 1.948 2.881 2.008 3.256
FPLMTOP® 1.89 2.97 1.87 3.05
Exp. ¢ 0.992 1.73 2.70 1.93 3.14
Cy; (Mbar) o(e;) 1.62 2.87 4.70 3.04 5.33
Exp.¢ 1.68 2.53 4.79 2.66 5.32
Cy, (Mbar) o(e;) 0.62 1.52 1.87 1.82 2.20
Exp.¢ 0.650 1.33 1.65 1.58 2.05
Cas (Mban o(e;) 0.840.59 © 0.21 1.01 0.66 1.43
Exp.¢ 0.804 0.309 1.08 0.874 1.63

8Reference 28.
bReference 29.
‘Reference 30.
dreference 31.
®Reference 27.
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TABLE V. Defect energiesRy) and the components of the

displacement vectors of the representative nearest-neighbor atoms.
The atoms are in the first quadrant with the defect site located at the
' - 7 origin. The vector components are in units of £of the respective
A N lattice parametera and c. The reference energy per atom of the
9 . perfect lattice isE = —7.0021 Ry.
o Ti
v y 3@ Defect energy Nearest-neighbor displacement
Wﬁj f Defect Unrelaxed optimized ~R}! R R RY
Ti = ATi Vol 5.2850 5.2846 —-1.09 -3.84 -0.82 0.00
(@) <100> Vo, 8.0870 89830 -7.84 000 -3.02 —3.46
Ti . Tip -3.6837 —3.6842 0.70 —-2.30 1.22 0.00
! 25) lQ T Al 3.7793 3.7727 —-11.10 0.00 0.14 3.66
T Sia —4.0929 —4.0982 —-4.78 -—7.74 3.05 0.00
= Siyi —-0.2765 —-0.3042 —-26.92 0.00 -091 6.16
Nb —8.8652 —8.8676 1.22 549 465 0.00
A Nb -5.1845 -5.1856 0.37 0.00 0.32 0.44
o Mo, — —15.9447 —-15.9495 —-2.02 -9.88 0.21 0.00
? Moy; —12.2300 —12.2313 —4.94 0.00 -3.74 —0.90
Tap —8.9537 —8.9549 0.27 -—-2.86 1.87 0.00
Tag; -5.2620 —-5.2619  0.03 0.00 -0.12 0.00
Wy —15.7657 —15.7717 —-2.94 -10.62 —-1.23 0.00
W, —12.0466 —12.0493 —-4.44 0.00 —-4.42 -181
Ti Ti
(b) <100>

fined by thermodynamics will reflect the changing
requirements for constitutional defects as a function of com-
position.

In the ordered intermetallics there is an additional com-
plexity, compared to the simple metals, in defining the defect
the defe(_:t energies_of this magnitude can signifi_cantly affectgrmation energy as measured in the laboratory due to the
the predicted density of thermal defects. In this study Weconstraints of chemical homogeneity. There is chemical driv-
assumed that the defect prefers the lattice site, no attempig force to keep the composition homogeneous in a given
was made to break the symmetry of the defect center. Fajolume of material. This requires that thermal point defects
some defects additional strain energy may be realized byorm in ways that maintain the local composition. In a binary
relaxing the second and perhaps third nearest-neighbor akjjoy there are four primitive excitations that satisfy this con-
oms. However, in most of the cases considered in this worktraint: the double vacandy,+V,, the double antisité\,
the lattice misfit is small and the strain energy from the sec- B,, and two triple defects\2,+A; and 2V4+B,,. Here
ond and third nearest-neighbor atoms will be less than ne subscript refers to the sublattice on which the defect re-
mRy. The displacement of the first nearest-neighbor atomgjqeg andv, A, andB refer to the vacancyd andB atomic
(Table I\/)_ls typically less than 1% of the lattice constant. species, respectively. The point defects associated with these
The magnitude of these strains is consistent with the straingycitations are assumed to be noninteracting, so the effects of
used to calculate the elastic moduli for TiAl, Si, and the becejystering or ordering are not considered. Ordered interme-
metals described in the previous section. tallics that accomodate deviations from stoichiometry by
forming Ag(Vp) on theA rich side anadv,(B,) the B rich
side are often called triple defect compounds. Triple defect
mechanisms are known to dominate in sev@&alinterme-

