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Nonlinear optics of random metal-dielectric films
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Surface-enhanced optical nonlinearities are studied in a semicontinuous film consisting of metal granules
randomly distributed on an insulating substrate. The local fields are very inhomogeneous in such films and
consist of strongly localized sharp peaks. In peg@k®t” spots), the local fields exceed the applied field by
several orders of magnitudes resulting in giant enhancements of the optical nonlinearities. Because of such a
pattern for the local field distributions, the nonlinear signals are mostly generated from small nanometer-size
areas. The corresponding spatial distributions for the generated fields form, in turn, a set of very sharp peaks
on a homogeneous, on average, semicontinuous film. It is shown that the spatial positions of the localized hot
spots at the fundamental and generated frequencies are located, in general, in different parts of a film. The local
enhancements in the hot spots exceed the average enhancement by several orders of magnitude. The predicted
giant local enhancements open fascinating possibilities in nonlinear spectroscopy of single molecules on a
semicontinuous metal film. A number of surface-enhanced optical nonlinearities are studied, namely, those that
are responsible for the Kerr-effect, four-wave mixing, second-, and third-harmonic generation. The enhance-
ment for nonlinear optical processes is shown to strongly increase toward the long-wavelength part of the
spectrum. Spatial distributions of the local fields are calculated in our broad-scale numerical simulations. A
scaling theory for the high-order field moments is developed. It predicts that the moments of the local fields are
very large and independent of the frequency in a wide spectral range. The theory predicts anomalous field
fluctuations and giant enhancements for the nonlinear optical processes, from the visible to the far-infrared
spectral rangg.S0163-182¢08)02220-9

I. INTRODUCTION port in composites near the percolation thresHolthe cur-
rent and electric field are concentrated in a few “hot”
Nonlinear electrical and optical properties of metal-junctions and makes it possible to change their conductances
dielectric percolating composites have attracted much attenunder the action of the high local fields, whereas the external
tion in recent years. At zero frequency, strong nonlinearityfield is relatively small. In general, percolating systems are
may result in a breaking down of conducting elements whervery sensitive to the external electric field since their trans-
the electric current exceeds some critical vaitelf the ex-  port and optical properties are determined by a rather sparse
ternal electric field exceeds some value known as the criticatetwork of conducting channels, and the field concentrates in
field, a crack spreads over the system. The critical field amthe weak points of the channels. Therefore, composite mate-
plitude decreases to zero when the concentration of the comiials should have much larger nonlinear susceptibilities at
ducting component approaches the percolation thresholgero and finite frequencies than those of its constitutes.
That is, percolating composites become progressively more The distinguishing feature of the percolating composites
responsive to the external field as the percolation thresholtb amplify nonlinearities of its components have been recog-
approaches. This simplest fuse model can be applied, e.glized very early"**and nonlinear conductivities and dielec-
for a description of fractures in disordered media and thdric constants have been studied intensively in the last decade
related problem of weak tensility of materials in comparison(see for a review Refs. 12—1L4In this paper, we consider
to the strength of the atomic bontislhe tension concen- weak nonlinearities when the dependence of conductivity
trates around weak points of the materials and a crack(E) on the electric fieldE can be expanded in the series of
spreads out starting from these weak points. E and the leading term, i.e., the linear conductivitif’ is
Another example of unusual nonlinear behavior has beemuch larger than the others. This situation is typical for the
observed recently for the ac and dc conductivities in a pervarious nonlinearities in optical and infrared spectral ranges
colating mixture of carbon particles embedded in the waxconsidered here. Even weak nonlinearities lead to qualita-
matrix® In this case, neither carbon particles nor the waxtively new physical effects. For example, the generation of
matrix have any nonlinearity in their conductivities; never- higher harmonics can be greatly enhanced in percolating
theless, the conductivity of a macroscopic composite sampleomposites, the bistable behavior of the effective conductiv-
increases twice when the applied voltage increases by a feity can take place when the conductivity switches between
volts. Such a strong nonlinear response can be attributed two stable values, etC.
the quantum tunneling between conductit@arbon par- The local field fluctuations can be strongly enlarged in the
ticles, which is a distinguishing feature of the electric trans-optical and infrared spectral ranges for a composite material
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containing metal particles that are characterized by the ditrationp<<1 of the nonlinear material is embedded in a linear
electric constant with negative real and small imaginaryhost the effective nonlinear response of the whole composite
parts. Then the enhancement is due to the plasmon resonantan be calculated explicitf??° As one would expect the
in the metallic granule¥*****1'The strong fluctuations of nonlinearities are enhanced at frequengycorresponding to
the local electric field lead to a corresponding enhancemernhe plasmon resonance of a single metal grain. Numerical
of various nonlinear effects. Nonlinear percolating compos-calculations for a finite concentratiop also give a consid-
ites are potentially of great practical importatitas media erable enhancement in the narrow frequency range around
with intensity-dependent dielectric functions and, in particu-w, . These calculations also show that the system sizes trac-
lar, as nonlinear filters and optical bistable elements. Théable for the known numerical methddss not enough to
optical response of the nonlinear composites can be tuned bpake quantitative conclusions about the nonlinear properties
controlling the volume fraction and morphology of consti- for the frequencies close to the resonance frequensy.
tutes. Our results reported below are qualitatively different from
A special class of metal-dielectric nanocomposites arghose of Stroud and Zhartg We show that the enhancement
those with a fractal distribution of metal particles in the com-of the nonlinearities in percolating metal-dielectric compos-
posite. In Refs. 10,19-21, nonlinear optical properties oftes are by several orders of magnitude larger than in Ref. 30.
fractal aggregates have been studied. The main result is thitoreover, the enhancement occurs not onlydet w, but it
the aggregation of initially isolated particles into fractals re-includes the wide frequency rangg = w>1/7, wherer is
sults in a huge enhancement of the nonlinear response withihe relaxation time for the metal conductivity. This fre-
the spectral range of the cluster plasmon resonances. Thgiency range corresponds for silver particles, for example, to
typical sizeag~10 nm of metal particles in fractal clusters is the optical, infrared, and far-infrared spectral ranges. This
much smaller than the wavelength>300 nm in the optical discrepancy may be associated with the rather moderate size
and infrared spectral ranges. The average density of the padf the systenml. =10 in the calculations of Ref. 30, whereas
ticles in fractals is much smaller than in bulk materials andthe local field fluctuations typically have a much larger spa-
tends to zero with increasing fractal size. With these simplitial separationé, for the frequencieso<w,.3>*® Then the
fications, it is possible to consider each particle as an elsystem sizd is an artificial damping factor that cuts off all
ementary dipole and introduce corresponding interaction opfield fluctuations withé,>L and results in the corresponding
erators. Then the problem of the optical response of metalecrease of the nonlinearities.
fractals reduces to diagonalizing the interaction operator of To avoid direct numerical calculations, the effective me-
the dipoles induced by light. Local fields fluctuations in dium theory’ that has the virtue of relative mathematical
metal fractals were studied in Refs. 22,23. It has been foundnd conceptual simplicity, was extended for the nonlinear
that the areas of large field fluctuations are localized in diftesponse of percolating composite®4® and fractal
ferent small parts of a fractal that change with the wave<clusters** For linear problems, predictions of the effective
length. medium theory are usually sensible physically and offer
The prediction of large enhancements of optical nonlin-quick insight into problems that are difficult to attack by
earities in the metal fractals was confirmed experimentallyother means? The effective medium theory, however, has
for the example of degenerate four-wave mixing and nonlin-disadvantages typical for all mean-field theories, namely, it
ear refraction and absorptidf Aggregation of initially iso-  diminishes the fluctuations in the system. For example, it
lated silver particles into fractal clusters in these experimentassumes that local electric fields have the same volume oc-
led to a 16-fold enhancement of the efficiency of the non- cupied by each component of the composite. The electric
linear four-wave process and10° enhanced nonlinear re- fields in different components are determined self-
fraction and absorption. The localized and strongly fluctuatconsistently.
ing local fields in fractals were imaged by means of the near- For the static case, the results of the last modification of
field scanning optical microscopfNSOM) in Ref. 23. A the nonlinear effective medium thedfy**are in best agree-
similar pattern for the field distribution was obtained for self- ment with comprehensive computer simulations performed
affine thin film$* that have a fractal structure of the surface, for a two-dimensional(2D) percolating composit&:#243|n
with different scaling properties in the plane of the film and spite of this success, the application of any kind of nonlinear
normal to it. effective medium theory is rather questionable for the fre-
Enhanced optical processes in composites with a layereguency range corresponding to the plasmon resonance in
structure were studied by Sipe, Boyd, and their co-wofRers metal grains. The first theoreti¢aP*3° and experimenta?
both theoretically and experimentally. The theoretical treatresults for the field distribution in percolating composites
ment of nonlinear effects in composite with parallel slabsshow that the local field distributions contain sharp peaks
microstructure can be performed analytically due to thewith distances between them much larger than the metal
rather simple geometry of the systefsee also, Ref. )5  grain size. This pattern agrees qualitatively with that in the
Nonlinear susceptibilities of some hierarchical structures andhetal fractal$*>*and self-affine filmg* Therefore, the local
periodic composites with shell structure were considered irelectric field cannot be considered by any means as the same
Refs. 26 and 27, respectively. in all metal grains of the composite. Then the main assump-
In contrast to fractal and layered systems, the local fieldion of the effective medium theory fails for the frequency
distribution and corresponding nonlinearities are poorlyrange corresponding to the plasmon resonance in the films.
known for percolating metal-dielectric composites in the In the present paper we consider in detail the field spatial
most interesting spectral range where the plasmon resdahistributions and various weak nonlinear effects in random
nances occur in metal grains. When a small volume concermetal-dielectric filmgalso referred to throughout the text as
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semicontinuous metal filmsWe focus on the optical and the relaxation rates.= 7~ 1, a semicontinuous metal film can

infrared spectral ranges where the plasmon resonances are modeled as a 2D—R—C lattice}>1"®1The capacitance

effective in the films. C stands for the gaps between metal grains that are filled by
A semicontinuous metal film can be viewed as a two-dielectric materia(substratgwith the dielectric constant,.

dimensional composite material. Semicontinuous metal filmg'he inductive elements-R represent the metallic grains that

can be produced by thermal evaporation or sputtering ofor the Drude metal are characterized by the following di-

metal onto an insulating substrate. In the growing proces<lectric function:

first, small metallic grains are formed on the substrate. A B 2 .

typical sizea, of a metal grain is abouy=5—20 nm. As em(@)=ep~(wp/0)/[1tio. /o], @

the film grows, the metal filling factor increases and coaleswhereeg,, is a contribution tce,,, due to the interband transi-

cences occur, so that irregularly shaped clusters are formeibns, w,, is the plasma frequency, anad,=1/7<wj is the

on the substrate eventually resulting in 2D self-similar fractalrelaxation rate. In the high-frequency range considered here,

structures. The concept of self-similarity plays an importaniosses in metal grains are small,<w. Therefore, the real

role in the description of various properties of the percolatingpart of the metal dielectric function is much largar modu-

systems” 4>t will be used below in the scaling analysis lus) than the imaginary part and it is negative for frequencies

of the field fluctuations. The sizes of the fractal structuresw less than the renormalized plasma frequency

diverge in the vicinity of the percolation threshold. A perco-

lating cluster of metal is eventually formed, when a continu- w; Ewp/\/s_b. 2

ous conducting path appears between the ends of a samp

This point is known as the percolation threshidThe . .

metal-insulator transition is very close to this point, even inr_netal grains can be modeled bsR elements,_ with the ac-

the presence of quantum tunneling. At higher surface coveflVe component much smaller than the reactive one.

