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Limits on the continuum-percolation transport exponents
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The many experimental data that have been accumulated for the critical resistance exponent,t, and the
relative resistance noise exponent,k, in percolation systems, are generally in disagreement with the original
predictions of the random void and the inverted random void models of continuum percolation. In this paper
we show that by allowing a nonrandom distribution of the voids~or the particles! in these models, one can
account forall the experimental data. In particular, we show that, except for the two-dimensional inverted
random void system, the exponentt may have any value larger than its universal value, while thek/t ratio will
be bound.@S0163-1829~98!00121-0#
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About 20 years ago, Kogut and Straley1 showed that the
transport properties of percolation systems may exhibit n
universal behaviors. The reason for that nonuniversality
the possibility of a diverging distribution of the high resi
tance values in the corresponding resistors network. A
years later, Halperin, Feng, and Sen2 ~HFS! showed that such
a diverging distribution can be found in systems that can
modeled by a system of insulating spheres embedded
continuous conducting matrix. The extension of this mo
to two-dimensional systems is obvious2,3 and thus we define
here ‘‘real systems’’ as measurable two- or thre
dimensional systems. Such real systems then include s
mentary rocks, composite materials~where the conducting
particles are much smaller than the insulating particles!, and
porous films. The model describing these systems is kno
as the random void~RV! model. The relative resistance nois
of this model for two- (d52) and three- (d53) dimensional
systems was predicted by Tremblay, Feng, and Bret4

~TFB! to have a nonuniversal behavior. For the other mo
considered, i.e., that of conducting spheres embedded
continuous insulating matrix, which became known as
inverted random void~IRV! model, a universal behavior fo
the resistance3 was predicted, but its relative resistance no
for d53 was shown to yield a nonuniversal behavio4

Sometime later, Balberg5 showed that if the resistance b
tween adjacent particles is determined by a tunneling p
cess, a nonuniversal behavior of the resistance is
possible.5 Since the presentations of those theories, num
ous experimental data were accumulated.6–22 In particular,
the resistance exponentt and the exponents ratiok/t, where
k is the relative resistance noise exponent, have been d
mined experimentally for many systems for which the RV
the IRV models should be good descriptions.6–19 We note in
passing that the tunneling model for the resistance5 and
the relative resistance noise20 yields values that are not to
different from those discussed in this paper. Hence, the lim
found here also cover the corresponding experime
findings.5,21,22 However, the expected tunneling mechanis
in the latter systems calls for more specific predictions. T
corresponding model and the systems considered in Refs
and 22 will be discussed then in detail elsewhere.20 In this
paper we consider the systems that can be described b
RV or the IRV models.
570163-1829/98/57~21!/13351~4!/$15.00
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Examining all the data given in Refs. 6–19, one notes t
basic facts. First, there is a spread in the values of the ex
nents t and k/t ~which are far beyond the correction t
scaling,23 and second, there are manyt and k/t values that
are much larger than the values predicted by the RV
the IRV models.2–4 This isa priori surprising since the theo
ries are not sensitive to the exact shape of the particles~or
voids! in the system, provided they have curved surfaces
is indeed the case for all the systems that were studied
particular, two conspicuous deviations from the RV and IR
model predictions should be mentioned. In three dimensio
taking the universal value24 of t to be tun52, the RV
model2,3 predicts t to have a value of 2.5 while the IRV
model predicts thatt5tun. However, Pike7 found a value as
high as t55.01 for a composite system for which the R
should be a good model, while Wu and McLachlan19 found
values oft'6 for systems for which the IRV should be
good model. In two dimensions, taking the universal value
k to be 1.12 and that oft to betun51.3, the prediction4 of the
RV model was thatk/t53.16 and the prediction of the IRV
model was that k/t50.86. However, Garfunkel and
Weissman9 found k/t values in the range 5.4–8.1 in san
blasted films for which the RV or the IRV model shou
provide a good description. The explanation they gave
this conspicuous discrepancy was that their samples w
nonuniform. In fact, in the many experimental works
which significant deviations from the theoretical predictio
were found, the discrepancies have been attributed23 to
causes that are beyond the simple percolation theory.24 For
example, for the problem of the electrical noise, the cau
suggested for the deviations included changes in the mi
scopic noise mechanism,25 additional tunneling,11 noisy hop-
ping conduction,26 noisy insulators,27 heating,28 and non-
linear effects.22