The defect energies presented in the results section, T4allics (NiAl, CoAl, and FeA). In y-TiAl the density of va-
ble 1V, give changes in the energy of the supercell whichcancies is small compared to deviations from stoichiometry
include changes in the alloy composition. In order to deriveand constitutional and thermal defects are dominated by the
defect formation energies from these results some informaantisite mechanisriv:%
tion regarding the chemical potentials for each chemical spe- Recently, the thermodynamic properties of point defects
cies is required. In general the formation energies and chemin triple defect materials have been investigated in detail by
cal potentials will be a function of temperature andseveral groups. Mayest al. explored a grand canonical for-
composition. In this work we are particularly interested inmalism for B2 FeAl using the defect energies calculated
how these quantities change with the stoichiometry of thdrom a mixed-basis pseudopotential method in the local den-
host material. Constitutional defects are required for substisity approximatior’’ Analytic expressions and numerical so-
tutional ternary solutes and for variations from stoichiom-lutions for the chemical potentials for a range of tempera-
etry. The chemical potentials and formation energies as ddures and composition were presented. At low temperatures

FIG. 2. Charge density contour plots of tf& all Ti (001) plane
and the(b) mixed (010 plane. Charge density is in units of 19
electron/a.i?

IV. DISCUSSION
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TABLE V. Expressions for the formation energies of point defects in terms of the chemical potentials and
the defect energies in Table IV.

Point defects
V, Vg Ag B, Cs C.

Hg Evtua  Eptpms  Eptme—wma  Ebtma—pme  Egtug—pc  EStua—pc

the chemical potentials were found to change rapidly as thang two equations come frorfil) defining the composition
alloy composition changed from Fe to Al rich. The variation and (2) relating the Gibb’s free energy to the chemical po-
in chemical potentials with stoichiometry is consistent withtentials at zero pressure. The input required to solve these
the formation of different types of constitutional defects atéquations are the Helmholtz energy of the perfect unit cell,
these compositions. Using a different approach Mishin andhe energy of the defect cells, and the desired composition at
Farkas developed identical analytical expressions for th@ given temperature. The resulting coupled equations can be
chemical potentials and formation energies for point defect§olved by iteratively adjusting the chemical potentials until
in B2 NiAl.*® Also, Hagen and Finnis developed a slightly the required composition is obtained. A similar approach can
different formalism and applied it t8B2 NiAl, yielding simi- be used to determine the density of substitutional ternary
lar analytic expressions for the chemical potentials as a funcsolutes. The numerical model, including details regarding so-
tion of stoichiometry’® Defect energies from embedded lutions for ternary systems, is described in more detail in
atom simulations were used to illustrate trends in defect conAppendix B. The current model is a slight improvement over
centration as a function of temperature and composition. Fthe original work of Foiles and Daw in that the density of
and Yod? also used a numerical thermodynamic model simi-thermal defects is proportional to the partition function.

lar to that of Foiles and Daft to study triple defects in NiAl ~ Many of the features of the binary alloy model can be
and FeAl, using point defect energies calculated from a firstllustrated analytically, this is also the case for the ternary
principles mixed basis method. systems. The energy of a grand canonical ensembld of

