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Nonlinear optics of random metal-dielectric films
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Surface-enhanced optical nonlinearities are studied in a semicontinuous film consisting of metal granules
randomly distributed on an insulating substrate. The local fields are very inhomogeneous in such films and
consist of strongly localized sharp peaks. In peaks~‘‘hot’’ spots!, the local fields exceed the applied field by
several orders of magnitudes resulting in giant enhancements of the optical nonlinearities. Because of such a
pattern for the local field distributions, the nonlinear signals are mostly generated from small nanometer-size
areas. The corresponding spatial distributions for the generated fields form, in turn, a set of very sharp peaks
on a homogeneous, on average, semicontinuous film. It is shown that the spatial positions of the localized hot
spots at the fundamental and generated frequencies are located, in general, in different parts of a film. The local
enhancements in the hot spots exceed the average enhancement by several orders of magnitude. The predicted
giant local enhancements open fascinating possibilities in nonlinear spectroscopy of single molecules on a
semicontinuous metal film. A number of surface-enhanced optical nonlinearities are studied, namely, those that
are responsible for the Kerr-effect, four-wave mixing, second-, and third-harmonic generation. The enhance-
ment for nonlinear optical processes is shown to strongly increase toward the long-wavelength part of the
spectrum. Spatial distributions of the local fields are calculated in our broad-scale numerical simulations. A
scaling theory for the high-order field moments is developed. It predicts that the moments of the local fields are
very large and independent of the frequency in a wide spectral range. The theory predicts anomalous field
fluctuations and giant enhancements for the nonlinear optical processes, from the visible to the far-infrared
spectral range.@S0163-1829~98!02220-6#
al-
te
rit
e

ic
m

co
o
o
o

e.
th
on
-
ac

ee
e
a
a
r-
p
fe
d

s

t’’
ces

rnal
are
ns-
arse
s in
ate-
at

tes
og-
c-
ade

r
vity
of

he
ges
lita-
of

ting
tiv-
en

the
rial
I. INTRODUCTION

Nonlinear electrical and optical properties of met
dielectric percolating composites have attracted much at
tion in recent years. At zero frequency, strong nonlinea
may result in a breaking down of conducting elements wh
the electric current exceeds some critical value.1–4 If the ex-
ternal electric field exceeds some value known as the crit
field, a crack spreads over the system. The critical field a
plitude decreases to zero when the concentration of the
ducting component approaches the percolation thresh
That is, percolating composites become progressively m
responsive to the external field as the percolation thresh
approaches. This simplest fuse model can be applied,
for a description of fractures in disordered media and
related problem of weak tensility of materials in comparis
to the strength of the atomic bonds.5 The tension concen
trates around weak points of the materials and a cr
spreads out starting from these weak points.

Another example of unusual nonlinear behavior has b
observed recently for the ac and dc conductivities in a p
colating mixture of carbon particles embedded in the w
matrix.6 In this case, neither carbon particles nor the w
matrix have any nonlinearity in their conductivities; neve
theless, the conductivity of a macroscopic composite sam
increases twice when the applied voltage increases by a
volts. Such a strong nonlinear response can be attribute
the quantum tunneling between conducting~carbon! par-
ticles, which is a distinguishing feature of the electric tran
570163-1829/98/57~20!/13265~24!/$15.00
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port in composites near the percolation threshold.7 The cur-
rent and electric field are concentrated in a few ‘‘ho
junctions and makes it possible to change their conductan
under the action of the high local fields, whereas the exte
field is relatively small. In general, percolating systems
very sensitive to the external electric field since their tra
port and optical properties are determined by a rather sp
network of conducting channels, and the field concentrate
the weak points of the channels. Therefore, composite m
rials should have much larger nonlinear susceptibilities
zero and finite frequencies than those of its constitutes.

The distinguishing feature of the percolating composi
to amplify nonlinearities of its components have been rec
nized very early,8–11and nonlinear conductivities and diele
tric constants have been studied intensively in the last dec
~see for a review Refs. 12–14!. In this paper, we conside
weak nonlinearities when the dependence of conducti
s(E) on the electric fieldE can be expanded in the series
E and the leading term, i.e., the linear conductivitys (0) is
much larger than the others. This situation is typical for t
various nonlinearities in optical and infrared spectral ran
considered here. Even weak nonlinearities lead to qua
tively new physical effects. For example, the generation
higher harmonics can be greatly enhanced in percola
composites, the bistable behavior of the effective conduc
ity can take place when the conductivity switches betwe
two stable values, etc.15

The local field fluctuations can be strongly enlarged in
optical and infrared spectral ranges for a composite mate
13 265 © 1998 The American Physical Society
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containing metal particles that are characterized by the
electric constant with negative real and small imagin
parts. Then the enhancement is due to the plasmon reson
in the metallic granules.12,14,16,17The strong fluctuations o
the local electric field lead to a corresponding enhancem
of various nonlinear effects. Nonlinear percolating comp
ites are potentially of great practical importance18 as media
with intensity-dependent dielectric functions and, in partic
lar, as nonlinear filters and optical bistable elements. T
optical response of the nonlinear composites can be tune
controlling the volume fraction and morphology of cons
tutes.

A special class of metal-dielectric nanocomposites
those with a fractal distribution of metal particles in the co
posite. In Refs. 10,19–21, nonlinear optical properties
fractal aggregates have been studied. The main result is
the aggregation of initially isolated particles into fractals
sults in a huge enhancement of the nonlinear response w
the spectral range of the cluster plasmon resonances.
typical sizea0;10 nm of metal particles in fractal clusters
much smaller than the wavelengthl.300 nm in the optical
and infrared spectral ranges. The average density of the
ticles in fractals is much smaller than in bulk materials a
tends to zero with increasing fractal size. With these sim
fications, it is possible to consider each particle as an
ementary dipole and introduce corresponding interaction
erators. Then the problem of the optical response of m
fractals reduces to diagonalizing the interaction operato
the dipoles induced by light. Local fields fluctuations
metal fractals were studied in Refs. 22,23. It has been fo
that the areas of large field fluctuations are localized in
ferent small parts of a fractal that change with the wa
length.

The prediction of large enhancements of optical non
earities in the metal fractals was confirmed experiment
for the example of degenerate four-wave mixing and non
ear refraction and absorption.19 Aggregation of initially iso-
lated silver particles into fractal clusters in these experime
led to a 106-fold enhancement of the efficiency of the no
linear four-wave process and;103 enhanced nonlinear re
fraction and absorption. The localized and strongly fluctu
ing local fields in fractals were imaged by means of the ne
field scanning optical microscopy~NSOM! in Ref. 23. A
similar pattern for the field distribution was obtained for se
affine thin films24 that have a fractal structure of the surfac
with different scaling properties in the plane of the film a
normal to it.

Enhanced optical processes in composites with a laye
structure were studied by Sipe, Boyd, and their co-worke25

both theoretically and experimentally. The theoretical tre
ment of nonlinear effects in composite with parallel sla
microstructure can be performed analytically due to
rather simple geometry of the system~see also, Ref. 15!.
Nonlinear susceptibilities of some hierarchical structures
periodic composites with shell structure were considered
Refs. 26 and 27, respectively.

In contrast to fractal and layered systems, the local fi
distribution and corresponding nonlinearities are poo
known for percolating metal-dielectric composites in t
most interesting spectral range where the plasmon r
nances occur in metal grains. When a small volume conc
i-
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trationp!1 of the nonlinear material is embedded in a line
host the effective nonlinear response of the whole compo
can be calculated explicitly.28,29 As one would expect the
nonlinearities are enhanced at frequencyv r corresponding to
the plasmon resonance of a single metal grain. Numer
calculations30 for a finite concentrationp also give a consid-
erable enhancement in the narrow frequency range aro
v r . These calculations also show that the system sizes t
table for the known numerical methods31 is not enough to
make quantitative conclusions about the nonlinear proper
for the frequenciesv close to the resonance frequencyv r .
Our results reported below are qualitatively different fro
those of Stroud and Zhang.30 We show that the enhanceme
of the nonlinearities in percolating metal-dielectric compo
ites are by several orders of magnitude larger than in Ref.
Moreover, the enhancement occurs not only forv'v r but it
includes the wide frequency rangev r>v.1/t, wheret is
the relaxation time for the metal conductivity. This fre
quency range corresponds for silver particles, for example
the optical, infrared, and far-infrared spectral ranges. T
discrepancy may be associated with the rather moderate
of the systemL510 in the calculations of Ref. 30, wherea
the local field fluctuations typically have a much larger sp
tial separationje for the frequenciesv,v r .

32–36 Then the
system sizeL is an artificial damping factor that cuts off a
field fluctuations withje.L and results in the correspondin
decrease of the nonlinearities.

To avoid direct numerical calculations, the effective m
dium theory37 that has the virtue of relative mathematic
and conceptual simplicity, was extended for the nonlin
response of percolating composites13,38–43 and fractal
clusters.44 For linear problems, predictions of the effectiv
medium theory are usually sensible physically and of
quick insight into problems that are difficult to attack b
other means.12 The effective medium theory, however, ha
disadvantages typical for all mean-field theories, namely
diminishes the fluctuations in the system. For example
assumes that local electric fields have the same volume
cupied by each component of the composite. The elec
fields in different components are determined se
consistently.

For the static case, the results of the last modification
the nonlinear effective medium theory42,43 are in best agree
ment with comprehensive computer simulations perform
for a two-dimensional~2D! percolating composite.40,42,43 In
spite of this success, the application of any kind of nonlin
effective medium theory is rather questionable for the f
quency range corresponding to the plasmon resonanc
metal grains. The first theoretical33,34,36 and experimental35

results for the field distribution in percolating composit
show that the local field distributions contain sharp pea
with distances between them much larger than the m
grain size. This pattern agrees qualitatively with that in t
metal fractals22,23and self-affine films.24 Therefore, the local
electric field cannot be considered by any means as the s
in all metal grains of the composite. Then the main assum
tion of the effective medium theory fails for the frequen
range corresponding to the plasmon resonance in the film

In the present paper we consider in detail the field spa
distributions and various weak nonlinear effects in rand
metal-dielectric films~also referred to throughout the text a
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57 13 267NONLINEAR OPTICS OF RANDOM METAL-DIELECTRIC FILMS
semicontinuous metal films!. We focus on the optical and
infrared spectral ranges where the plasmon resonance
effective in the films.

A semicontinuous metal film can be viewed as a tw
dimensional composite material. Semicontinuous metal fi
can be produced by thermal evaporation or sputtering
metal onto an insulating substrate. In the growing proce
first, small metallic grains are formed on the substrate
typical sizea0 of a metal grain is abouta055220 nm. As
the film grows, the metal filling factor increases and coal
cences occur, so that irregularly shaped clusters are for
on the substrate eventually resulting in 2D self-similar frac
structures. The concept of self-similarity plays an import
role in the description of various properties of the percolat
systems.17,45,46It will be used below in the scaling analys
of the field fluctuations. The sizes of the fractal structu
diverge in the vicinity of the percolation threshold. A perc
lating cluster of metal is eventually formed, when a contin
ous conducting path appears between the ends of a sam
This point is known as the percolation threshold.46 The
metal-insulator transition is very close to this point, even
the presence of quantum tunneling. At higher surface co
ages, the film is mostly metallic, with voids of irregula
shape. With further coverage increase, the film becomes
form.

The optical properties of metal-dielectric films sho
anomalous phenomena that are absent for bulk metal
dielectric components. For example, the anomalous abs
tion in the near-infrared spectral range leads to an anoma
behavior of the transmittance and reflectance. Typically,
transmittance is much higher than that of continuous m
films, whereas the reflectance is much lower~see Refs.
12,16,17,47–49, and references therein!. Near the percola-
tion threshold, the anomalous absorptance can be as hig
50%.35,48,50–52A number of effective-medium theories we
proposed for the calculation of the optical properties of se
continuous random films, including the Maxwell-Garnet53

and Bruggeman37 approaches and their variou
modifications.12,48,49 The renormalization group method
also widely used to calculate the effective dielectric respo
of 2D percolating films near the percolation threshold~see
Refs. 54–56, and references therein!. Recently, a theory
based on the direct solution of the Maxwell equations
been suggested.35,57 This new theory allows one toquantita-
tively describe the anomalous absorption and other effec
optical properties of semicontinuous films.

