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Bound state in a one-dimensional quantum sine-Gordon model
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The impurity problem in a one-dimensional quantum sine-Gordon model is studied in this paper. We use an
analytic self-consistent theory to derive the excitation spectrum of the global sine-Gordon model, and then to
study the bound state induced by local impurity. We give the conditions where an impurity level exists within
the global gap of the excitation spectrum and show the possibility of the existence of a threshold value about
the model parametefS0163-182608)03703-3

Doping effects on one-dimensional spin chains have atrenormalization-grougRG) theory can give scaling flow of
tracted great interest in recent years. For example, experihe model, however, it is difficult for it to give much other
mental and theoretical studies indicate that doping stronglyseful information, such as excitation spectrum, etc. Re-
affects the transition temperature and magnetic energy gap #ently a quantum self-consistent thebryas developed to
the spin-Peier|5 Compound CUGﬁ@ As another e)(amp|e7 discuss the SG model. With it the infrared divergence is
the bound state due to off-chain impurity in 8r 1 Heisen- ~ €ffectively treated and the energy gap in the spectrum can be
berg spin chain has recently been studied theoretically b btained self—conslstently. Here this method is used to treat
some authord=® In Ref. 3 the Schwinger-boson approach is SG model as a first step. Then the method is extended to
used to find that when the bond-coupling deviation exceeds §eating the impurity problem in the SG model and the con-
threshold there exists a bound state and the impurity level i§itions for an impurity level within the gap are derived.
always located in the middle of the Haldane gap. Other is- Ve start with the following Hamiltonian:
sues exist in Refs. 4 and 5. In both of them the numerical

density-matrix renormalization-group method is used and the H=Ho*Himp,

conclusion that the impurity energy level changes gradually

as the strength of impurity bond changes is reported. Some H0=f dx{[T1%+(V ¢)?]/2

concrete computational results, such as the value of thresh-

old, etc., are given in both of them, however, the results do —(ag! €2B3)cod Bodh(X) 1}, (1)
not absolutely coincide. So there still exist some unclear

points about doping behavior in the spin system. Himp= —(alleﬁé)coiﬂ()(ﬁ(O)]— a,€l1%(0).

On the other hand, it is well known that the spin-Peierls
system and theS=1 Heisenberg spin chain can all be Here Hg is the usual global SG model HamiltoniaH,y,
mapped onto a one-dimensionélD) sine-Gordon(SG) ~ contains two terms, representing the impurity interaction.
model via Jordan-Wigner transformation and bosonization. The first term inH;,, describes the large momemtum trans-
Therefore, it is quite interesting to discuss the doping effectéer scattering, while the other describes small momentum
on these systems in the frame of SG model. Moreover, thgansfer. Indeed, these two terms affect only the even parity
SG model can also describe many other one-dimensiongiomponents of the fields(x) and they do not break the
systems, such as the 1D Luttinger lig8idhe 1D Kondo reflection symmetry. The terf(V ¢(0)), which affects the
array modeP etc. Recently numerical work regarding impu- odd parity components and breaks the reflection symmetry,
rity in a Luttinger liquid has been reporté®.Hence, the is not considered in this paper, since we assume that the
impurity problem in the SG model becomes a very importanimpurity is symmetric with respect to the origis=0 and the
and veryuniversalproblem. In this paper we plan to study model will keep invariance under the reflection transforma-
the single impurity problem in the SG model analytically. tion. € is a short-distancéultraviolef) cutoff and the whole
We try to give some general conclusions and we believanodel parametersyg,a;,a,,B¢ are dimensionless con-
these results can be applied to various concrete models détants, of whichxg, 89 are assumed positive. As a first step
rectly or after generalization. we treat the global SG terid,. Here we briefly outline the

Because of the difficulty of infrared divergence, the SGprocedures of self-consistent theory. In momentum space we
model itself is difficult to handle. The traditional perturbation first consider the following Bogoliubov transformation in or-
approach becomes invalid due to strong correlation. Theler to treat infrared divergence:
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U=exp[—§ (WL Db, @ Fimpi=U

— 2L o Bod(0)] U
B

wherevy, is given by self-consistent results below etndbl

satisfies the standard boson commutator. As pointed out in Boz \/— \/—(bk"'b
Ref. 12, the transformatiof®) describes the real coordinates’ B

amplification or reduction, similar to the idea of scaling Normal ordering the above term and collecting the quadratic
change in RG theory. Secondly we normally order the cosinéerms together we obtain

term inHy and expand it:

®

Himp.1= E (2Lw) YA 2L wr) 12

Ho=UHoU" € ki
X[ (byby +bibl )2+ blb 1, 9
=, {|klcosh2y,+ [ aexp(—2y,)/(2€%/K|)]}bjby BB b T bbe] ©
k where
+| > |K|(cosh2y,)/2— al €82 a;=a,W,
k
W=exp{— (83/2)=(1/12Lw\)}
- k|sinh2y,—[ aexp(—2y,)/(2€2[k
Ek {| | yi— [aexp Yl ( €| |)]} :[(14_\/@)/\/0[—05]750/4#_
X (b{b", +bb_,)/2, () In Eq. (9) the higher-order terms are omitted, just as we have
done before. Here we have extended the self-consistent
where theory to the case where the local term is included. After

these treatments the total Hamiltonian becomes quadratic
and we can cope with it conveniently. The total Hamiltonian

E exp(—Zyk)/|k|} (4) becomegomitting constants
k

2
a=qpé= aoexr{ - ( %

The terms higher than quadratic are omitted in Eg).
Thirdly we select appropriatg, in order to remove the non- i 2
diagonal term and give the following expressionsgf.