In order to predict the site occupancy of the various poin@tom sites in arl1, lattice, for low temperature and zero
defects at finite temperature we develop a numerical thermdressure IS
dynamlc model similar to thg one mtroduced by Foiles gnd E=Eq+ NYEY+ NUES+ NBEB + NAEA+ NCEC + NCEC.
Daw.** The free energy is minimized in the grand canonical ama TATR S ama BTN et A 5(1)
ensemble to obtain the chemical potentials and the concen-
tration of point defects. This is similar to the numerical mod- The definition of the point defect formation energy is
els proposed by Mayeet al*” and Fu and Yod? however, Hq=(JE/dNg)n, ng N FOr @ system consisting of lattice
we have extended the scheme to ternary systems. ExtendiRges a variation in the number of point defects will change
the model to higher multicomponent systetesg., quater- N, Ng, or Nc. The free energy of the atomic species,
nary systemis straightforward. For simplicity consider first yyritten as the chemical potentials, are added to account for

a binary system such asTiAl. Assume that the concentra- the changes in energy due to variations in the numbe, of
tion of point defects is small so that the interaction of pointg o ¢ atoms:

defects can be neglected. Thé, lattice has two sublattices

designated byr and 3, and a total number of lattice sités Q=Eo+NSES+NGES+NEES + NGES+ NSES +NGES
will be included in the ensembléd and B designate the

species that reside on theand 8 sublattices in the perfect ~#aNA— ueNg = ucNe, )
crystal. Each lattice site will be occupied by an atom of thewhere

appropriate species for that lattice site, a vacancy, or the

other species. The thermal concentration of defects can be N :E_Nv_’_NA_NB_NC
derived from an ensemble at fixed temperature and chemical A2 a’ B e Hav
potentialsy; . In a binary alloy there are six unknowns to be
determined: the density of the vacancies and antisites and the _E N B_ nA_NC
: , e e Ng=- —N%+N5—Nj—Ng, 3
two chemical potentials. Minimizing the grand potential with 2
respect to the density of thermal defects gives four equations c e
for the density of thermal defects at equilibrium. The remain- Nc=Ng+Nj.

TABLE VI. Formation energies for the point defect complexes that preserve composition in the binary
alloy. Expressions are evaulated using the calculated defect energies in Table 1V and the energy of enthalpy
per atom in the bulk materigk.g.,E,e=Eq/N=(ua+ ug)/2].

Defect complex
V,+Vg Ag+B, 2V, +Ag 2Vz+B,

Hy EV+Ej+2E ES+ES 2E)+Ef+ 2E 2E)+ES+2E
C

3.582 1.204 4.593 3.775
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TABLE VII. Expressions and numerical values for thg, and TABLE VIII. Expressions and numerical values for the forma-
ui (in Ry) for stioichiometric TiAl and for small deviations from tion energies of vacancies and antisites fliAl (in eV) for
stoichiometry. The numerical values are based on the defect enestoichiometric TiAl and for small deviations from stoichiometry.
gies presented in Table 1V. Here theand 8 subscripts refer to the The numerical values are based on the defect energies presented in
Al and Ti sublattice, respectively. Table IV. Here thew and 8 subscripts refer to the Al and Ti sub-
lattice, respectively.

Composition
Ti rich stoichiometric Al rich Composition
T N A Ti rich stoichiometric Al rich
i E—E, /2 Erert (EB —-E,)/4 ErertEg 2 a— y T —r
51600 _51379 _51158 Vg Eiert E,—E, /2 Et Ea-l-(EB E,)/4 Et+E,+ S 2
- p— . 1.695 1.995 2.296
K et R Bt (Ea ) For By 2 Erert Ej+EN2 Ert Ef+(EN—ES)/4 Et+Ej—ES/2
—8.8442 —8.8664 —8.8885 vy ErertEatEll2 Bt Byt (B mEp)M EertBoEp
1.888 1.587 1.286
Taking the partial derivative with respect to the number of_ EL+Ep (EZ+ER)2 0.0
each defect gives the formal definition of the formation en- 1.204 0.602 0.0
ergy for each point defect. These are shown in Table V. The _ »
formation energy of the four primitive excitations that main- 0.0 (EX+ER)/2 Ev+ES
tain the local composition, the vacancy pair, antisite pair, anJ Al 00 0.602 1.204