Some properties of the local field fluctuations in semico
tinuous metal films have been considered theoretically32–34,36

in the quasistatic approximation. The giant field fluctuatio
in semicontinuous metal films were directly imaged in R
35. This experiment has been performed for the microw
frequency range using an original microprobe method. I
interesting to note that the structure of the near field fluct
tions appears to be similar to that observed in the m
fractals23 and rough surfaces58 in the optical spectral rang
by using near-field scanning optical microscopy. As n
well known, large field fluctuations are responsible, in p
ticular, for surface-enhanced Raman scattering.14,21,34,36,59,60

If the skin effect in metal grains is small, a semicontin
ous film can be considered as a 2D object. Then in the o
cal spectral range where the frequencyv is much larger than
are
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the relaxation ratevt5t21, a semicontinuous metal film ca
be modeled as a 2DL2R2C lattice.12,17,61The capacitance
C stands for the gaps between metal grains that are filled
dielectric material~substrate! with the dielectric constant«d .
The inductive elementsL-R represent the metallic grains tha
for the Drude metal are characterized by the following
electric function:

«m~v!5«b2~vp /v!2/@11 ivt /v#, ~1!

where«b is a contribution to«m due to the interband transi
tions, vp is the plasma frequency, andvt51/t!vp is the
relaxation rate. In the high-frequency range considered h
losses in metal grains are small,vt!v. Therefore, the rea
part of the metal dielectric function is much larger~in modu-
lus! than the imaginary part and it is negative for frequenc
v less than the renormalized plasma frequency

vp* >vp /A«b. ~2!

Thus the metal conductivity is almost purely imaginary a
metal grains can be modeled asL-R elements, with the ac-
tive component much smaller than the reactive one.

If the skin-effect cannot be neglected, i.e., the skin de
d is smaller than the metal grain sizea0, the simple quasi-
static description of a semicontinuous film as a 2D array
the L-R and C elements is not valid. Still we can use th
L2R2C model in the other limiting case, when the sk
effect is very strong,d!a0.57 In this case, losses in meta
grains are small, regardless of the ratiov/vt , whereas the
effective inductance for a metal grain depends on the g
size and shape rather than on the material constants fo
metal. Such a system has been studied in the recent ex
ment found in Ref. 35.

It is instructive to consider first the film properties at th
percolation thresholdp5pc , where the exact Dykhne resu
for the effective dielectric constant«e5A«d«m ~Ref. 62!
holds in the quasistatic case. If we neglect the metal los
and putvt50, the metal dielectric constant«m is negative
for frequencies smaller than the renormalized plasma
quencyvp* . We also neglect possible small losses in a
electric substrate, assuming that«d is real and positive. Then
«e is purely imaginary forv,vp* . Therefore, a film consist-
ing of loss-free metal and dielectric grains is absorptive,
v,vp* . The effective absorption in a loss-free film mea
that the electromagnetic energy is stored in the system
thus the local fields could increase unlimitedly. In reality, t
local fields in a metal film are, of course, finite because of
losses. If the losses are small, one anticipates very str
field fluctuations. These large fluctuations may result in gi
enhancements of optical nonlinearities.12,14

In this paper, we study surface-enhanced optical non
earities of semicontinuous metal films. The paper is or
nized as follows. In Sec. II, we briefly recapitulate the a
proach developed in Refs. 32–34 for calculating local fie
in a semicontinuous film. We describe here the numer
recipe used and show results of our calculations for lo
field distributions. We show that the local field distribution
consist of very sharp peaks that in some cases are corre
in space. We also consider here dependencies of the
distributions on the light wavelength and metal concent
tion. In Sec. III, we present the scaling theory that descri
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the field distributions and their dependencies on the wa
length and metal concentration. The theory allows one
estimate enhancements of different nonlinearities. In Sec.
we derive the formalism and calculate numerically t
surface-enhanced optical nonlinearities for a number of
tical processes, namely, nonlinear refraction and absorp
associated with the Kerr-type nonlinear susceptibilities, fo
wave mixing, second-, and third-harmonic generation.
all these processes, we calculate spatial local distribution
the enhanced optical nonlinearities on a metal semicont
ous film. A distinctive feature of these distributions is th
most of the enhancement occurs in strongly localiz
nanometer-scale areas. The enhancement in these
zones’’ is giant and exceeds a ‘‘background’’ nonlinear s
nal by many orders of magnitude. These effects can be
tained experimentally in the optical range by using, for e
ample, near-field scanning optical microscopy allowing
subwavelength resolution23,58,63and, in the microwave range
by using the subwavelength probe method.35 Concluding dis-
cussions are presented in Sec. V.

II. GIANT LOCAL FIELDS ON SEMICONTINUOUS
METAL FILMS

A. Linear response

We consider optical properties of a semicontinuous fi
consisting of metal grains randomly distributed on a diel
tric substrate. The film is placed in the$x,y% plane, whereas
the incident wave propagates in thez direction. The local
conductivity s(r ) of the film takes either the ‘‘metallic’’
valuess(r )5sm in metallic grains or the ‘‘dielectric’’ val-
uess(r )52 iv«d/4p outside the metallic grains. The vecto
r5$x,y% has two components in the plane of the film;v is
the frequency of the incident wave. The gaps between
tallic grains are assumed to be filled by the material of
substrate, so that the above introduced«d is assumed equa
to the dielectric constant of the substrate. The electric fiel
the film is supposed to be homogeneous in directionz per-
pendicular to the film plane; this means that the skin de
for the metald>c/(vAu«mu) is much larger than the meta
grain sizea0, and the quasistatic approximation can be a
plied for calculating the field distributions. We also take in
account that the wavelength of the incident wave is mu
larger than any characteristic size of the film, including t
grain size and the gaps between the grains. In this case
local field E(r ) can be represented as

E~r !52¹f~r !1Ee~r !, ~3!

whereEe(r ) is the applied~macroscopic! field andf(r ) is
the potential of the fluctuating field inside the film. The cu
rent densityj (r ) at point r is given by Ohm’s law

j ~r !5s~r !@2¹f~r !1Ee~r !#. ~4!

The current conservation law¹• j (r )50 has the following
form:

¹$s~r !@2¹f~r !1Ee~r !#%50. ~5!

We solve Eq.~5! to find the fluctuating potentialf(r ) and
the local fieldE(r ) induced in the film by the applied field
Ee(r ). When the wavelength of the incident electromagne
e-
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~em! wave is much larger than all spatial scales in a se
continuous metal film, the applied fieldEe , i.e., the field of
the incident wave, is constant in the film planeEe(r )5E(0).
Provided the local fieldE(r ) is known the effective conduc
tivity se can be obtained from the definition

^ j ~r !&5seE
~0!, ~6!

where^•••& denotes the average over the entire film.
The local fieldE(r ), induced by the applied fieldEe(r ),

can be obtained by using the nonlocal conductivityŜ intro-
duced in Ref. 34:

E~r !5
j ~r !

s~r !
5

1

s~r !
E Ŝ~r ,r 8!Ee~r 8!dr 8. ~7!

According to Eq.~7! the nonlocal conductivityŜ(r ,r 8) re-
lates the applied field at pointr 8 to the current and the loca
field at pointr . The nonlocal conductivity in Eq.~7! can be
expressed in terms of the Green function of Eq.~5!:34

Sab~r2 ,r1!5s~r2!s~r1!
]2G~r2 ,r1!

]r 2a]r 1b
, ~8!

where the Greek indices take values 1 or 2. The Green fu
tion is symmetric with respect to the interchange of its arg
mentsG(r1 ,r2)5G(r2 ,r1); therefore, Eq.~8! implies that
the nonlocal conductivity is also symmetric:34

Sab~r1 ,r2!5Sba~r2 ,r1!. ~9!

The introduced nonlocal conductivityŜ is useful for an
analysis of different processes in the system.

Suppose, for example, that the external field applied to
film has the following form:

Ee~r !5E~0!1Ef~r !, ~10!

whereE(0) is the constant field and fieldEf(r ) may arbitrary
change over the film but its averaged value^Ef(r )& is col-
linear to E(0). Then the average current density^ j & is also
collinear toE(0) in the macroscopically isotropic films con
sidered here. Therefore, the average current can be writte

^ j ~r !&5
E~0!

E~0!2
~E~0!

•^ j ~r !&!5
E~0!

E~0!2

1

AE Ea
~0! j a~r !dr ,

~11!

whereA is the total area of the film, the integration is ov
the film area andE(0)2[(E(0)

•E(0)). By expressing the cur-
rent j a(r ) in Eq. ~11! in terms of the nonlocal conductivity
matrix j a(r )5*Sab(r ,r1)Eeb(r1)dr1, we obtain

^ j ~r !&5
E~0!

E~0!2

1

AE Ea
~0!Sab~r ,r1!Eeb~r1!dr dr1 , ~12!

where the integrations are over the entire film. Now we
tegrate this equation over the coordinatesr and use the sym-
metry of the matrix of nonlocal conductivity given by Eq
~9!; this results in the expression

^ j ~r !&5
E~0!

E~0!2

1

AE j 0b~r1!Eeb~r1!dr1 , ~13!
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wherej0(r ) is the current induced at the coordinater by the
constant external fieldE(0). Now we can substitute in Eq
~13! the external fieldEe(r ) from Eq.~10! and integrate over
the coordinater1 which gives

^ j ~r !&5
E~0!

E~0!2
„E~0!

•^ j0~r !&…1
E~0!

E~0!2
^@s~r !E~r !•Ef~r !#&,

~14!

where the fieldE(r )5 j0(r )/s(r ) is the local field induced in
the film by the constant external fieldE(0). Substituting in
Eq. ~14! the expression for the effective conductivity give
by Eq. ~6!, we obtain the equation

^ j ~r !&5E~0!Fse1
^s~r !@E~r !•Ef~r !#&

E~0!2 G . ~15!

Thus, the average current induced in a macroscopic
isotropic film by a nonuniform external fieldEe(r ) can be
expressed in terms of the fluctuating partEf(r ) of the exter-
nal field and the local fieldE(r ) induced in the film by the
constant partE(0) of the external field. It is easy to verify tha
Eq. ~15! is invariant with respect to the partition of the e
ternal field in the constant and fluctuating parts. Below
will use Eq.~15! in an analysis of the nonlinear response
semicontinuous metal films since it allows one to expr
various nonlinear currents in terms of the local fields.

Consider, for example, a composite with the local cond
tivity s(r ) including the cubic nonlinearity, i.e.,s(r )
5s (0)(r )1s (3)(r )uE(r )u2. To find the effective conductivity
se ~which, of course, is also nonlinear!, we write Eq.~5! in
the form

¹S s0~r !F2¹f~r !1E~0!1
s~3!~r !

s0~r !
E8~r !uE8~r !u2G D 50,

~16!

where E8(r )52¹f(r )1E(0) is the local electric field at
coordinater in the nonlinear film, with the local conductivity
containing the cubic term. We consider the last term in
square brackets as an external inhomogeneous field and
the above derived Eq.~15! to obtain the average current

^ j ~r !&5se
~0!E~0!1E~0!

^s~3!~r !@E~r !•E8~r !#uE8~r !u2&

E~0!2
,

~17!

wherese
(0) is the effective conductivity andE(r ) is the local

field found in the linear approximation@i.e., for the local
conductivitys(r )[s (0)(r )#. Equation~17! expresses the av
erage current and, thus, the effective nonlinear conducti
in terms of the local fieldsE8(r ) andE(r ).

For a weak nonlinearity, whens (3)(r )uE(r )u2!s (0)(r ),
we can replace the local fieldE8(r ) in Eq. ~17! by the field
E(r ) calculated in the linear approximation; this gives

^ j ~r !&5S se
~0!1

^s~3!~r !E2~r !uE~r !u2&

E~0!2 D E~0!, ~18!

where E2(r )[„E(r )•E(r )…. From this equation, it follows
that the effective nonlinear conductivityse has the form
ly

e
f
s

-

e
use

ty

se5se
~0!1se

~3!uE~0!u2, ~19!

where the effective nonlinear conductivityse
(3) is equal to

se
~3!5

^s~3!~r !E2~r !uE~r !u2&

E~0!2uE~0!u2
. ~20!

