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Bound state in a one-dimensional quantum sine-Gordon model

Qingshan Yuan and Yuguang Chen
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, People’s Republic of China

Hong Chen
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, People’s Republic of China

and Institute of Theoretical Physics, Academic Sinica, Beijing 100080, People’s Republic of China

Yumei Zhang
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, People’s Republic of China

~Received 5 May 1997!

The impurity problem in a one-dimensional quantum sine-Gordon model is studied in this paper. We use an
analytic self-consistent theory to derive the excitation spectrum of the global sine-Gordon model, and then to
study the bound state induced by local impurity. We give the conditions where an impurity level exists within
the global gap of the excitation spectrum and show the possibility of the existence of a threshold value about
the model parameter.@S0163-1829~98!03703-5#
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Doping effects on one-dimensional spin chains have
tracted great interest in recent years. For example, exp
mental and theoretical studies indicate that doping stron
affects the transition temperature and magnetic energy ga
the spin-Peierls compound CuGeO3.1,2 As another example
the bound state due to off-chain impurity in anS51 Heisen-
berg spin chain has recently been studied theoretically
some authors.3–5 In Ref. 3 the Schwinger-boson approach
used to find that when the bond-coupling deviation excee
threshold there exists a bound state and the impurity leve
always located in the middle of the Haldane gap. Other
sues exist in Refs. 4 and 5. In both of them the numer
density-matrix renormalization-group method is used and
conclusion that the impurity energy level changes gradu
as the strength of impurity bond changes is reported. So
concrete computational results, such as the value of thr
old, etc., are given in both of them, however, the results
not absolutely coincide. So there still exist some uncl
points about doping behavior in the spin system.

On the other hand, it is well known that the spin-Peie
system and theS51 Heisenberg spin chain can all b
mapped onto a one-dimensional~1D! sine-Gordon ~SG!
model via Jordan-Wigner transformation and bosonization6,7

Therefore, it is quite interesting to discuss the doping effe
on these systems in the frame of SG model. Moreover,
SG model can also describe many other one-dimensi
systems, such as the 1D Luttinger liquid,8 the 1D Kondo
array model,9 etc. Recently numerical work regarding imp
rity in a Luttinger liquid has been reported.10 Hence, the
impurity problem in the SG model becomes a very import
and veryuniversalproblem. In this paper we plan to stud
the single impurity problem in the SG model analytical
We try to give some general conclusions and we beli
these results can be applied to various concrete model
rectly or after generalization.

Because of the difficulty of infrared divergence, the S
model itself is difficult to handle. The traditional perturbatio
approach becomes invalid due to strong correlation. T
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renormalization-group~RG! theory can give scaling flow o
the model, however, it is difficult for it to give much othe
useful information, such as excitation spectrum, etc. R
cently a quantum self-consistent theory11 was developed to
discuss the SG model. With it the infrared divergence
effectively treated and the energy gap in the spectrum ca
obtained self-consistently. Here this method is used to t
SG model as a first step. Then the method is extende
treating the impurity problem in the SG model and the co
ditions for an impurity level within the gap are derived.

We start with the following Hamiltonian:

H5H01H imp ,

H05E dx$@P21~¹f!2#/2

2~a0 /e2b0
2!cos@b0f~x!#%, ~1!

H imp52~a1 /eb0
2!cos@b0f~0!#2a2eP2~0!.