triple defects can be expressed in terms of the defect energies
and the energy/atom in the bullE{/N=E,.). The expres-
sions for these formation energies are shown in Table VI,
along with the respective numerical values predicted fronmit 1, respectively. This gives analytical expressions for the
the electronic structure calculations. The antisite pair mechachemical potentials for compositions close to stoichiometry.
nism has a significantly lower formation energy compared tolhe expressions and respective numerical values found in
the other defect mechanisms, therefore we expect antisites tbis study are shown in Table VII. Expressions for the
dominate the thermal defects and constitutional defects in thehemical potentials at stoichoimetry are taken as the average
binary alloy. of the chemical potentials found for the-rich and B-rich

Following Mishin and Fark&8 we express the total en- alloys. The variation in chemical potential as a function of
ergy at zero temperature in terms of the energy/atom in thetoichiometry is consistent with the formation of constitu-
alloy u. Using the definition of the chemical potentiai  tional defects as required for a given composition.
= (dE/oN;)n, and using the number densities for the concen-  Using these expressions for the chemical potentials we
tration of species: can evaluate the formation energy of the intrinsic point de-

fects iny-TiAl as a function of stoichiometry. The numerical
_ du values for the formation energies are shown in Table VIII.
,LLA—U+ nAdT, (4) Th . . . .

A e derived formation energies reflect several constraints. In
order for a finite density of constitutional defects to be
present at low temperature the formation energy of these
defects must approach zero. Also, the formation energy for
_ . the point defect excitations which maintain the local compo-
Near stoichiometryna=0.5 andu=E.. We then write gy o0 independent of composition since these energies do

du/dny as ou/dn,, wheresu is the change in the energy/ not depend on the chemical potentials. Therefb’réfr HY,

atom due to the formation of a single constitutional defect |, ~ "y d MY+ A ind d f stoichi
and én, is the respective change in alloy composition. AsHatHp, and H,+Hj are independent of stoichiometry.

shown by Mishin and Farkas the two chemical potentials can 1€ sité selection of the ternary defects, at low tempera-
then be expressed in terms Bf., SN, and SNg. Intro- ture, can also be determined as a function of stoichiometry

ducing a constitutional defect, and expressing this change iHSing the chemical potentials in Table VII. The difference in

du
MBIU—(l—nA)d—nA- 5

composition assN,+ 6N, defect formation energydH "= HI***- HE"*%) are plot-
ted in Fig. 3 as a function of stoichiometry. Here Ti rich and
SESe ™ 2E ei6Ng Al rich refer to alloys with Tj, and Al; constitutional de-
KA SNA— 6Ng 6 fects, respectively. Positive and negative valuesdifee
indicate that theB and a sublattice are prefered, respec-
SEJErCL 2F (0N, tively. The formal definitions of the chemical potential and
PBT T Ng— ON, (7)  formation energy for the ternary solutes imply that the for-

mation energy for the prefered constitutional defect will be
For alloys dominated by antisite defects we need to considefpproximately equal to zero at low temperatures. This deter-
two cases. AnA-rich alloy will form Ng antisites anddN, ~ mines both the chemical potential and the formation energies
and 6Ng will be +1 and —1, respectively. For @8-rich  for the solutes. The chemical potentials and formation ener-
alloy, NE antisites will giveSN, and SNg equal to—1 and  gies of the various ternary solutes for low temperatures are
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TABLE IX. Expressions and numerical values for the formation ener@iesV) and chemical potentials
(in Ry) of ternary elements iry-TiAl at low temperatures for compositions near stoichiometry. Changes in
these quantities with alloy composition reflect the presence of different constitutional defects as designated in
the table heading. The numerical values are based on the defects energies presented in Table IV.aHere the
and B subscripts refer to the Al and Ti sublattice, respectively.

