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Limits on the continuum-percolation transport exponents

|. Balberg
The Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
(Received 25 November 1997

The many experimental data that have been accumulated for the critical resistance expoaedtthe
relative resistance noise exponeat,in percolation systems, are generally in disagreement with the original
predictions of the random void and the inverted random void models of continuum percolation. In this paper
we show that by allowing a nonrandom distribution of the vdidssthe particlesin these models, one can
account forall the experimental data. In particular, we show that, except for the two-dimensional inverted
random void system, the exponenhay have any value larger than its universal value, whiledteatio will
be bound[S0163-182@8)00121-7

About 20 years ago, Kogut and Straleshowed that the Examining all the data given in Refs. 6—19, one notes two
transport properties of percolation systems may exhibit nonbasic facts. First, there is a spread in the values of the expo-
universal behaviors. The reason for that nonuniversality isientst and «/t (which are far beyond the correction to
the possibility of a diverging distribution of the high resis- scaling? and second, there are mahyand «/t values that
tance values in the corresponding resistors network. A feware much larger than the values predicted by the RV and
years later, Halperin, Feng, and $¢HFS) showed that such the IRV models’~ This isa priori surprising since the theo-

a diverging distribution can be found in systems that can béies are not sensitive to the exact shape of the particles
modeled by a system of insulating spheres embedded in \¢ids) in the system, provided they have curved surfaces, as
continuous conducting matrix. The extension of this models indeed the case for all the systems that were studied. In
to two-dimensional systems is obvidtisand thus we define particular, two conspicuous deviations from the RV and IRV
here “real systems” as measurable two- or three-model predictions should be mentioned. In three dimensions,
dimensional systems. Such real systems then include sediking the universal vald of t to be t,,=2, the RV
mentary rocks, composite materiglshere the conducting modef® predictst to have a value of 2.5 while the IRV
particles are much smaller than the insulating partjclasd  model predicts that=t,,. However, Piké found a value as
porous films. The model describing these systems is knowhigh ast=5.01 for a composite system for which the RV
as the random voi¢RV) model. The relative resistance noise should be a good model, while Wu and McLacHfafound

of this model for two- i=2) and three-d=3) dimensional values oft~6 for systems for which the IRV should be a
systems was predicted by Tremblay, Feng, and Bfetongood model. In two dimensions, taking the universal value of
(TFB) to have a nonuniversal behavior. For the other modek to be 1.12 and that dfto bet,,= 1.3, the predictichof the
considered, i.e., that of conducting spheres embedded in RV model was thak/t=3.16 and the prediction of the IRV
continuous insulating matrix, which became known as thenodel was that «/t=0.86. However, Garfunkel and
inverted random voidIRV) model, a universal behavior for Weissman found «/t values in the range 5.4—8.1 in sand-
the resistancewas predicted, but its relative resistance noiseblasted films for which the RV or the IRV model should
for d=3 was shown to yield a nonuniversal behavior. provide a good description. The explanation they gave for
Sometime later, BalbePgshowed that if the resistance be- this conspicuous discrepancy was that their samples were
tween adjacent particles is determined by a tunneling prononuniform. In fact, in the many experimental works in
cess, a nonuniversal behavior of the resistance is alsahich significant deviations from the theoretical predictions
possible> Since the presentations of those theories, numemwere found, the discrepancies have been attritted

ous experimental data were accumuldted.In particular, causes that are beyond the simple percolation th&oRar

the resistance exponenand the exponents ratia/'t, where  example, for the problem of the electrical noise, the causes
« is the relative resistance noise exponent, have been detesuggested for the deviations included changes in the micro-
mined experimentally for many systems for which the RV orscopic noise mechanisfi additional tunnelind; noisy hop-

the IRV models should be good descriptiénd’We note in  ping conductiorf® noisy insulatorg/ heating?® and non-
passing that the tunneling model for the resistdnaed linear effects’

the relative resistance nofSeyields values that are not too The purpose of the present paper is to show #ilathe
different from those discussed in this paper. Hence, the limitsnany experimental results reported thus far can be accom-
found here also cover the corresponding experimentainodated within the framework of the original HFS and TFB
findings>?1?2 However, the expected tunneling mechanismtheories if one of the original assumptions is removed, i.e.,
in the latter systems calls for more specific predictions. Thehe assumption that the void sizesre distributed uniformly
corresponding model and the systems considered in Refs. 26— 0. The removal of this assumption fogal systems is
and 22 will be discussed then in detail elsewH@rtn this  very reasonable since during the natugich as rock$ or
paper we consider the systems that can be described by taetificial (such as composites 131%r thin films*1%1%1§ for-