ages, the film is mostly metallic, with voids of irregular .If the skin-effect cannot be ngglepted, €., the skin dgpth

shape. With further coverage increase, the film becomes uné IS smaller_ than the meta_l grain sizg, j[he simple quasi-

form. static description of a semicontinuous film as a 2D array of

the L-R and C elements is not valid. Still we can use the

The optical properties of metal-dielectric films show . R .
anomalous phenomena that are absent for bulk metal arlg_ R—C model in the oth5e7r limiting case, when the skin
Ig_ffect is very stronggd<<agy.”’ In this case, losses in metal

dielectric components. For example, the anomalous absorp-"~ I dl £ th b h h
tion in the near-infrared spectral range leads to an anomaloains are small, regardiess of the raibw ., whereas the

behavior of the transmittance and reflectance. Typically, th&/Tective inductance for a metal grain depends on the grain
transmittance is much higher than that of continuous meta?iZ€ and shape rather than on the material constants for the

films, whereas the reflectance is much lowsee Refs. metal. Such a system has been studied in the recent experi-
12,16,17,47—49, and references thereNear the percola- Ment found in Ref. 35.

tion threshold, the anomalous absorptance can be as high as It is irjstructive to consider first the film properties at the
5006 354850-527 number of effective-medium theories were Percolation thresholg=p., where the exact Dykhne result

proposed for the calculation of the optical properties of semifor the effective dielectric constant.= yeqem (Ref. 62
continuous random films, including the Maxwell-Garftt holds in the quasistatic case. If we neglect the metal_ losses
and Bruggemali approaches and their various and puth=Q, the metal dielectric constam}n is negative
modificationst2*34° The renormalization group method is for frequencies smaller than the renormalized pIas_ma fr_e—
also widely used to calculate the effective dielectric respons@Uencywy . We also neglect possible small losses in a di-
of 2D percolating films near the percolation thresh@dde €lectric substrate, assuming thgtis real and positive. Then,
Refs. 54-56, and references thejeiRecently, a theory & is purely imaginary fow < wj . Therefore, a film consist-
based on the direct solution of the Maxwell equations hasng of loss-free metal and dielectric grains is absorptive, for
been suggested:®” This new theory allows one tguantita- <o} . The effective absorption in a loss-free film means
tively describe the anomalous absorption and other effectivéhat the electromagnetic energy is stored in the system and
optical properties of semicontinuous films. thus the local fields could increase unlimitedly. In reality, the
Some properties of the local field fluctuations in semicon-ocal fields in a metal film are, of course, finite because of the
tinuous metal films have been considered theoretital*®  losses. If the losses are small, one anticipates very strong
in the quasistatic approximation. The giant field fluctuationsfield fluctuations. These large fluctuations may result in giant
in semicontinuous metal films were directly imaged in Ref.enhancements of optical nonlinearitfés?
35. This experiment has been performed for the microwave In this paper, we study surface-enhanced optical nonlin-
frequency range using an original microprobe method. It isarities of semicontinuous metal films. The paper is orga-
interesting to note that the structure of the near field fluctuanized as follows. In Sec. Il, we briefly recapitulate the ap-
tions appears to be similar to that observed in the metabroach developed in Refs. 32—34 for calculating local fields
fractal$® and rough surfacé®in the optical spectral range in a semicontinuous film. We describe here the numerical
by using near-field scanning optical microscopy. As nowrecipe used and show results of our calculations for local
well known, large field fluctuations are responsible, in par-field distributions. We show that the local field distributions
ticular, for surface-enhanced Raman scattetftfd:34365960  consist of very sharp peaks that in some cases are correlated
If the skin effect in metal grains is small, a semicontinu-in space. We also consider here dependencies of the field
ous film can be considered as a 2D object. Then in the optidistributions on the light wavelength and metal concentra-
cal spectral range where the frequergys much larger than tion. In Sec. Ill, we present the scaling theory that describes

Jlel'ius the metal conductivity is almost purely imaginary and
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the field distributions and their dependencies on the wavetem) wave is much larger than all spatial scales in a semi-
length and metal concentration. The theory allows one ta@ontinuous metal film, the applied fieklL, i.e., the field of
estimate enhancements of different nonlinearities. In Sec. IMthe incident wave, is constant in the film plaBg(r)=E(©.

we derive the formalism and calculate numerically theProvided the local fieldE(r) is known the effective conduc-
surface-enhanced optical nonlinearities for a number of optivity o, can be obtained from the definition

tical processes, namely, nonlinear refraction and absorption

associated with the Kerr-type nonlinear susceptibilities, four- (i(r))=0eE?, (6)
wave mixing, second-, and third-harmonic generation. Fo here(- - -) denotes the average over the entire film.

all these processes, we ca'lcuIaFQ spatial local dIStI’Ib.utlon.S of The local fieldE(r), induced by the applied fielE(r),

the enhanced optical nonlinearities on a metal semicontinu- . . o
ous film. A distinctive feature of these distributions is that“3" be_ obtained by using the nonlocal conductiBtintro-
most of the enhancement occurs in strongly localizeduced in Ref. 34:

nanometer-scale areas. The enhancement in these “hot i(r) 1 A

zones” is giant and exceeds a “background” nonlinear sig- E(ry=—<= —J S(r,r")Eg(r')dr’. (7
nal by many orders of magnitude. These effects can be ob- o(r) o(r)

tained experimentally in the optical range by using, for &X-According to Eq.(7) the nonlocal conductivitys(r,r') re-

ample, near-field scanning optical microscopy allowing ga¢es the applied field at point to the current and the local
subwavelength resolutiéh®®**and, in the microwave range, field at pointr. The nonlocal conductivity in Eq7) can be
by using the subwavelength probe metio@oncluding dis-  expressed in terms of the Green function of E%):*
cussions are presented in Sec. V.
&ZG(rZ ’ rl)
Il. GIANT LOCAL FIELDS ON SEMICONTINUOUS Sup(l2: M) =olr2)olr) 0 50 = ®)

METAL FILMS L
where the Greek indices take values 1 or 2. The Green func-

A. Linear response tion is symmetric with respect to the interchange of its argu-

We consider optical properties of a semicontinuous filmMeNtSG(ry,rz)=G(rz,ry); therefore, Eq.igi%)' implies that
consisting of metal grains randomly distributed on a dielecth® nonlocal conductivity is also symmetric:
tric substrate. The film is placed in tf&,y} plane, whereas S (FF)=Sn (fs.1 9
the incident wave propagates in tkedirection. The local ap(11:2) = Spall2:1)- ©
conductivity o(r) of the film takes either the “metallic” The introduced nonlocal conductivit§ is useful for an
valueso(r)= o, in metallic grains or the “dielectric” val- analysis of different processes in the system.
ueso(r) = —iwey/4m outside the metallic grains. The vector  Suppose, for example, that the external field applied to the
r={x,y} has two components in the plane of the filais  film has the following form:
the frequency of the incident wave. The gaps between me-
tallic grains are assumed to be filled by the material of the Ee(r)=E@+E(r), (10
substrate, so that the above introduegdis assumed equal _whereE(© is the constant field and fiel(r) may arbitrary

to the dielectric constant of the substrate. The electric field I ange over the film but its averaced valiE (1)) is col-
the film is supposed to be homogeneous in direciquer- 9 9

pendicular to the film plane; this means that the skin deptﬁInear toE™. Then the average current dens{fy is also

i ©) ically i ic fi -
for the metald=c/(w\|s.]) is much larger than the metal collinear toE'™ in the macroscopically isotropic films con

S L oo sidered here. Therefore, the average current can be written as
grain sizeay, and the quasistatic approximation can be ap-

plied for calculating the field distributions. We also take into £ EO) 1

account that the wavelength of the incident wave is much ()= (EQ.(j(n)= _J Eﬁf’)ja(r)dr,
larger than any characteristic size of the film, including the E©?2 E©2A

grain size and the gaps between the grains. In this case, the (13)

local field E(r) can be represented as whereA is the total area of the film, the integration is over

E(r)=— V() +Edr), (3 thefim area andE(92=(E(©. E(9)), By expressing the cur-
rentj,(r) in Eqg. (11) in terms of the nonlocal conductivity
whereE¢(r) is the appliedimacroscopigfield and ¢(r) is matrix j ,(r)=JS,p(r.r1)Eep(ry)dry, we obtain
the potential of the fluctuating field inside the film. The cur-

rent densityj(r) at pointr is given by Ohm’s law _ EO 1 0
. <J(r)>: (0)2 Kf E(a Saﬂ(rlrl)Eeﬁ(rl)dr drlv (12)
j(=0a(rn[=Ve(r)+Er)]. 4 E
The current conservation laW -j(r)=0 has the following Wwhere the integrations are over the entire film. Now we in-
form: tegrate this equation over the coordinateand use the sym-
metry of the matrix of nonlocal conductivity given by Eq.
V{o(r)[—Ve(r)+Eg(r)]}=0. (5 (9); this results in the expression
:/r\{e |SO|fo'EIC$(ES() ;o' fi(;\d thde'fll{[cr:]tu?.tlingbpottﬁntiab(lr.) da?'dld £0)
e local 1ie r) Inauced In the 1iim by the applied tie i(r) :__fj (r)Egg(rydrq, (13
E(r). When the wavelength of the incident electromagnetic ) E@2 A (ORI
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wherejy(r) is the current induced at the coordinatey the
constant external fiel&E(®. Now we can substitute in Eq. A B
(13) the external fieldE.(r) from Eg.(10) and integrate over
the coordinater; which gives C D

EO) E©) —
()= € -Go(M+ g [o(NEM-Eq(N]), o/ m

14

where the fielde(r) =]jo(r)/o(r) is the local field induced in

the film by the constant external fiel(?). Substituting in FIG. 1. The real space renormalization scheme.
Eq. (14) the expression for the effective conductivity given

by Eq. (6), we obtain the equation oe=0 D+ 3I|EO?, (19

(a(NDE(r)-E«(N]) where the effective nonlinear conductivitst>) is equal to

(i(n)=E?} et (02 (19

(a3 EX(n)E(M)|%)
o= T (20)

Thus, the average current induced in a macroscopically
isotropic film by a nonuniform external fiel®,(r) can be
expressed in terms of the fluctuating pBr(r) of the exter- Equation(20) expressesff) in terms of the local field&(r)
nal field and the local fieldE(r) induced in the film by the obtained in the linear approximation.
constant parE(?) of the external field. It is easy to verify that ~ When the local fields fluctuate strongly over a system, the
Eq. (15) is invariant with respect to the partition of the ex- effective nonlinearitya,(f) is strongly enhanced in compari-
ternal field in the constant and fluctuating parts. Below weson with the averagés®)(r)). Equation(20) was obtained
will use Eq.(15) in an analysis of the nonlinear response ofindependently by Stroud and Huand by Shalaet al,°
semicontinuous metal films since it allows one to expressind it is widely used in analyses of the nonlinear response of
various nonlinear currents in terms of the local fields. compositeg?!3

Consider, for example, a composite with the local conduc- To calculate the local electric fields in the system we dis-
tivity o(r) including the cubic nonlinearity, i.e.o(r)  cretize Eq.(5) on a square lattice. The potentials in the cites
=aO(r)+a®(r)|E(r)|2. To find the effective conductivity of the lattice reproduce the local field potentials in a semi-
o (which, of course, is also nonlingamwe write Eq.(5) in continuous film. The conductivities of the lattice bonds stand
the form for the local film conductivity and take either,, or o4 val-

ues. In such a way, the partial differential equati@ is
reduced to a set of Kirchhoff equations that are solved by the
=0, method presented in the next subsection. Provided the field
(16) distribution is known we can use formulas such as @§)
to calculate the optical nonlinearities. Below, we first de-
where E'(r)=—V ¢(r)+E© is the local electric field at scribe the numerical procedure used and then results of our
coordinater in the nonlinear film, with the local conductivity numerical simulations for the field distributions.
containing the cubic term. We consider the last term in the
square brackets as an external inhomogeneous field and use
the above derived Eq15) to obtain the average current

a®(r)
a®(r)

—Ve(r)+EQO+ E'(r)|E'(r)|?