Composition
Ti rich Stoichiometric Al rich
M Erert Euf Erert B + Erert Eu +
ER/2— puy (Ef' —EN)/A— uy E/2— pu
My Erert E)j + Erert E)f + Erert Ef —
I . .
En/2— puy (EL—ES)/4— uy Ef/2— py
Usi -9.2582 -9.2361 -9.2140
Sy, 0.0 0.0 0.0
Sir; 1.4933 0.8922 0.2896
LNb —14.0298 —14.0519 —14.0741
Nby 0.0299 0.6310 1.2376
Nby; 0.0 0.0 0.0
o —-21.1095 —-21.0976 -21.1198
Moy, 0.0 0.1387 0.7412
Mox 0.4624 0.0 0.0
e —-14.1149 —-14.1282 —14.1504
Tay 0.0 0.4814 1.0934
Tay, 0.1197 0.0 0.0
L —20.9317 —20.9156 —20.9378
Wy 0.0 0.0816 0.6841
Wr; 0.5195 0.0 0.0
shown in Taple IX as function qf stolichiometry. Aga_in, Ti ngng —(H’2+H§—H2)
rich and Al rich refer to alloys with Tj and Ak; constitu- —c =exp K , (11
tional defects, respectively. The chemical potentials listed in Ng BT

Tables VII and IX are consistent with the chemical poten- .
tials found using the numerical model described in AppendixVhere the formation energy for the two exchange mecha-
B. A small SHU™et (<0.1 eV~120kg) implies that at fi-  NiSMS are given by

nite temperature the ternary will be shared between the two

sublattices. However, ternary defects formed by thermal ex- Ecop=Eot+E5—ES, (12
citation are also required to maintain local chemistry. There
are two primitive excitations that meet this requirement

based on the exchange of a ternary defect between the two : ﬁllb
sublattices: 1571 o Mo
*
1 o Ta 2
o W
C,=B,+Cg;, 8 <
«=BatCp ®) 3 05 $
Q @ 0 rY
- I
Cp=As+C,. 9 T © -
T -0.51
The ternary exchange energies are easily evaluted since 11 .
the composition remains constant. The equilibrium concen-
tration of point defects associated with these defect mecha- -1.5—#— —T _ —
nisms varies with temperature according to Ti Rich Stoichiometric Al Rich

FIG. 3. The difference in formation energy of ternary substitu-
nBnC _(HB+HC_HC) tional defects(Al, Nb, Mo, Ta, and W residing on different sub-
A @ B o) (10) lattices SHefec= H 9% g for compositions near stoichiom-
@ kT etry in y-TiAl
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TABLE X. Expressions and numerical values for the formation ener@iesV) of the ternary exchange
defects as discussed in the text. The numerical values are based on the defect energies presented in Table IV.
Here thea and B subscripts refer to the Al and Ti sublattice, respectively.

Defect complex Ternary element
Reaction Formation energy Si Nb Mo Ta w
M,=Ti,+Mg El+Ey—E) 1.493 —-0.030 0.462 0.120 0.520
Mg=Alz+M, Ef+EN—E) ~0.290 1.234 0.741 1.084 0.684
Ecpoa= E’,,j,+ EC— Eg ) (13) Results for the ternary additions in TiAl at 1273 K are

shown in Figs. t8)—5(e). As expected from the data shown
in Fig. 3, Si prefers the Al 4) sublattice for compositions