RV or the IRV models. mations of the systems, the acting forces may yield a more,
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or a less, “diverging”e distribution than that of the exactly at £=0, and we must takethe average in Eq(2) while
uniform one. In fact, for carbon black-polymer composites itconsidering the finitel; dependent, value of,,. Using
has been showrthat there is a correlation between the dis-Eq. (2) and the above value of., this yields that(r), ;
persion of the conducting particles in the composite and the:| (“*«~D/(1=©) = Noting?*3! that Lyc(p—p.) ~* we get
corresponding critical behavior of the resistance. We musthen that(r), ;o (p—p.) ~“**~1/(1=«) The critical behav-

emphasize that such correlations were suggested also f@sr will be determined then by the nonuniversal exponent
other system&?° but a single rule that can account fall

nonuniform distribution and fomll available experimental t=ty,+(U+w—1)/(1-w). 3
data has not been suggested. We also note in passing that

our computer simulatioriS have confirmed that if the par-  Turing to the relative resistance noise, instead of repeat-
ticles in the systems are randomly dispersted 2<d<6), ing the procedure used in Ref. 4, we apply, for brevity, a

the predictions of the theori&¥ of the RV and the IRV ideal  short argumenf that yields the same result. The argument is
models, for botht and «, are fulfilled. This implies, as was that in a random process, the squared varidtioe averaged
suggested originally by HF$that the above uniform distri- squared resistance fluctuation of a given resistér2) in
bution ase—0 is a good description of thieleal RV and  our casgdivided by the average squaréd)? in our casgis
IRV system. inversely proportional to the number of elements in the sys-
For the sake of brevity we present here our results using &m. When the elements are individual volume parts of a
short version of the well known theories of HESef. 3 and  continuous slab of material of volumé, one obtains then
TFB,* keeping the underlying Nodes-Links-Blot8ILB)  that(sr2)/(r)2=1N. Here,(r) is the average over a single
model?*3! The difference between those theories and theesistor and thus it is given by )& Y. The corresponding
present work is only in the assumed distribution funCtionvo|ume element is related then to tbmarameter b%,SOV
h(e) of the geometrical proximity parameter In the previ- oz yielding that(sr2)ce ~24*2). Now, in order to find
OUS. theories it W.as assumed tmb) has a uniform distri- out the Squared fluctuation in the |inK5R2>L1, one can
bution for e—0, i.e., that there is some, such that fore apply Cohn'’s theoref by which the power dissipated by
<& the distribution can be approximated lye)=ho,  the fluctuations of the “macroscopic” systefne., the fluc-
whereh, is a constant. Here, we suggest that for this regimauations of the entire link 5R?), ;) equals the sum of the
one can assume more generally that powers dissipated by the fluctuations in the individual resis-
W tors. In our case this means thaiR?) ,L(8r?) ;. The
h(e)oce™®. @ atter average is given, in our model, by
For =0, we recover the assumption and the predictions of
the HFS and TFB theori€s while for >0, we have a <5r2>L1“f g (2utvto)gg @
neck” distribution that prefers the smalles values ase
—0. We know of course that in order for the distribution to ) . .
converge and be normalizable we must have that1, Where the integration is over the inten@ke<e,, ands,
Similarly, for «<0 we have a “neck” distribution that pre- 2S In Ref. 4, is the typical value of the single resistoR,
fers the largek values as:— 0. We further note that there is Which has the average resistance of an entire link. In the
nothing special about the mathematical form of Ey.and  NLB model (where R,= Li(r)ia), & is given then byR;

. . . . . e . —u
we use it since it retains the convenience of describing dis¥d -

tributions that are “more divergent” or “less divergent” L€t us consider first the case wheRg has a universal
than that of the uniform distribution. behavior(i.e., (r),; is independent of ;). In this case one