Here H0 is the usual global SG model Hamiltonian.H imp
contains two terms, representing the impurity interacti
The first term inH imp describes the large momemtum tran
fer scattering, while the other describes small moment
transfer. Indeed, these two terms affect only the even pa
components of the fieldf(x) and they do not break the
reflection symmetry. The termf „¹f(0)…, which affects the
odd parity components and breaks the reflection symme
is not considered in this paper, since we assume that
impurity is symmetric with respect to the originx50 and the
model will keep invariance under the reflection transform
tion. e is a short-distance~ultraviolet! cutoff and the whole
model parametersa0 ,a1 ,a2 ,b0 are dimensionless con
stants, of whicha0 ,b0 are assumed positive. As a first ste
we treat the global SG termH0. Here we briefly outline the
procedures of self-consistent theory. In momentum space
first consider the following Bogoliubov transformation in o
der to treat infrared divergence:
1324 © 1998 The American Physical Society
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U5expF2(
k

~gk/2!~bk
†b2k

† 2bkb2k!G , ~2!

wheregk is given by self-consistent results below andbk ,bk
†

satisfies the standard boson commutator. As pointed ou
Ref. 12, the transformation~2! describes the real coordinate
amplification or reduction, similar to the idea of scalin
change in RG theory. Secondly we normally order the cos
term in H0 and expand it:

H̃05UH0U†

5(
k

$ukucosh2gk1@aexp~22gk!/~2e2uku!#%bk
†bk

1F(
k

uku~cosh2gk!/22a/e2b0
2G

2(
k

$ukusinh2gk2@aexp~22gk!/~2e2uku!#%

3~bk
†b2k

† 1bkb2k!/2, ~3!

where

a[a0j5a0expF2S b0
2

4 D(
k

exp~22gk!/ukuG . ~4!

The terms higher than quadratic are omitted in Eq.~3!.
Thirdly we select appropriategk in order to remove the non
diagonal term and give the following expression ofgk :

gk5~1/4!ln@11~a/e2k2!#. ~5!

Now H̃0 becomes a free field:

H̃05(
k

vkbk
†bk . ~6!

vk is the elementary excitation spectrum and written asvk

5Ak21M2. M is the global excitation gap or mass:M
5(a0j)1/2/e, j is given self-consistently as follows:

j5expF b0
2/8p

~b0
2/8p!21

ln~Aj1a0
211Aa0

21!2G . ~7!

From Eq.~7! we can see obviously that whenb0
2,8p, one

nonzero solution ofj can always be obtained, which mea
the SG model has finite energy gap. WhenjÞ0, we find the
higher-order terms that we have omitted in Eq.~3! are infra-
red convergent, which means theself-consistencyof our
theory. In the following we will study the impurity behavio
based onH̃0.

There are two terms relating toH imp . The second term is
quadratic and easy to handle, so we lay it aside firstly
just consider the first term. After transformation~2! the first
term in H imp becomes
in

e

d

H̃ imp,15UF2
a1

eb0
2
cos@b0f~0!#GU†

52
a1

eb0
2
cosFb0(

k

1

A2L

1

Avk

~bk1bk
†!G . ~8!

Normal ordering the above term and collecting the quadr
terms together we obtain

H̃ imp,15
a18

e (
kk8

~2Lvk!
21/2~2Lvk8!

21/2

3@~bkbk81bk
†bk8

†
!/21bk

†bk8#, ~9!

where

a185a1W,

W5exp$2~b0
2/2!(k~1/2Lvk!%

5@~11Aa0j11!/Aa0j#2b0
2/4p.

In Eq. ~9! the higher-order terms are omitted, just as we ha
done before. Here we have extended the self-consis
theory to the case where the local term is included. Af
these treatments the total Hamiltonian becomes quad
and we can cope with it conveniently. The total Hamiltoni
becomes~omitting constants!

H̃5H̃01H̃ imp ,
~10!

H̃ imp5(
kk8

Fa18~2e!21~2Lvk!
21/2~2Lvk8!

21/2

1a2eS vk

2L D 1/2S vk8
2L D 1/2G~bkbk81bk

†bk8
†

!

1(
kk8

Fa18e
21~2Lvk!