The purpose of the present paper is to show thatall the
many experimental results reported thus far can be acc
modated within the framework of the original HFS and TF
theories if one of the original assumptions is removed, i
the assumption that the void sizes« are distributed uniformly
as«→0. The removal of this assumption forreal systems is
very reasonable since during the natural~such as rocks8! or
artificial ~such as composites11–13,19or thin films9,10,15,18! for-
mations of the systems, the acting forces may yield a m
13 351 © 1998 The American Physical Society
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13 352 57BRIEF REPORTS
or a less, ‘‘diverging’’« distribution than that of the exactl
uniform one. In fact, for carbon black-polymer composites
has been shown5 that there is a correlation between the d
persion of the conducting particles in the composite and
corresponding critical behavior of the resistance. We m
emphasize that such correlations were suggested also
other systems,2,29 but a single rule that can account forall
nonuniform distribution and forall available experimenta
data has not been suggested. We also note in passing
our computer simulations30 have confirmed that if the par
ticles in the systems are randomly dispersed~for 2<d<6!,
the predictions of the theories2–4 of the RV and the IRV ideal
models, for botht andk, are fulfilled. This implies, as was
suggested originally by HFS,3 that the above uniform distri
bution as«→0 is a good description of theideal RV and
IRV system.

For the sake of brevity we present here our results usin
short version of the well known theories of HFS~Ref. 3! and
TFB,4 keeping the underlying Nodes-Links-Blobs~NLB!
model.24,31 The difference between those theories and
present work is only in the assumed distribution functi
h(«) of the geometrical proximity parameter«. In the previ-
ous theories it was assumed thath(«) has a uniform distri-
bution for «→0, i.e., that there is some«0 such that for«
,«0 the distribution can be approximated byh(«)5h0 ,
whereh0 is a constant. Here, we suggest that for this regi
one can assume more generally that

h~«!}«2v. ~1!

For v50, we recover the assumption and the predictions
the HFS and TFB theories,2–4 while for v.0, we have a
‘‘neck’’ distribution that prefers the smaller« values as«
→0. We know of course that in order for the distribution
converge and be normalizable we must have thatv,1.
Similarly, for v,0 we have a ‘‘neck’’ distribution that pre
fers the larger« values as«→0. We further note that there i
nothing special about the mathematical form of Eq.~1! and
we use it since it retains the convenience of describing
tributions that are ‘‘more divergent’’ or ‘‘less divergent
than that of the uniform distribution.

Since the resistancer of each resistor in the link depend
on the geometry of the resistor,3,4,30 i.e., r}«2u, we have
that the average resistance of a resistor in a link contain
L1 singly connected~bonds! resistors is given by

^r &L1}E «2~u1v!d«, ~2!

where the integration is over the interval«min<«<«0 and
«min is the typical smallest« in the link. For thev50 case,
«min is easily shown3 to be proportional to 1/L1 . Using the
same argument but withvÞ0, we find that«min}L1

21/(12v) .
Now, if u1v,1, the integral~2! does not diverge as«
→0 and one can take the average between«min50 and some
«5«0 . This yields that̂ r &L1 has a finite value that is inde
pendent of the proximity to the percolation threshold. Co
sidering the fact that the critical behavior of the macrosco
resistance of the system,R, made of resistors of a consta
^r & is universal and thatR is given by24 R}(p2pc)

t, where
(p2pc) is the ‘‘proximity’’ to the percolation threshold, we
get thatt5tun. If, however,u1v.1, the valuê r & diverges
t
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at «50, and we must take3 the average in Eq.~2! while
considering the finite,L1 dependent, value of«min . Using
Eq. ~2! and the above value of«min this yields that^r &L1

}L1
(u1v21)/(12v) . Noting24,31 that L1}(p2pc)

21 we get
then that̂ r &L1}(p2pc)

2(u1v21)/(12v). The critical behav-
ior will be determined then by the nonuniversal exponen

t5tun1~u1v21!/~12v!. ~3!