V(Uo(r)

B. Numerical model

There now exist very efficient numerical methods for cal-
L 0)e0) (O)<a(3)(r)[E(r).E’(r)]|E’(r)|2> culating the effective conductivity of composite materials
((n)=oe EY+E £(072 , (see Refs. 12,17,46,64-66ut they typically do not allow
17) calculations of the field distributions. Here, we use the real
space renormalization gro®SRG method that was sug-
wheres?) is the effective conductivity anB(r) is the local gested by Reynoldet al®” and Sarychet? and then ex-
field found in the linear approximatiofi.e., for the local  tended to study the conductivifand the permeability of oil
conductivityo(r)=o(r)]. Equation(17) expresses the av- reservoird® Below, we follow the approach used by
erage current and, thus, the effective nonlinear conductivit\harony’® This method can be adopted to finding the field
in terms of the local field&€'(r) andE(r). distributions in the following way>3* First, we generate a
For a weak nonlinearity, whear®)(r)|E(r)|?<o(®(r),  square lattice of -R (meta) andC (dielectrid bonds using a
we can replace the local fieE'(r) in Eq. (17) by the field  random number generator. As seen in Fig. 1, such a lattice
E(r) calculated in the linear approximation; this gives can be considered as a set of “corner” elements. Such ele-
ments are labeled A—H in Fig. 1. In the first stage of the
RSRG procedure, each of these elements is replaced by the
two Wheatstone bridges, as shown in Fig. 1. After this trans-
formation, the initial square lattice is converted to another
where E?(r)=(E(r) - E(r)). From this equation, it follows square lattice, with the distance between the sites twice as
that the effective nonlinear conductivity, has the form large and with each bond between the two nearest neighbor-

(a®(EXn)|E(N[?)

(0)
o EO, (19

((ry={ o+
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ing sites being the Wheatstone bridge. Note that there is & 9.1 eV, and the relaxation frequenay,=0.021 eV'! Be-
one-to-one correspondence betweentt®nds in the initial  low, we sete 4= 2.2 typical for a glass. In Fig. 2 we show the
lattice and thex bonds in thex directed bridges of the trans- field distributionsG(r) =|E(r)/E(®)|? for the plasmon reso-

formed lattice, as seen in Fig. 1. The same one-to-one corrgrance frequencyw=w, that corresponds to the condition
spondence exists also between yhieonds. The transformed Rge (w,)]=—e4. The value of the frequency, is

lattice is also a square lattice, and we can again apply to glightly below the renormalized plasma frequenoy de-
the RSRG transformation. We continue this procedure unti ined above in Eq(2). For silver particles the resonance

the sizel of the system is reached. As a result, instead of th%ondition fulfilled at wavelengti.~365 nm. The frequency
initial lattice we have two large Wheatstone bridges inxhe . . ;
w, gives the resonance of an isolated metal partidfer a

andy directions. Each of them has a hierarchical structureZD i.e., z-independent problem, particles can be thought of
consisting of bridges with the sizes from 2ltoBecause the infinite in thez direction cylinders that resonate, in the

one-to-one correspondence is preserved at each step of tAa 'Nhinite o
transformation, the correspondence also exists between tiasistatic approximation, at the frequeney-w, corre-
elementary bonds of the transformed lattice and the bonds &Ponding to the condition Rep(w,)]=—&q, for the field

the initial lattice. After using the RSRG transformation, we Polarized in thex,y plane) The results are presented for
apply an external field to the system and solve the Kirchhoff/arious metal fractionp. For p=0.001 metal grains practi-
equations to determine the fields and the currents in all theally do not interact, so that all the peaks are almost of the
bonds of the transformed lattice. Due to the hierarchicasame height and indicate the locations of metal particles.
structure of the transformed lattice, these equations can b¥ote that a similar distribution is obtained fqr=0.999
solved exactly. Then, we use the one-to-one correspondeneéhen the role of metal particles is played by the dielectric
between the elementary bonds of the transformed lattice angbids. Forp=0.1 and, especially, fop=0.5, metal grains
the bonds of the initial square lattice to find the field distri- form clusters of strongly interacting particles. These clusters
butions in the initial lattice as well as its effective conduc-resonate at different frequencié¢than that for an isolated
tIVIty The number of operations to get the full distributions partide' therefore, for the chosen frequency the field peaks
of the local fields is proportional t to be compared with”  are smaller, on average, than those for the isolated particles,
operations needed in the transform-matrix metfidtiand!®  and the height distribution is very inhomogeneous. Note that
operations needed in the well-known Frank-Lobbne spatial scale for the local field distribution is much larger
algorithm® which does not provide the field distributions then the metal grain siza, chosen to be unity for all the
but the effective cond_uctlwty only. The RSRG p_ro_cedure 'Sfigures. Therefore the main assumption of effective medium
certainly not exact since the effective connectivity of th‘?theon}&%‘“that the local fields are the same for all metal
transformed system does not repeat exactly the connectivit rains fails for the frequencies of the plasmon resonance and

of the initial square lattice. To check the accuracy of the - . .
RSRG, we solved the 2D percolation problem using thismnv"’m'ShIng concentratiors We emphasize a strong re-
i emblance in the field distributions fprand 1 p [cf. Figs.

method. Namely, we calculated the effective parameters of 3
two-component composite with the real metallic conductiv-2@ and 2g), 2(b) and 2f), 2(c) and Ze)] o

ity o, much larger than the real conductivity of the di- For larger wavelengths, a single metal grain is off the
electric component,,> 4. We obtained the percolation plasmon resonance. .Nevertheles.s, as one can see from Figs.
thresholdp,=0.5 and the effective conductivity at the per- 3(@—3(d), the local field fluctuations are even larger than
colation threshold that is very close 0(p,)= omog. those at the plasmon resonance frequgncy. At thesg wave-
These results coincide with the exact ones for 2plengths, clusters of the conducting particleather than in-
Composite§.2 This is not Surprising since the RSRG proce- dividual partiC|e$ resonate with the external field oscilla-
dure preserves the self-duality of the initial system. The criti-tions. Therefore, it is not surprising that the local field
cal exponents obtained by the RSRG procedure are als@istributions are quite different from those in Fig. 2. In Fig.
close to the known values of the exponents from percolatio3, we show the field distributions at the percolation threshold
theory!? Therefore, we believe that the numerical methodp=p.=0.5 for different wavelengths, namely, Fig@a@ \

used describes, at least qualitatively, the field distributions=0.5 um, Fig. 3b): A=1.5 um, Fig. 3¢): A=10 um, and

on semicontinuous films. Below, using the described numeriFig. 3(d): A =20 wm. Note that the field intensities in peaks
cal procedure, we calculate the local field distributions on ancrease with\, reaching very high values 10°|E(©)|?; the
random semicontinuous metal film. peak spatial separations increase withas well. These re-
sults are also in contradiction with effective medium theory
that predicts strong field fluctuatiofisn the vicinity of plas-

mon resonance frequenay, only. In the next section, we

As mentioned, we model the film as a square lattice conpresent a scaling theory for the field distributions on a semi-

C. Field distributions on semicontinuous metal films

sisting of metallic bonds with the conductivityr,=  continuous film that explains the above results of the simu-
—ieqw/4 (L-R bonds and the concentratiop, and dielec-  |ations.
tric bonds with the conductivityyy= —igqw/47m and con- The field pattern obtained in our simulations resembles

centration - p (C bonds. The applied fieldE® is setto be  the experimentally measured field distribution in percolating
equal to unityE@=1, whereas the local fields inside the metal-dielectric films in the microwave baftWe note that
system are complex quantities. The dielectric constant of silwe simulate films in such a way that samples with the same
ver grains has the form of Eql) with the interband- p correspond to identical films. Thus from Fig. 4, we can
transition contributione,=5.0, the plasma frequency, conclude that spatial locations of the field peaks strongly
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FIG. 2. Distribution of the local field intensitie§(x,y)=|E(x,y)|%|E©|? on a metal(silver) semicontinuous film fok/ = —e4=
—2.2 (A\=365 nnj at different metal concentrations (a) p=0.001,(b) p=0.01,(c) p=0.1,(d) p=0.5,(e) p=0.9, (f) p=0.99, and(g)
p=0.999.

depend on frequency. Qualitatively similar results were prethe positions of different peaks;they are not necessarily
viously demonstrated for fractals and self-affine films in theassociated with different clusters independently resonating
optical spectral rang®&:?* Thus by changing the frequency with the applied field. For instance, some peaks that one
one can excite different nm-size hot spots on the film. Thismight think of as different modes, in reality, are spatially
effect is of great importance for various applications, and itdisconnected parts of the same mode; in other cases, how-
can be studied experimentally in the optical spectral rangever, different peaks do correspond to different modes.
using near-field scanning optical microscopy providing sub- We emphasize that all results are shown in natural linear
wavelength resolutiof°®%3In the microwave range it can scales. What we see in Figs. 2 and 3 is the top part of the
be studied easily by the local probe method developedield distribution, i.e., the largest fields only. The fields in
recently®® We note that there are nontrivial correlations in other points forming a background, although smaller, are not,
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FIG. 3. Distribution of the local field intensitieg(x,y)=|E(x,y)|%/|E©|? in a semicontinuous film at the percolation threshold for
different wavelengthsia) A=0.5 um, (b) A\=1.5 um, (c) A=10 wm, and(d) A =20 pum.

of course, zero. However, for the nonlinear optical effectsfor different wavelengths=0.5 um, A=1.5 um, andx
studied here the largest fields play the most important roles. 1 um. We see that the field enhancements are large, on
a_\nd the smaller backgrou_nd fiel§hat are not seen in the average, ¢ 10?) but much smaller than in the local peaks in
figureg can be neglected in most cases. _ Fig. 3. This is because the largest peaks are separated by

In Fig. 4, we also show results of our calculations for theye|atively large distances so that the average enhancement is
average enhancements for the intensity of the local fieldgyt a5 large as the local one in the peaks. The other moments
(IE(r)|?)/|E@|2. The results are presented as a functiop of of the field distribution, which are important for an estima-
tion of the nonlinear response, experience even stronger en-
T T T hancement, especially for concentrations close to the perco-

0.50m —-—n- lation threshold. For example, the fourth moment
140 - hm (|E(r)|*/|E@|* exceeds the value $Ofor p=p, and \

>1 wum. This is not surprising since the local fields raised to
the fourth power|E(r)|*/|E©)|?, reach in the peaks the val-
ues 18% as follows from Fig. 3.