Fi=Fio + Flimp. .

aj(2€) (2L wy) " YH 2L wy,) 12

kk’
212 wy 1/2 wyr 1/2

— (U4 1+ (al €K2)]. (5) +“26(2L) (I) }(bkbwblbﬁ)

Now H, becomes a free field:

+2

kk’

ale Y (2Lw) YA 2Lwy) Y2

oy V2 g\ 12
2L) \a2L
whereH, is given by Eq.(6). In principle, the Hamiltonian
H can be diagonalized. To avoid searching for the compli-
cated unitary transformation, we try to transform the creation

and annihilation operators into canonical coordinates and

,30/8 P S momenta directly. Through constructing the equations of
£=ex F{ IN(VE+ag %o H? @) motion for canonical coordinates we can obtain the energy

(Bg/8m)—1 o T T .
spectrum of Hamiltoniaid, which is just what we want in
From Eq.(7) we can see obviously that Wh§8§<87r, one this paper. Transforming _the creati(_)n and annihilation opera-
nonzero solution of can always be obtained, which means 0rS Into complex canonical coordinate and momentym
the SG model has finite energy gap. Whish0, we find the  &NdPx:
higher-order terms that we have omitted in Eg). are infra-
; ; Wy Py Wy Py
red convergent, which means tlself-consistencyof our p = \/: Qk+|—), bl: \/:<Qk_|_): (11)
theory. In the following we will study the impurity behavior 2 Wy 2 Wy
based orf-io. we can obtain the following equations of motion:
There are two terms relating té;,,,. The second term is u )
uadratic and easy to handle, so we lay it aside firstly and » _ PR e ﬂ 2
j?Jst consider the first term. After transformati®) the first Qu=—wiQut| =~ 1) E kE @ Qi
term inHyy,, becomes (12)

'H"o=§ wbiby. (6)

biby:,

—2as€| =

wy is the elementary excitation spectrum and writternwas
=Jk’+MZ2. M is the global excitation gap or masM
=(apé) Y€, £ is given self-consistently as follows:
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Obviously the solution of), has the form ok'“!,  is just 0.2 '
the energy spectrum dfi. Noting that wave vectok takes
values 0+ 2#/L,*4x/L, ... when the periodic boundary 0.0
condition is assumed, we finally obtain the equation that
must satisfy: 0.2
26!2 ai 2&26 -0.4
(7_1)Efl(a))+ L fz(a))=l (13) F(®) o
0.6
including the following definition:
038
1 wi
flw)=2> 5 faw)=2 5.
kK op—w kK opy—w 1.0 L :
0.8 0.9 & 1.0
[0

As for Eq.(13) there may exist two kinds of solutions: the
single solutionw<<M and a series of solutione>M. The FIG. 1. Graphic solution of Eq14), a,=0,2,#0, M is set to
single solutionw<M represents an impurity level within the ; T is the energy of the bound state.
gap of the SG model, which is just what we search for. When
w is constricted in the regionw<M, the functions between two parametemi and as in order to take on the
f1(w),f2(w) are continuous for large, so we can change solutionw<M. We give the results in Fig. 3. There is only a
the summation irf;(») andf,(w) into the integral and ob-  shaded region where the solutien<M exists. In the rela-
tain tively small parameter region as shown in Fig. 3, the shaded
L region is decided by the condition
— 2 2\—1/2
f1(0)= 5 (M?=0?) 2 meesfi?

77_26‘(2 ’

’
a1<

f (w)ZE e—l_l_sz(MZ_wz)—l/z ' '
2 T 2 ' The above results can be understood physically in the

following description. In fact, roughly speaking, our treat-

In the following we divide three cases to discuss in whatment in this paper is equivalent to substituting the beginning
conditions there exists the solution<M. Before going on,  Hamiltonian by

we note the following fact: in our theory treating the global
and local cosine term we just retain the quadratic terms and

omit the higher-order terms after normal ordering. In Ref. 12 He:f dx{[IT?+(V $)?1/12+ M?$*(x)/2} + ¢, $*(0)
we have pointed out the results are satisfactory in the region

a@y<1 when the self-consistent theory is used to treat the +¢,I1%(0), (16)
usual global SG model. So in the following discussions we

i X . . where the coefficients,,c, are proportional tay,,— a, re-
will restrict the model parameters in the relatively small re- ; : :