Turning to the relative resistance noise, instead of rep
ing the procedure used in Ref. 4, we apply, for brevity
short argument30 that yields the same result. The argument
that in a random process, the squared variance~the averaged
squared resistance fluctuation of a given resistor,^dr 2& in
our case! divided by the average squared~^r &2 in our case! is
inversely proportional to the number of elements in the s
tem. When the elements are individual volume parts o
continuous slab of material of volumeV, one obtains then
that ^dr 2&/^r &2}1/V. Here,^r & is the average over a singl
resistor and thus it is given bŷr &}«2u. The corresponding
volume element is related then to the« parameter by4,30 V
}«v, yielding that^dr 2&}«2(2u1v). Now, in order to find
out the squared fluctuation in the link,^dR2&L1 , one can
apply Cohn’s theorem32 by which the power dissipated b
the fluctuations of the ‘‘macroscopic’’ system~i.e., the fluc-
tuations of the entire link̂ dR2&L1! equals the sum of the
powers dissipated by the fluctuations in the individual res
tors. In our case this means that^dR2&L1}L1^dr 2&L1 . The
latter average is given, in our model, by

^dr 2&L1}E «2~2u1v1v!d«, ~4!

where the integration is over the intervald<«<«0 , andd,
as in Ref. 4, is the typical« value of the single resistor,Rj ,
which has the average resistance of an entire link. In
NLB model ~where Rj5L1^r &L1), d is given then byRj

}d2u.
Let us consider first the case whereRj has a universal

behavior~i.e., ^r &L1 is independent ofL1!. In this case one
gets4 that d}L1

21/u . Under these conditions one finds fro
Eq. ~4! that

^dr 2&L1}L1
~2u1v1v21!/u . ~5!

Since the resistance is universal, the relative resistance n
SR5^dR2&L1 /^R&L1

2 will deviate from the universal expres
sion only by the term given in Eq.~5!. Following the L1
}(p2pc)

21 relation we get, providedu1v,1 but 2u1v
1v.1, that the relative resistance noise exponent will
given by

k5kun1~2u1v1v21!/u, ~6!

where kun is the universal value of the relative resistan
noise exponent. If, however, 2u1v1v,1, the integral in
Eq. ~4! converges andk5kun.

As TFB,4 we repeat the same argument for the seco
case~where the resistance has a nonuniversal behavior!, i.e.,
in our model, whenRj}L1L1

(u1v21)/(12v) . Thus, fromRj

}d2u we find that the correspondingd value will be given
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now by d}L1
21/(12v) . In this case~sinceu1v.1 andu,v

.0!, we have that 2u1v1v.1 and the integration of Eq
~4! yields that

^dr 2&L1}L1
~2u1v1v21!/~12v! . ~7!

Since in this case@see Eq.~3!# the resistance has the nonun
versal part of^R&L1}L1

(u1v21)/(12v) , one readily obtains
from Eq. ~7! that SR}L1

(v2v11)/(12v) . This yields that the
relative resistance noise exponent is

k5kun1~v112v!/~12v!. ~8!

We readily see that forv→0, Eqs.~6! and~8! give the TFB
results.4

Now that we have the expressions~3!, ~6!, and~8!, we can
check the specific numerical predictions for the ‘‘real’’~two-
or three-dimensional! RV and IRV models. As is well
established,2–4,30 for the RV model u5d23/2 and v5d
21/2, while for the IRV modelu5d/221 andv5d/2. Con-
sidering the fact that the requirement for obtaining a nonu
versal behavior of the resistance is thatu1v.1 and that the
possible values ofv lie in the interval2`,v,1, we see
from Eq. ~3! that one can have values fromt5tun to t→`
for all the cases except for thed52 IRV model. In the latter
case, we cannot have thatu1v.1 and thust5tun, i.e., we
will neverhave a nonuniversalt value. These results accou
well for the extremet.2.5 values obtained in composites f
which the d53 RV model appears to be a goo
description,7,13 as well as for the extreme 6.t.tun values in
composites19 for which thed53 IRV model appears to be
good description.

Turning to the relative resistance noise, let us consi
first the case presented by Eq.~6!, i.e., for which the resis-
tance has a universal behavior. As explained above, thes
the cases whereu1v,1. Hence, we consider allv values
that can account for this condition for the four models un
consideration. For thed52 RV model, a universal behavio
can be found forv,1/2. In this case Eq.~6! yields thatk
5kun1(3/21v)/(1/2), so thatk/t5k/tun<4.7. For thed
52 IRV model, we have, forv50, that^dR2&L1 converges,
so thatk/t5kun/tun. However, for 1.v.0, Eq. ~6! yields
that k5kun1v/u. Sinceu→0 in this case, the value ofk
diverges. Hence, any value betweenkun/tun50.86 andk/t
→` is possible for this case. This unique situation accou
well for the extreme experimental result ofk/t.5 observed9

in two-dimensional sand-blasted films. It further sugge
then that an IRV-like resistors network was formed duri
the preparation of those films. Similar considerations for
d53 systems yield that in thed53 RV model, sincetun
52 and kun51.56, we get that 0.785kun/tun<k/t<2.1,
while for the d53 IRV model, we get that 0.785kun/tun
<k/t<2.78.