Equation~20! expressesse
(3) in terms of the local fieldsE(r )

obtained in the linear approximation.
When the local fields fluctuate strongly over a system,

effective nonlinearityse
(3) is strongly enhanced in compar

son with the averagês (3)(r )&. Equation~20! was obtained
independently by Stroud and Hui9 and by Shalaevet al.,10

and it is widely used in analyses of the nonlinear respons
composites.12,13

To calculate the local electric fields in the system we d
cretize Eq.~5! on a square lattice. The potentials in the cit
of the lattice reproduce the local field potentials in a sem
continuous film. The conductivities of the lattice bonds sta
for the local film conductivity and take eithersm or sd val-
ues. In such a way, the partial differential equation~5! is
reduced to a set of Kirchhoff equations that are solved by
method presented in the next subsection. Provided the
distribution is known we can use formulas such as Eq.~15!
to calculate the optical nonlinearities. Below, we first d
scribe the numerical procedure used and then results of
numerical simulations for the field distributions.

B. Numerical model

There now exist very efficient numerical methods for c
culating the effective conductivity of composite materia
~see Refs. 12,17,46,64–66!, but they typically do not allow
calculations of the field distributions. Here, we use the r
space renormalization group~RSRG! method that was sug
gested by Reynoldset al.67 and Sarychev68 and then ex-
tended to study the conductivity69 and the permeability of oil
reservoirs.70 Below, we follow the approach used b
Aharony.70 This method can be adopted to finding the fie
distributions in the following way.33,34 First, we generate a
square lattice ofL-R ~metal! andC ~dielectric! bonds using a
random number generator. As seen in Fig. 1, such a lat
can be considered as a set of ‘‘corner’’ elements. Such
ments are labeled A–H in Fig. 1. In the first stage of t
RSRG procedure, each of these elements is replaced by
two Wheatstone bridges, as shown in Fig. 1. After this tra
formation, the initial square lattice is converted to anoth
square lattice, with the distance between the sites twice
large and with each bond between the two nearest neigh

FIG. 1. The real space renormalization scheme.
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ing sites being the Wheatstone bridge. Note that there
one-to-one correspondence between thex bonds in the initial
lattice and thex bonds in thex directed bridges of the trans
formed lattice, as seen in Fig. 1. The same one-to-one co
spondence exists also between they bonds. The transformed
lattice is also a square lattice, and we can again apply
the RSRG transformation. We continue this procedure u
the sizel of the system is reached. As a result, instead of
initial lattice we have two large Wheatstone bridges in thx
and y directions. Each of them has a hierarchical struct
consisting of bridges with the sizes from 2 tol . Because the
one-to-one correspondence is preserved at each step o
transformation, the correspondence also exists between
elementary bonds of the transformed lattice and the bond
the initial lattice. After using the RSRG transformation, w
apply an external field to the system and solve the Kirchh
equations to determine the fields and the currents in all
bonds of the transformed lattice. Due to the hierarchi
structure of the transformed lattice, these equations can
solved exactly. Then, we use the one-to-one correspond
between the elementary bonds of the transformed lattice
the bonds of the initial square lattice to find the field dist
butions in the initial lattice as well as its effective condu
tivity. The number of operations to get the full distribution
of the local fields is proportional tol 2 to be compared withl 7

operations needed in the transform-matrix method12,31andl 3

operations needed in the well-known Frank-Lo
algorithm,64 which does not provide the field distribution
but the effective conductivity only. The RSRG procedure
certainly not exact since the effective connectivity of t
transformed system does not repeat exactly the connect
of the initial square lattice. To check the accuracy of t
RSRG, we solved the 2D percolation problem using t
method. Namely, we calculated the effective parameters
two-component composite with the real metallic conduct
ity sm much larger than the real conductivitysd of the di-
electric componentsm@sd . We obtained the percolatio
thresholdpc50.5 and the effective conductivity at the pe
colation threshold that is very close tos(pc)5Asmsd.
These results coincide with the exact ones for
composites.62 This is not surprising since the RSRG proc
dure preserves the self-duality of the initial system. The cr
cal exponents obtained by the RSRG procedure are
close to the known values of the exponents from percola
theory.12 Therefore, we believe that the numerical meth
used describes, at least qualitatively, the field distributi
on semicontinuous films. Below, using the described num
cal procedure, we calculate the local field distributions o
random semicontinuous metal film.

C. Field distributions on semicontinuous metal films

As mentioned, we model the film as a square lattice c
sisting of metallic bonds with the conductivitysm5
2 i«mv/4p (L-R bonds! and the concentrationp, and dielec-
tric bonds with the conductivitysd52 i«dv/4p and con-
centration 12p (C bonds!. The applied fieldE(0) is set to be
equal to unityE(0)51, whereas the local fields inside th
system are complex quantities. The dielectric constant of
ver grains has the form of Eq.~1! with the interband-
transition contribution«b55.0, the plasma frequencyvp
a
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59.1 eV, and the relaxation frequencyvt50.021 eV.71 Be-
low, we set«d52.2 typical for a glass. In Fig. 2 we show th
field distributionsG(r )5uE(r )/E(0)u2 for the plasmon reso-
nance frequencyv5v r that corresponds to the conditio
Re@«m(v r)#52«d . The value of the frequencyv r is
slightly below the renormalized plasma frequencyvp* de-
fined above in Eq.~2!. For silver particles the resonanc
condition fulfilled at wavelengthl'365 nm. The frequency
v r gives the resonance of an isolated metal particle.„For a
2D, i.e.,z-independent problem, particles can be thought
as infinite in thez direction cylinders that resonate, in th
quasistatic approximation, at the frequencyv5v r corre-
sponding to the condition Re@«m(v r)#52«d , for the field
polarized in thex,y plane.… The results are presented fo
various metal fractionsp. For p50.001 metal grains practi
cally do not interact, so that all the peaks are almost of
same height and indicate the locations of metal partic
Note that a similar distribution is obtained forp50.999
when the role of metal particles is played by the dielect
voids. Forp50.1 and, especially, forp50.5, metal grains
form clusters of strongly interacting particles. These clust
resonate at different frequencies~than that for an isolated
particle!, therefore, for the chosen frequency the field pea
are smaller, on average, than those for the isolated partic
and the height distribution is very inhomogeneous. Note t
the spatial scale for the local field distribution is much larg
then the metal grain sizea0 chosen to be unity for all the
figures. Therefore the main assumption of effective medi
theory13,38–43that the local fields are the same for all me
grains fails for the frequencies of the plasmon resonance
nonvanishing concentrationsp. We emphasize a strong re
semblance in the field distributions forp and 12p @cf. Figs.
2~a! and 2~g!, 2~b! and 2~f!, 2~c! and 2~e!#.

For larger wavelengths, a single metal grain is off t
plasmon resonance. Nevertheless, as one can see from
3~a!–3~d!, the local field fluctuations are even larger th
those at the plasmon resonance frequency. At these w
lengths, clusters of the conducting particles~rather than in-
dividual particles! resonate with the external field oscilla
tions. Therefore, it is not surprising that the local fie
distributions are quite different from those in Fig. 2. In Fi
3, we show the field distributions at the percolation thresh
p5pc50.5 for different wavelengths, namely, Fig. 3~a!: l
50.5 mm, Fig. 3~b!: l51.5 mm, Fig. 3~c!: l510 mm, and
Fig. 3~d!: l520 mm. Note that the field intensities in peak
increase withl, reaching very high values;105uE(0)u2; the
peak spatial separations increase withl as well. These re-
sults are also in contradiction with effective medium theo
that predicts strong field fluctuations30 in the vicinity of plas-
mon resonance frequencyv r only. In the next section, we
present a scaling theory for the field distributions on a se
continuous film that explains the above results of the sim
lations.

The field pattern obtained in our simulations resemb
the experimentally measured field distribution in percolat
metal-dielectric films in the microwave band.35 We note that
we simulate films in such a way that samples with the sa
p correspond to identical films. Thus from Fig. 4, we c
conclude that spatial locations of the field peaks stron
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FIG. 2. Distribution of the local field intensitiesG(x,y)5uE(x,y)u2/uE(0)u2 on a metal~silver! semicontinuous film for«m8 52ed5
22.2 (l'365 nm! at different metal concentrationsp. ~a! p50.001,~b! p50.01,~c! p50.1, ~d! p50.5, ~e! p50.9, ~f! p50.99, and~g!
p50.999.
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depend on frequency. Qualitatively similar results were p
viously demonstrated for fractals and self-affine films in t
optical spectral range.21,24 Thus by changing the frequenc
one can excite different nm-size hot spots on the film. T
effect is of great importance for various applications, and
can be studied experimentally in the optical spectral ra
using near-field scanning optical microscopy providing s
wavelength resolution.23,58,63 In the microwave range it can
be studied easily by the local probe method develo
recently.35 We note that there are nontrivial correlations
-

s
it
e
-

d

the positions of different peaks;33 they are not necessaril
associated with different clusters independently resona
with the applied field. For instance, some peaks that
might think of as different modes, in reality, are spatia
disconnected parts of the same mode; in other cases, h
ever, different peaks do correspond to different modes.

We emphasize that all results are shown in natural lin
scales. What we see in Figs. 2 and 3 is the top part of
field distribution, i.e., the largest fields only. The fields
other points forming a background, although smaller, are n
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FIG. 3. Distribution of the local field intensitiesG(x,y)5uE(x,y)u2/uE(0)u2 in a semicontinuous film at the percolation threshold
different wavelengths.~a! l50.5 mm, ~b! l51.5 mm, ~c! l510 mm, and~d! l520 mm.
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of course, zero. However, for the nonlinear optical effe
studied here the largest fields play the most important ro
and the smaller background fields~that are not seen in th
figures! can be neglected in most cases.

In Fig. 4, we also show results of our calculations for t
average enhancements for the intensity of the local fie
^uE(r )u2&/uE(0)u2. The results are presented as a function op

FIG. 4. The average enhancement of the field intensityG
5^uE(r )u2&/uE(0)u2 on a silver semicontinuous film as a function
the metal concentrationp for three different wavelengths.
s
s

s

for different wavelengthsl50.5 mm, l51.5 mm, and l
510 mm. We see that the field enhancements are large
average, (;102) but much smaller than in the local peaks
Fig. 3. This is because the largest peaks are separate
relatively large distances so that the average enhanceme
not as large as the local one in the peaks. The other mom
of the field distribution, which are important for an estim
tion of the nonlinear response, experience even stronger
hancement, especially for concentrations close to the pe
lation threshold. For example, the fourth mome
^uE(r )u4&/uE(0)u4 exceeds the value 106 for p5pc and l
.1 mm. This is not surprising since the local fields raised
the fourth power,uE(r )u4/uE(0)u4, reach in the peaks the va
ues 1010, as follows from Fig. 3.

The range ofp, where the enhancements occur is ve
large in the visible range (Dp5up2pcu'0.45). However, it
shrinks towards larger wavelengths, as seen in the fig
From the above results, it follows that the local fields exp
rience strong space fluctuations on a semicontinuous fi
the large fields in the peaks result in giant enhancement
the optical nonlinearities considered below.

III. SCALING THEORY OF THE FIELD FLUCTUATIONS
AND THE HIGH-ORDER FIELD MOMENTS

As pointed out above the spatial field fluctuations on
semicontinuous metal film have the form of huge local fie
within spatially separated peaks on the film. One could
ticipate that the local fields are strong on a semicontinu
film for v slightly smaller thanvp* —the renormalized
plasma frequency introduced above by Eq.~2!. For the fre-
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quency rangev<vp* , the real part of the metal dielectri
constant«m is negative and its absolute values are of
order of unity, i.e., they are close to the dielectric constan
the film substrate«d . Therefore, the conductivities of theL-
R and C elements in the equivalent network have oppos
signs and they are close to each other in absolute val
@The exact resonance condition occurs in our model av
5v r,vp* , which corresponds to the requirement Re(«m)
52«d .# Thus, a semicontinuous film can be thought of a
system of contours tuned in resonance with the frequenc
the external field. These resonance modes are seen as
spatial fluctuations in the field distributions over the film.
the dilute casep!1 these resonances are associated w
plasmon resonances of individual metal grains.

What might be more surprising is the fact that the gia
fluctuations of the local fields also occur forv!vp* , when
the contrastH5u«mu/«d@1. If the contrastH@1, the con-
ductivity of the L-R and C elements of the equivalent ne
work are quite different and a single contour cannot be
cited by the external field. However, as our numeri
simulations show, the field fluctuations become larger w
the increase of the wavelengthl toward the infrared spectra
range~see Fig. 3!.