: , ) i ) : . .~ spectively. From the view of quantum mechanics, the terms
gions, in which we think our theory is valid. Two dimension-

, it - _ c1¢2%(0) andc,I1%(0) can respectively give rise to &po-
less parameters are introduced:=Me,o=we, of which  taniial barrier or well, decided by the sign of(c,). Here it
M= (aoé)*?is usually less than 1 whem,<1. must be noted that onliyn the case of a well can there exist

(1) a»=0,a7#0, Eq.(13) is simplified into

1.0

aj=—2(M?~0?)"=F, (). (14)
0.8

Graphic solution is shown in Fig. 1, where the bound-state
energy »* is determined by the intersection between the 0.6
curvesF (o) =F;(w) andF(w)=a; . We find the condition “
in which the solutionn<M exists is¢;<0 (notice W>0). F@) 0.4
(2) @1=0,a,#0, Eq.(13) is simplified into
ay=5| 1+ 5w (M?=w?) 712 =Fy(w). (15

0.0

Graphic solution is shown in Fig. 2. Similar to E(.) we :
flng the condition in which the solutiom<M exists isa, O s oe 07 0i s 1o
>0. &

(3) General casew;# 0,a,# 0, thoughf,(w),f,(w) are _
all monotonously increasing functions, the left-hand side of FIG. 2. Graphic solution of Eq15), @,=0,a,#0, M is set to
Eg. (13) may not be monotonous. There exists competitionl, »* is the energy of the bound state.
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10— ' ; pling. So there exists a proportionality relation between
i e them. In Fig. 3 the assumed ling = «, is depicted; then we
can easily find the possibility of the existence of threshold. In

fact, if the slope of the line is within a certain range, the line
will always have two intersections with the boundary curve
of the shaded and unshaded regions. One is just the origin
and the other(it may be beyond the scope of the figure
shows the threshold. For example, in Fig. 3 the threshold for
@ is a positive numbet; . This means whem;<0 there
always exists bound state, while wherj>0 it does not
appear always. Obviously, only wher >a;. can the re-
gion where the bound state appears be reached. This is very
e : similar to the previous results. Reference 5 tells us when
0 05 0.0 05 o 1.0 J’'—J<0 the impurity level always appears in the Haldane
of gap, while whend’ —J>0 there is a threshold. When the
concrete quantitative discussion is carried out, the following
FIG. 3. Graphic solution of E(13), shaded region represents two points must be considered: one is that, strictly speaking,
where Eq.(13) exists solutionw<M, M is set to 0.5. The solid there exist minor differences between the impurity bond or
curve represents the boundary of the shaded and unshaded regidtss bosonized form andy, in Eq. (1). The former may
and the long dashed line represents the assumed relatjene,.  embody something else besides the latter, so it needs a gen-
a; shows the threshol(see text eralization about the current Hamiltonian to exactly simulate

. he impurity bond problem in ais=1 Heinsenberg spin
a bound state, corresponding to an energy level less than IVI:hain. Another is that the shaded region in Fig. 3 changes

while in the case of a barrier it cannot appear. Therefore, in"_ " _ . o
th M, which means it is related to the bulk parameters

order to obtain the bound state the lodapotential must be W! _ 15 Telat ,
a well. It can be realized when the coefficientor c, is less a9,Bo. A detailed quantitative discussion about the bound

than zero, i.e.a;<0 or a,>0 if only a single one of them state i_n a spin chain _is beyond the present paper, and we
exists. When these two parameters exist simultaneously thelg@Ve it for further studies. Nevertheless, we think the Hamil-

exhibits a competition between them to take on a well ofonian that we have studied in this paper provides a good
barrier character. Only in some special cases, as shown ff&'ting point and gives a simple and clear picture for the

shaded region of Fig. 3 can they combine to contribute to £UdY Of the impurity problem in a kind of 1D model.

well, which gives rise to a bound state. In conclusion, we make use of an analytic self-consistent

There exist relations, as we mentioned before, betweef€0ry to discuss the bound state in a 1D SG model. We
the 1D SG model and a8=1 Heisenberg spin chain. We _sh_ow thg possibility of the existence of bounq state and find
may apply the present results to discuss the bound state inig!S decided by two parameters related to impurity terms.
S=1 Heisenberg spin chain. Generally speaking, afte©Nly When these two parameters locate in a definite region

Jordan-Wigner transformation and bosonization the impurit)f;an the bound state _ShOW up. Furthermore, when these two
bond term in spin chain can be transformed into theParameters are not independent, the alternative parameter

must exceed some specific value, i.e., threshold value in or-
der to make impurity level exist within the SG global gap.

05l

%o

bosonized form similar tél;, in Eq. (1). But the parameters
ay(or aj) anda; in Hiy, are now not independent. It is
reasonable to think that they are all proportionaldte-J, This work was supported by the Chinese Natural Science
whereJ’ is the impurity bond and is the exchange cou- Foundation and Shanghai Natural Science Foundation.
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