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The phase diagrams of a superconductor with domidawive and minois-wave pairing interactions are
obtained with the self-consistent gap equations. A possible broken-time-reversal-syramedngtate in an
appropriate interaction/temperature range is shown. We point out that a simave pairing interaction
normally cannot compete with the dominalhtvave pairing so that the bulk state usually has a plireave
symmetry. Moreover, we show that the possibility to observesthed state in a bulk system can be enhanced
greatly if nonmagnetic impurity scatterings are introduced. Also interestingly, the amplitudievate order
parameter in thes+id phase is shown to decrease with lowering temperaf@@163-18208)00321-X]

An important issue regarding high-temperature supercon-
ductivity has been the symmetry of pairing state. Although it
has been widely accepted that the pairing state of cuprates
has a dominand-wave symmetry,an admixture ok-wave .
component to the order parame(@P) is still a hot topic +j dr’A(r,r" ) FH(rren)=06(r—r"), (2
theoretically and experimentally. More recently, by measur-
ing the tunneling current through copper/insulatbt) Y-
Ba-C-O in-plane junction, Covingtoet al? observed that
the zero-bias conductance peak splits at a very low tempera-
ture even in the absence of a magnetic field. Such an unex-
pected behavior indicated the broken-time-reversal symme- +f dr”A*(r,r")G(r",r";wn)=0. ()
try (BTRS of the pairing state. Several previous works
predicted” that a subdominant OP, which has a relativeHere w,=(2n+1)#T with n any integer is the Matsubara
phasew/2 with respect to the dominamt-wave OP, could frequency(Hereafter the conventioh=kg=c=1 is made,
appear near the surface. To fit the experimental Hata, w is the chemical potentialy and F' are the normal and
s-wave subdominant pairing interaction is estimatiechave  anomalous Green’s functions. The pair potential is given by
such a value which gives the superconducting transition tem-
perature of the subdominant OP about 15% of that of the
dominantd-wave OP. Thiss-wave pairing interaction nor-
mally cannot compete with thetwave pairing in the bulk so
that the bulk state usually has a parevave symmetry. Here Note thatV(r—r’) is positive and the pairing interaction is
we study the possibility of a bulk BTRS state in a supercon—V(r—r'). By making use of the standard impurity averag-
ductor with attractive interactions from bothandd chan- ing technique, the system of equations in the momentum
nels. It is found that the possibility to observe a bulk BTRSspace can be obtain®d
state could be greatly enhanced by introducing nonmagnetic
impurity scatterings to the system. Also interestingly, we  [iw,—&,—G,, 16, (p)+[A(P)+F, 1FL (p)=1, (5
find that as the temperature is lowered below the second mo oo
phase-transition temperature at which #ieid state occurs, . — + . —
the amplitude of thel-wave component begins to decrease. ['wn+§p+g—wn]}—wn(p)+m (p)+f“’n]gwn(p):0’

For simplicity, we assume the zero-range interaction be- (6)
tween an electron and a nonmagnetic impurity at position
R;, and the scattering potential experienced by the electro
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whereug is the scattering strength ariddenotes the set of
impurity sites. The system of Gorkov’s equations are writterwith n; as the density of nonmagnetic impurities. A little
as algebra yields
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wn_awn+§p
Gu(P) =~ = )
" —(iwn=G, )2+ &+ A% (p)+ 7, |2
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—(iwn=G, )2+ &+ A% (p)+ 7, |2

F, (p)= (10)

where we have usea_-‘z,nz(fwn)*. Substituting them into

Egs.(7) and(8), and incorporating an additive term ﬁ,n
into the chemical potential, we have

- _ nuof ~(ion—G,,)
0 (2m)?) —(iwg= Gy )2+ £+ A% (P) + 7 |

;dp’,
(11
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*(k)= TE

In the weak-coupling I|m|t, the effective attractive electron-
electron interaction occurs in a small range near the Fermi
surface. When the pairing interaction comes from bothsthe
channel andl channel, it could have the following form:

V(k=p)F,, (p).

(13

V(k—k")=V¢+V4c0S2pCcos2p’, (149

where both Vg and Vy are positive, the angle¢
=tan*1(ky/kx) with k, , as two components of the Fermi
wave vector. The general form of the pair potential can be
written as

A*(k)=Aq+€e' A cos24p, (15)

where A; and Ay are now real variables is the relative
phase angle betweenwave andd-wave components. In the
clean limit, it has been shown based on the Ginzburg-Landau
theory and the self-consistent field approximation at zero
temperaturgthat only 9= 7/2 is allowed. In the presence of
nonmagnetic impurity scattering, we find that the relative
phase angled= /2 is most suitable to give the relevant
coupled equations fa-wave andd-wave components. With
such an observation, we obtain the self-consistent equations

On the other hand, the pair potential in the momentum spacfer s-wave andd-wave components in the presence of non-

is given by

magnetic impurity scatterings

Aq ZgSTrTE f

Ag=2g4m T, j —

d¢’

(1+ ﬂwn)AS
: (16)
27 \J(w2+A2)(1+ 7, )2+ (Aqc082p")2
de’ A4coS2¢’

: 17)

27 \J(02+A2)(1+ 7, )2+ (Agc0S2p')?

