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Derivation of the t-J model: Electron spectrum and exchange interactions
in narrow energy bands
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A derivation of thet-J model of a highly-correlated solid is given starting from the general many-electron
Hamiltonian with explicit picking out of the corrections owing to the nonorthogonality of atomic wave func-
tions. Asymmetry of the Hubbard subbar(@s., of “electron” and “hole”case$ for a nearly half-filled bare
band is demonstrated. The nonorthogonality effects are shown to lead to strong modifications of indirect
antiferromagnetic exchange interaction in the limit of large on-site Coulomb repulsion. Consequences of this
treatment for the magnetism formation in narrow energy bands are discussed. Peculiarities of the case of
“frustrated” lattices, which contain equilateral triangles of nearest neighbors, are considered.
[S0163-182698)02818-3

The problem of strong correlations and magnetism inture seems to be reasonalile particular, the magnon spec-
many-electroilME) systems is one of the most important in trum can be calculated also from the spin Green'’s function,
solid state theory. Derivation of the simplest ME model de-see, e.g., Ref.)6
scribing these phenomena in the case of narrow energy bands A version of the Hubbard model in the limid — o with
(strong Coulomb interactionwas proposed by Hubbatd. inclusion of the AFM exchange interactidn thet-J model,
This model was studied in a great nhumber of papers. is widely applied now to describe copper-oxide highsu-

A detailed investigation of ferromagnetism in the Hub- perconductors and related systetsee the revie§. The
bard model in the limit of the infinite on-site Coulomb repul- quantity J is usually related to the Anderson’s exchande (
sion U was performed by NagaoKaHe proved rigorously = —2t%/U), but sometimes it is considered as an indepen-
that the ground state for the simple cubic and bcc lattices imlent phenomenological parameter. Recently the difference
the nearest-neighbor approximation with the number of elecbetween the-J model and largéJ expansion of the Hub-
trons Ne=N=1, N being the number of lattice sites, pos- bard model has been discusged.
sesses maximum total spin, i.e., is saturated ferromagnetic At derivation of his modélHubbard used the orthogonal
(FM), since this ordering provides the maximum kinetic en-Wannier functions. At the same time, in the limit of large
ergy gain for an excess electr@imole). (The same statement it is more natural to use well-localized atomic wavefunctions
holds for the fcc and hcp lattices with the transfer integraland the atomic representatidsp that effects of nonorthogo-
t<0, Ne=N+1, ort>0, N;=N—1.) The picture of satu- nality of atomic wave functions occuin the first paper
rated ferromagnetism is preserved at small, but finite concerHubbard neglected the difference between the Wannier and
trations of current carriers=|N/N—1|. In the case of a atomic wave functions at constructing the interpolation solu-
half-filled band N.=N), |t|<U the ground state is antifer- tion starting from the atomic limit In the present paper we
romagnetic(AFM) because of the Anderson’s kinetic ex- discuss a consistent formulation of a general ME model with
change(superexchangénteractiori which occurs in the sec-  strong correlations with explicit account of nonorthogonality
ond order in|t|/U. This interaction is due to the gain in the effects and treat the electron spectrum picture and magnetism
kinetic energy at virtual transitions of an electron to a neighformation in this model.
bor site, which are possible provided that the electron at that We start from the general Hamiltonian of the ME system
site has an opposite spin direction. In systems with a largén a crystal
finite U and Ne#N, a competition between FM and AFM

ordering occurs. Nagaok&as put forward a criterion of fer- _ h? 1 e?
romagnetism, which was based on the condition of the spin- H_zi B ﬁAfiJ“V(ri) + E; ri—r]’ 2
wave spectrum stability. This criterion has the form
where
aC>|t|/U, (1) Ze?
V== p—g1=2 v(-R,) 3

where the constant of the order of unity depends on the

lattice structureq=0.246 for the simple cubic lattice. At the is the periodic crystal potential. For simplicity, we consider a
same time, pure antiferromagnetism is stablBlat N only,  single nondegenerate band that is formedsaype wave

