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Growth of the normal-flow instability of a vortex array in two-component HeII
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~Received 7 July 1997; revised manuscript received 5 December 1997!

It has been known for some time that there is a hydrodynamic instability in rotating vortex-permeated
superfluid HeII. This instability sets in at a critical relative velocity of the two components~normal and
superfluid!. The first theoretical treatment assumed a uniform constant velocity of the normal component, thus
limiting the dynamics to the superfluid. Growth rates were found. A little later, it was shown that the critical
velocity for the onsetof the instability so obtained survived a more rigorous two-component calculation.
However,growth ratesobtained from the one fluid model are a different story and remain questionable~the
original calculation is inconsistent with an expansion in the ratio of the two densities!. Here the problem is
solved by considering the two-component model. Generally speaking, growth rates are somewhat different
from those hitherto used. This is important in view of recent experiments in which the superfluid matches the
vorticity of the normal fluid.@S0163-1829~98!01621-X#
x-

ie
e

-

s,
to
te

o
th

-
n-
ion
e

en
is
e
u

tw
ic
at

e

n

to
th
y,
I. INTRODUCTION

There is a well known streaming instability in a vorte
permeated, rotating superfluid helium.1,2 More generally, two
component media tend to support streaming instabilit
usually when the relative velocity of the two fluids is larg
enough to feed energy to the system.

Assume two components with constant densitiesrs and
rn , r5rs1rn ~superfluid and normal!. The coordinate sys
tem is rotating with angular velocityV around thez axis. We
consider a relative velocityu between the two component
also alongz. The instability in question owes its existence
two factors: the relative velocity and the existence of vor
lines alongz, permeating the system and coupling the tw
fluids. Perturbations considered here will propagate along
vortex linesk5kez . The vortices will then undergo infini
tesimal helical deformations which initially grow expone
tially, until nonlinear effects saturate them. The calculat
of Ref. 1, in which a one-component model is used, has b
utilized to explain experimental observations.3 Here we will
try to improve on Ref. 1 and obtain growth rates consist
with the physical behavior of the frictional coefficients. It
a common mistake to just take these coefficients as giv
whereas they can and often do depend on parameters cr
to a given calculation.

We take as our basis the equations of motion of the
components as given by Hall.4 These generalize the class
ones of Landau to a rotational fluid. They are, in a coordin
system rotating with angular frequencyV:

]vs

]t
5¹f12vs3V1al̂3@l3~vs2vn!#

1bl3~vs2vn!2anl3~l•¹!l̂1n~12b!~l•¹!l,
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5¹c12vn3V2a~rs /rn!l̂3@l3~vs2vn!#

2b~rs /rn!l3~vs2vn!1na~rs /rn!l

3~l•¹!l̂1nb~rs /rn!~l•¹!l̂. ~2!

Here we linearize invs and this explains the absence of th
streaming term on the left hand side of Eq.~1!.

We takel5¹3vs12V, l̂5l/l, a andb are propor-
tional to the mutual friction coefficients, andf and c are
scalar terms involving pressure, temperature, etc.

We assumers andrn to be constant, thus adding

¹•vn50, ¹•vs50 ~3!

to the above equations.
Until now, the growth rates of the instability were know

only in the one-fluid model, in whichvn is constant and is
just uez . This limit corresponds tors /rn→0. However, the
coefficientsa andb tend to infinity in this limit.4 Therefore,
keepinga andb fixed in such a calculation does not seem
be justified. Here we will find the growth rates from bo
Eqs.~1! and~2!, and then discuss various limits. Incidentall
the value ofu corresponding to theonsetof instability hap-
pens to be given correctly by the one-fluid calculation.5

II. THE STABILITY CALCULATION

We take f, c, vs , and vn2u to be proportional to
exp@i(kz1vt)#, andV andu alongz. Both vs andvn2u are
assumed small.

It is known5 that, for givenk, the critical velocity for the
onset of instability isu0:

u05~2V1nk2!/k. ~4!
13 390 © 1998 The American Physical Society
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This value is independent ofrs /rn . Not so the growth rates
however. Here we will consideru.A8Vn. Equation ~4!
leads us to expect instability fork in the interval

k1,k,k2 ,

k1,25
u7Au228Vn

2n
,

u5u0~k1!5u0~k2!. ~5!

Equations forvsx , vsy , vnx , andvny form a closed set.
They simplify if we work withvs andv5(rsvs1rnvn)/r.

The consistency condition of the system is found in
form of a dispersion relation

ṽ41a3 ṽ31a2 ṽ21a1 ṽ1a050, ~6!

where

ṽ5v1uk,

a3522ia,

a252~a21b214V2@11~rs /rn!d# !,

a154i @2aV21V~rs /rn!~2Vc1ad2bc!#,

a054V2@a21b21~rs /rn!2~a21b2!~n2k42u2k2!