21/2~2Lvk8!
21/2

22a2eS vk

2L D 1/2S vk8
2L D 1/2Gbk

†bk8,

whereH̃0 is given by Eq.~6!. In principle, the Hamiltonian
H̃ can be diagonalized. To avoid searching for the com
cated unitary transformation, we try to transform the creat
and annihilation operators into canonical coordinates
momenta directly. Through constructing the equations
motion for canonical coordinates we can obtain the ene
spectrum of HamiltonianH̃, which is just what we want in
this paper. Transforming the creation and annihilation ope
tors into complex canonical coordinate and momentumQk
andPk :

bk5Avk

2 S Qk1 i
P2k

vk
D , bk

†5Avk

2 S Q2k2 i
Pk

vk
D , ~11!

we can obtain the following equations of motion:

Q̈k52vk
2Qk1S 2a2

p
21D a18

Le(k8
Qk81

2ea2

L (
k8

vk8
2 Qk8.

~12!
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Obviously the solution ofQk has the form ofeivt, v is just
the energy spectrum ofH̃. Noting that wave vectork takes
values 0,62p/L,64p/L, . . . when the periodic boundar
condition is assumed, we finally obtain the equation thav
must satisfy:

S 2a2

p
21D a18

Le
f 1~v!1

2a2e

L
f 2~v!51 ~13!

including the following definition:

f 1~v!5(
k

1

vk
22v2

, f 2~v!5(
k

vk
2

vk
22v2

.

As for Eq.~13! there may exist two kinds of solutions: th
single solutionv,M and a series of solutionsv.M . The
single solutionv,M represents an impurity level within th
gap of the SG model, which is just what we search for. Wh
v is constricted in the regionv,M , the functions
f 1(v), f 2(v) are continuous for largeL, so we can change
the summation inf 1(v) and f 2(v) into the integral and ob-
tain

f 1~v!5
L

2
~M22v2!21/2

f 2~v!5
L

pFe211
p

2
v2~M22v2!21/2G .

In the following we divide three cases to discuss in wh
conditions there exists the solutionv,M . Before going on,
we note the following fact: in our theory treating the glob
and local cosine term we just retain the quadratic terms
omit the higher-order terms after normal ordering. In Ref.
we have pointed out the results are satisfactory in the reg
a0,1 when the self-consistent theory is used to treat
usual global SG model. So in the following discussions
will restrict the model parameters in the relatively small
gions, in which we think our theory is valid. Two dimensio
less parameters are introduced:M̃5Me,ṽ5ve, of which
M̃5(a0j)1/2 is usually less than 1 whena0,1.

~1! a250,a1Þ0, Eq. ~13! is simplified into

a18522~M̃22ṽ2!1/25F1~ṽ !. ~14!

Graphic solution is shown in Fig. 1, where the bound-st
energy ṽ* is determined by the intersection between t
curvesF(ṽ)5F1(ṽ) andF(ṽ)5a18 . We find the condition
in which the solutionv,M exists isa1,0 ~noticeW.0).

~2! a150,a2Þ0, Eq. ~13! is simplified into

a25
p

2 F11
p

2
ṽ2~M̃22ṽ2!21/2G21

5F2~ṽ !. ~15!

Graphic solution is shown in Fig. 2. Similar to Eq.~1! we
find the condition in which the solutionv,M exists isa2
.0.

~3! General case:a1Þ0,a2Þ0, thoughf 1(v), f 2(v) are
all monotonously increasing functions, the left-hand side
Eq. ~13! may not be monotonous. There exists competit
n

t

l
d

2
n
e
e
-

e

f
n

between two parametersa1 and a2 in order to take on the
solutionv,M . We give the results in Fig. 3. There is only
shaded region where the solutionv,M exists. In the rela-
tively small parameter region as shown in Fig. 3, the sha
region is decided by the condition

a18,
2pa2M̃2

p22a2
.

The above results can be understood physically in
following description. In fact, roughly speaking, our trea
ment in this paper is equivalent to substituting the beginn
Hamiltonian by

He5E dx$@P21~¹f!2#/21M2f2~x!/2%1c1f2~0!