The ternary elements produce constitutional defects foranging from 42—56 atomic percent Al while Nb prefers the
any given temperature and underlying stoichiometry so thej () sublattice. The site preference for Mo, Ta, and W
ratio of the defect concentrations can vary substantially. As @epends on the stoichiometry of the host alloy. Figure 6
consequence the formation energy for the ternary exchangshows the dependence of site occupancy with stoichiometry
mechanisms can go to zero, or actually be less than zero. 6r the five ternaries considered in this study for a ternary
the formation energy for a ternary exchange is small it willconcentration of 1 at. % and a temperature of 1273 K.
strongly influence the site selection of ternaries with a small Independent of the current study, Rossoetal. have
SHYe"t For example, Fig. 3 shows a smaM NP for Ti-rich  measured site occupancy using the transmission electron mi-
TiAl. However, the ternary exchange which producesiNb croscopy(TEM) x-ray spectroscopy technique of atom loca-
has a low energy and is expected to dominate the thermalljon by channelling-enhanced microanalygisLCHEMI)
activated processes. Therefore, there will be little mixing ofused in conjuction with a statistical multivariate metfad.
Nb between the two sublattices due to thermal activation agtandard ALCHEMI uses the differences and ratios of char-
higher temperatures. The formation energies for the ternargcteristic x-ray emission intensities for different fast electron
exchange mechanisms for the various solutes, calculateshanneling conditions to determine atom locations. Unfortu-
from the data in Table 1V, are shown in Table X. nately, the results of standard ALCHEMI measurements are

The results from the numerical model described in Ap-often difficult to reproduce. Rossouwt al. find that by
pendix B for binary TiAl at 1273 K are shown in Fig. 4. As adopting a statistical method the effects of systematic errors
expected the constitutional defects are dominated by antisiteég the collected data can be minimized, and a quantitative
with the density of Al and Ti vacancies less than 0 estimate of the uncertainties in the results can be obtained. In
throughout this range in composition. The density of vacantheir study of ternary additions in TiAl the composition of
cies is similar to that found in simple fcc metals. The forma-the y phase could not be determined unambiguously using
tion of Aly; rather than V; for Al-rich TiAl is consistent with  energy-dispersive x-ray analysiEDXA).*> The results of
the early experimental work of Elliot and RostoR&Phase  the current first principles study indicate that site selection of
diagrams for the binary alloy indicate thg{TiAl occurs asa some of the ternary additions are quite sensitive to the un-
single phase in a range of 48—64 % Al for temperatures bederlying stoichiometry of they phase. An estimate of the
low 1600 K. The Ti-rich region has coexisting and y  composition of they phase is needed in order to compare the
phases and compositions for tiygphase with less than 48% current results with experiment.

Al have have not been observed. The initial ingots studied by Rossouw and co-workers had
nominal compositions ofTi 5,-Al 4g) 9-M 1, WhereM is the
1071 ternary impurity. These were then heat treated at 1473 K for
| 75 six hours to produce &-a, duplex structure. The most re-
cent studies of the TiAl binary phase diagram show the sol-
£ 10% vus line between thex,+vy phase field and the phase at
~§—’) . approximately 48.75% Al and 49% Al for the temperatures
Q 105 1473 and 800 K, respectivel§y-*°Depending upon the cool-
5 ing rates the compositions of thephase alloys could range
o T from 48.75 to 49.00 at. % Al. Also, the presence of ternary
g 1071 elements can shift the solvus line from that found for the
G i binary alloy. Figure 7 compares the experimental data of
c .
g . Rossouy\gt al.to Fhe results of the current _study assuming a
10 composition of(Ti 51-Al 49) 9-M ;. The predicted results are
1 in excellent agreement with experiment.
10" L