Except for the aboved52 IRV model we can have for al
models and forv.1/2 a nonuniversal behavior of the resi
tance, and then we should consider Eqs.~3! and ~8!. This
yields that

k/t5@kun1~v112v!/~12v!#/@ tun

1~u1v21!/~12v!#. ~9!
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For v50, the only case that applies is that of thed53 RV
model yielding thatk/t52.02. The largestk andt exponents
are obtained, however, forv→1. In this limit, k/t5(v/u).
The latter ratios for the three applicable cases are 3~d52
RV!, 5/3 ~d53, RV!, and 3~d53, IRV!. For all other pos-
sible v values, thek/t values for the nonuniversalt are
smaller than 3. Indeed, considering all the available data
three-dimensional systems, there is no report of an exp
mental result withk/t.3. Considering the lower limits of
thek/t ratio, we note that sincet>tun andk>kun and since
v can obtain negative values, we will always have that
smallestk/t ratio can bekun/tun.

We can summarize now the predictions of the pres
theory for the relative resistance noise in comparison w
that of the previous TFB theory4 as follows: For thed52
RV model, 0.86<k/t<4.7 instead ofk/t53.16; for thed
52 IRV model, 0.86<k/t<` instead ofk/t50.86; for the
d53 RV model, 0.78<k/t<2.1 instead of 2.02; and for th
d53 IRV model, 0.78<k/t<3 instead of 2.29. This is to be
compared with the 0.9<k/t<8.1 values observed exper
mentally in two-dimensional systems,9,10,15,18 and 1<k/t
<3 values observed experimentally in three-dimensio
systems.11,12,19

In the previous attempt23 to account for measuredk/t
values, as well as in the discussions given in the experim
tal reports,9–12,15–19the self-consistency between the expe
mentalt and thek/t values, in view of the prediction of the
RV or IRV models, has not been considered. In what follo
we will show how this self-consistency is improved cons
erably if we consider the present models in comparison w
the original HFS and TFB models. We consider then
experimental works for which the RV or IRV models ma
apply, and in which t and k/t have been determine
simultaneously.11,12,15,18,19We have already shown abov
that all the measuredk/t values are within the intervals al
lowable by the present theory, while many of them devi
considerably from the original TFB predictions~i.e., thev
50 case!. In our self-consistency test we consider first sy
tems for whicht was measured to be universal.11,12,15,18In-
deed, the measuredk/t values are accounted for within th
limits predicted here for the corresponding cases. In part
lar, we see that the largestk/t value found experimentally,12

i.e., k/t53, is within the limit of our theory and is signifi-
cantly higher than the TFB prediction ofk/t52.3.

A more stringent test of our theory is the case where b
t and k/t are nonuniversal. This is since this requires t
finding of asinglev parameter, which will account for both
exponents. Such a finding will not only yield quantitativ
proof for the present theory but will provide a tool for ide
tifying the underlying network~RV or IRV! in real percola-
tion systems. The only such experimental data we know
comes from the recent work of Wu and McLachlan.19 They
found, in a composite that is made of a mixture of condu
ing particles and insulating particles~where the former are
somewhat larger than the latter!, that t'2.66 and thatk/t
'1.55. If we try to account fort by our d53 IRV model,
which is the more likely description of this system, we fin
from the value oft @using Eq.~3!# that v'0.7. Using then
Eq. ~9!, this yields thatk/t'1.3. The difference between thi
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and the above experimental value is less than 20% and
be accounted for even by theoretical considerations~e.g.,
corrections to scaling23!. We note that this is not the case fo
the original HFS and TFB predictions thatt52 and that
k/t'2.3 for this case.

In conclusion, the agreement and self-consistency of
present predictions with all the available experimental res
f
-

,

-

v.

ys
an

e
ts

indicates that the present assumption of nonrandom par
~or void! distributions provides an improved description
real percolation systems. Further simultaneous meas
ments of t and k/t are called for in order to see whethe
comparison with the present theory can yield information
the distribution function of particles~or voids! in corre-
sponding percolation systems.
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