1c2P2~0!, ~16!

where the coefficientsc1 ,c2 are proportional toa1 ,2a2 re-
spectively. From the view of quantum mechanics, the ter
c1f2(0) andc2P2(0) can respectively give rise to ad po-
tential barrier or well, decided by the sign ofc1(c2). Here it
must be noted that onlyin the case of a well can there exis

FIG. 1. Graphic solution of Eq.~14!, a250,a1Þ0, M̃ is set to

1, ṽ* is the energy of the bound state.

FIG. 2. Graphic solution of Eq.~15!, a150,a2Þ0, M̃ is set to

1, ṽ* is the energy of the bound state.
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a bound state, corresponding to an energy level less than,
while in the case of a barrier it cannot appear. Therefore
order to obtain the bound state the locald potential must be
a well. It can be realized when the coefficientc1 or c2 is less
than zero, i.e.,a1,0 or a2.0 if only a single one of them
exists. When these two parameters exist simultaneously t
exhibits a competition between them to take on a well
barrier character. Only in some special cases, as show
shaded region of Fig. 3 can they combine to contribute t
well, which gives rise to a bound state.

There exist relations, as we mentioned before, betw
the 1D SG model and anS51 Heisenberg spin chain. W
may apply the present results to discuss the bound state
S51 Heisenberg spin chain. Generally speaking, a
Jordan-Wigner transformation and bosonization the impu
bond term in spin chain can be transformed into
bosonized form similar toH imp in Eq. ~1!. But the parameters
a1(or a18) and a2 in H imp are now not independent. It i
reasonable to think that they are all proportional toJ82J,
whereJ8 is the impurity bond andJ is the exchange cou

FIG. 3. Graphic solution of Eq.~13!, shaded region represen

where Eq.~13! exists solutionv,M , M̃ is set to 0.5. The solid
curve represents the boundary of the shaded and unshaded re
and the long dashed line represents the assumed relation:a185a2.
a1c8 shows the threshold~see text!.
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pling. So there exists a proportionality relation betwe
them. In Fig. 3 the assumed linea185a2 is depicted; then we
can easily find the possibility of the existence of threshold
fact, if the slope of the line is within a certain range, the li
will always have two intersections with the boundary cur
of the shaded and unshaded regions. One is just the o
and the other~it may be beyond the scope of the figur!
shows the threshold. For example, in Fig. 3 the threshold
a18 is a positive numbera1c8 . This means whena18,0 there
always exists bound state, while whena18.0 it does not
appear always. Obviously, only whena18.a1c8 can the re-
gion where the bound state appears be reached. This is
similar to the previous results. Reference 5 tells us wh
J82J,0 the impurity level always appears in the Halda
gap, while whenJ82J.0 there is a threshold. When th
concrete quantitative discussion is carried out, the follow
two points must be considered: one is that, strictly speak
there exist minor differences between the impurity bond
its bosonized form andH imp in Eq. ~1!. The former may
embody something else besides the latter, so it needs a
eralization about the current Hamiltonian to exactly simul
the impurity bond problem in anS51 Heinsenberg spin
chain. Another is that the shaded region in Fig. 3 chan
with M̃ , which means it is related to the bulk paramete
a0 ,b0. A detailed quantitative discussion about the bou
state in a spin chain is beyond the present paper, and
leave it for further studies. Nevertheless, we think the Ham
tonian that we have studied in this paper provides a g
starting point and gives a simple and clear picture for
study of the impurity problem in a kind of 1D model.

In conclusion, we make use of an analytic self-consist
theory to discuss the bound state in a 1D SG model.
show the possibility of the existence of bound state and fi
it is decided by two parameters related to impurity term
Only when these two parameters locate in a definite reg
can the bound state show up. Furthermore, when these
parameters are not independent, the alternative param
must exceed some specific value, i.e., threshold value in
der to make impurity level exist within the SG global gap
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