and a phase separatformkes place provided that the condi- functions, although this set is incomplete. The atomic states
tion (1) is violated. Although other points of view concern- with different principal and orbital quantum numbers can be
ing stability of ferromagnetism in the thermodynamic limit at included in a similar way®!! However, the case, where ad-
U= are discussed novsee, e.g., Ref.)5 Nagaoka's pic- ditional orbital-degenerate bands are present, is not expected
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to yield qualitatively different resultgeffects of hybridiza-
tion with p, d, .. . -like states are irrelevant for the Hubbard
model situation
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potential is small in the region between the lattice $itége
have also dropped ifB) small integrals which contain(r

- RV’)|¢V(r)|2'

To pass to the second quantization representation we have Further we retain in(6) only one- and two-site terms and

to use orthogonal wave functions. However, the atomic wavass to the

functions ¢ (r,s) = ¢(r) x,(S) (s is the spin coordinajedo
not satisfy this condition at different sites which can lead
to some difficulties’'>~2* We apply the orthogonalization
procedure developed by Bogoliuddv(see also Ref. 14
which enables one to construct perturbation theory in th
overlap of atomic wavefunctions belonging to different lat-

representation of the Hubbard operators
X,(\",\),? which transform the stat\) (A=0,0,2) at the
site v into |\ '),

al =X,(0,00+0X,(2,—0). (10)

eI'hen we derive

tice sites. To lowest order in this parameter the orthogonal-

ized functions read

1
bN=e,(N=57 2 @u(r), (@
v #v
where the sum goes over the nearest neighbors,
Y= vyy/=f drey, (N e,(r) (5

is the nonorthogonality integral. Using the orthogonality of
the spin wave functiong,(s) and calculating the matrix
elements of the Hamiltoniaf2) for the functions(4) we
obtain the ME Hamiltonian of the “polar model(Refs.
15,12,16

_ f f
H—S% avaava+ VlEZ’U tvlvzaulaavzo
+E > al al a,_ a (6)
2,60, [1V2V3VATVIOL V202 Va2 V30
where
hZ
ngdrqst(r) —A+u(-R) B0 (D)

is the one-electron level in the central potential of a given

sitev(r),

ﬁZ

tw=f drwtl(m(—%mwm)wyz(r)

~ [ argz =R, .0 ®

are the transfer matrix elements between the sitesnd v,
and

eZ

s = f drdr’ g5 (1) (r ) ——— i, (1), (1)

9

[r=r]

. . o J, =
are the matrix elements of interelectron Coulomb repulsion. 1”2

We have neglected if¥7) and(8) the influence of potentials
of the sitesv’ #v and v’ #v,,v,, respectively, since the
corresponding terms contain extra factere —R,/) (1)

with v'# v which are small due to the decrease of the po-

tential v(r) with increasingr (in other words, the crystal

H=e>, X, (0,0)+U>, X,(2,2

t(OO) X

V12

+

V1#F V,0

+t22 X, (2,0)X,,(0,2)+ o[t

(S

{t% X,.(¢.0X,,(0.0)

(02)
Viv2

le(O',O)X,,z( —0,2)

+X,,(2- )X, (00} + > [leyznylnvz

v1#F vy

—-J

[S1]

11

1
E + 2( Sulsvz) ’

whereU=1,,,, and Qv =l vyu v,a€ the Hubbard pa-
rameter and the Coulomb integral at different lattice sites,

R (12

=t 20, (13
172 172 1717271

02 =t29 =t,, +I (14)

Vivy  TViVp  TP1Pp V1v1vav1

are the transfer integrals for empty statémles |0) and
doubly occupied stateglouble$ |2), and the integral of the
double-hole pair creation,

N,=2 Ne=2 al,a,,= > [X,(0,0)+X,(22].

Note that the quantity(®?, which enters the expression for
the superexchange parameter, coincides with the Hartree-
Fock value of the transfer integral for a half-filled band in the
AFM state.