The range ofp, where the enhancements occur is very

large in the visible rangeAp=|p— p¢~0.45). However, it

T shrinks towards larger wavelengths, as seen in the figure.
i R From the above results, it follows that the local fields expe-
: “ rience strong space fluctuations on a semicontinuous film;
I
. !
i
[}
\

100

1
b
S

' the large fields in the peaks result in giant enhancements of
\ the optical nonlinearities considered below.
20 /

-
]

; lll. SCALING THEORY OF THE FIELD FLUCTUATIONS
; P \ AND THE HIGH-ORDER FIELD MOMENTS
/ . { ‘\.____:_."‘” Ny

As pointed out above the spatial field fluctuations on a
semicontinuous metal film have the form of huge local fields
within spatially separated peaks on the film. One could an-
FIG. 4. The average enhancement of the field intengty

ticipate that the local fields are strong on a semicontinuous
=(|E(r)|2)/|E|2 on a silver semicontinuous film as a function of film for ® slightly smaller thanw;—the renormalized
the metal concentratiop for three different wavelengths.

plasma frequency introduced above by E). For the fre-
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quency rangew<wy , the real part of the metal dielectric wheres is the critical exponent for the static dielectric con-

constante,,, is negative and its absolute values are of thestant;s~v,=4/3, for a 2D system®*"*°We now set the
order of unity, i.e., they are close to the dielectric constant obquare sizé to be equal td*:

the film substrate 4. Therefore, the conductivities of the . ) b (t49)

R andC elements in the equivalent network have opposite I=1*=ao(|ey|/8q)" ' (23)
signs and they are close to each other in absolute Valueﬁlhel’esr%-i-is%E Re(e,) +ilm(e,). Then, in the renormal-

[The exact resonance condition occurs in our moded at ized system, where each square of sizés considered as a

=w,<w} , which cor'resppnds to'the requirement Re) single element, the ratio of the dielectric constants of these
= —&4.] Thus, a semicontinuous film can be thought of as ayew elements is equal to

system of contours tuned in resonance with the frequency of
the external field. These resonance modes are seen as giant en(I™) el (I*)=¢eyl|e/|=—1+ik, (24)
spatial fluctuations in the field distributions over the film. In b .
the dilute casep<1 these resonances are associated wittyvhere the loss factoe=e/|ey|~w./w<1. (Recall thatin
plasmon resonances of individual metal grains. the V|S|t_)le an_d infrared sp_ectral ranges the real' part of.the
What might be more surprising is the fact that the giammetal dielectric constant/, is negative and large in magni-
fluctuations of the local fields also occur fer<wy , when tude, [ef[>e4.) . .
the contrasH =|e|/e4>1. If the contrastH>1, the con- It follows from Eg.(24) that the renorma}hzed system is a
ductivity of the L-R and C elements of the equivalent net- System of theL.-R andC elements tuned in the resonance.
work are quite different and a single contour cannot be exJherefore, the local electric fieldg* (r) are significantly
cited by the external field. However, as our numericalenhanced in comparison with the macroscopic fEfd. As
simulations show, the field fluctuations become larger withshown in Ref. 33, in a 2D system with the ratiof to e4
the increase of the wavelengthtoward the infrared spectral given by Eq.(24), the fieldE* can be estimated as
range(see Fig. 3.
'Igo unders?and the origin of the giant field fluctuations for E* = (|E*(n)[*)=E P« "*>E?, (29
the large contrasti>1, we invoke scaling arguments of where the critical exponen introduced in Ref. 33 is near
percolation theory® Below we develop further the scaling unity, y=1.0.
approach from our previous works* and apply it for cal- In the renormalized system the local field (r) is still
culating the high-order field moments. _ strongly inhomogeneous. Really, we see the spatially sepa-
Since enhancements for the nonlinear optical processggted peaks in Fig. 2 where the field distributions are shown
have maxima near the percolation threshpld we assume  {or the frequencyw = w, corresponding to the plasmon reso-
first that the concentration of the conducting partige$s  nance in a metal grain, i.e., for Re,(w)]=—eq [cf. EQ.
exactly equal to the percolation threshgle=p.. We con-  (24)]. The spatial scalg? for the field fluctuations in the

sider the case when the frequenays much smaller than the onormalized (resonance system have been estimated in
plasma frequencyw<w,, so that the contrast is large and Refs 32 33 as

can be approximated asm(wp/w)2/8d>1 for a Drude
metal. We also assume that>w,, i.e., losses in metal Er ok Ve, (26)

grains are relatively small. " .
where the critical exponent is equal tQ=0.4—0.5. There-

To find the field distributions over the system, we apply i o AR X .
the renormalization procedure first suggested in Refs. 67,640r€: the field distribution in the renormalized system might
e thought of as a set of peaks with amplitude

We divide a system into squares of sizand consider each
square as a new element. All such squares can be classified E*=E*(£/a,) 27)
into two types. A square that contains a path of conducting m e’ <o
particles spanning over is considered as a “conducting” elseparated by distancet’ so that E*2?=(|E*(r)|?)
ement. A square without such an “infinite” cluster is con- =E*2/(£/ag)?.
sidered as a nonconducting dielectric element. Following fi- Now we can estimate the field fluctuations in the original
nite size arguments;*®®"%*the effective dielectric constant system. A typical configuration of conducting clusters that
of the conducting squarej(l) decreases with increasing resonate at frequenay<w, is sketched in Fig. 5. The gap
sizel as between the two conducting clusteksandB has a capacity
conductance?@B(l): —iwej(I)ap/4m that depends on the
sizel of the considered clusters. The conducting paths com-
ing to the gap have an inductive conducta®®; this is
because the metal conductivity is inductive tor oy (e,
whereay is the average size of metal grains drghd v, are <0, lel|>¢l"). The effective value of "B can be estimated
the critical exponents for the conductivity and the percolafrom a simple observation that a conducting square of the
tion correlation length, respectively. For a 2D systemsizel has a typical conductivity-iwe} (l)/4m that we at-
t~v,=4/31217%The effective dielectric constant of a di- tribute to the presence of the conducting path. Thus, we ob-
electric square (1) increases with increasing siteas tain 328(1)= —iwe*(1)ay /4. We chose the size=1* so
that capacitive and inductive conductances are equal to each
. / other in modulus,|S28(1%)|=|SAB(1*)|. Then there is a
eg()=(l/ag)%"ey, (22)  resonance in the configuration presented in Fig. 5. Note that

em(N=(l1ag)""pe (21)
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1 En=E5(1%120) ~EO (e |lel) 724 ve(|e | f£g) 49,
A @9

The points of the close approach determine the gap capacity
conductanc&2B(1*) (cf. Ref. 7) that depends on the cluster
size|*. Therefore, the numbar.(1*) of the points of the
close approach scales with siZe in the same way as con-
ductance="B; namely, n (1*)~SAB(1*)~ gk (1*) ~1* 57

B [see Eq(22)].

v The following pattern of the local field distribution
emerges from these speculations: The largest local fields are
concentrated in resonant clusters, in areas of thel$izthe
areas with high local fields are separated in distance by the

FIG. 5. Typical configuration of the conducting clusters thatfield correlation lengthé.>a,, given by Eq.(28). Within
resonate at the frequeney smaller than renormalized plasma fre- each resonant area there arél*) sharp peaks with ampli-
quencywp . tude E,(1*). With an increasing wavelength of the incident

wave (i.e., decreasing the frequendpe scald* increases,
intercluster capacity conductancg2®(I) increases with as do the amplitud&y, and the number of the local field
cluster sizel, whereas inductive conductan&'8(l) de- ~Mmaximanc(l*) in one resonating cluster; the average dis-
creases with increasing Therefore, we can always find tanceé. between the resonant sets of the field peaks also
proper pairs of clusters with the sike |* to fulfill the reso- ~ Increases with decreasing frequency. We can track this be-
nance condition|SA8(1%)|=|SAB(1*)| for any large (in haV|or_ of the field fluctuations in Fig. 3. For smallest fre-
modulusg value of the metal dielectric constast,(w) pro- quenC|es[F|gs._£{c), 3(d)_] the_local fields have only a few
vided e/ (0)<0 (ie., w<w;). groups of maxima. Typical distances betwegn the groups of

Since the resonance clusters interact with each other, thﬂe'd peaks are _much !arger thap (the grain Sizéag 1S

chosen as unity in the figuresThe number of peaks in each

local field concentrates in some subset of them only. The roub increases svstematically with decreasing frequenc
average distance between the field maximums in the renofd'OUP ; Y y wi creasing freq Y-
From this pattern of the local field distribution we obtain

mahzed system is equal @ [see !Eq(26)].and the.ayerage the following estimate for the moments of the local fields
?;ﬁaggfgebggfne;etgeazeld maximums in the original sys- (|E(r)|"), in random semicontinuous metal filndsE(r)|")
~E21nc(l*)/§§. The substitution in this equation of expres-
sions of the field amplitud€&, [Eq. (29)], the field correla-
E=&X* lag=k el * =ay(|e)|lel) el |leq) P TS tion length&, [Eq. (28)], and the number of maxima in one
(28 clusterng(1*)~(1*)%"r gives

<|E(r)|n>:|E(0)|n(|Srfn|/8d)nvp/(t+s)7(2vp75)/(t+s)

l*

F 3

v

l*

which is much larger than the grain sigg>ag. This is the

reason why the giant field fluctuations exist up to the far- X(|el|lelynv2tve—2ve (30)
infrared spectral range and their spatial structure is rather
inhomogeneous as we can see in Figs)-33(d). For a 2D systemf~s~v,=4/31#17® Supstituting these

In Fig. 5, we do not show the many finite conducting critical indices andy=1, v,=0.5 (Refs. 32,33in Eq. (30)
clusters that are always present in the system. These clustegiyes
are off resonance and, therefore, are not important for our \ O] r (D)2t (ANl
consideration. Therefore, only a small part of the metal com-  {|E(DIM=[E™|"(|eq|/z4) (leml/em)"™ . (3D
ponent is involved in the resonance excitation at any partiCusjnce in the visible, infrared, and far-infrared spectral ranges
lar frequency of the applied field. Nevertheless, the resogg reql part of the dielectric constant of a typical metal is
nance clusters cover almost the whole area of the film due t%rge,ls,’n|>sd, whereas the losses are smal|.<|s/|, the

ﬂ;g;l ‘;_f;‘g?"s Sctcglrjlgzjr:ter.ati\ée% ]:;)nrl thae Srrisa(l)lna;':ieofltlﬁztlirs’&g@alues of the field moment3E|") exceed the corresponding
ield ! in only P " moments of the incident fieldE(”)|" by several orders of

cordingly, only a few metal grains actually carry most of themagnitude. This indicates the presence of giant field fluctua-

rrent. If we chan he fr n nother f meta) . . . : . -
current We change the frequency, a .Ot er set o .e.taﬁons in semicontinuous metal films in the visible and, espe-
clusters will resonate; these new resonating clusters still in-

clude only a small part of the metal cially, in the infrared spectral ranges.

' : . L For the Drude metal, we can simplify E¢B1) for suffi-

The fieldE g in the intercluster gap is strongly enhancedCiently small frequenciesy<w,, as

for clusters with sizes=1*, yet the local field is strongly P
enhanced only for a part of these clusters as discussed above. w.\n1
We consider one such resonating cluster. The potential drop (|E(r)|”)z|E(°)|“sgl‘”)’2( —p) . (32
across the gap can be estimatedUdg~ Ey|* [see Eqs(23) @
and(27)], and the local field is concentrated in the points of From this equation it follows that for frequencies<w, the
the close approach where the gap shrinkagoln the points  local field moments are independent of frequency.
of the close approach the local field acquires the largest val- Now we can estimate the local field moments for silver
ues semicontinuous filmw,=9.1 eV,w,=0.021 eV(Ref. 71].
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Usingey=2.2 typical for glass substrate, we obtain from Eq.would like to stress that despite the large distances between
(32 the estimate (|[E|")=3x10?, 8x10%, 2.5x10’, the peak groups, the field fluctuations can be highly corre-
7x10° and 2x10% for n=2, 3, 4, 5, and 6, respectively, lated in spacé?

