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Growth of the normal-flow instability of a vortex array in two-component Hell
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It has been known for some time that there is a hydrodynamic instability in rotating vortex-permeated
superfluid Hell. This instability sets in at a critical relative velocity of the two componémsmal and
superfluid. The first theoretical treatment assumed a uniform constant velocity of the normal component, thus
limiting the dynamics to the superfluid. Growth rates were found. A little later, it was shown that the critical
velocity for the onsetof the instability so obtained survived a more rigorous two-component calculation.
However,growth ratesobtained from the one fluid model are a different story and remain questiotiable
original calculation is inconsistent with an expansion in the ratio of the two densitiese the problem is
solved by considering the two-component model. Generally speaking, growth rates are somewhat different
from those hitherto used. This is important in view of recent experiments in which the superfluid matches the
vorticity of the normal fluid[S0163-18208)01621-X]

I. INTRODUCTION AV
5t TV V)vy
There is a well known streaming instability in a vortex-

permeated, rotating superfluid helidriMore generally, two =V i+ 2V, X Q— a(ps/ py) AX[AX (Vs—V,,) ]
component media tend to support streaming instabilities,
usually when the relative velocity of the two fluids is large ~ B(ps! pr)AX (Vs=Vp) +va(ps/pn) A

enough to feed energy to the system.

Assume two components with constant densipigsand
Pn, P=pstpy, (superfluid and normal The coordinate sys- Here we linearize irvg and this explains the absence of the
tem is rotating with angular velocit around thez axis. We  streaming term on the left hand side of Ed).
consider a relative velocity between the two components,  We takeA=V X v+2Q, A=N\, «a and B are propor-
also alongz. The instability in question owes its existence to tional to the mutual friction coefficients, angl and ¢ are
two factors: the relative velocity and the existence of vortexscalar terms involving pressure, temperature, etc.
lines alongz, permeating the system and coupling the two We assume, andp, to be constant, thus adding
fluids. Perturbations considered here will propagate along the
vortex linesk=ke,. The vortices will then undergo infini- V-v,=0, V.vs=0 3
tesimal helical deformations which initially grow exponen- )
tially, until nonlinear effects saturate them. The calculation!© the above equations. _ -
of Ref. 1, in which a one-component model is used, has been Until now, the growth rates of the instability were known
utilized to explain experimental observatichilere we will ~ ©nly in the one-fluid model, in whiclr, is constant and is
try to improve on Ref. 1 and obtain growth rates consisteniust Ue;. This limit corresponds t@s/p,—0. !—|40wever, the
with the physical behavior of the frictional coefficients. It is Coefficientsa and3 tend to infinity in this limit. Therefore,

a common mistake to just take these coefficients as giverkeepinga and fixed in such a calculation does not seem to
whereas they can and often do depend on parameters crucRf justified. Here we will find the growth rates from both
to a given calculation. Egs.(1) and(2), and then qllscuss various Il_mlts. Inqdentally,

We take as our basis the equations of motion of the twdhe value ofu corresponding to thensetof instability hap-
components as given by HélThese generalize the classic Pens to be given correctly by the one-fluid calculation.
ones of Landau to a rotational fluid. They are, in a coordinate
system rotating with angular frequen€y: Il. THE STABILITY CALCULATION

X (N-V)A+vB(ps/pn)(N-V)A. )

We take ¢, ¢, vg, and v,—u to be proportional to
exdi(kz+ ot)], andQ andu alongz. Bothvg andv,—u are

v ~
—2 =V e+ 2 X Q+ aAX[AX (Ve—V,)] assumed small.
Jt It is knowr? that, for givenk, the critical velocity for the
+ BAX (Ve V) — avAX (A V)A+ v(1— B)(A-V)A, onset of instability isug:
oY) Up= (2Q+ vk?)/k. (4)
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This value is independent @t /p, . Not so the growth rates,
however. Here we will consideu>+/8Qv. Equation (4)
leads us to expect instability fde in the interval

ky<k<Kks,

_uF Ju?—8Qv

Ki2= 2v '

u=up(kq)=Uup(ky). 5)

Equations fowsy, vsy, vnx, andv,, form a closed set.
They simplify if we work withvg andv=(pgVs+ pnVn)/p.
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The consistency condition of the system is found in the

form of a dispersion relation
~4 ~3 ~2 - —
w +a3w +a2w +a.1 w+a0—0, (6)

where
w=w+uk,
a;=—2ia,
a,=—(a’+b*+407 1+ (ps/py)d]),
a;=4i[2a0%+ Q(ps/py)(2Qc+ad—bc)],
ap=407a%+b?+ (ps/py)?(a®+ B?) (v?k*—u?k?)
+2(pslpn)(ac+bd)]

and
a=augk+iuk(B—1)+2Q(ps/py) a,

b=—iauk+ugk(8—1)+2Q(ps/pn) B,
c=avk®+iBuk,

d=Brk®—iauk.