Since the resistanaeof each resistor in the link depends 9et$ that 8L ***. Under these conditions one finds from
on the geometry of the resistdf;*°i.e., rce Y, we have EQ.(4) that
that the average resistance of a resistor in a link containing
L, singly connectedbonds resistors is given by (8r2) gL urvroriu, (5)

Since the resistance is universal, the relative resistance noise
<r>L1°‘J e~ e, (2 szx=(8R?),,/(R)2, will deviate from the universal expres-
sion only by the term given in Eq5). Following thel;
where the integration is over the interval,<e<sg and o« (p—p.)~! relation we get, provideti+ w<1 but 2u+v

€min IS the typical smallest in the link. For thew=0 case, 1 (,>1, that the relative resistance noise exponent will be
emin is easily showhto be proportional to 1/;. Using the given by

same argument but with # 0, we find thate yncL; Y0

Now, if u+w<1, the integral(2) does not diverge as k=Kt (2u+v+w—1)/u, (6)
—0 and one can take the average betwegh=0 and some

e=gg. This yields tha{r),; has a finite value that is inde- where «, is the universal value of the relative resistance
pendent of the proximity to the percolation threshold. Con-noise exponent. If, however,u2-v + »<1, the integral in
sidering the fact that the critical behavior of the macroscopid=d. (4) conxerges ana = kyp.

resistance of the systerR, made of resistors of a constant ~As TFB,” we repeat the same argument for the second
(r) is universal and thaR is given by?* Rx(p—p,)!, where  case(where the resistance has a nonuniversal behgvier,
(p—po) is the “proximity” to the percolation threshold, we in our model, wherR L L{"* @~ D/(=2) " Thys, fromR,

get thatt=t,,. If, however,u+ w>1, the valugr) diverges =46 " we find that the correspondingvalue will be given
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now by 6Ly ¥~) " In this casesinceu+ w>1 andu,v

>0), we have that A+v+ w>1 and the integration of Eq.
(4) yields that

<5r2>LlML&2u+v+w—1)/(l—w). (7)
Since in this casgsee Eq(3)] the resistance has the nonuni-
versal part of(R) cL{"* " V/(17) " one readily obtains
from Eq. (7) that SgL{ @™ D/(7) " This yields that the
relative resistance noise exponent is

k=Kt (V+1l-w)/(l-w). (8)
We readily see that fow— 0, Egs.(6) and(8) give the TFB
results?

Now that we have the expressiof®, (6), and(8), we can
check the specific numerical predictions for the “reativo-
or three-dimensionalRV and IRV models. As is well
established;*3° for the RV modelu=d—3/2 andv=d
—1/2, while for the IRV model=d/2—1 andv =d/2. Con-
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For =0, the only case that applies is that of tthe 3 RV
model yielding that/t=2.02. The largesk andt exponents
are obtained, however, fas— 1. In this limit, k/t=(v/u).

The latter ratios for the three applicable cases afd=32
RV), 5/3 (d=3, RV), and 3(d=3, IRV). For all other pos-
sible w values, thex/t values for the nonuniversdl are
smaller than 3. Indeed, considering all the available data for
three-dimensional systems, there is no report of an experi-
mental result withk/t>3. Considering the lower limits of
the «/t ratio, we note that since=t,, and k= «,, and since
 can obtain negative values, we will always have that the
smallestk/t ratio can bex,/t,,.

We can summarize now the predictions of the present
theory for the relative resistance noise in comparison with
that of the previous TFB thedhas follows: For thed=2
RV model, 0.86<«/t<4.7 instead of«/t=3.16; for thed
=2 IRV model, 0.86< k/t<x instead ofx/t=0.86; for the
d=3 RV model, 0.78& «/t=<2.1 instead of 2.02; and for the
d=3 IRV model, 0.7& «/t=<3 instead of 2.29. This is to be

sidering the fact that the requirement for obtaining a nonuni€ompared with the 08 «/t<8.1 values observed experi-

versal behavior of the resistance is that w>1 and that the
possible values ob lie in the interval —c<w<1, we see
from Eq. (3) that one can have values frotet,,, to t—o0
for all the cases except for tlte=2 IRV model. In the latter
case, we cannot have that »>1 and thug=t,, i.e., we
will neverhave a nonuniversalvalue. These results account
well for the extrema> 2.5 values obtained in composites for
which the d=3 RV model appears to be a good
description’ 3 as well as for the extreme>6t>t,, values in
composite® for which thed=3 IRV model appears to be a
good description.