To understand the origin of the giant field fluctuations
the large contrastH@1, we invoke scaling arguments o
percolation theory.46 Below we develop further the scalin
approach from our previous works33,34 and apply it for cal-
culating the high-order field moments.

Since enhancements for the nonlinear optical proce
have maxima near the percolation thresholdpc , we assume
first that the concentration of the conducting particlesp is
exactly equal to the percolation thresholdp5pc . We con-
sider the case when the frequencyv is much smaller than the
plasma frequencyv!vp , so that the contrast is large an
can be approximated asH'(vp /v)2/«d@1 for a Drude
metal. We also assume thatv@vt , i.e., losses in meta
grains are relatively small.

To find the field distributions over the system, we app
the renormalization procedure first suggested in Refs. 67
We divide a system into squares of sizel and consider each
square as a new element. All such squares can be class
into two types. A square that contains a path of conduct
particles spanning over is considered as a ‘‘conducting’’
ement. A square without such an ‘‘infinite’’ cluster is co
sidered as a nonconducting dielectric element. Following
nite size arguments,17,46,67,68the effective dielectric constan
of the conducting square«m* ( l ) decreases with increasin
size l as

«m* ~ l !>~ l /a0!2t/np«m , ~21!

wherea0 is the average size of metal grains andt andnp are
the critical exponents for the conductivity and the perco
tion correlation length, respectively. For a 2D syste
t'np54/3.12,17,46 The effective dielectric constant of a d
electric square«d* ( l ) increases with increasing sizel as

«d* ~ l !>~ l /a0!s/np«d , ~22!
e
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wheres is the critical exponent for the static dielectric co
stant; s'np54/3, for a 2D system.12,17,46 We now set the
square sizel to be equal tol * :

l 5 l * 5a0~ u«m8 u/«d!np /~ t1s!, ~23!

where«m8 1 i«m9 [Re(«m)1 i Im(«m). Then, in the renormal-
ized system, where each square of sizel * is considered as a
single element, the ratio of the dielectric constants of th
new elements is equal to

«m* ~ l * !/«d* ~ l * !>«m /u«m8 u5211 ik, ~24!

where the loss factork5«m9 /u«m8 u'vt /v!1. ~Recall that in
the visible and infrared spectral ranges the real part of
metal dielectric constant«m8 is negative and large in magn
tude,u«m8 u@«d .)

It follows from Eq.~24! that the renormalized system is
system of theL-R and C elements tuned in the resonanc
Therefore, the local electric fieldsE* (r ) are significantly
enhanced in comparison with the macroscopic fieldE(0). As
shown in Ref. 33, in a 2D system with the ratio of«m* to «d*
given by Eq.~24!, the fieldE* can be estimated as

E* >A^uE* ~r !u2&>E~0!k2g/2@E~0!, ~25!

where the critical exponentg introduced in Ref. 33 is nea
unity, g>1.0.

In the renormalized system the local fieldE* (r ) is still
strongly inhomogeneous. Really, we see the spatially se
rated peaks in Fig. 2 where the field distributions are sho
for the frequencyv5v r corresponding to the plasmon res
nance in a metal grain, i.e., for Re@«m(v)#52«d @cf. Eq.
~24!#. The spatial scaleje* for the field fluctuations in the
renormalized~resonance! system have been estimated
Refs. 32,33 as

je* }k2ne, ~26!

where the critical exponent is equal tone50.420.5. There-
fore, the field distribution in the renormalized system mig
be thought of as a set of peaks with amplitude

Em* >E* ~je* /a0! ~27!

separated by distanceje* so that E* 2>^uE* (r )u2&
>Em*

2/(je* /a0)2.
Now we can estimate the field fluctuations in the origin

system. A typical configuration of conducting clusters th
resonate at frequencyv!vp is sketched in Fig. 5. The ga
between the two conducting clustersA andB has a capacity
conductanceSc

AB( l ).2 iv«d* ( l )a0 /4p that depends on the
size l of the considered clusters. The conducting paths co
ing to the gap have an inductive conductanceS i

AB ; this is
because the metal conductivity is inductive forv,vp* («m8
,0, u«m8 u@«m9 ). The effective value ofS i

AB can be estimated
from a simple observation that a conducting square of
size l has a typical conductivity2 iv«m* ( l )/4p that we at-
tribute to the presence of the conducting path. Thus, we
tain S i

AB( l ).2 iv«m* ( l )a0 /4p. We chose the sizel 5 l * so
that capacitive and inductive conductances are equal to e
other in modulus,uSc

AB( l * )u.uS i
AB( l * )u. Then there is a

resonance in the configuration presented in Fig. 5. Note
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intercluster capacity conductanceSc
AB( l ) increases with

cluster sizel , whereas inductive conductanceS i
AB( l ) de-

creases with increasingl . Therefore, we can always fin
proper pairs of clusters with the sizel 5 l * to fulfill the reso-
nance conditionuSc

AB( l * )u5uS i
AB( l * )u for any large ~in

modulus! value of the metal dielectric constant«m(v) pro-
vided «m8 (v),0 ~i.e., v,vp* ).

Since the resonance clusters interact with each other
local field concentrates in some subset of them only. T
average distance between the field maximums in the re
malized system is equal toje* @see Eq.~26!# and the average
distanceje between the field maximums in the original sy
tem can be estimated as

je>je* l * /a0>k2nel * >a0~ u«m8 u/«m9 !ne~ u«m8 u/«d!np /~ t1s!

~28!

which is much larger than the grain sizeje@a0. This is the
reason why the giant field fluctuations exist up to the f
infrared spectral range and their spatial structure is ra
inhomogeneous as we can see in Figs. 3~a!–3~d!.

In Fig. 5, we do not show the many finite conductin
clusters that are always present in the system. These clu
are off resonance and, therefore, are not important for
consideration. Therefore, only a small part of the metal co
ponent is involved in the resonance excitation at any part
lar frequency of the applied field. Nevertheless, the re
nance clusters cover almost the whole area of the film du
their fractal structure. Even for the resonance clusters,
local field is concentrated in only a small part of them. A
cordingly, only a few metal grains actually carry most of t
current. If we change the frequency, another set of m
clusters will resonate; these new resonating clusters stil
clude only a small part of the metal.

The fieldEAB in the intercluster gap is strongly enhanc
for clusters with sizesl 5 l * , yet the local field is strongly
enhanced only for a part of these clusters as discussed ab
We consider one such resonating cluster. The potential d
across the gap can be estimated asUAB* ;Em* l * @see Eqs.~23!
and~27!#, and the local field is concentrated in the points
the close approach where the gap shrinks toa0. In the points
of the close approach the local field acquires the largest
ues

FIG. 5. Typical configuration of the conducting clusters th
resonate at the frequencyv smaller than renormalized plasma fr
quencyvp* .
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Em>Em* ~ l * /a0!;E~0!~ u«m8 u/«m9 !g/21ne~ u«m8 u/«d!np /~ t1s!.
~29!

The points of the close approach determine the gap capa
conductanceSc

AB( l * ) ~cf. Ref. 7! that depends on the cluste
size l * . Therefore, the numbernc( l * ) of the points of the
close approach scales with sizel * in the same way as con
ductanceSAB; namely, nc( l * );SAB( l * );«d* ( l * ); l * s/np

@see Eq.~22!#.
The following pattern of the local field distribution

emerges from these speculations: The largest local fields
concentrated in resonant clusters, in areas of the sizel * ; the
areas with high local fields are separated in distance by
field correlation lengthje@a0, given by Eq.~28!. Within
each resonant area there arenc( l * ) sharp peaks with ampli-
tudeEm( l * ). With an increasing wavelength of the incide
wave ~i.e., decreasing the frequency! the scalel * increases,
as do the amplitudeEm and the number of the local field
maxima nc( l * ) in one resonating cluster; the average d
tanceje between the resonant sets of the field peaks a
increases with decreasing frequency. We can track this
havior of the field fluctuations in Fig. 3. For smallest fr
quencies@Figs. 3~c!, 3~d!# the local fields have only a few
groups of maxima. Typical distances between the group
field peaks are much larger thana0 ~the grain sizea0 is
chosen as unity in the figures!. The number of peaks in eac
group increases systematically with decreasing frequenc

From this pattern of the local field distribution we obta
the following estimate for the moments of the local fiel
^uE(r )un&, in random semicontinuous metal films^uE(r )un&
;Em

n nc( l * )/je
2 . The substitution in this equation of expre

sions of the field amplitudeEm @Eq. ~29!#, the field correla-
tion lengthje @Eq. ~28!#, and the number of maxima in on
clusternc( l * );( l * )s/np gives

^uE~r !un&.uE~0!un~ u«m8 u/«d!nnp /~ t1s!2~2np2s!/~ t1s!

3~ u«m8 u/«m9 !n~g/21ne!22ne. ~30!

For a 2D system,t's'np54/3.12,17,46 Substituting these
critical indices andg51, ne50.5 ~Refs. 32,33! in Eq. ~30!
gives

^uE~r !un&.uE~0!un~ u«m8 u/«d!~n21!/2~ u«m8 u/«m9 !n21. ~31!

Since in the visible, infrared, and far-infrared spectral ran
the real part of the dielectric constant of a typical metal
large,u«m8 u@«d , whereas the losses are small,«m9 !u«m8 u, the
values of the field momentŝuEun& exceed the correspondin
moments of the incident fielduE(0)un by several orders of
magnitude. This indicates the presence of giant field fluct
tions in semicontinuous metal films in the visible and, es
cially, in the infrared spectral ranges.

For the Drude metal, we can simplify Eq.~31! for suffi-
ciently small frequencies,v!vp , as

^uE~r !un&.uE~0!un«d
~12n!/2S vp

vt
D n21

. ~32!

From this equation it follows that for frequenciesv!vp the
local field moments are independent of frequency.

Now we can estimate the local field moments for silv
semicontinuous films@vp59.1 eV,vt50.021 eV~Ref. 71!#.

t
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Using«d52.2 typical for glass substrate, we obtain from E
~32! the estimate ^uEun&.33102, 83104, 2.53107,
73109, and 231012 for n52, 3, 4, 5, and 6, respectively
(E(0)51).

The above estimates of the moments can be used
example, for Raman scattering that does not depend on
phases of the local fields.34,36Although Raman scattering is
linear process, its enhancement is proportional touEu4 ~Ref.
34! and in that sense is similar to nonlinear processes
cussed in Ref. 21. From Eq.~32! we obtain the following
expression for the enhancementGRS of Raman scattering in
semicontinuous metal films:

GRS;^uE~r !u4&;
u«m8 u9/2

«d
3/2«m9

3
. ~33!

Note that this equation is somewhat different from that o
tained in our previous work.34 This difference is a conse
quence of the more detailed analysis of the local field fl
tuations in the present paper. Nevertheless the main re
of the rough scaling analysis34 and the more elaborate con
sideration presented here are essentially the same: Su
enhancement of the Raman scattering on semicontinu
metal films is rather large,GRS;1052107, and independen
of frequency forv!vp* when the enhancement is propo

tional to GRS;(vp /vt)
3/(«d)3/2.

Now we turn to nonlinear coherent processes. To estim
enhancements for nonlinear coherent processes, such a
monic generation, one should average the nonlinear ele
induction D (n)}^En&; the resultant enhancement is th
given by G(n)}uD (n)u2}u^En&u2 ~see, e.g., Ref. 21!. There-
fore, the parametric nonlinear optical processes are very
sitive to the relative phases of the fields at different points
the film. It is impossible to estimate enhancements, in g
eral, considering only the absolute values of the field. Ho
ever, we can estimate the upper limit for the enhancem
assuming that all the fields are in phase. Formally, the up
limit for the enhancements can be obtained by neglecting
phase fluctuations, i.e., with the replacement of^En& for a
nonlinear process of thenth order bŷ uEun&. By doing so, we
obtain the estimate given by Eq.~31!. We also note that the
widely used ‘‘decoupling procedure’’^uEun&→^uEu2&n/2 ~see,
for example, Refs. 13,38,42,43! that works well in the static
case,42,43 results in significantly underestimated~by several
orders of magnitude! enhancement in the visible, infrare
and far-infrared spectral ranges, as follows from the ab
consideration. Accordingly, the mean-field theories based
the decoupling procedure are not applicable for an estima
of the optical nonlinearities in metal-dielectric composit
with strong field fluctuations, which provide largest enhan
ments for various nonlinear effects.