(E@=1). We should note that in the above estimations of the local
The above estimates of the moments can be used, fdield moments we implied that they do exist, i.e., we as-
example, for Raman scattering that does not depend on trgumed that the moments converge when the size of a system

phases of the local fieldé:*® Although Raman scattering is a increases. This is the case for incoherent proceseh as
linear process, its enhancement is proportiongdEid (Ref. = Raman scatteringwhich are phase insensitive and depend
34) and in that sense is similar to nonlinear processes disan the absolute values of the fields only, i®(|E|"). How-
cussed in Ref. 21. From E@32) we obtain the following ever, as we show below, enhancements for coherent pro-
expression for the enhancemé®is of Raman scattering in  cesses, which are proportional ¥&E") (rather than to

semicontinuous metal films: (|EI")), do depend on the size of the system for sizes up to
L=512 used in our simulations. The reason for the size ef-
|6 |92 fect is _probably th_e interference between the fields in differ-
GRS~<|E(r)|4>N % (33 ent points of the film.
€q”€m Above, for the sake of simplicity, we assumed thmat

=p.. Now we estimate the concentration range=p
Note that this equation is somewhat different from that ob-—p_  where the above estimates for the local field moments
tained in our previous work! This difference is a conse- are valid®3* Although the above estimates have been done
quence of the more detailed analysis of the local field flucfor the percolation thresholol= p. they must also be valid in
tuations in the present paper. Nevertheless the main resulégme vicinity to the threshold. Indeed the above speculations
of the rough scaling analy§[’sand the more elaborate con- zre based on the finite size scaling E@d) and(22), which
sideration presented here are essentially the same: Surfagg|d until the scald* of the renormalized squarésee Eq.
enhancement of the Raman scattering on semicontinuoqgg)] is smaller than the percolation correlation lengif
metal films is rather largeGre~10°—10’, and independent =a (|p—p.|/p.) ~". At the percolation threshold, where
of frequency foro<wj when the enhancement is propor- the correlation lengtt, diverges, our estimates are valid in
tional to Grs~ (wp/w,)% (e4)¥2 a wide frequency range,< o< o? which includes the vis-

Now we turn to nonlinear coherent processes. To estimatible, infrared, and far-infrared spectral ranges for a typical

enhancements for nonlinear coherent processes, such as haretal. For any particular frequency from this interval, we
monic generation, one should average the nonlinear electrigstimate the concentration range, where the giant field
induction DM (E"); the resultant enhancement is then fluctuations occur, by equating the valuesofrom Eq.(23)
given by G(MWec|D™M|2x|(E")|? (see, e.g., Ref. 21 There-  and&,. Thus we obtain the relation
fore, the parametric nonlinear optical processes are very sen-
sitive to the relative phases of the fields at different points on |Ap|<(eq/]el )Mt (34)
the film. It is impossible to estimate enhancements, in gen- dim |
eral, considering only the absolute values of the field. How- . . . .
ever, we can estimate the upper limit for the enhanc:ementléOr a 2D semicontinuous metal film, .the crmgal exponents
assuming that all the fields are in phase. Formally, the uppeqres~t~ vp=4/3, and the above relation acquires the form
limit for the enhancements can be obtained by neglecting the
phase fluctuations, i.e., with the replacement Bf) for a |Ap|<(gql|el)®8. (35)
nonlinear process of theth order by(|E|"). By doing so, we
obtain the estimate given by E(B1). We also note that the For prude metal, in the frequency rangd <w<ow,, Eq.

widely used “decoupling procedure<1E|">—><|E_|2>”’2 (see,  (35) can be rewritten as
for example, Refs. 13,38,42 ithat works well in the static

case?>* results in significantly underestimatédy several o a4

orders of magnitudeenhancement in the visible, infrared, Ap=seq (@l wp)™ (36)

and far-infrared spectral ranges, as follows from the above

consideration. Accordingly, the mean-field theories based oAs follows from Eq.(36), the concentration range for the
the decoupling procedure are not applicable for an estimatiofnhancement shrinks when the frequency decreases far be-
of the optical nonlinearities in metal-dielectric compositeslow the renormalized plasma frequenay [see Eq.(2)].

with strong field fluctuations, which provide largest enhance-This result is in agreement with our computer simulations
ments for various nonlinear effects. presented in Fig. 4.

It is instructive to summarize the above discussion and It is important to note that although the above consider-
note that the field intensities in a random semicontinuousition of the local field distributions is based on the assump-
metal film|E(x,y)|? can be viewed as groups of peaks with tion of the large contrasti>1, the estimatior(36) repro-
amplitudes E|>|E()]. Different groups of peaks are sepa- duces the concentration interval for the giant field
rated by distance.>a, [see Egs(28) and (29)]. The am-  fluctuations for all the frequencies belaw} (but larger than
plitudes of the peaks, as well as the typical distance betweemn,) well. Also the estimaté€33) quantitativelydescribes re-
them, increases with decreasing frequemcyThis picture is  cent experimental studies of Raman scattéfirig a semi-
in qualitative agreement with Figs(88—3(d), where the field continuous metal film, as well as results of our computer
fluctuations on a silver semicontinuous film are shown. Wesimulation$*2® for the whole frequency range.
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IV. GIANT ENHANCEMENTS a direction perpendicular to the film plane. Then the current
OF OPTICAL NONLINEARITIES in a semicontinuous film with the adsorbed nonlinear mol-
IN SEMICONTINUOUS METAL FILMS ecules on it is equal to

In this section, we consider enhancements for different . , (1) ) 3) e [2E
nonlinear optical processes on a semicontinuous metal film. i(N=o(ME'(N+oANE(N+a(n[E(NIE' (M),
Third- and second-order optical nonlinearities are analyzed. (42)

All numerical calculations are presented for p.. The con-

centration region for the enhancement of nonlinearities wad/hereE (r) is the local fluctuating field at the coorg;nate
estimated in the previous section. of the film, o(r) is the local film conductivity, andr'*(r)

and o®)(r) are the linear and Kerr-type nonlinear conduc-

tivities of the adsorbed molecular layer. By using this ex-

pression in the current conservation law given by &j.we
The Kerr-type nonlinearities are third-order optical non-obtain[cf. Eq. (16)]

linearities that result in addition to the linear electric induc-

tion D a nonlinear term of the form

A. Kerr-type optical nonlinearities

~V(r)+E©

3 3 V([U(r)‘ﬂf(l)(r)]
D ()=l ~wiw,0,~w)EZEE* 5, (37)

where a®(r)

I N | I
o(r)+a<l><r>E(”|E(”|D 0, (43

8(0275(—(1);(1),(1),—(1)) (38

is the third-order nonlinear dielectric constdhgndE is an Whe/re E(_O) is the applied electric field, anet V ¢(r) + E(_O)
electric field at frequency; summation over repeated Greek = E' (1) is the local field. By considering the last term in the
indices is implied. The Kerr optical nonlinearity results in Square brackets as an external inhomogeneous field we ob-
nonlinear correctiongproportional to the light intensijyfor ~ t&in from Eq.(15) the equation for the average current

the refractive index and the absorption coefficient.

Below we consider macroscopically homogeneous and . . _o!| (o (aB(D[E(r)-E"(N]IE"(1)]?)
isotropic films and the normal incidence of light. Then the J(r))=ED og’+ £(0)2 ’
third-order terms in the average electric induction has in gen- (44)
eral the form

@ 01260 020 whereo!?) andE(r) are the effective conductivity and local
(DP(r))=a|EP[E® + BEPIPED)™, (39 fluctuating field, respectively, obtained in the linear approxi-
mation, i.e., foro(®=0. Comparing Eqs(44) and (41), we

where E© is the amplitude of the externdimacroscopi ! ) \ o
P din piE find the equation for the effective Kerr conductivity

electric field at frequency, E(9?=(E(©®.E()), ¢ andp are
some constantmot to be confused with the tensor compo- 3) , INT
nents in Eq(37)]. Note that the second term in EQ9) for U<3>:<" (NIEM)-E"(D]E"(N]%) (45)

the nonlinear induction of an isotropic film can result in a € E02E9)2 '

change of the polarization of the incident lightEquation

(39) simplifies for the case of linear and circular polarizationIn this paper, we consider the case of weak nonlinearities.
of the incident light’? For the linear polarization the com- Then the local fielE’(r) in Eq. (45) can be replaced by the
plex vectorE® reduces to a real vector. Then the expres-inear local fieldE(r) resulting in the following equation for
sions|E(©|2E(® andE(D2E(O* in Eq.(39) become the same the Kerr conductivity:

and the equation can be rewritten as

(3) 2 2
3 (3) =(0)] 2e=(0) 0_(3):<0' (r)E (I’)lE(I’)l > (46)
(D(r))=s¢"|E®[*E', (40 e SCRT=CIEE

where the nonlinear dielectric constaslf is scalar now. which reproduces the formul@0).

For the sake of simplicity, we consider below the linearly  Now we suppose for simplicity that the Kerr-type nonlin-

polarized incident wave. Equatig(ng)()) we rewrite in terms oo o\ rface conductivities of the adsorbed molecal@are
of the nonlinear average curre(jf®(r)) and the effective uniformly distributed over the film surface. Then E@6)

Kerr conductivityo(®)= —iwe3/4r; this gives simplifies to

+(3) — +3)|E(0)]2E(0)

GPn))=0"[EPIED. (41) SO & (E2MIEM?) a7)
This form of Kerr nonlinearity is used in the discussion be- € E(@2|E©@)2
low.

Consider the case when the nonlinearities in metal grainé the absence of metal grains the effective nonlinear Kerr
of a semicontinuous film and dielectric substrate are negliconductivity o) coincides with the Kerr conductivity)
gible, and the film is covered by molecules possessing thef the layer of the absorbed nonlinear molecules. Therefore
Kerr-type nonlinearity. We still assume that the film is thin the enhancement of the Kerr nonlinear@y is given by the
enough to consider the local electric field as homogeneous ieguation
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From the above equation it follows that the enhancement of 10* - Axl AA 7]
the Kerr nonlinearity is expressed in terms of the local field —aat
E(r) found in the linear approximation; this field experiences 03k %aa
the giant fluctuations studied in Secs. Il and Ill.

Above we assumed that the nonlinear Kerr conductivity
o® is due to the adsorbed molecules covering the film. In G’y
some cases, the nonlinear response can also be due to tl
metal and/or dielectric grains forming the film, with no ad-
sorbed molecules on it. If this is the casé®)(r) in Eq. (42)
is the nonlinear conductivity of the grain, and the sum of the
linear conductivitieso(r)+o)(r) of the grain and ad-
sorbed molecule should be replaced in &) by the linear A
conductivity of the grain itselfo(r). Repeating the above
derivations after the Eq42), we arrive at the following re- 1 1 1
sult for the effective Kerr conductivity:

3 _ <3><E2(r)|E(r)|2>m+(1_ ) (3 (EA(DIEN[*)q
Oe m T E02E0)]2 P)og EO2EO2

(49) e

where(---), and(---)4 stand for the averaging over the 10t b -
metal and dielectric grains, respectively, anff’ and o{*) "
are the corresponding nonlinear conductivities. Forntd@a ’
for enhancement of the cubic nonlinearity in percolating . AT
composites was previously obtained by Ahar8ngtroud 10 7 h
and Hui? and Bergman! A similar formula was indepen- " -
dently obtained by Shalaest al. to describe the Kerr en-
hancement in aggregates of metal parti¢fed?

Note thatE(®) in Egs.(6) and(43) is actually the average
macroscopic field that can be, in general, different from the

10 [ -

10" -

e <0

108 T T T

10% - .