mentally in two-dimensional system2%'>8 and 1<«/t
=<3 values observed experimentally in three-dimensional
systemg112:19

In the previous attemft to account for measured/t
values, as well as in the discussions given in the experimen-
tal reports’1215-1%he self-consistency between the experi-
mentalt and thek/t values, in view of the prediction of the
RV or IRV models, has not been considered. In what follows
we will show how this self-consistency is improved consid-
erably if we consider the present models in comparison with
the original HFS and TFB models. We consider then the

Turning to the relative resistance noise, let us considegxperimental works for which the RV or IRV models may

first the case presented by H®), i.e., for which the resis-

apply, and in whicht and «/t have been determined

tance has a universal behavior. As explained above, these 3§ﬁnuItaneousI;}?'lz'lS'lB'lgWe have already shown above

the cases whera+ w<1. Hence, we consider alb values

that can account for this condition for the four models underlowable by the present theory,

consideration. For thd=2 RV model, a universal behavior
can be found forw<<1/2. In this case Eq6) yields thatk

= Kkynt (3/12+ w)/(1/2), so thatk/t= k/t,;<4.7. For thed
=2 IRV model, we have, fow=0, that{5R?) ; converges,
so thatx/t= k,/t,,. However, for > w>0, Eq.(6) yields
that k= kz+ w/u. Sinceu—0 in this case, the value of
diverges. Hence, any value betweep,/t,,=0.86 and«/t

that all the measured/t values are within the intervals al-
while many of them deviate
considerably from the original TFB predictiorise., the w

=0 case. In our self-consistency test we consider first sys-
tems for whicht was measured to be universaf?>18|n-
deed, the measured/'t values are accounted for within the
limits predicted here for the corresponding cases. In particu-
lar, we see that the largestt value found experimentallt?

_. is possible for this case. This unique situation account&€-» X/t=3, is within the limit of our theory and is signifi-

well for the extreme experimental result oft>5 observed

in two-dimensional sand-blasted films. It further suggests

cantly higher than the TFB prediction aft=2.3.
A more stringent test of our theory is the case where both

then that an IRV-like resistors network was formed duringt @nd «/t are nonuniversal. This is since this requires the
the preparation of those films. Similar considerations for thdinding of asingle » parameter, which will account for both

d=3 systems yield that in thd=3 RV model, sincet,,
=2 and x,;=1.56, we get that 0.28«,/t =<k/t<2.1,
while for the d=3 IRV model, we get that 0. 78« ,/t,,
= k/t<2.78.

Except for the abovd=2 IRV model we can have for all
models and fow>1/2 a nonuniversal behavior of the resis-
tance, and then we should consider E¢®. and (8). This
yields that

klt=[kyt (v +1—w)/(1-w)]/[t,;

+ (Ut w—1)/(1—w)]. (9)

exponents. Such a finding will not only yield quantitative
proof for the present theory but will provide a tool for iden-
tifying the underlying networKRV or IRV) in real percola-
tion systems. The only such experimental data we know of
comes from the recent work of Wu and McLachidrithey
found, in a composite that is made of a mixture of conduct-
ing particles and insulating particlés/here the former are
somewhat larger than the lattethat t~2.66 and thatx/t
~1.55. If we try to account fot by ourd=3 IRV model,
which is the more likely description of this system, we find
from the value oft [using Eq.(3)] that w~0.7. Using then
Eq. (9), this yields that/t~1.3. The difference between this



13354 BRIEF REPORTS 57

and the above experimental value is less than 20% and candicates that the present assumption of nonrandom particle
be accounted for even by theoretical consideratimg., (or void) distributions provides an improved description of
corrections to scalirfd). We note that this is not the case for real percolation systems. Further simultaneous measure-
the original HFS and TFB predictions tha+2 and that ments oft and «/t are called for in order to see whether
k/t=~2.3 for this case. comparison with the present theory can yield information on

In conclusion, the agreement and self-consistency of théhe distribution function of particlegor voids in corre-
present predictions with all the available experimental resultsponding percolation systems.
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