It is instructive to summarize the above discussion a
note that the field intensities in a random semicontinu
metal film uE(x,y)u2 can be viewed as groups of peaks w
amplitudesuEmu@uE(0)u. Different groups of peaks are sep
rated by distanceje@a0 @see Eqs.~28! and ~29!#. The am-
plitudes of the peaks, as well as the typical distance betw
them, increases with decreasing frequencyv. This picture is
in qualitative agreement with Figs. 3~a!–3~d!, where the field
fluctuations on a silver semicontinuous film are shown. W
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would like to stress that despite the large distances betw
the peak groups, the field fluctuations can be highly cor
lated in space.33

We should note that in the above estimations of the lo
field moments we implied that they do exist, i.e., we a
sumed that the moments converge when the size of a sy
increases. This is the case for incoherent processes~such as
Raman scattering! which are phase insensitive and depe
on the absolute values of the fields only, i.e.,}^uEun&. How-
ever, as we show below, enhancements for coherent
cesses, which are proportional tôEn& ~rather than to
^uEun&), do depend on the size of the system for sizes up
L5512 used in our simulations. The reason for the size
fect is probably the interference between the fields in diff
ent points of the film.

Above, for the sake of simplicity, we assumed thatp
5pc . Now we estimate the concentration rangeDp5p
2pc , where the above estimates for the local field mome
are valid.33,34 Although the above estimates have been do
for the percolation thresholdp5pc they must also be valid in
some vicinity to the threshold. Indeed the above speculati
are based on the finite size scaling Eqs.~21! and~22!, which
hold until the scalel * of the renormalized squares@see Eq.
~23!# is smaller than the percolation correlation lengthjp
>a0(up2pcu/pc)

2np. At the percolation threshold, wher
the correlation lengthjp diverges, our estimates are valid
a wide frequency rangevt,v,vp* which includes the vis-
ible, infrared, and far-infrared spectral ranges for a typi
metal. For any particular frequency from this interval, w
estimate the concentration rangeDp, where the giant field
fluctuations occur, by equating the values ofl * from Eq.~23!
andjp . Thus we obtain the relation

uDpu<~«d /u«m8 u!1/~ t1s!. ~34!

For a 2D semicontinuous metal film, the critical expone
ares't'np54/3, and the above relation acquires the fo

uDpu<~«d /u«m8 u!3/8. ~35!

For Drude metal, in the frequency rangevp* !v!vt , Eq.
~35! can be rewritten as

Dp<«d
3/8~v/vp!3/4. ~36!

As follows from Eq. ~36!, the concentration range for th
enhancement shrinks when the frequency decreases fa
low the renormalized plasma frequencyvp* @see Eq.~2!#.
This result is in agreement with our computer simulatio
presented in Fig. 4.

It is important to note that although the above consid
ation of the local field distributions is based on the assum
tion of the large contrastH@1, the estimation~36! repro-
duces the concentration interval for the giant fie
fluctuations for all the frequencies belowvp* ~but larger than
vt) well. Also the estimate~33! quantitativelydescribes re-
cent experimental studies of Raman scattering60 in a semi-
continuous metal film, as well as results of our compu
simulations34,36 for the whole frequency range.
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IV. GIANT ENHANCEMENTS
OF OPTICAL NONLINEARITIES

IN SEMICONTINUOUS METAL FILMS

In this section, we consider enhancements for differ
nonlinear optical processes on a semicontinuous metal fi
Third- and second-order optical nonlinearities are analyz
All numerical calculations are presented forp5pc . The con-
centration region for the enhancement of nonlinearities w
estimated in the previous section.

A. Kerr-type optical nonlinearities

The Kerr-type nonlinearities are third-order optical no
linearities that result in addition to the linear electric indu
tion D a nonlinear term of the form

Da
~3!~v!5«abgd

~3! ~2v;v,v,2v!EbEgE* d , ~37!

where

«abgd
~3! ~2v;v,v,2v! ~38!

is the third-order nonlinear dielectric constant,72 andE is an
electric field at frequencyv; summation over repeated Gree
indices is implied. The Kerr optical nonlinearity results
nonlinear corrections~proportional to the light intensity! for
the refractive index and the absorption coefficient.

Below we consider macroscopically homogeneous
isotropic films and the normal incidence of light. Then t
third-order terms in the average electric induction has in g
eral the form

^D~3!~r !&5auE~0!u2E~0!1bE~0!2E~0!* , ~39!

where E(0) is the amplitude of the external~macroscopic!
electric field at frequencyv, E(0)2[(E(0)

•E(0)), a andb are
some constants@not to be confused with the tensor comp
nents in Eq.~37!#. Note that the second term in Eq.~39! for
the nonlinear induction of an isotropic film can result in
change of the polarization of the incident light.72 Equation
~39! simplifies for the case of linear and circular polarizati
of the incident light.72 For the linear polarization the com
plex vectorE(0) reduces to a real vector. Then the expre
sionsuE(0)u2E(0) andE(0)2E(0)* in Eq. ~39! become the same
and the equation can be rewritten as

^D~3!~r !&5«e
~3!uE~0!u2E~0!, ~40!

where the nonlinear dielectric constant«e
(3) is scalar now.

For the sake of simplicity, we consider below the linea
polarized incident wave. Equation~40! we rewrite in terms
of the nonlinear average current^ j (3)(r )& and the effective
Kerr conductivityse

(3)52 iv«e
(3)/4p; this gives

^ j ~3!~r !&5se
~3!uE~0!u2E~0!. ~41!

This form of Kerr nonlinearity is used in the discussion b
low.

Consider the case when the nonlinearities in metal gra
of a semicontinuous film and dielectric substrate are ne
gible, and the film is covered by molecules possessing
Kerr-type nonlinearity. We still assume that the film is th
enough to consider the local electric field as homogeneou
t
.
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a direction perpendicular to the film plane. Then the curr
in a semicontinuous film with the adsorbed nonlinear m
ecules on it is equal to

j ~r !5s~r !E8~r !1s~1!~r !E8~r !1s~3!~r !uE8~r !u2E8~r !,

~42!

whereE8(r ) is the local fluctuating field at the coordinater
of the film, s(r ) is the local film conductivity, ands (1)(r )
and s (3)(r ) are the linear and Kerr-type nonlinear condu
tivities of the adsorbed molecular layer. By using this e
pression in the current conservation law given by Eq.~5! we
obtain @cf. Eq. ~16!#

¹S @s~r !1s~1!~r !#F2¹f~r !1E~0!

1
s~3!~r !

s~r !1s~1!~r !
E8~r !uE8~r !u2G D 50, ~43!

whereE(0) is the applied electric field, and2¹f(r )1E(0)

5E8(r ) is the local field. By considering the last term in th
square brackets as an external inhomogeneous field we
tain from Eq.~15! the equation for the average current

^ j ~r !&5E~0!Fse
~0!1

^s~3!~r !@E~r !•E8~r !#uE8~r !u2&

E~0!2 G ,

~44!

wherese
(0) andE(r ) are the effective conductivity and loca

fluctuating field, respectively, obtained in the linear appro
mation, i.e., fors (3)[0. Comparing Eqs.~44! and ~41!, we
find the equation for the effective Kerr conductivity

se
~3!5

^s~3!~r !@E~r !•E8~r !#uE8~r !u2&

E~0!2uE~0!u2
. ~45!

In this paper, we consider the case of weak nonlinearit
Then the local fieldE8(r ) in Eq. ~45! can be replaced by the
linear local fieldE(r ) resulting in the following equation for
the Kerr conductivity:

se
~3!5

^s~3!~r !E2~r !uE~r !u2&

E~0!2uE~0!u2
, ~46!

which reproduces the formula~20!.
Now we suppose for simplicity that the Kerr-type nonli

ear surface conductivities of the adsorbed moleculess (3) are
uniformly distributed over the film surface. Then Eq.~46!
simplifies to

se
~3!5s~3!

^E2~r !uE~r !u2&

E~0!2uE~0!u2
. ~47!

In the absence of metal grains the effective nonlinear K
conductivity se

(3) coincides with the Kerr conductivitys (3)

of the layer of the absorbed nonlinear molecules. Theref
the enhancement of the Kerr nonlinearityGK is given by the
equation
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GK5
^E2~r !uE~r !u2&

E~0!2uE~0!u2
. ~48!

From the above equation it follows that the enhancemen
the Kerr nonlinearity is expressed in terms of the local fi
E(r ) found in the linear approximation; this field experienc
the giant fluctuations studied in Secs. II and III.

Above we assumed that the nonlinear Kerr conductiv
s (3) is due to the adsorbed molecules covering the film.
some cases, the nonlinear response can also be due t
metal and/or dielectric grains forming the film, with no a
sorbed molecules on it. If this is the case,s (3)(r ) in Eq. ~42!
is the nonlinear conductivity of the grain, and the sum of
linear conductivitiess(r )1s (1)(r ) of the grain and ad-
sorbed molecule should be replaced in Eq.~42! by the linear
conductivity of the grain itselfs(r ). Repeating the above
derivations after the Eq.~42!, we arrive at the following re-
sult for the effective Kerr conductivity:

se
~3!5psm

~3! ^E2~r !uE~r !u2&m

E~0!2uE~0!u2
1~12p!sd

~3! ^E2~r !uE~r !u2&d

E~0!2uE~0!u2
,

~49!

where ^•••&m and ^•••&d stand for the averaging over th
metal and dielectric grains, respectively, andsm

(3) and sd
(3)

are the corresponding nonlinear conductivities. Formula~49!
for enhancement of the cubic nonlinearity in percolati
composites was previously obtained by Aharony,8 Stroud
and Hui,9 and Bergman.11 A similar formula was indepen
dently obtained by Shalaevet al. to describe the Kerr en
hancement in aggregates of metal particles.19–21

Note thatE(0) in Eqs.~6! and~43! is actually the average
macroscopic field that can be, in general, different from
incident fieldEinc . For the thin 2D films considered here
the quasistatic limit, the macroscopic field is constant a
related to the incident field through the transmittanceT as
E(0)5TEinc ~see discussion in Ref. 34!. Above we defined
the enhancement factor as the ratio of nonlinear signals f
a film with and without metal grains on it. This means that
the denominator of expression~48! we should replace
@E(0)#4 by @Einc#

45@E(0)#4/T4; this gives an additional pref
actorT4 in formula~48!, if by E(0) we mean the macroscopi
field. ~For a purely dielectric film without metal grains, w
can setTd51 andE(0)5Einc .) For the sake of simplicity,
hereafter we omit this prefactor associated with the trans
tanceT. To take it into account one should do the abo
replacementE(0)→E(0)/T in the denominators of the follow
ing formulas for the enhancements of nonlinear optical p
cesses.

According to Eq.~48! the value of the Kerr enhanceme
GK is proportional to the fourth power of the local fie
averaged over the sample. This is similar to the case
surface-enhanced Raman scattering having the enhance
factor34,36

GRS5
^us~r !u2uE~r !u4&

usdu2uE~0!u4
. ~50!

~Note that in Refs. 34,36 a different notation,A, was used for
GRS.) We note, however, thatGK is complex, whereasGRS
is a real positive quantity. Because the enhancement for
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man scattering is determined by the average ofuEu4, which is
phase insensitive, the upper limit for the enhancement is
alized in this case@see Eq.~33! and the accompanying dis
cussion#. In accordance with this, our results of numeric
simulations34,36 are well described by the scaling formu
~33!.