Hierarchy of the parameters of the Hamiltoni@n is dis-
cussed in Ref. 1. In the expressions folJ, and Q the
nonorthogonality corrections are small in the overlap and do
not play a role. On the other hand, at calculating other pa-
rameters in(11) we have to take into account the second
term in (4). We obtain for the integral of the “direct” ex-
change

1
7 _ - 2
I VaVovovy JVlVZ 27V1V2LV1V2+ 2 (U + QVJ_VZ) yvlvz’
(15
where

JV1V2: IV1V2V2V1’ LV1V2: IV1V1V2V11 (16)
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the integralsl being calculated for the atomic functiogs
The expression§l2)—(14) take the form

(00 _
tvlvz_tvlvzi (17)
(22 _ _
tV1V2_tV1V2+ 2LV1V2 (U + QV1V2) 71}11/2! (18)
%2 =t, , +L —E(U+Q ) (19
vy, vy vivy 9 vy yvlvz'

All the terms in(15), as well as i(17)—(19), are of the same
(first) order in the overlap. Moreover, the quantityy

should be larger thah,Qy,J/y, and|t|. Indeed, in the case

of narrow bands the interelectron repulsiomhich deter-
minesU,Q,J, andL) and the crystal potentidivhich deter-

minese andt) are of the same order of magnitude, although
the crystal potential is expected to be somewhat larger. A

the same time, as follows frort8), (9), t (or Q,J, andL)
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widths even in the paramagnetic case for a nearly half-filled
band {(n )=(n_)=1/2). In particular, in the largé} limit
we have
E=c+(1—(n_ N, E@=e+t?(n_)+U
(22

so that, according t¢17),(18), the bare hopping integrdl
determines the bandwidth of “holes,” and the bandwidth of
“doubles” is mainly (in the above-discussed sephsketer-
mined by the intrasite Coulomb interaction and nonorthogo-
nality integral (5). Thus an appreciable asymmetry of the
casesN.<N and N.>N can occur, the bandwidth in the
case of hole conductivity being considerably smaller than in
the electron(double case. This circumstance may be impor-
tant, e.g., for copper-oxide high: superconductorgnote
that an asymmetry can occur due to other reasons in the case
f degeneratal bands; see, e.g., Ref. 180f course, the
pproximation(21) yields a very rough description of the
electron spectrum, and more advanced approximations

contain another small factor that was considered above: thesgould be used in the AFM state, especially in the two-

integrals include the product of the functiah,(r) by the
potentialv(r —R,/) (or the Coulomb repulsigrcorrespond-

dimensional case. In the latter situation, the low-energy elec-
tron spectrum is determined by the scaleather thart (see

ing to another lattice site, which “cuts” a rather small region Ref, 19,

r=R,,. Thus the “on-site Coulomb”(nonorthogonality
contributions should dominate 18) and(19).
It should be noted that in fact the transfer integr@l8)

Generally speaking, we have to take into accountlit
also three-site “operator” Coulomb contributions to the
transfer integrals,

and(19) are to be calculated with the use of many-electron

wave functions(see the review) which are not, generally

speaking, reduced to the Slater determinants and factorized
into one-electron ones. For example, the general Hartree-

Fock approximation in the atom theofsee Ref. 1yYuses the

radial “one-electron” wave functions which depend explic-

ity on the ME atomic termT"). The transfer integrals are

expressed through the corresponding ME wave function
0

as

tylyz(l—vl—vr,l-wrm):J H d{riSi}\I’tqu’tzru

hZ
- ﬁAri"'V(ri))\PvlF’qfsz’”-

X2

(20

() —
1v2

(23

2 IVlv’VZV’nv"
V':#Vl,vz
The quantityT,,lv/yz,,, is small in comparison with_w2
=TV1,,1V2V1 due to the decrease of the Coulomb interaction
with distance. A peculiar situation occurs in the case of a
“frustrated” lattice where equilateral triangles of nearest
neighbors are presef¢.g., the triangular, fcc, and hcp lat-
tices, so that the site’ can be the nearest neighbor for both
the sitesy; andv,. Then substituting9) into (23) yields the
nonorthogonality correction of order df y. Such correc-
tions are important for the calculation of electron spectrum
(e.g., in the “Hubbard-I" approximationand yield a sup-
pression of the above-considered asymmetry of the hole and
double subbands. In such situations, additional three-site