FIG. 1. Growth rates of the instability fora=pg8=0.1;
v=0.1 cnf/s;u=1 cm/s;Q=1 rad/s, anths/p, (Moving up the
figure: 0.2, 0.5, 1, 2, 5. All critical values ok coincide, as pre-
dicted by Ostermeier and Glabers(@Ref. 5.

IV. A USEFUL MODEL

The quartic of Eq(6) is not very useful when contemplat-
ing a simple discussion of various approaches such as the
one-fluid model, or else limits such ag—0 or p,—0. We
therefore found a simple approximation 4o (k;<k=k,):

a(u—ug)k
(1_:8ps/pn)2+(aps/pn)2.

This formula gives correct slopes & and k,, and is
almost indistinguishable frony in between these limits for
all but the most extreme parameters, see Fig. 2.

From now on we will base our discussion on E§), in
our opinion the more important result here.

®
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V. CONCLUSIONS OF THEORY

For ps/pn—0 we havé* a—x, B——x as negative
powers ofT, — T. We can find from the second referencé of

This dispersion relation yields exactly one unstable root irhoW aps/p, and Bps/p, will behave very neafl) =2.172

the k interval [kq,k,]. Growth ratesy=—1Im o are drawn
for this root in Fig. 1, using/ATHEMATICA . We will discuss
the implications in Sec. IV.

IIl. RECOVERY OF KNOWN RESULTS

If we take ps/p,—0 formally, artificially keepinga and
B fixed, we can solve Eq6) to obtain four distinct roots:
w,=ia+b; ia—b; 2Q; —20Q,

n=1,....4. (7

The first two,w, andw,, coincide with those given in Ref. 1.
However, this recovery is not a physical vindication of that
calculation, as the fact that and 8 grow large for smalpg
was not taken into account.

Foru=ug, we find thatay=0 and all roots are stable; the

K. When these limits are substituted into E8). we find that,
in that limit,

¥
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0

=0 root of course marginally so. We see that this mode is

marginally stable when the fluid velocity is equal to the

phase velocity of that mode. Thus for the important root,

w(ky)=w(k,)=0, andk, ,k, are independent gfs/p,,, See
Fig. 1.

FIG. 2. Comparison of growth rates as given by thg, model

(broken lineg with values following from Eq(6). Herepg/p, is 0.4
and 5. Other parameters as in the previous figure.
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y=a(u—ug)k. (9) VI. IMPLICATIONS FOR RECENT EXPERIMENTS
This is what we would expect, as in this limit the dynamics ~ There is current interest in the study of intense superfluid
must be dominated by the normal fluid. turbulence and in the connection between superfluid and

We can also see from Ref. 2, p. 93, that-0 for tem-  classical turbulence. We know that classical turbulence is not

peratures below 2.06 K ang<0 between this temperature just fa’_‘d?‘m disorder. Trge vorticity appears to be concen-
and T, . Thus, for temperatures only slightly beloWy , trated in “vorticity t'ut_)es' W.h'Ch appear spontaneously in
growth rates are definitely smaller than those following fromthe .ﬂ(.)W and have finite I|fet_|mes. We therefore expect that
the one-fluid model Eq(9). Below 2.06 K, however, they vorticity tubes are present in the turbulence of the normal
can be larger ' ' fluid. A numerical simulation of vortex lines in a model of

. I-fluid turbulence with these “vorticity tubes” has
For largeps/p,, the need to use E@8) instead of Eq(9) ~ "°orMa ) - . .
is self-evident. When this ratio tends to infinity, E8) re- been peffo”“ed- The |nsFab|I|ty considered hé&reter!dlng
duces to Ostermeier and Glaberspis seen to play a key role in cre-

ating “superfluid vortex bundles.” These bundles allow the
superfluid to match the vorticity of the normal fluid. Vortic-
= —0. ity matching is an effect observed in recent experiments. It is
(a?+ B?)p? at this point that the issue of growth rate of the instability
discussed here becomes important. If the growth rate is not
large enough, the normal-fluid vortex tubes will die out be-
fore the superfluid vortex tubes can be formed. Vorticity
matching cannot then take plate.

apj(u—ug)k
e SPMUT o)X

The fact that the growth rate becomes very small is impor
tant because of the implications for vorticity matching dis-
cussed below. All in all, Eqg6) and(8) should prove useful
when interpreting recent and future experiments.

The next step would be to generalize our calculation to
arbitrary angles of propagation of the perturbation. Formulas
would cease to be simple, as they are not so even in the limit This research was supported by the KBN Scientific Com-
of Ref. 1. Very similar problems arise in two-componentmittee, Grant No. 2P03B-114-11. Dr. Skorupski was most
plasmasg. helpful in formulating this paper.
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