Below we present results of our numerical simulations
the surface-enhanced Kerr-nonlinearity in a semicontinu
metal film at the percolation threshold. We used formula~48!
for calculating the enhancement; the local fields were fou
following the numerical procedure described in the previo
section. We generated an ensemble of 100 random films
the size 5123512. In Figs. 6 we show the average enhan
ments for the real and imaginary parts of the Ke

FIG. 6. The average Kerr-nonlinearity enhancements~real GK8
and imaginaryGK9 parts! on a silver semicontinuous film as a func
tion of wavelengths~a!: GK8 , ~b!: GK9 . In all cases,p5pc . The
open triangles correspond to the positive valuesGK8 .0 and GK9
.0; the solid triangles stand for the negative valuesGK8 ,0 and
GK9 ,0. The film sizes are 5123512.
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nonlinearity enhancement,GK8 and GK9 , as functions of the
wavelength~the data are given for silver films!. Note that for
both quantitiesGK8 andGK9 not only the magnitude but als
the sign depends strongly on the wavelength.~The positive
values are given by open triangles, the solid triangles re
sent the negative values.! For GK8 , the positive and negative
values are close in magnitudes and their dependence o
wavelengthl can be roughly approximated asuGK8 u;lq1,
where the exponentq151.460.2. ForGK9 , the magnitudes
of the positive values are systematically larger than those
the negative values; the wavelength dependence of the p
tive enhancementsGK9 .0 is approximated asGK9 .0;lq2,
q251.260.3, and the dependence of the negative enha
ments is approximated asGK9 ,0;lq3, q251.660.3. The
strong enhancement of the Kerr nonlinearity toward the lo
wavelength part of the spectrum is due to the increase of
local fields in this part of the spectrum~see Figs. 3!.

The real and imaginary parts ofGK are responsible for the
enhancement of the nonlinear refractive index and abs
tion, respectively. The above calculations were perform
however, in the quasistatic approximation which does
account for wave propagation effects. Still, the above res
can be used for a description of samples that are large c
pared to the wavelength. For example, they can be app
for a large~in comparison withl) multilayer system com-
posed of many subwavelength-size films such as the o
considered above; then, the obtained formulas define the
hanced microscopic nonlinear responses for each layer o
multilayer system.

According to the above calculations, the enhancemen
very large and reaches, on average, values;104 at l;1 mm
~the enhancement further increases for larger waveleng!.
Such strong enhancements for the Kerr nonlinearities
semicontinuous metal films indicate their high potential
various applications based on largese

(3) ~or «e
(3)); for ex-

ample, optical switches. A semicontinuous metal film mig
also be used as a Fresnel lens in different applications.

B. Four-wave mixing

So far we considered optical responses of a semicont
ous metal film to a single incident light beam. A number
nonlinear optical processes occur when several beams w
in general, different frequencies are incident on a film. In t
paper, we consider four-wave mixing~FWM! as a typical
process of this kind. The FWM is determined by a nonline
electric induction similar to Eq.~37!;72

Da
~3!~v!5«abgd

~3! ~2vs ;v1 ,v1 ,2v2!Eb
~1!Eg8

~1!Ed*
~2! ,

~51!

wherevs52v12v2 is the frequency of a field that is gen
erated as a result of the wave mixing,v1 is the frequency of
the incident waves with the amplitudesE(1) and E8(1), and
v2 is the frequency of the incident wave with the amplitu
E(2). Note that the induction in Eq.~51! is proportional to the
complex conjugate of the applied fieldE(2) which indicates
that the generated wave can be thought of as a time-reve
E(2) wave; this effect of the optical phase conjugation~OPC!
makes possible the restoring of the wave phase-front.72
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Coherent anti-Stokes Raman scattering is an exampl
the FWM. In one elementary act of the coherent anti-Sto
Raman process, the twov1 photons are converted into on
v2 and one vs photon. Another example is degenera
FWM; this process is used for the above mentioned opt
phase conjugation that can result in the complete remova
optical aberrations.72 In degenerate FWM, all waves have th
same frequency (vs5v15v2) and differ only in their
propagation directions and, in general, in their polarizatio
In a typical OPC experiment, two oppositely directed pum
beams, with field amplitudesE(1) and E8(1), and a probe
beam, with amplitudeE(2) ~directed at some small angle wit
respect to the pump beams!, result in the OPC beam tha
propagates against the probe beam, i.e., the wave vectorks of
the new OPC beam generated in the FWM process is e
to ks52k2.

Because of the interaction geometry, the wave vectors
the beams satisfy the relationk11k185k21ks50. Clearly,
for the two pairs of oppositely directed beams with the sa
frequencyv the phase-matching conditions are automa
cally fulfilled making the OPC possible.72

For simplicity, we consider the degenerated FW
~DFWM! process where all the components of the total
plied field E(0)5E(1)1E8(1)1E(2) have the same amplitud
and polarizations. The effective nonlinear conductivity~di-
electric constant! se

(3) («e
(3)5 i4pse

(3)/v), which results in
the DFWM, coincides with the above considered nonline
conductivity, which is responsible for the Kerr optical no
linearity. Note also that the above nonlinear conductiv
se

(3) can be associated with either the metal-dielectric fi
itself or molecules adsorbed on it. We first assume the la
to be the case.

For coherent effects, including the ones discussed in
section, the averaging is performed for the generated fi
amplitude~rather than intensity! or, equally, for the nonlin-
ear current in the system.21,34 As shown in the previous sec
tion, the average nonlinear electric current, with the non
ear conductivity given by Eq.~41! is j (3)(v)}se

(3)

5s (3)GK . The signal for coherent processes is proportio
to u j (3)u2}use

(3)u2. Thus we conclude that the resultant e
hancement for the degenerate~or nearly degenerate! in fre-
quency four-wave mixing can be expressed in terms of
enhancement for the Kerr conductivity as

GFWM5U se
~3!

s~3! U2

5uGKu25
z^E2~r !uE~r !u2& z2

uE~0!u8
. ~52!

If the nonlinear conductivitys (3) is due to metallic grains
in the film ~rather than due to the adsorbed nonlinear m
ecules!, the formula~52! should be replaced by

GFWM5p2
z^E2~r !uE~r !u2& z2

uE~0!u8
. ~53!

@See also Eq.~49!.#
The numerical calculations for FWM were performed

above for 100 random samples of the 5123512 size each. In
Figs. 7 we show the average enhancementGFWM as a func-
tion of the wavelength atp5pc . The calculations were per
formed based on formula~52!. Similar to the Kerr effect, the
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average enhancementGFWM increases toward the infrare
part of the spectrum, reaching giant values;109 at l'1
mm ~it keeps increasing further toward larger wavelength!.
The increase with decreasing wavelength can be roughly
proximated asGFWM;lq, whereq52.260.2. The depen-
dence on the film size will be discussed below in the l
subsection of this section. The above results indicate
semicontinuous films can be used, in particular, as a ph
restoring material because of their high efficiency in the
generate FWM resulting in the optical phase conjugation

C. Third harmonic generation

We consider now higher harmonic generations in se
continuous metal films under the action of the incident wa
with frequencyv, and we begin with the third-harmoni
generation~THG!. The THG process is due to the third-ord
nonlinearity. The corresponding average nonlinear curr
that results in the generation of a signal with frequencyv
has the form

^ j 3va
~3! ~r !&5s3veabgd

~3! Evb
~0!Evg

~0!Evd
~0! , ~54!

whereEv
(0) is the amplitude of the incident wave with fre

quencyv ands3veabgd
(3) is the effective nonlinear conductiv

ity. The nonlinear conductivitys3ve
(3) for THG in an isotropic

medium can be expressed in terms of only one indepen
constant so that the nonlinear current can be written as72 ~see
also discussion at the beginning of Sec. IV A!

^ j3v
~3!~r !&5s3ve

~3! Ev
~0!2Ev

~0! , ~55!

wheres3ve
(3) is the ~scalar! nonlinear conductivity; frequen

cies of the fields and currents are shown in the subscrip
We assume that adsorbed molecules with nonlinear c

ductivity s3v
(3)(r ) result in THG from a film. The local elec

FIG. 7. The average FWM enhancementGFWM on a silver semi-
continuous film as a function of the wavelength atp5pc . The film
sizes are 5123512.
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tric field Ev(r ) excited in a film by the external fieldEv
(0)

generates the nonlinear current

j s3v
~3! ~r !5s3v

~3!~r !Ev
2 ~r !Ev~r !, ~56!

with frequency 3v, which flows in the layer of the adsorbe
molecules. This current in turn interacts with the film a
generates the ‘‘seed’’ electric field~at frequency 3v) with
the amplitude given by

E3v
~3!~r !5

j s3v
~3! ~r !

s3v
~1!~r !

5Fs3v
~3!~r !

s3v
~1!~r !

GEv
2 ~r !Ev~r !, ~57!

wheres3v
(1)(r ) is thelinear conductivity of the adsorbed non

linear molecule at the frequency 3v. The electric field
E3v

(3)(r ) can be thought of as an inhomogeneous external fi
that excites the film at the 3v frequency. The THG curren
j3v
(3)(r ) generated in the film by the seed fieldE3v

(3)(r ) can be
found now in terms of the nonlocal conductivity defined
Eq. ~7! as

j3v
~3!~r !5E Ŝ3v~r ,r 8!E3v

~3!~r 8!dr 8, ~58!

whereŜ3v is the nonlocal conductivity at frequency 3v and
the integration is over the entire film area. For the mac
scopically isotropic films considered here the average T
current ^ j3v

(3)(r )& is collinear with the average fieldE3v
(0)

5^E3v
(3)(r )&. Thus we can write the average current in t

form

^ j3v
~3!~r !&5

E3v
~0!

E3v
~0!2

^@E3v
~0!
• j3v

~3!~r !#&

5
E3v

~0!

E3v
~0!2

1

AE E3v
~0!Ŝ3v~r ,r 8!E3v

~3!~r 8!drdr 8,

~59!

where the integrations are again over the entire areaA of the
film and E3v

(0)2[(E3v
(0)
•E3v

(0)). The integration over the coor
dinater gives

^ j3v
~3!~r !&5

E3v
~0!

E3v
~0!2

^s3v~r !@E3v~r !•E3v
~3!~r !#&, ~60!

wheres3v(r ) is the linear film conductivity at frequency 3v
andE3v(r ) is the local field induced in the film by the un
form field E3v

(0) oscillating with frequency 3v.
When the frequency 3v is within the band of plasmon

resonances, i.e., 3v,vp* the fieldE3v(r ) is also a subject of
giant fluctuations. Substituting in Eq.~60! the expression for
the nonlinear fieldE3v

(3)(r ) defined in Eq.~57!, we obtain the
following equation for the THG current:

^ j3v
~3!~r !&5

E3v
~0!

E3v
~0!2K s3v~r !Fs3v

~3!~r !

s3v
~1!~r !

G @E3v~r !•Ev~r !#Ev
2 ~r !L .

~61!
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From this equation it follows that the average nonlinear c
rent ^ j3v

(3)& resulting in the THG process can be expressed
terms of thelinear local fieldsEv(r ) andE3v(r ) which are
generated in the film by the uniform external fieldsEv

(0) and
E3v

(0) , respectively.
In the absence of metal grains, we can neglect the fl

tuations and the fieldsEv(r ) and E3v(r ) coincide with the
fields Ev

(0) andE3v
(0) , respectively. Therefore, for a film with

no metal grains on it~but with nonlinear molecules!, we find

^ j3v0
~3! ~r !&5E3v

~0!sdFs3v
~3!~r !

s3v
~1!~r !

G ~E3v
~0!
•Ev

~0!!, ~62!

wheresd52 iv«d/4p is the film linear conductivity with no
metal grains, i.e., the conductivity of the dielectric substra

As pointed out in the previous subsection, the nonlin
current~electric induction! should be averaged for cohere
effects to find a signal from the system. The generatedv
signal is proportional to the average current squar
u^ j3v

(3)(r )&u2. Accordingly, the factor characterizing th
surface-enhanced THG is given by

GTHG5U ^ j3v
~3!~r !&

^ j3v0
~3! ~r !&

U2

. ~63!

As above, we assume that the adsorbed molecules posse
nonlinear conductivity cover the film homogeneously so t
s3v

(1)(r )5s3v
(1) and s3v

(3)(r )5s3v
(3) , i.e., both arer indepen-

dent. Then substituting Eqs.~61! and ~62! into Eq. ~63!, we
obtain the following equation for the enhancementGTHG of
the THG process in semicontinuous metal films:

GTHG5U^s3v~r !@E3v~r !•Ev~r !#Ev
2 ~r !&

sd~E3v
~0!
•Ev

~0!!Ev
~0!2 U2

5U^«3v~r !@E3v~r !•Ev~r !#Ev
2 ~r !&

«d~E3v
~0!
•Ev

~0!!Ev
~0!2 U2

, ~64!

wheres3v(r ), sd and«3v(r ), «d are the linear conductivi-
ties and dielectric functions of the film with and witho
metal grains, respectively~for clarity, we also indicate the
frequenciesv and 3v in the subscripts!. The local fields in
Eq. ~64! resulting in the surface enhancement for the TH
experience giant fluctuations in the spectral range co
sponding to the plasmon resonances, i.e., forv,vp* , 3v
.vt ~see discussion in Sec. III!. This includes the optical
infrared, and far-infrared spectral ranges, where a huge
hancement of the THG can be observed in semicontinu
metal films.