Therefore the integraldl7) and(19) can be different even at “exchange” terms also arist.

neglecting interatomic Coulomb interactions and nonor-

thogonality.
The electron spectrum of the moddll) in the simplest

The kinetic exchangé€Anderson’s superexchangmter-
action occurs in the second order 1> . Performing the

canonical transformation which excludes the double-hole

“Hubbard-1” apprqximatior’( (which corresponds to @ pair creation and annihilation terms from the Hamiltonian
“mean-field approximation” in the electron hopping, the on- (11) we derive

site Coulomb repulsion being taken into account in the zero-

order approximationis given by
(1,2 1 (22 (00)
Ekzr’ :8+§[tk (n*cr>+tk (1_<n,0.>)+U:|

;;{[t<k22><n,g>_t<koo>(1_<n,0>)_U]z

+A(HP)2(n_ ) (1—(n_ )}

One can see that, unlike the standard consideratite

(21

(02) y2
HP=23 —5—14(s,8,) 1},

viva

(29)

As follows from (19), the numerator in24) is determined
not only by the bare hopping, but also by the Coulomb in-
teraction. The kinetic exchange interaction survives even in
the limit U— owing to the nonorthogonality contributions
(of course, this limit can be treated only as a formal one,
since in facty vanishes forU—). Combining (24) and
(15) we obtain the expression for the total effective exchange

Hubbard subband$21) turn out to have quite different parameter in the case of a half-filled bard=0)
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JeﬂzJ—Z(th))Z/U:j—y2Q+2yt—2(t+L)2/U. which is quite differe_nt from(1) f(_)r _Ne<N. In the case
(25) N_e>N the _re_sult(28) is formally similar to (1), but has a

different origin.
| > e g : We see that a strong indirect AFM interaction occurs in
First three terms |r(25) coincide with the corresponding narrow energy bands, the FM exchange owing to the motion
result for the two-site problenthydrogen molecule(Ref.  of cyrrent carriers being more strongly suppressed in the case
20) and yield an AFM exchange interaction. As mentionedgs “pole” conductivity (Ne<N) than in the “electron”
above, the crystal potential should be somewhat larger thagase. The situation may change considerably in the case of a
the Coulomb interaction, and in the largedimit the main  gegenerate energy band where the indirect interaction can be
contribution toJey reads ferromagnetic owing to the intraatomic Hund exchafitje.

= —24t] (26) Note that the degeneracy effects are often assumed to be

eff Yith essential also for the usual itinerant magneti@ae, e.g.,
wheret is assumed to be negative. We see that in the casgef. 20.
Ne<<N the ratio of Jo¢ to bandwidth is proportional to the From the experimental point of view, the narrow-band
overlap parameteirather than tdt|/U <y as in the standard ferromagnetism is not a too wide-spread phenomenon. It
consideration High values of the Nel temperature, which takes place, e.g., in the systems, F€a,S,,%! CoS,, and
are typical for the layered copper-oxide systems, may b&rO,.2? However, degeneracy of the conduction band plays

Note that the terms of the order gfU are canceled idq.

related to this fact. an important role in the electron structure of these systems.
By analogy with the consideration of Ref. 2 we have theAt the same time, ferromagnetism is not observed in the
criterion of ferromagnetism copper-oxide systems. The above-discussed modifications
(in comparison with the original Hubbard’s treatm@nin
2ac|tMN]> —Jqf, (27)  formulation of the simpless-band model and similar con-
wherex =0 for No<N and\ =2 for No>N. Under the as- siderations of more rea_li;tic m.ode{see, e.g., Refs. 7,24
sumptiony>|t|/U> y? the criterion(27) takes the form may be useful for explaining this fact.
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