101 ~

incident fieldE;,.. For the thin 2D films considered here in
the quasistatic limit, the macroscopic field is constant and
related to the incident field through the transmittaficas
E©=TE;, (see discussion in Ref. RB4Above we defined

Gl =16-10002 ___ -
4 =3.0. 103"

the enhancement factor as the ratio of nonlinear signals fron 0.3 1
a film with and without metal grains on it. This means that in

the denominator of expressiofd8) we should replace /?.Cum)

[E(O)]44b_y[Einc]4:[E(0)J4/T4; Egis gives an additional pref- FIG. 6. The average Kerr-nonlinearity enhancemeresl G|
actorT” in formula(48), if by E™ we mean the macroscopic and imaginaryG); parts on a silver semicontinuous film as a func-
field. (For a purely dielectric film without metal grains, we iion of wavelengths(a): G, (b): Gi. In all casesp=p,. The

can setTy=1 andE(?=E;,..) For the sake of simplicity, open triangles correspond to the positive val@s>0 and G,
hereafter we omit this prefactor associated with the transmit=0; the solid triangles stand for the negative val@s<0 and

tanceT. To take it into account one should do the aboveG), <0. The film sizes are 522512.

replacemenE(®)— E(®)/T in the denominators of the follow-

ing formulas for the enhancements of nonlinear optical profman scattering is determined by the averaggedsf, which is

cesses. phase insensitive, the upper limit for the enhancement is re-
According to Eq.(48) the value of the Kerr enhancement alized in this cas¢see Eq.(33) and the accompanying dis-

Gy is proportional to the fourth power of the local field cussior. In accordance with this, our results of numerical

averaged over the sample. This is similar to the case o$imulationd**® are well described by the scaling formula

surface-enhanced Raman scattering having the enhancemé&ad).

factor*36 Below we present results of our numerical simulations for

the surface-enhanced Kerr-nonlinearity in a semicontinuous

metal film at the percolation threshold. We used forn{dB

for calculating the enhancement; the local fields were found

following the numerical procedure described in the previous

(Note that in Refs. 34,36 a different notati@k, was used for section. We generated an ensemble of 100 random films with

Ggs.) We note, however, th@by is complex, whereaGrs  the size 51X 512. In Figs. 6 we show the average enhance-

is a real positive quantity. Because the enhancement for Ranents for the real and imaginary parts of the Kerr-

(b)

_{ePEMIY
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nonlinearity enhancemenG, and G, as functions of the Coherent anti-Stokes Raman scattering is an example of
wavelengthithe data are given for silver filmsNote that for the FWM. In one elementary act of the coherent anti-Stokes
both quantitiesG, and Gy, not only the magnitude but also Raman process, the twe, photons are converted into one
the sign depends strongly on the wavelengithe positive @, and onews photon. Another example is degenerate
values are given by open triangles, the solid triangles repré=WM,; this process is used for the above mentioned optical
sent the negative valuggzor G, , the positive and negative Phase conjugation that can result in the complete removal of
values are close in magnitudes and their dependence on tRgtical aberration& In degenerate FWM, all waves have the
wavelength\ can be roughly approximated #6)|~\%, Same frequency ¢s=wi=w;) and differ only in their
where the exponend, =1.4+0.2. ForG.., the magnitudes propaga}tlon directions gnd, in general, in the|r'polar|zat|ons.
of the positive values are systematically larger than those fo}? @ typical OPC experiment, two oppositely directed pump

. i i i (1) (1)
the negative values; the wavelength dependence of the pog_eams, W'th f'el.d am(gl)'tuqu and E*, and a probg
tive enhancement&},>0 is approximated agj>0~\% beam, with amplitud&*<’ (directed a} some small angle with
g,=1.2+0.3, and the dependence of the negative enhancéses'pect to the pump beajnsesult n the OPC beam that
ments is approximated &8/, <0~\%, g,=1.6+0.3. The propagates against the probe beam, i.e., the wave Vectér
K ) A2 the new OPC beam generated in the FWM process is equal
strong enhancement of the Kerr nonlinearity toward the lon

wavelength part of the spectrum is due to the increase of th 3 kBSe:c;ulfsze. of the interaction aeometrv. the wave vectors of
local fields in this part of the spectrufaee Figs. B 9 y:

The real and imaginary parts & are responsible for the the beams satisfy the relatid +k; =k, +ks=0. Clearly,

enhancement of the nonlinear refractive index and absorg®" the two pairs of oppositely directed beams with the same

: : ; frequency o the phase-matching conditions are automati-
tion, respectively. The above calculations were performed, _ ! .
! pectively v Lalons wers p lly fulfilled making the OPC possiblfé.

however, in the quasistatic approximation which does noPaF iolici " he d d FWM
account for wave propagation effects. Still, the above results_ 70" Simplicity, we consider the degenerate
DFWM) process where all the components of the total ap-

can be used for a descrption of samples (et a1 IS GO el Teld ) < £+ £/ ) have the same ampituce
for a large(in comparison with\) multilayer system com- and polarizations. (;I')he gf)fegtlve r(g))nllnear conductividy-
posed of many subwavelength-size films such as the onedectric constantoe™ (s¢”'=i4mo"/w), which results in
considered above; then, the obtained formulas define the effl?® DFWM, coincides with the above considered nonlinear
hanced microscopic nonlinear responses for each layer of tHfgonductivity, which is responsible for the Kerr optical non-
multilayer system. linearity. Note also that the above nonlinear conductivity
According to the above calculations, the enhancement ig’ég) can be associated with either the metal-dielectric film
very large and reaches, on average, valud®®* atA~1 um itself or molecules adsorbed on it. We first assume the latter
(the enhancement further increases for larger wavelengthslo be the case.
Such strong enhancements for the Kerr nonlinearities in For coherent effects, including the ones discussed in this
semicontinuous metal films indicate their high potential forsection, the averaging is performed for the generated field
various applications based on largé® (or £{); for ex- amplitude(rather than intearlsibyor, equally, for the nonlin-
ample, optical switches. A semicontinuous metal film might€ar current in the systeft** As shown in the previous sec-
also be used as a Fresnel lens in different applications.  tion, the average nonlinear electric current, with the nonlin-
ear conductivity given by Eq.(41) is j©®(w)xol®
=c® Gy . The signal for coherent processes is proportional
to |j®|?|o{®|2. Thus we conclude that the resultant en-
So far we considered optical responses of a semicontintaancement for the degenergt® nearly degenerafén fre-
ous metal film to a single incident light beam. A number of quency four-wave mixing can be expressed in terms of the
nonlinear optical processes occur when several beams witenhancement for the Kerr conductivity as
in general, different frequencies are incident on a film. In this
paper, we consider four-wave mixingWM) as a typical 3 2
process of this kind. The FWM is determined by a nonlinear Grwm= 3
electric induction similar to Eq(37);"? o

B. Four-wave mixing

E2(r)|E(r)|?)?
=|GKIZ=%- (52)

If the nonlinear conductivity®) is due to metallic grains
DY (w) =2}, o —wsi 01,01, — w)EFEIVEF?, in the film (rather than due to the adsorbed nonlinear mol-
(51 ecules, the formula(52) should be replaced by

wherews=2w;— w, is the frequency of a field that is gen- ,KEX(DEN)?)?

erated as a result of the wave mixing, is the frequency of Grwm=P TEopE (53

the incident waves with the amplitud&$') andE’"), and

w, is the frequency of the incident wave with the amplitude[See also Eq(49).]

E(®). Note that the induction in Eq51) is proportional to the The numerical calculations for FWM were performed as
complex conjugate of the applied fielf?) which indicates above for 100 random samples of the XI®12 size each. In
that the generated wave can be thought of as a time-reversé&igs. 7 we show the average enhancent@gj,, as a func-
E) wave; this effect of the optical phase conjugati@PQ tion of the wavelength ap=p.. The calculations were per-
makes possible the restoring of the wave phase-front. formed based on formulg?2). Similar to the Kerr effect, the
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107 . T , tric field E,(r) excited in a film by the external fiel&(®)
generates the nonlinear current
. ol J8u(r) =053 (NELNELD), (56)
10 a® 1 . . .
«i& with frequency 3, which flows in the layer of the adsorbed
B ./A"A molecules. This current in turn interacts with the film and

108

108

generates the “seed” electric fielgt frequency &) with
the amplitude given by

aS(r)

asa(r)

iSu(r)
asa(r)

ES(r)= E2(NE,(r), (57

Grwa = 1.6 109022 ——= ] . . o
M whereo{!)(r) is thelinear conductivity of the adsorbed non-

A linear molecule at the frequencyw3 The electric field

ES)(r) can be thought of as an inhomogeneous external field

104 L L L that excites the film at the frequency. The THG current

0.3 L 3. i$)(r) generated in the film by the seed fi&®)(r) can be
A(um)

found now in terms of the nonlocal conductivity defined by
FIG. 7. The average FWM enhancem@&,,, on a silver semi-

Eq. (7) as
continuous film as a function of the wavelengttpat p.. The film
sizes are 512 512.

i200= [ BB ar, (58

average enhanceme@gyy increases toward the infrared whereS;,, is the nonlocal conductivity at frequency»3and
part of the spectrum, reaching giant valued0® at \~1  the integration is over the entire film area. For the macro-
um (it keeps increasing further toward larger wavelenpths scopically isotropic films considered here the average THG
The increase with decreasing wavelength can be roughly agurrent (j$)(r)) is collinear with the average fiel&y)
proximated asGpyy~A\Y, whereq=2.2+0.2. The depen- :(E(33a2(r)>. Thus we can write the average current in the
dence on the film size will be discussed below in the lasform

subsection of this section. The above results indicate that

semicontinuous films can be used, in particular, as a phase EO

restoring material because of their high efficiency in the de-  (j$)(r))= %([Eg-jgj(r)])

generate FWM resulting in the optical phase conjugation. 30

ES) 1
- E0?2 A

C. Third harmonic generation J’ E%%S;,w(r,r’)Egﬂ(r’)drdr’,
We consider now higher harmonic generations in semi-
continuous metal films under the action of the incident wave (59

with frequencyw, and we begin with the third-harmonic . : . .
generatio(THG). The THG process is due to the third-order where the integrations are again over the entire Are&the
film and EQ2=(ED.EDY). The integration over the coor-

nonlinearity. The corresponding average nonlinear current, )
that results in the generation of a signal with frequenay 3 dinater gives

has the form ©

E
i3 )y = 2 E®
(50000l EGEDES, (59 U= g (7D El0) B0, (€0
where E(? is the amplitude of the incident wave with fre- Whereas,(r) is the linear film conductivity at frequency.3
quencyw ando$Y,, g, s is the effective nonlinear conductiv- andEs,(r) is the local field induced in the film by the uni-
ity. The nonlinear conductivity'S), for THG in an isotropic  form field EX) oscillating with frequency 8.
medium can be expressed in terms of only one independent When the frequency @ is within the band of plasmon
constant so that the nonlinear current can be writtéh(ase ~ resonances, i.e..a< wy the fieldEs,(r) is also a subject of
also discussion at the beginning of Sec. IV A giant fluctuations. Substituting in E¢0) the expression for
the nonlinear fieI(E(33w)(r) defined in Eq(57), we obtain the
(jgf’j(r)>=a(33ljeE(m°>2Eﬁf), (55) following equation for the THG current:
where o), is the (scalay nonlinear conductivity; frequen- .3, . ﬁ a)(r)
cies of the fields and currents are shown in the subscripts. (J5u(r)= E02 730(T) o (1)
We assume that adsorbed molecules with nonlinear con- se se
ductivity ¢§(r) result in THG from a film. The local elec- (61)

[E3w<r>~Ew<r>]Ei<r>>.
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From this equation it follows that the average nonlinear cur- {03, (NE,(NELA(1))|?

rent(j$)) resulting in the THG process can be expressed in GrHe=—— 3016

terms of thelinear local fieldsE,(r) andE;,(r) which are ol EL|

generated in the film by the uniform external fielﬁg’) and (83,(NE(NEL2()|?