1+ Mo,

(18

Nw,~ 5_

n

27 27 \J(02+A2)(1+ 7, )2+ (Agc0520')?

wheregs 4=N(0)Vs 4/2 with N(0) as the density of states with the mixeds- andd-wave symmetry, the+id state can

per electron spin at the Fermi surfaeé,1=27niu(2,N(0) is

never be achieved if the interaction from tBechannel is

the impurity scattering rate. Note that in the summation ovefarger than one half of that from theé channel(i.e., T

the Matsubara frequenay, , the cutoff frequency. should
be introduced.

In the clean limit ¢ 1=
gap and the critical temperature for pusavave and pure

>Tgo)- It can be seen clearly by the fact that E¢K5) and
(17) (with 5, =0) can never give a solution with nonzero

0), the zero-temperature energy A, and Ay whengg/gq>1/2. This means that in the region

0s/94>1/2, the only possible pairing state is of psravave

d-wave superconductors can be obtained analytically. Weymmetry. Wherg,/gq<1/2, the phase boundary between

give them here for completenesdy=2w.e Y%s, Ty,
=(2€7wcl7r)e_1/295, and AdO:4wce_1/gd_l/2, Tuo

=(2e"w./m)e Y, where y~0.577 is Euler's constant.
The ratios for pures-wave and pur@-wave superconductors
respectively. The
larger value of the ratio for pure-wave superconductor
comes from the anisotropic pairing. For a superconductor

are 2A,/T4=3.53 and A,/T4=4.28,

the pured-wave state and the mixesHid state is deter-
mined by the following set of equations:

1

. (19

1= 2gszZ f

2 \/w +(A4c0s2p")?
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cleans-wave superconductor. In the pudewave supercon-
ductor, the energy gasee Eq(17) with A;=0] is directly
affected by the nonmagnetic impurity scattering. Physically,

for the s-wave superconductoﬁwn is simply proportional to

1/7=0

normal state T, iy and]_-"Ln is proportional tAA, their proportionality con-

stants are the same. Therefore, the effect of nhonmagnetic
impurity scatterings can be taken as a simple renormalization
of the energy scale so that the thermodynamic properties are

A
d B/é s not influenced. However, fal-wave superconductogwn is
H
(s |

(=3
g 1.0 - 00 01 02 03 04 05

05 =

C still proportional toiw, while ]_-'Twn is zero so that simple

0.0 01 0.2 0.3 04 0.5 0.6 scaling does not exist. This leads to the depairing effect on
949, the d-wave superconductivity. The superconducting transi-
éion temperaturd 4 for a pured-wave superconductor in the

FIG. 1. Phase diagram for clean superconductors with mixe .. - . . -
: presence of nonmagnetic impurity scatterings is determined
s-wave andd-wave symmetry. The values gf/gq at points A, B, . o
lgy the following equation:

and C are, respectively, 0.5, 0.47, and 0.5. The inset shows th

temperature dependence of ttiavave (filled triangle ands-wave IN(T o/ T) + (L2 — U 12+ 14T a7) =0 21
(filled squarg components witlys/gy= 0.48. The purel-wave OP N(Tao/Ta) + ¢/(1/2) =4 a1 =0, (2
with gs=0 (open squareis shown for comparison. where ¢4(x) is the digamma function. The phase boundary
betweens+id and pures-wave states are determined by
s de’ cos2¢’ 0 1
1=2g47T f — . 20
27 [ o2 2 1=4genT D>, ———, (22)
@n wht (Aycos2p’) s
In general, the above set of equations could only be solved
numerically. In Fig. 1, we plot the phase diagram in the 1
0s/gq parameter space. Within the validity of the weak- 1=2g9q47T 2>0 \/27—2 (23
coupling theory gy=1/8 is chosen throughout the work. In on”0 N+ Ag+1/27

this phase diagram, one can see that the mixedd state  The above two coupled equations show that in the presence
appears _between the pudewe_\vg _ands-wa_ve states. In the of nonmagnetic impurity scattering, the boundary between
clean limit, the boundary delimiting the+id state and the s+ id and pures-wave states is no longer a straight line. As

pure s-wave state is a vertical line, which is located atfor the boundary betweest-id and pured-wave states, it is
0s/dq=1/2. At zero temperature, the dividing line betweengiven by

the pured-wave state and the mixedtid state can be found

analytically, gs/gq=1/(2+9q). To obtain a mixeds+id do’ 1+,

pairing state, the lower bound @, /T4 is about 0.6 regard- 1=4g.7T 2 - t ,
less of the pairing strengthy. If we take Ty4o=90 K, T4 0n>0 J 27 \/wﬁ(1+ Ny )2+ AﬁcosZZd)’
=54 K is required to observe the+id state in the bulk " (24)
system which seems too large if tlsewave pairing origi-

nates from the electron-phonon interaction. As shown by a de’ co2¢’

dashed line in Fig. 1gs/gq is about 0.404 from the experi-  1=4gynT >, | — ,
mentally estimated valu€g, /T 4=0.15. In the inset of Fig. on=0 27 JW2(1+ 7, )2+ A2c0824