When the frequencyv of the incident wave is large
enough so that the third harmonic frequency 3v is out of the
spectral range of the plasmon resonances, i.e., 3v.vp* , we
can neglect the fluctuations of the 3v field in Eq. ~64! and
this equation simplifies to
-
n

c-

.
r

d,

sing
t

e-

n-
us

GTHG5
u^s3v~r !Ev~r !Ev

2~r !&u2

usdu2uEv
~0!u6

5
u^«3v~r !Ev~r !Ev

2~r !&u2

«d
2uEv

~0!u6
. ~65!

Note that in a macroscopically isotropic semicontinuo
metal film the surface enhancements of the THG given
Eqs. ~64! and ~65! do not depend actually on the amplitud
of the external fieldEv

(0) . The fieldE3v
(0) in Eq. ~64! is in a

sense imaginary; it serves as a linear source of the fluctua
field E3v(r ) and the amplitude of the fieldE3v

(0) can be cho-
sen arbitrarily in calculations of the THG enhancement
Eqs.~64! and ~65!.

In Figs. 8 we show the average enhancementsGTHG as
functions of the wavelength which are calculated using E
~65! and~64! @Figs. 8~a! and 8~b!, respectively#. Note that in
calculating the mean third and second harmonic signals
first found the generated intensity for each film separat
and then averaged it over random samples. As for the p
cesses considered above, the enhancements strongly inc
toward larger wavelengths reaching atl'3 mm the values
;107 and;105, for the cases of Eqs.~64! and~65!, respec-
tively. The wavelength dependence of the THG enhancem
in Eqs. ~64! and ~65! can be approximated asGTHG;lq, q
53.960.2 andGTHG;lq, q52.160.2, respectively.~See
also the discussion on the scaling in the dependence ofGTHG
on the film size given below.! Note that the enhancemen
for THG are significantly less than those in the case of fo
wave mixing, despite the fact that both processes are du
the same, third, order of nonlinearity. This is due to the p
tially destructive interference of the local fields at differe
points@see also the discussion accompanying Eq.~31!#. The
magnitude of the enhancement in this case is smaller t
that predicted by the upper limit in Eq.~31!.

As follows from Eqs.~61! and~62!, in the case when the
generated fieldEv(r ) does not excite the plasmon res
nances in the film and the 3v field is uniform, E3v(r )
5E3v

(0) , the local currentsj3v
(3)(r ) andj3v0

(3) (r ) depend only on
the local conductivities and fields at the same pointr . In the
red and, especially, infrared parts of the spectrum, the dis
bution of u j3v

(3)(r )u2}uEv(r )Ev
2(r )u2 consists of spatially

separated large peaks that can be probed independent
means of near-field scanning optical microscopy. This me
that in this case we can consider the spatial distribution
the local third-harmonic signalsI 3v(r )}u j3v

(3)(r )u2 and the lo-
cal enhancements for THG defined as

gTHG~r !5U j3v
~3!~r !

j3v
~3!~r !

U2

5Uv3v~r !

sd
U2UEv~r !Ev

2~r !

Ev
~0!Ev

~0!2 U2

. ~66!

@We should note that since THG is a coherent process,
average enhancementGTHG cannot be found by simply av
eraging gTHG(r ).# In Fig. 9, we show the distribution
gTHG(r ) for the surface-enhanced local THG signals at t
different wavelengths,l50.5 mm andl51.5 mm. We can
see that the local THG signals consist of spatially separa
sharp peaks, as expected. The local enhancements ca
huge, up to 1013, for the chosen wavelengths. The spat
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57 13 281NONLINEAR OPTICS OF RANDOM METAL-DIELECTRIC FILMS
positions of the hot zones for the local nonlinear scatter
associated with THG are very sensitive to the frequency
the incident light. We emphasize again that the enhan
ments in the peaks significantly exceed the average b
ground enhancement. As above, the reason for this is, in
the destructive interference between generated fields in
ferent points, and, in part, the fact that the peaks are s
rated by distances significantly larger than their spatial siz

For a frequency-degenerate coherent process, suc
DFWM, one cannot find the local enhancement in suc
simple way as above. Also we note that for frequen
degenerate nonlinear processes on random semicontin
films one probably cannot distinguish in experiment the lo
nonlinear field from the local linear field at the same poi
this is because both linear and nonlinear fields have the s

FIG. 8. The average THG enhancementGTHG on a silver semi-
continuous film as a function of the wavelength atp5pc . ~a! No
additional enhancement associated with the excitation of the
resonances at 3v; ~b! the additional enhancement is included. T
film sizes are 5123512.
g
f

e-
k-
rt,
if-
a-
s.
as
a
-
ous
l
;
me

frequency. However, this is not the case for nearly degen
ate FWM, when all the waves have slightly different fr
quencies and the enhancements are especially large.

There is no simple formula for the local THG signal whe
the frequency of the third harmonic is less than the renorm
ized plasma frequency 3v,vp* . In this case, the THG am
plitudes excite the giant field fluctuations at 3v frequency,
so that the THG field experience the additional enhancem
considered above. Still, in this case, we can also anticip
highly localized sharp peaks for the local field intensities
frequency 3v that can be probed using the methods of ne
field optics.

D. Second harmonic generation

Second harmonic generation~SHG! is a nonlinear process
resulting in the generation of the signal at double freque
2v when light with frequencyv is incident on a system. The
second harmonic wave is generated due to the nonlinear
rent j (2)(2v) which is expressed in terms of the amplitude
the macroscopic fieldE(0)(v) at fundamental frequencyv as

j a
~2!~2v!5seabg

~2! ~2v!Eb
~0!~v!Eg

~0!~v!, ~67!

where seabg
(2) (2v) is the tensor of the effective nonlinea

conductivity responsible for the SHG process.~Note that in
this subsection we put frequencies in the arguments of
considered quantities to avoid awkward indices.! The exis-
tence of the SHG conductivity applies some restrictions
the symmetry of the system. For example, the tensor of
nonlinear conductivity is equal to zero for centrosymmet
media.72 As a result, a relation between the SHG current a
microscopic fields cannot be reduced to a simple vector fo
as in the case of the THG and FWM processes conside

m

FIG. 9. Spatial distributions of the local THG enhanceme
gTHG(r ) for l50.5 mm ~a! andl51.5 mm ~b! at p5pc .
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13 282 57VLADIMIR M. SHALAEV AND ANDREY K. SARYCHEV
above.@Note that usually the phenomenon of SHG is d
scribed in terms of the nonlinear dielectric function« (2)

5 i4ps (2)/(2v);72 however, we will keep the concept o
nonlinear currents and conductivities chosen for this pa
which is completely equivalent to the concept of nonline
polarizations and dielectric functions~susceptibilities!.#

We will assume that a semicontinuous metal film, whi
is macroscopically homogeneous and isotropic, is covere
a layer of the SHG-active molecules. Then the local elec
field E(v,r ) excited by the external fieldE(0)(v) generates
linear and nonlinear currentsj (1)(v,r ) and j (2)(2v,r ) in the
adsorbed molecules. The nonlinear current is expresse
terms of the local fieldE(v,r ) in the following way:

j s,a
~2! ~2v,r !5sabg

~2! ~2v!Eb~v,r !Eg~v,r !, ~68!

wheresabg
(2) (2v) is the nonlinear conductivity of the mol

ecule layer which is responsible for SHG. For the sake
simplicity, we assume that the SHG molecules cover a se
continuous metal film uniformly and, therefore, the line
and nonlinear conductivities of the molecular layers (1) and
s (2) are independent of the coordinater in the film plane.
We also assume that the linear conductivitys (1) is a scalar.
The nonlinear current given by Eq.~68! excites the seed
electric field with frequency 2v,

Esa
~2!~2v,r !5

j sa
~2!~2v,r !

s~1!~2v!
5Fsabg

~2! ~2v!

s~1!~2v!
GEb~v,r !Eg~v,r !,

~69!

where s (1)(2v) is the linear conductivity of the adsorbed
molecules at frequency 2v, which is assumed to be a scala
We consider the electric fieldEs

(2)(2v,r ) as an external non
uniform electric field that excites the local curre
j (2)(2v,r ) in a semicontinuous film at frequency 2v. This
current can be found using the nonlocal conductivity ma
defined by Eq.~7!; this gives

j a
~2!~2v,r !5E Sab~2v,r ,r 8!Esb

~2!~2v,r 8!dr 8

5E Sab~2v,r ,r 8!

3Fsbgd
~2! ~2v!

s~1!~2v!
GEg~v,r 8!Ed~v,r 8!,dr 8,

~70!

where the integration is over the entire areaA of the film. As
above, the summation over the repeating Greek ind
~which take values 1 and 2 in the considered 2D case! is
implied. The second equality in the above equation is
tained by substituting the fieldEsb

(2)(2v,r ) from Eq. ~69!.
Now we introduce the uniform probe field

E~0!~2v!5^Es
~2!~2v,r !&, ~71!

where ^•••& denotes, as above, the average over the
areaA. Since we consider macroscopically isotropic sem
continuous films the average nonlinear current^ j (2)(2v,r )&
has the same direction as the fieldE(0)(2v), and it can be
written as
-

r,
r

by
ic

in

f
i-

r

x

s

-

-

^ j ~2!~2v,r !&5
E~0!~2v!

E~0!2~2v!
^@E~0!~2v!• j ~2!~2v,r !#&.

~72!

Substituting in the above equation the expression for the
rent j (2)(2v,r ) from Eq. ~70!, we obtain

^ j ~2!~2v,r !&5
E~0!~2v!

E~0!2~2v!
K E Ea

~0!~2v!Sab~2v,r ,r 8!

3Fsbgd
~2! ~2v!

s~1!~2v!
GEg~v,r 8!Ed~v,r 8!,dr 8L

5
E~0!~2v!

E~0!2~2v!

1

AE Ea
~0!~2v!Sab~2v,r ,r 8!

3Fsbgd
~2! ~2v!

s~1!~2v!
GEg~v,r 8!Ed~v,r 8!,dr ,dr 8,

~73!

where both integrations are over the film areaA. Integrating
Eq. ~73! over r and using the symmetry of the nonlocal co
ductivity @see Eq.~9! and the accompanying discussion#, we
obtain

^ j ~2!~2v,r !&5
E~0!~2v!

E~0!2~2v!

1

AE s~2v,r !Ea~2v,r !

3Fsabg
~2! ~2v!

s~1!~2v!
GEg~v,r !Ed~v,r !dr

5
E~0!~2v!

E~0!2~2v!
K s~2v,r !Ea~2v,r !

3Fsabg
~2! ~2v!

s~1!~2v!
GEb~v,r !Eg~v,r !L , ~74!

where the fieldEa(2v,r ) is the local field excited in the film
by the uniform external fieldE(0)(2v) and s(2v,r ) is the
~linear! local film conductivity at the second harmonic fre
quency.

For the following consideration it is instructive to prese
the local fields as E(v)5e1(v)E(v) and E(2v)
5e2(2v)E(2v), where e1 and e2 are real unit vectors of
polarization@(e1•e1)51, (e2•e2)51#. Then Eq.~74! can be
rewritten in the form

^ j ~2!~2v,r !&5
E~0!~2v!

E~0!2~2v!

3^s~2v,r !h~v,r !E~2v,r !E2~v,r !&,

~75!

where the functionh(v,r ) is defined as

h~v,r !5Fsabg
~2! ~2v!

s~1!~2v!
Ge2a~2v,r !e1b~v,r !e1g~v,r !.