EQ respectively. _ D83l e , (65)
In the absence of metal grains, we can neglect the fluc- 8§|E500)|6

tuations and the field&(r) and E3,(r) coincide with the

fields E(?) andEY), respectively. Therefore, for a film with

no metal grains on itbut with nonlinear moleculgswe find

Note that in a macroscopically isotropic semicontinuous
metal film the surface enhancements of the THG given by
Egs.(64) and (65) do not depend actually on the amplitude
of the external fiellE'®). The fieldEL) in Eq. (64) is in a

0(33)(r) sense imaginary; it serves as a linear source of the fluctuating
(iSuo(N)=E)od —7— | (ES-ED), (62 field Eg,(r) and the amplitude of the field{) can be cho-
036(T) sen arbitrarily in calculations of the THG enhancement in

Egs.(64) and (65).
whereoy= —i we4/4 is the film linear conductivity withno ~ In Figs. 8 we show the average enhanceméigs as
metal grains, i.e., the conductivity of the dielectric substratefunctions of the wavelength which are calculated using Egs.
As pointed out in the previous subsection, the nonlineat65 and(64) [Figs. 82) and 8b), respectively. Note that in
current(electric induction should be averaged for coherent Calculating the mean third and second harmonic signals we
effects to find a signal from the system. The generated 3 first found the generated intensity for each film separately

signal is proportional to the average current squared@nd then averaged it over random samples. As for the pro-
|<j(33 (1)|2. Accordingly, the factor characterizing the C€SS€S considered above, the enhancements strongly increase

surface-enhanced THG is given by toward larger wavelengths reachinglat3 um the values
~10" and~ 10>, for the cases of Eq$64) and(65), respec-
tively. The wavelength dependence of the THG enhancement

(j(33 () 2 in Egs.(64) and (65) can be approximated &g~ \Y, g
THG= % ) (63) =3.9+0.2 andGrys~\Y9, q=2.1+0.2, respectively(See
(I300(r) also the discussion on the scaling in the dependenGerp

on the film size given beloyw.Note that the enhancements

As above, we assume that the adsorbed molecules possessfRf THG are significantly less than those in the case of four
nonlinear conductivity cover the film homogeneously so thatVave mixing, despite the fact that both processes are due to
Ugla))(r):(r(glw) and Ugs;}(r)zg(gsw), i.e., both arer indepen- the same, third, order of nonlinearity. This is due to the par-

dent. Then substituting Eq&1) and (62) into Eq. (63), we tia[ly destructive inter_ferenc.e of the local fi_elds at different
obtain the folowing equation for the enhancemeny,s of - FRCR S8 S8 16 EEETE BEGRRER LB IR
the THG process in semicontinuous metal films: that predicted by the upper limit in E¢81).
As follows from Egs.(61) and(62), in the case when the
(030(F)[Esu()-E (r)]EZ(r)>‘2 generated fieldE,(r) does not excite the plasmon reso-
@ “’ @ @ nances in the film and the 3 field is uniform, Eg,(r)
| =EQ), the local current§{3)(r) andj$)y(r) depend only on
2 the local conductivities and fields at the same poirn the
<83w(r)[E3w(r)‘Ew(r)]Ei(r»‘ (64  ed and, especially, infrared parts of the spectrum, the distri-
eq(EYQ)-ED)ED?2 : bution of [j$)(r)|?«|E,(r)E,2(r)|?> consists of spatially
separated large peaks that can be probed independently by
means of near-field scanning optical microscopy. This means
that in this case we can consider the spatial distribution of
the local third-harmonic signals,,(r)=|j$)(r)|? and the lo-
cal enhancements for THG defined as

Grhe=

o4(ES)-E)ED?

whereas,(r), o4 andes,(r), 4 are the linear conductivi-
ties and dielectric functions of the film with and without
metal grains, respectivelffor clarity, we also indicate the
frequenciesw and 3w in the subscripts The local fields in
Eq. (64) resulting in the surface enhancement for the THG (3), 1|2
experience giant fluctuations in the spectral range corre- sz(r)‘ _
sponding to the plasmon resonances, i.e.,d»ecrw;, 3w jff)(r)’ N
>w, (see discussion in Sec. lIThis includes the optical, ¢
infrared, and far-infrared spectral ranges, where a huge efiwe should note that since THG is a coherent process, the
hancement of the THG can be observed in semicontinuousverage enhanceme@ s cannot be found by simply av-
metal films. eraging gryc(r).] In Fig. 9, we show the distribution
When the frequencyw of the incident wave is large g,c(r) for the surface-enhanced local THG signals at two
enough so that the third harmonic frequeney 3 out of the  different wavelengths\ =0.5 um and\=1.5 um. We can
spectral range of the plasmon resonances, i®> &y , we  see that the local THG signals consist of spatially separated
can neglect the fluctuations of thev3ield in Eq.(64) and sharp peaks, as expected. The local enhancements can be
this equation simplifies to huge, up to 18, for the chosen wavelengths. The spatial

E.(NE(N|*

w3w(r)|2 (66)
EOE(0)2 ‘ '

O'd‘

OrHe(r) =
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108 |- /.A‘A . FIG. 9. Spatial distributions of the local THG enhancements
,/'/A Orua(r) for A=0.5um (@) andA=1.5um (b) at p=p;.
/./" & frequency. However, this is not the case for nearly degener-
Grae 104 7 A - ate FWM, when all the waves have slightly different fre-
e A A guencies and the enhancements are especially large.
- There is no simple formula for the local THG signal when
an ) o
A the frequency of the third harmonic is less than the renormal-
ch i ized plasma frequencya3< w; . In this case, the THG am-
Grag=3.6-105039 oo plitudes excite the giant field fluctuations ab Jrequency,
so that the THG field experience the additional enhancement
AA considered above. Still, in this case, we can also anticipate
1 L 1 L highly localized sharp peaks for the local field intensities at
0.3 L 3. frequency 3 that can be probed using the methods of near-
) l(,um ) field optics.
FIG. 8. The average THG enhancem@&j,g on a silver semi- D. Second harmonic generation

continuous film as a function of the wavelengthpat p.. (a) No dh . . . i
additional enhancement associated with the excitation of the film Second harmonic generati¢BHG) is a nonlinear process

resonances ata (b) the additional enhancement is included. The '€Sulting in the generation of the signal at double frequency
film sizes are 512 512. 2w when light with frequencw is incident on a system. The

second harmonic wave is generated due to the nonlinear cur-

positions of the hot zones for the local nonlinear scatteringentj®’(2w) which is expressed in terms of the amplitude of
associated with THG are very sensitive to the frequency othe macroscopic fiel&(®)(w) at fundamental frequenay as
the incident light. We emphasize again that the enhance-
ments in the peaks significantly exceed the average back- jP2w)=02); (20)EY (0)EY (o), (67)
ground enhancement. As above, the reason for this is, in part,
the destructive interference between generated fields in difvhere a,gﬁﬁy(zw) is the tensor of the effective nonlinear
ferent points, and, in part, the fact that the peaks are sepaonductivity responsible for the SHG procef¥ote that in
rated by distances significantly larger than their spatial sizeghis subsection we put frequencies in the arguments of the

For a frequency-degenerate coherent process, such aensidered quantities to avoid awkward indigeEhe exis-
DFWM, one cannot find the local enhancement in such dence of the SHG conductivity applies some restrictions on
simple way as above. Also we note that for frequency-the symmetry of the system. For example, the tensor of the
degenerate nonlinear processes on random semicontinuonsnlinear conductivity is equal to zero for centrosymmetric
films one probably cannot distinguish in experiment the locamedia’? As a result, a relation between the SHG current and
nonlinear field from the local linear field at the same point;microscopic fields cannot be reduced to a simple vector form
this is because both linear and nonlinear fields have the san@s in the case of the THG and FWM processes considered
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above.[Note that usually the phenomenon of SHG is de- EO(2w)
scribed in terms of the nonlinear dielectric functief? (i'P2w,r))= o3 ([EQ20)-j?(2w,r)]).
=i470?/(2w);"? however, we will keep the concept of E©2(20)
nonlinear currents and conductivities chosen for this paper, (72)
which is completely equivalent to the concept of nonlinearSubstituting in the above equation the expression for the cur-
polarizations and dielectric functiorisusceptibilities ] rentj®(2w,r) from Eq.(70), we obtain

We will assume that a semicontinuous metal film, which
is macroscopically homogeneous and isotropic, is covered by EQ(2w)

a layer of the SHG-active molecules. Then the local electric (j'®(2w,r))=
field E(w,r) excited by the external fiel#(®)(w) generates

E(O)Z—(ZQ;)< f By (20)S,p(20,1,1")

linear and nonlinear current§(w,r) andj®(2w,r) in the 2
. . . O 55 20)

adsorbed molecules. The nonlinear current is expressed in X E (w,r")Esw,r’),dr’
terms of the local fieldE(w,r) in the following way: oP(2w) | 7

H 0

iSa(20.0 =0, 20 0NE (@), (69 - B0 2 [ ezws 2o )
where 03} (2w) is the nonlinear conductivity of the mol- E©%(20) A
ecule layer which is responsible for SHG. For the sake of @ (o
simplicity, we assume that the SHG molecules cover a semi- T5ys(20) E_ (0.1 )Ex(w,r').dr,dr’
continuous metal film uniformly and, therefore, the linear oBw) | T T T

and nonlinear conductivities of the molecular layét and
o are independent of the coordinatan the film plane. 79
We also assume that the linear conductivity}) is a scalar. where both integrations are over the film afealntegrating
The nonlinear current given by E@68) excites the seed EQ.(73) overr and using the symmetry of the nonlocal con-

electric field with frequency @, ductivity [see Eq(9) and the accompanying discussjowe
obtain
i202wr) |[d? (2w
EZ(2w,r)= Js”zl() = ‘Zf)y( ) Ep(w,N)E(w,r), EO(20) 1
c’(2w) | 07 (2w) (iP2w,r)y=——— —f o(2w,1E(2w,r)
(69) E@2(2¢) A
where Y)(2w) is the linear conductivity of the adsorbed @ (20)
molecules at frequencyd2, which is assumed to be a scalar. ‘Zi’— E(w,rEsw,r)dr
We consider the electric fieIEI(sz)(Zw,r) as an external non- o7 (20)

uniform electric field that excites the local current 0)
j'*“(2w,r) in a semicontinuous film at frequencyw? This =— " { 6(2w0,n)E (2w,r)
current can be found using the nonlocal conductivity matrix E©2(2w) ¢

defined by Eq(7); this gives

Teis 20| (o) ), (78
TN wl w! L
j(j>(2w,r)=fsaﬁ(zw,r,r')Eg?(zw,r')dr' oV2w) | ? 4
where the fielcE (2w,r) is the local field excited in the film
= | s, .20,r,1") by the uniform external fielE©(2w) and o(2w,r) is the
aﬁ( w,T, : . .. .
(linean local film conductivity at the second harmonic fre-
0_(2) (20) quency.
Byd E.(w,r")Es(w,r'),dr’ For the following consideration it is instructive to present
cdV2w) | 7 the local fields as E(w)=e(w)E(w) and E(2w)

(70 =e2(2w)_E(2w), wheree; and e, are real unit vectors of
polarization[ (e;-e;)=1, (e,-&,)=1]. Then Eq.(74) can be

where the integration is over the entire afeaf the film. As  rewritten in the form

above, the summation over the repeating Greek indices

(which take values 1 and 2 in the considered 2D kase 0 EQ(2w)

implied. The second equality in the above equation is ob- (i?2w,n)=

. . . . (2) E(O)Z(Zw)
tained by substituting the fiel&sy(2w,r) from Eg. (69).
Now we introduce the uniform probe field X{(o(2w,1) n(w,NE(2w,NE* o,r)),
EQ(20)=(E(20,1)), (7D) (79

where(- - -) denotes, as above, the average over the filmfvhere the functiony(w,r) is defined as

areaA. Since we consider macroscopically isotropic semi- o2 (20)
continuous films the average no_nlm)ear currgft)(2,r)) n(w.r) = Cziv— €20(20,1)e15(w,1)Ey (0,1).
has the same direction as the fi@)(2w), and it can be o'V (2w)

written as (76)
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Since all fluctuating quantities in E¢¢6) are of the order of T T 7
unity it is plausible to suggest that the functiapr) fluctu- A
ates over the film much less than the local field amplitudes 10t & _
E(w,r) andE(2w,r). There is also no reason for the zeros Gsng = 1.1- 102247 -
of the function n(r) to coincide systematically with the A
maxima of the amplitudes. Therefore, for the estimation of s 7
the order of magnitude one can use the decoupling procedur 10 r S a 7
and replacep(w,r) by its average value which we denote as G

7(w)=(7(w,r)). Then Eq.(75) for the second-harmonic Gsne /
current acquires the simple form 10?2 - / ~

EQ(2w) -~

) S

i(2) = 7
<] (Zw,r)> E(O)z(zw)n 101 N ; |

X{o(2w,1E(2w,rE*(w,r)). (77 N

In the absence of metal grains there are no local field fluc- -,/ a
tuations. Under the same assumption, as above the nonline. 0.3 1 3.

current is equal to '
(@) A(um)