44 46 48 50 52 54 56
%Al V. SUMMARY

FIG. 4. Predicted point defect densities, at 1073 K, as a function The electronic structure of point defects aTiAl, in-
of stoichiometry. cluding the ternary elements Si, Nb, Mo, W, and Ta as sub-
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—o— TiAI —a— AITi —e—TiAI —a— AITi
——=Siy| (T AL)egSi, | —=—Si, ——Nb, | (Ti,0,AlJggNb, | —=—Nb_
107 10" 10" 10
o -2 &%‘%‘\ WZB_E-BE'BEE | -2 ®
5 10 g B 102 F102 §
2 2. 3 2,
5 10 -10° £ 5 F
=3 -3 L 108 O,
8 2 210 10°
3 10 104 & 3 e
3 8 3 o
S & 5 1077 104 &
2 10% -10° S = S
2 b 2 b
8 10% 10 & & 10°7 r10° =
1473 K 1473 K
10'7 T T T T T 107 10": T T T T T 10—6
44 46 48 50 52 54 56 44 46 48 50 52 54 56
(a) % Al (b) % Al
——Ti,, —=—Al, ——Ti,, —=—Al_
——Mo, | (Tip,-AlL)esMo, | —=—Mo ——Ta,| (TixAlgeTa, |—=—Ta,
10" 107 107
2 c? 3 g
w 0N .
3 2 3 10 3
5 10 F102 < 5 <
g 2 @ Q
2 8 S g
S @ 5 o
,?; 103 F10°8 é % )
4 ™
S 23 GC_) 107 o
o D o &
1473 K
10-4 T T T T T 104 10‘“ T T T T T 105
44 46 48 50 52 54 56 44 46 48 50 52 54 56
() % Al (d) % Al
——Ti
—— W
107
2 o
2 =
3 B,
5 1027 2
2 =3
3 8
3 g
© 71
2 1073 o)
‘®
5 @
o 5
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10"1 T T T T T 10'4
44 46 48 50 52 54 56
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FIG. 5. Predicted point defect densities, at 1473 K, as a function of stoichiometry for ternary elements Si, Nb, Mo, Ta, and W.

stitutional defects, have been calculated using a plane-wavergy and density of constitutional and thermal point defects
pseudopotential method. The nearest-neighbor atomias a function of stoichiometry and temperature. Predicted
positions were relaxed according to the calculated Hellmanneonsitutional defects are consistent with experimental obser-
Feynman forces. The resulting point defect energies wergations for the binary alloy. Site selection for the ternary

used in a thermodynamic model to predict the formation enelements are in excellent agreement with the recent work of
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Site Occupancy in Ti-xAl-1M, M=Si, Nb, Mo, Ta or W APPENDIX A: EVALUATION OF = Cj; USING o (e;j)

— In the reduced scheme the relation between stress and
1.0 W s50%A strain can be written
0.8 O s1%Al _ - - - - - - -

Occupancy Mg Occupancy

M

0.6 011 €11 01 €1
04 o € o €
0.2 22 22 2 2
0 — — — 033 €33 g3 €3
0.2 = CI] or = C” . (Al)
023 €23 Oy €4
0.4
0.6 031 €31 Jg €5
= 0.8
10 L 933 | €33] L 96 L €6
Si Nb Mo Ta w

For crystals with cubic symmetnC;,=C,,=Cs3, Cy,
) ) ) ) :C13: C23, C44: C55:C66! W|th a" OtherCij=0. FOI’ a
FIG. 6. Predicted sublattice site selection, at 1273 K, of thetetragonal unit cell, such as that needed lfdr, TiAl Cy
ternary elements as a function of stoichiometry. =C,y, C44=Css, C13=Cyq With all other Cij exceptCag,
Cgs andC, set equal to zero. Define a strain tengathat
Rossouwet al#? Predicting the site selection of solid solu- will transform the lattice vectors to the strained coordinate
tions in these alloys is the first step to developing models ofystem
solution strengthening based on first-principles methods.

-
Size and modulus misfit parameters can now be calculated a =a(l+e).
for the ex_pected _point defects qnd the results applied in mod- Here | is the identity matrix ance is the strain tensor
els of solid solution strengthening. consisting of the nonrotating strains.
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HPC centers: CEWES CRAY-YMP, ASC CRAY-C90, and  The grand potential of a binary compound with only in-