~76!
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Since all fluctuating quantities in Eq.~76! are of the order of
unity it is plausible to suggest that the functionh(r ) fluctu-
ates over the film much less than the local field amplitu
E(v,r ) andE(2v,r ). There is also no reason for the zer
of the function h(r ) to coincide systematically with the
maxima of the amplitudes. Therefore, for the estimation
the order of magnitude one can use the decoupling proce
and replaceh(v,r ) by its average value which we denote
h̃(v)5^h(v,r )&. Then Eq.~75! for the second-harmonic
current acquires the simple form

^ j ~2!~2v,r !&5
E~0!~2v!

E~0!2~2v!
h̃~v!

3^s~2v,r !E~2v,r !E2~v,r !&. ~77!

In the absence of metal grains there are no local field fl
tuations. Under the same assumption, as above the nonl
current is equal to

j ~20!~2v!5
E~0!~2v!

E~0!2~2v!
h0~v!sdE~0!~2v!E~0!2~v!,

~78!

whereh0(v)5@sabg
(2) /s (1)#e20ae10be10g , ande10 ande20 are

the unit vectors of the polarization of the fieldsE(0)(v) and
E(0)(2v), respectively.

The enhancement factor for SHG is given by the modu
squared of the ratio of the average nonlinear currents w
and without metal grains @cf. Eq. ~63!# GSHG5

u^ j (2)(2v,r )&u2/u j0
(2)(2v)u2. Assuming that the ratioh̃/h0 is

of the order of unity we obtain the following estimate for th
SHG enhancement:

GSHG;
u^s~2v,r !E2~v,r !E~2v,r !&u2

usdu2 uE~0!~v!u4uE~0!~2v!u2
. ~79!

In the case when the second harmonic frequency is above
renormalized plasma frequency, i.e., 2v.vp* @Eq. ~2!# the
local field fluctuations can be neglected at frequency 2v.
Then the local fieldE(2v,r )'E(0)(2v) and the surface en
hancement for SHG simplifies to

GSHG;
u^s~2v,r !E2~v,r !&u2

usdu2uE~0!~v!u4
. ~80!

The enhancement of the SHG process given by Eqs.~79! and
~80! does not depend on the amplitudes of the fie
E(0)(v) andE(0)(2v) for the macroscopically homogeneou
and isotropic random semicontinuous films considered h
These fields can be taken as arbitrary for the computer si
lation of the local fieldsE(v,r ) and E(2v,r ) excited by
E(0)(v) andE(0)(2v).

In Figs. 10~a! and 10~b!, the average enhancementsGSHG
found from Eqs.~80! and~79! are shown as functions of th
wavelength.~As above,p5pc , the film sizes are 5123512,
and the results were averaged over 100 realizations of
system!. As seen in the figure, the enhancement increa
toward the infrared part of the spectrum reaching val
;104 and;106 at l'3 mm, in the first and second case
respectively. The corresponding wavelength dependen
s
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can be approximated by power-law expressions with indi
4.760.3 and 6.160.4, for the above two cases.

Similar to the consideration of the local THG in the pr
vious subsection, we can calculate spatial distributions of
local SHG signals, provided that the generated frequenc
outside of the film resonance band, so that the local cur
j (2)(2v,r ) depends only on the local conductivities an
fields taken at the same pointr . As above, in the red and
especially, infrared parts of the spectrum, the distribution
u j (2)(2v,r )u2}uE(2v,r )u2 consists of very large spatially
separated peaks, which can be probed independently
means of near-field scanning optical microscopy. Thus, i
important to consider the spatial distributions of the loc
SHG signalsI 2v(r )}u j (2)(2v,r )u2 and the local enhance
ments for SHG, defined as

FIG. 10. The average SHG enhancementGSHG on a silver semi-
continuous film as a function of the wavelength atp5pc . ~a! No
additional enhancement due to excitation of the film resonance
2v; ~b! the additional enhancement is included. The film sizes
5123512.
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gSHG~r !5
us~2v,r !u2uE~v,r !u4

usdu2uE~0!~v!u4
. ~81!

In Fig. 11 we show the SHG distributiongSHG(r ) at l
50.5 mm. We can see that the local SHG signals are form
by spatially separated sharp peaks. The local enhancem
can be huge, up to 108. It is interesting to note that the
average enhancement for SHG is small; atl50.5 mm it is
only of the order of 10, whereas the local enhancements
be very large. As in the case of the THG process, this is
to the destructive interference of the fields generated fr
different points of the film and large spatial separations
the peaks. The spatial positions of the hot zones for the lo
SHG signal are sensitive to the incident wave frequen
which is the same as for the above considered nonlinear
cesses.

Note that when SHG is very efficient, the energy asso
ated with the nonlinear currentj (2v) can be transformed
back to j (v) due to the same nonlinear conductivitys (2)

which provides the SHG. This would result in nonlinear co
rections to the absorption and refraction, an effect which w
described above in terms of the third-order nonlinear c
ductivity s (3) responsible for the Kerr effect. This is an e
ample of the so-called cascaded nonlinearities that simu
with s (2) the optical effects typically associated withs (3).73

This phenomenon is very important for a number of appli
tions in nonlinear optics, such ass (2)-based materials fo
optical switches and soliton localization.73 Semicontinuous
metal films providing very strong enhancements for seco
order optical nonlinearities can be considered as candid
for advanced optical materials with large cascaded non
earities.

In our above calculations of the optical nonlinearities
used samples of the same size, 5123512. Below, we show
that the enhancements for nonlinear optical processes s
with the film size.

E. Size-effects for nonlinear optical processes
on a semicontinuous film

Different peaks in the field distributions~see, for example
Fig. 3! correspond to the fields that can have correla
phases and therefore can interfere. This implies that th
may be a characteristic phase-coherence lengthl p which is
larger than or comparable to the size of the film. In this ca

FIG. 11. Spatial distributions of the local SHG enhanceme
gSHG(r ) for l50.5 mm at p5pc .
d
nts

an
e

m
f
al
y,
o-

i-

-
s
-

te

-

-
es
-

les

d
re

e,

the enhancement is anticipated to depend on the film size
Fig. 12, we show results of our calculations of enhanceme
for the nonlinear optical processes performed for differ
film sizes. We used three different ensembles in these ca
lations consisting of 100 samples of 5123512 size, 400
samples of 2563256 size, and 1600 samples of 1283128
sizes. In Fig. 12, we plot the ‘‘scaled’’ enhancemen
G(n)(L)(L/L0)a, whereL05512 as in the above calculation
~the results shown with triangles!, L5256 ~circles!, and L
5128 ~crosses!. The following nonlinear processes a
shown in the figure: 12~a! FWM (a52.2 was used to col-
lapse the data on the same curve!; 12~b! and 12~c!: THG
with and without the ‘‘additional’’ enhancement at the ge
erated frequency 3v (a52.1 anda52.0 were used, respec
tively!; 12~d! and 12~e!: SHG with and without the ‘‘addi-
tional’’ enhancement at the generated frequency 2v (a
52.0 for both cases!. Similar calculations for the enhance
Kerr nonlinearity ~not shown! give a51.1 for uGK8 u, a
50.7 for GK9 .0, anda51.4 for GK9 ,0. ~Note that forGK

the calculations show large deviations of the average valu!
The above indicated values ofa were used to provide the
best collapse of the data for different sizesL. However,
within the standard deviation, all the results can be roug
expressed as

G~n!}L22, ~82!

for parametric processes, such as FWM and THG (n53),
and SHG (n52), and

GK}L21 ~83!

for the nonparametric process, such as nonlinear refrac
and absorption described by the Kerr susceptibility.

We should stress that the number of different sizes of
semicontinuous metal film (L5128, 256, 512) investigated
by the computer experiment is not enough to make defi
conclusions about the indexesa or to attempt to develop
someL-l scaling for the enhancements of the various no
linearities originating from the giant fluctuations of the loc
field in the films. Yet the above results can be considered
an indication that there is a destructive~in part! interference
between the well-separated peaks in the field distributio
these peaks often represent morphologically disconne
parts of the same antisymmetric~or partially antisymmetric!
mode, so that their contributions cancel each other in p
Also, we can conclude that the phase-coherence lengt
comparable or larger than the size of the samples used in
calculations. Because Raman scattering is a local effect
the enhancement given by Eq.~50! depends only on the field
magnitudes~but not their phases!, the enhancement for Ra
man scattering does not depend on the size of the sam
This was verified in our simulations~not shown!.

We also note that the above results on the size effect
the enhanced nonlinear optical processes in a semicontin
film are different from those obtained previously
fractals.21 For fractals, because of the localization of th
modes, different hot spots in most cases are not phase c
lated, and the enhancements do not depend on the size o
sample. To verify this, we recently performed calculatio
~similar to those described in Ref. 21! for fractal small-
particle aggregates and for self-affine films with very diffe

s
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FIG. 12. The ‘‘scaled’’ enhancementsG(n)(L)(L/L0)a for various nonlinear optical processes.L05512~triangles!, L5256~circles!, and
L5128 ~crosses!. ~a! FWM (a52.2), ~b! THG with an additional enhancement at 3v (a52.1), ~c! THG with no additional enhancemen
(a52.0), ~d! SHG with an additional enhancement at 2v (a52.0), and~e! SHG with no additional enhancement (a52.0).
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ent sizes; the calculations showed that in fractals there is
size effect similar to the one described above for semic
tinuous metal films, at least for fractal samples with the nu
ber of particles up toN510 000 used in our simulation.

V. CONCLUSIONS

In this paper we studied surface-enhanced optical non
earities of random metal-dielectric films~also referred to
throughout the text as semicontinuous films!. We showed
that electric fields in such films consist of localized sha
peaks resulting in very inhomogeneous spatial distributi
of local fields. In peaks~hot spots!, the local fields exceed
the applied field by several orders of magnitudes. Th
peaks are localized in nm-sized areas and can be assoc
with the plasmon modes of metal clusters formed in a se
continuous film. For any particular frequency in the visib
o
n-
-

-

s

e
ted
i-

infrared and far-infrared spectral ranges we can find a fam
of metal clusters so that each cluster from the family p
sesses a plasmon resonance. The amount of metal g
comprising these resonance clusters is negligibly smal
comparison with the total number of metal grains. Nevert
less, the resonance clusters densely cover the entire su
of the film due to their fractality. The incident light excite
the resonance clusters and they interact with each other.
result, the local field is concentrated in sharp peaks place
some subset of the resonance clusters. The amplitudes o
peaks and the average distances between them increas
wards the infrared.

The strongly fluctuating fields associated with the sh
peaks in various random parts of a film, result in giant e
hancements of nonlinear optical processes since they are
portional to the enhanced local fields raised to a pow
higher than 1. Because of such a pattern for the local fi
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distribution, the nonlinear signal is mostly generated fro
very small nm-sized areas. The corresponding spatial di
butions for the generated fields also look similar to a se
very sharp peaks~actually, even sharper than those for t
field at fundamental frequency!. The enhancement in thes
peaks is much larger~by several orders of magnitude! than
the ensemble-average enhancement because the peak
separated by distances much larger than the peak sizes w
are comparable with the metal grain sizes. Another impor
reason is related to the fact that the well-separated peak
represented as being often disconnected in space parts o
same mode and, therefore, are correlated in phase. Des

FIG. 12. ~Continued!.
y

. J

h.
ri-
f

are
ich
nt
are
the
uc-

tive ~in part! interference between the local fields in differe
parts of the film results in the decreased average enha
ments. Note that the latter mechanism of the destructive
terference is not important for incoherent processes, suc
Raman scattering. Both the local and average enhancem
for nonlinear optical processes strongly increase toward
long-wavelength part of the spectrum.

Since the applied~fundamental! and generated fields
have, in general, different frequencies and polarizations, t
excite different eigenmodes of the film so that the field s
tial distributions for the fundamental and generated wa
are different as well. Accordingly, the spatial positions of t
hot spots at the fundamental and generated frequencies
located, in general, in different parts of a film. This picture
expected to be typical for various optical processes
strongly disordered systems,32,35 such as the random sem
continuous films studied here~similar field patterns also oc
cur, for example, in metal fractal aggregates21 and self-affine
thin films24!. Specifically, hot spots associated with fields
different frequencies and polarizations are localized in s
tially separated nm-sized areas. Note also that because
hot spots are localized in nm-sized areas and provide g
enhancement in their locations, a fascinating possibility
nonlinear spectroscopy of single molecules on a semico
tinuous metal film becomes feasible. These nanooptical
fects can be probed, for example, with near-field scann
optical microscopy providing subwavelength spatial reso
tion.
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