_ EQ(2w) 7
®(20)= £9%(20) 70(0) 7 4E D (20)E % w), . ' 7
(78) 4
where ng(w) =[ '3}/ oM ]esn,108€10, . ande;andey, are s <
the unit vectors of the polarization of the fiel#$”)(w) and 10 £ ]
E©(2w), respectively. n
The enhancement factor for SHG is given by the modulus 3
squared of the ratio of the average nonlinear currents witrGSHG 16° )
and without metal grains[cf. Eq. (63)] Ggue= J T
(iP(2w,r))|2j?(2w)|?. Assuming that the ratigy/ 7, is N
of the order of unity we obtain the following estimate for the s oa
SHG enhancement: S a

|<<r(2w,r)E2(w,r)E(2w,r))|2 VS
Gepye~ . 79 i
T ool [EO () 1EC (20)]? 79

. . |
In the case when the second harmonic frequency is above tr 0.1 03 1' 3'

renorrr_]alized plas_ma frequency, i.ew2wy [Eq. (2)] the . /1( )
local field fluctuations can be neglected at frequenay. 2 (b) Hm
Then the local fielE(2w,r)~E®(2w) and the surface en-
hancement for SHG simplifies to

Gspg = 8.3 - 102081 —-—--

FIG. 10. The average SHG enhancem@agt,¢ on a silver semi-
continuous film as a function of the wavelengthpat p.. (a) No
5 2 additional enhancement due to excitation of the film resonances at
{o(20,NE(w,1))]| 2w; (b) the additional enhancement is included. The film sizes are

Gste™ I 2IE@(w)[* 80 55512,

The enhancement of the SHG process given by E$.and  can be approximated by power-law expressions with indices
(80) does not depend on the amplitudes of the fields4.7+0.3 and 6.1 0.4, for the above two cases.
E®)(w) andE(®)(2w) for the macroscopically homogeneous  Similar to the consideration of the local THG in the pre-
and isotropic random semicontinuous films considered herevious subsection, we can calculate spatial distributions of the
These fields can be taken as arbitrary for the computer simdecal SHG signals, provided that the generated frequency is
lation of the local fieldsE(w,r) and E(2w,r) excited by outside of the film resonance band, so that the local current
EQO(w) andEQ(2w). i®(2w,r) depends only on the local conductivities and
In Figs. 1Ga) and 1@b), the average enhancemefgs,; fields taken at the same point As above, in the red and,
found from Eqs(80) and(79) are shown as functions of the especially, infrared parts of the spectrum, the distribution of
wavelength(As above,p=p., the film sizes are 512512,  |j®(2w,r)|?x|E(2w,r)|? consists of very large spatially
and the results were averaged over 100 realizations of theeparated peaks, which can be probed independently by
system. As seen in the figure, the enhancement increaseseans of near-field scanning optical microscopy. Thus, it is
toward the infrared part of the spectrum reaching valuesmportant to consider the spatial distributions of the local
~10* and~10° at A~3 um, in the first and second cases, SHG signalsl,,(r)=<|j®(2w,r)|?> and the local enhance-
respectively. The corresponding wavelength dependenciasents for SHG, defined as
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the enhancement is anticipated to depend on the film size. In
Fig. 12, we show results of our calculations of enhancements
for the nonlinear optical processes performed for different
film sizes. We used three different ensembles in these calcu-
lations consisting of 100 samples of 54812 size, 400
samples of 258 256 size, and 1600 samples of 2828
sizes. In Fig. 12, we plot the “scaled” enhancements
GM(L)(L/Lg)%, wherel,=512 as in the above calculations
(the results shown with trianglesL = 256 (circles, and L
=128 (crosses The following nonlinear processes are
shown in the figure: 1@ FWM (a=2.2 was used to col-
lapse the data on the same cyrvé2(b) and 12c): THG

with and without the “additional” enhancement at the gen-

FIG. 11. Spatial distributions of the local SHG enhancement£rated frequency @ (a«=2.1 anda=2.0 were used, respec-

gsuclx,y)
\;
2.0 x10°

1.0 x10*

gsua(r) for A=0.5 um atp=p. tively); 12(d) and 1Ze): SHG with and without the “addi-
tional” enhancement at the generated frequenay Qo
(20,12 E(w,1)|* = 2.0 for both cases Similar calculations for the enhanced
Osuc(r) = ’ ’ ) (82) Kerr nonlinearity (not shown give a=1.1 for |G|, «a
|ogl 2| E@(w)|* =0.7 for Gk>0, anda=1.4 for G;<0. (Note that forGy

In Fig. 11 we show the SHG distributioggug(r) at A the calculati_on; show large deviations of the average values.
—0.5 um. We can see that the local SHG signals are formed h€ above indicated values af were used to provide the
by spatially separated sharp peaks. The local enhancemerit§St collapse of the data for different sizes However,
can be huge, up to $01t is interesting to note that the Within the standard deviation, all the results can be roughly
average enhancement for SHG is smallAat0.5 um it is  expressed as
only of the order of 10, whereas the local enhancements can G(Moc| 2 82)
be very large. As in the case of the THG process, this is due '

to the destructive interference of the fields generated fronfor parametric processes, such as FWM and THG-8),
different points of the film and large spatial separations ofand SHG A=2), and

the peaks. The spatial positions of the hot zones for the local

SHG signal are sensitive to the incident wave frequency, GyoxL™? (83
which is the same as for the above considered nonlinear pro- ) . .
cesses. for the nonparametric process, such as nonlinear refraction

Note that when SHG is very efficient, the energy associ2Nd absorption described by the Kerr susceptibility.
ated with the nonlinear currefj{2w) can be transformed We should stress that the number of different sizes of the
back t0j(w) due to the same nonlinear conductiviy? ~ Semicontinuous metal filmL(=128, 256, 512) investigated
which provides the SHG. This would result in nonlinear cor-Py the c_omputer experlment is not enough to make definite
rections to the absorption and refraction, an effect which wa§onclusions about the indexes or to attempt to develop
described above in terms of the third-order nonlinear conSOMeL-A scaling for the enhancements of the various non-
ductivity o responsible for the Kerr effect. This is an ex- Imea_rmes originating from the giant fluctuations of the local
ample of the so-called cascaded nonlinearities that simulalfée".j in thg films. Yet thg above resu!t; can b.e considered as
with @ the optical effects typically associated wigh®.”? a0 indication that there is a destruct'mm parl? mterfergncg
This phenomenon is very important for a number of applica-between the well-separated peaks in the_ field d!strlbutlons;
tions in nonlinear optics, such as'?-based materials for these peaks often represent morphologically disconnected
optical switches and soliton localizatiéh.Semicontinuous parts of the same antisymmet(ir partially antisymmetric

metal films providing very strong enhancements for secondr-’nlc’de’wSO thit thﬁlrl cgntilk:)uttl?hns cr?ncel e?]C? <r)1therl "r]] Ft)ﬁr'?'
order optical nonlinearities can be considered as candidatéoéso’ € can concluge that the phase-conerence lengin 1S
for advanced optical materials with large cascaded nonlin¢0MParable or larger than the size of the samples used in our
earities calculations. Because Raman scattering is a local effect and
In our above calculations of the optical nonlinearities wethe eqhancement given by H&O) depends only on the field
used samples of the same size, SE12. Below, we show magnitudegbut not their phasgsthe enhancement for Ra-

that the enhancements for nonlinear optical processes scal ﬁn scattenng dqes not 'deper)d on the size of the sample.
with the film size. is was verified in our simulation@ot shown.

We also note that the above results on the size effect for
the enhanced nonlinear optical processes in a semicontinuous
film are different from those obtained previously in
fractals?* For fractals, because of the localization of the

Different peaks in the field distributiorisee, for example, modes, different hot spots in most cases are not phase corre-
Fig. 3 correspond to the fields that can have correlatedated, and the enhancements do not depend on the size of the
phases and therefore can interfere. This implies that thereample. To verify this, we recently performed calculations
may be a characteristic phase-coherence lehgthhich is  (similar to those described in Ref. Rfor fractal small-
larger than or comparable to the size of the film. In this caseparticle aggregates and for self-affine films with very differ-

E. Size-effects for nonlinear optical processes
on a semicontinuous film
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FIG. 12. The “scaled” enhancemen®&™(L)(L/L)“ for various nonlinear optical processeg=512 (triangles, L = 256 (circles, and
L=128(crosses (a) FWM (a¢=2.2), (b) THG with an additional enhancement ab3«=2.1), (c) THG with no additional enhancement
(a=2.0), (d) SHG with an additional enhancement ab 2a=2.0), and(e) SHG with no additional enhancement2.0).

ent sizes; the calculations showed that in fractals there is nmfrared and far-infrared spectral ranges we can find a family
size effect similar to the one described above for semiconef metal clusters so that each cluster from the family pos-
tinuous metal films, at least for fractal samples with the numsesses a plasmon resonance. The amount of metal grains

ber of particles up tdN=10 000 used in our simulation. comprising these resonance clusters is negligibly small in
comparison with the total number of metal grains. Neverthe-

less, the resonance clusters densely cover the entire surface
of the film due to their fractality. The incident light excites

In this paper we studied surface-enhanced optical nonlinthe resonance clusters and they interact with each other. As a
earities of random metal-dielectric film@lso referred to result, the local field is concentrated in sharp peaks placed in
throughout the text as semicontinuous fijmg/e showed some subset of the resonance clusters. The amplitudes of the
that electric fields in such films consist of localized sharppeaks and the average distances between them increase to-
peaks resulting in very inhomogeneous spatial distributionsvards the infrared.
of local fields. In peakghot spot$, the local fields exceed The strongly fluctuating fields associated with the sharp
the applied field by several orders of magnitudes. Thesgeaks in various random parts of a film, result in giant en-
peaks are localized in nm-sized areas and can be associateancements of nonlinear optical processes since they are pro-
with the plasmon modes of metal clusters formed in a semiportional to the enhanced local fields raised to a power
continuous film. For any particular frequency in the visible higher than 1. Because of such a pattern for the local field

V. CONCLUSIONS
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108 T T T - tive (in par) interference between the local fields in different
7 parts of the film results in the decreased average enhance-
s ments. Note that the latter mechanism of the destructive in-
7 terference is not important for incoherent processes, such as
Gsuo()) = T4+ 102)51 o o Raman scattering. Both the local and average enhancements
104 |- £ - for nonlinear optical processes strongly increase toward the
ﬁﬁ long-wavelength part of the spectrum.
/ Since the applied(fundamental and generated fields
G S8 have, in general, different frequencies and polarizations, they
SHG /8 excite different eigenmodes of the film so that the field spa-
10% - S8 N tial distributions for the fundamental and generated waves
s 8 are different as well. Accordingly, the spatial positions of the
7 hot spots at the fundamental and generated frequencies are
A Qéﬁé ) located, in general, in different parts of a film. This picture is
a .8 7 & expected to be typical for various optical processes in
1 _og 7 & 1 strongly disordered systeris® such as the random semi-
N4 continuous films studied hefsimilar field patterns also oc-

XA . 1 cur, for example, in metal fractal aggregateand self-affine
0.3 1 3. thin films®¥). Specifically, hot spots associated with fields at
@) i(,um) djfferent frequencies gnd polarizations are localized in spa-
tially separated nm-sized areas. Note also that because the
FIG. 12.(Continued. hot spots are localized in nm-sized areas and provide giant
enhancement in their locations, a fascinating possibility of
nonlinear spectroscopy of single molecules on a semicon-

distribution, the nonlinear signal is mostly generated fromt. wal film b feasible. Th tical ef
very small nm-sized areas. The corresponding spatial distrignuous metal fim becomes teasible. These nanooptical et-

butions for the generated fields also look similar to a set o{eCtS can be probed, for example, with near-field scanning

very sharp peakgactually, even sharper than those for theo_ptical microscopy providing subwavelength spatial resolu-

field at fundamental frequengyThe enhancement in these on.

peaks is much largeiby several orders of magnitudéhan ACKNOWLEDGMENTS
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