NAVO CRAY-T90. trinsic point defects can be written
Q E
N = GELt NER+nSER+NAER-TS
1.0 *o * Experiment*?
J ° o (Ti. Al ). X 1 1
09 {i ; SNLALN —<§—”Z+”2—n5 MA—(g—n%+n5—n2)MB,
0.8 1 %
= 071 (B1)
= 06 whereE, is the total energy of the stoichiometric crystll,
o is the total number of sites§ is the configurational entropy,
0.5 1 and ua and ug are the chemical potentials. The subscripts
0.4 - {°§ & and superscripts denote the sublattieeqr 8) and species
0.3 } occupying that sité, B, or vacancy V). E), are the energy
) Nb Ta W Mo differences between the perfect crystal and a crystal contain-

ing one defect as denoted by the superscript and subscript.
NY andn} are the number and number density of the particu-

FIG. 7. Comparison of the predicted site occupancy and thdar defect(e.g., n’=Ny/N). For this discussion, it is as-
experimental observations of Rossoewal; f+; is the fraction of ~sumed that there are an equal numberAofand B sites,
ternary atoms occupying Ti sublattice sites. consistent with the. 1, lattice.

Ternary Element (X)
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The configurational entropy is proportional to the natural Equations(B5) and (B6) can be used with EqB7) to
log of the number of possible arrangements of the atoms osolve fornﬁ:
the sites:
1 1

I I A Z . B
NAINEINY! NBINAINY!

S= kB In

o | An analogous expression ftmg can be found using the the
From the Stlrllng formula, InN!~N In N_N} for large N, . expressions for the defect densities on fheublattice and
and, the configurational entropy of the A sites can be rewnt-Eq. (B8). Using Eq.(BY) in Egs. (B5) and (B6) gives the
ten number density of the point defects on thesublattice in
(N/2)! terms of the chemical potentials and the defect energies:

NAINBINYI

) ~(N/2)In(N/2)
v efﬁ(EXJr#A)
—N% In NS=NE In N5—Ny In NY Ne="%7 (B10)
=—NAIn(2n%) — N8B In(2n8)
v v e BIES+ (na—np)]
—N, In(2n,), (B3) = - (B11)

« 27
where the factN4+NZ+NY=N/2 has been used.
The grand potential can be rewritten as where
9_ E +nVEV+nVEV+ nBEB + nAEA Z=1+ e—B(EX+MA)+ e—B[EEHuA—MB)]_ (B12)
N N a—a’ V=B Va—a BB

Analogous expressions fof; andn; are derived in a similar
+KT[nA In(2n%) +nB In(2n8)+nY In (2nY) manngr_ P p b
For a ternary alloy the grand potential needs to incorpo-
rate an additional chemical potential, substitutional defect
1 v A & 1 Vv & energi_es for the ternary on each sublattice, and the number
— (E_n“+ nﬁ—na),uA— §_n5+ N,—Ng|Mg- densities of the ternary defedisee Eqs(2) and(3)]. After
including terms for the number of ternary defects in the con-
(B4)  figurational entropy derivation of the expressionsrigrand
ng is straighforward using the preceeding arguments. In the

Minimization of the grand potential with respect to the »
different defect concentrations yields expressions relating th‘fernary case the number densities for the defects take the

defect concentrations to the chemical potentials and the d or
fect energies. For antisites and vacancies orutlsablattice

+nj In(2ng) +nj In(2np) +ny In(2ny)]

this gives y e BELFu)
B na: ZZ ’ (813)
ngznz‘efﬁ[Eaf(ﬂBfﬂA)], (85)
nY=nRe AELFka), (B6) : e BIES+ (1A= pp)]
o= (B14)
where=(kT) %, and
nng_nx_ng (B7) . e BIESH(ua—ro)]
2 nG=—g— (B15)

has been used to define the partial derivatives of these num-

ber densities with respect to the number densities of the davhere

fects (e.g., any/on'=—1). Expressions for the density of

defect§ on theg sublattice can be obtained in a similar man- 5 _ q | o~ BE}+up) 4 o= BIEET (1a—rp)l 4 = BIEGH (ua— 1O

g1 Analogous expressions farg, nj, andng are derived as

_t v A
Ng=2 N~ Np- (B8) before.
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