12~rs /rn!~ac1bd!#

and

a5au0k1 iuk~b21!12V~rs /rn!a,

b52 iauk1u0k~b21!12V~rs /rn!b,

c5ank21 ibuk,

d5bnk22 iauk.

This dispersion relation yields exactly one unstable roo
the k interval @k1 ,k2#. Growth ratesg52Im v are drawn
for this root in Fig. 1, usingMATHEMATICA . We will discuss
the implications in Sec. IV.

III. RECOVERY OF KNOWN RESULTS

If we takers /rn→0 formally, artificially keepinga and
b fixed, we can solve Eq.~6! to obtain four distinct roots:

ṽn5 ia1b; ia2b; 2V; 22V, n51, . . . ,4. ~7!

The first two,v1 andv2, coincide with those given in Ref. 1
However, this recovery is not a physical vindication of th
calculation, as the fact thata andb grow large for smallrs
was not taken into account.

For u5u0, we find thata050 and all roots are stable; th
ṽ50 root of course marginally so. We see that this mode
marginally stable when the fluid velocity is equal to t
phase velocity of that mode. Thus for the important ro
ṽ(k1)5ṽ(k2)50, andk1 ,k2 are independent ofrs /rn , see
Fig. 1.
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IV. A USEFUL MODEL

The quartic of Eq.~6! is not very useful when contempla
ing a simple discussion of various approaches such as
one-fluid model, or else limits such asrs→0 or rn→0. We
therefore found a simple approximation tog (k1<k<k2):

gapp5
a~u2u0!k

~12brs /rn!21~ars /rn!2
. ~8!

This formula gives correct slopes atk1 and k2, and is
almost indistinguishable fromg in between these limits for
all but the most extreme parameters, see Fig. 2.

From now on we will base our discussion on Eq.~8!, in
our opinion the more important result here.

V. CONCLUSIONS OF THEORY

For rs /rn→0 we have2,4 a→`, b→2` as negative
powers ofTl2T. We can find from the second reference o4

how ars /rn and brs /rn will behave very nearTl52.172
K. When these limits are substituted into Eq.~8! we find that,
in that limit,

FIG. 1. Growth rates of the instability fora5b50.1;
n50.1 cm2/s; u51 cm/s;V51 rad/s, andrs /rn ~moving up the
figure!: 0.2, 0.5, 1, 2, 5. All critical values ofk coincide, as pre-
dicted by Ostermeier and Glaberson~Ref. 5!.

FIG. 2. Comparison of growth rates as given by thegapp model
~broken lines! with values following from Eq.~6!. Herers /rn is 0.4
and 5. Other parameters as in the previous figure.
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g.a~u2u0!k. ~9!

This is what we would expect, as in this limit the dynami
must be dominated by the normal fluid.

We can also see from Ref. 2, p. 93, thatb.0 for tem-
peratures below 2.06 K andb,0 between this temperatur
and Tl . Thus, for temperatures only slightly belowTl ,
growth rates are definitely smaller than those following fro
the one-fluid model Eq.~9!. Below 2.06 K, however, they
can be larger.

For largers /rn the need to use Eq.~8! instead of Eq.~9!
is self-evident. When this ratio tends to infinity, Eq.~8! re-
duces to

g.
arn

2~u2u0!k

~a21b2!rs
2
→0.

The fact that the growth rate becomes very small is imp
tant because of the implications for vorticity matching d
cussed below. All in all, Eqs.~6! and~8! should prove usefu
when interpreting recent and future experiments.

The next step would be to generalize our calculation
arbitrary angles of propagation of the perturbation. Formu
would cease to be simple, as they are not so even in the
of Ref. 1. Very similar problems arise in two-compone
plasmas.6
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VI. IMPLICATIONS FOR RECENT EXPERIMENTS

There is current interest in the study of intense superfl
turbulence and in the connection between superfluid
classical turbulence. We know that classical turbulence is
just random disorder. The vorticity appears to be conc
trated in ‘‘vorticity tubes’’ which appear spontaneously
the flow and have finite lifetimes. We therefore expect th
vorticity tubes are present in the turbulence of the norm
fluid. A numerical simulation of vortex lines in a model o
normal-fluid turbulence with these ‘‘vorticity tubes’’ ha
been performed. The instability considered here~extending
Ostermeier and Glaberson! is seen to play a key role in cre
ating ‘‘superfluid vortex bundles.’’ These bundles allow th
superfluid to match the vorticity of the normal fluid. Vortic
ity matching is an effect observed in recent experiments. I
at this point that the issue of growth rate of the instabil
discussed here becomes important. If the growth rate is
large enough, the normal-fluid vortex tubes will die out b
fore the superfluid vortex tubes can be formed. Vortic
matching cannot then take place.7
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