1, the temperature dependence of the two components of the " (25)
order parameter is plotted witl,/gq=0.48. As the tempera-

ture is lowered below 4o, the d-wave component appears 1 ¢ dg’ 1+,

and increases with lowered temperature. When the tempera- No= — | — " . (26
ture is lowered further below the second transition tempera- no27) 2w \/wﬁ(lJr ﬂwn)2+A§COSZ2¢'

ture, the system enters into tlse-id pairing state. In this
region, if we decrease the temperature, $h@ave compo- By numerically solving these equations, we obtain the phase
nent increases while thé-wave component decreases. Fordiagram in Fig. 2 for mixed symmetry superconductors with
comparison, the temperature dependence of theghavave = nonmagnetic impurity scatterings. In our calculation, the im-
OP below the second phase transition temperature is alquurity scattering strength is taken to be'=0.7A 4, which
shown in the figurgopen squane The decreasing behavior givesTy~0.30T4,. By comparing Figs. 1 and 2, one can find
of d-wave OP in the mixed region is caused by the compethat the pures-wave phase and tteetid phase are shifted to
tition between thes- andd-wave pairing symmetries. How- the smallergs/gy region so thags/gy=0.404 line crosses
ever, it is difficult to experimentally observe this behavior inthe s+id region. This result shows that the possibility to
a bulk clean system because a laggégq ratio is required.  observe the BTRS state in bulk superconductors with domi-
We now turn to the effect of nonmagnetic impurity scat- nantd-wave and minors-wave pairing interactions can be
tering. In the pures-wave case, one can see from E#6) greatly enhanced by the nonmagnetic impurity scattering.
(settingA4=0) that the energy gap is still the same as theMoreover, the boundary line AC betwesrwave phase and
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FIG. 2. Phase diagram for mixex and d-wave symmetry su- FIG. 3. Phase diagram in the-7 parameter space withs/dq

perconductors with nonmagnetic impurity scattering rafe’ =0.404.

=0.7A4o- The values ofgs/gq4 at points A, B, and C are, respec- C
. ! a real combination ok- and d-wave components by the
tively, 0.435, 0.325, and 0.426. The inset shows the temperaturg,i o gradient term in the free-energy ?unctional,ywhich
dependence of th@'wave (filled triangle and s-wave (f'"e.d means that a surface BTRS state could not be induced by the
Zﬂ%ﬁggg@gfg;;’f%ﬁd% ?étor:b;:seoﬁurd'wave OP with proximity effect. We argue further that for the case of repul-

s ' sive s-channel interaction, even the angle between the crys-

the s+id phase is a little declined. These results are com:[a"mea axis and the surface normal vectorit so that the

pletely due to the fact that the nonmagnetic scattering onl mixed gradient term vanishes, there is no possibility to real-
influences thal-wave superconductivity. In the inset of Fig. =< & BTRS state near the surface. Actually, even for the case

2, we plot the temperature dependence of the OP in th8f attractives-channel interaction, a surface BTRS state is

m'ixed region by takingg,/g4=0.404, which shows further stable only in certain regions of interaction and at very low
S - Y ’

that in thes+id phase, thel-wave component OP decreasester?r?esﬁlgjr;eaér‘ the phase diaaram of sunerconductors with

when the temperature is lowered. The effect of nonmagnetic . Y P 9 P

impurity scatterings can be seen more clearly in Fig. 3,m|xeds- andd-wave symmetry has been studied by consid-

- i : ering the nonmagnetic impurity scattering effect. We predict
where the phase diagram is given in fhe- parameter space . . ; ) .
with gs/gdpfixed at 8.404. '3,[ low tempgratures, witI?] the that it is possible to observe tteet+id state by introducing

increase of nhonmagnetic impurity concentration, the syste h_svar\]/c;n;zag?fgf dl:r;ﬁ/l:{ It)tgufcr:}aat;erzg‘?nflsulgﬁie Ién?tf#fwzg/se the
can start with a purd-wave phase, cross tlse-id state, and P y

finally enter into the pure-wave phase. These behaviors aref;rgizfgonngﬁztév'%'s'\gggiozlhe;,é &itzklsrt]gnghgoﬁgo 82:\";’(; tlr?e_:
expected to be experimentally observable. 9 y 9

Finally we would like to point out that an attractive sub- +id state, we find that the amplitude dfwave component

dominants-channel interaction is a prerequi$itier the re- decreases with the lowered temperature.

alization of the surface BTRS+id state. It has been shown  This work was supported by the Texas Center for Super-
based on the Ginzburg-Landau thebtiyat if thes-channel  conductivity at the University of Houston and by the Robert
interaction is repulsive, the OP near the surface is locked inté&.. Welch Foundation.
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