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Backscattering enhancement from polariton-polariton coupling on a rough metal surface
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E. R. Méndez
Division de Fisica Aplicada, Centro de Investigacı´on Cientifı́ca y de Educacı´on Superior de Ensenada, Ensenada,

Baja California, Mexico
~Received 14 November 1997; revised manuscript received 19 February 1998!

We consider the angular dependence of the light diffusely scattered from a silver surface with weak one-
dimensional roughness. The power spectrum of the random roughness is significant at twice the surface
plasmon polariton wave number. At high incidence angles, an enhanced backscattering peak is experimentally
observed in the mean diffuse intensity. This peak does not occur in perturbation theory that is exact to fourth
order in the surface profile. From a sixth-order perturbation term that expresses an intensity contribution arising
from the coupling of counterpropagating plasmon polaritons, we obtain a backscattering peak that is closely
consistent with the observations. It is demonstrated that this sixth-order backscattering effect exhibits behavior
that is significantly different from a fourth-order effect occurring for other roughness spectra.
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I. INTRODUCTION

Backscattering enhancement of light scattered from r
domly rough surfaces has attracted interest in recent ye
The effect is seen, in the mean diffusely scattered intens
as a distinct peak in the direction of retroreflection. Fo
bare metal surface, two types of the effect appear. In the
of a steeply sloped surface with root mean square~rms!
roughnesss comparable to the illumination wavelengthl,
multiple scattering within surface valleys has been found
produce a backscattering peak.1,2 On the other hand, anothe
type of backscattering enhancement relies on the excita
of surface plasmon polaritons; it occurs for finely scaled s
faces withs!l.3,4 Even though the scattering mechanism
are quite different, both backscattering effects arise from
constructive interference of multiple scattering processes
deed, analogous scattering processes are responsible fo
backscattering peaks noted in the light scattered from col
tions of small particles,5 as well as for the weak localizatio
of electron waves in random solids.6

Since the earliest works appeared, the polariton-rela
surface backscattering effect has seen a sustained lev
interest. There have been further related studies of the a
lar dependence of the diffuse scatter that employ pertu
tion theory7,8 or numerical simulations.9 It is quite recently
that experimental observations of this backscattering ef
were first reported;10,11 the delay is due largely to the diffi
culties encountered in the fabrication of rough surfaces p
ducing adequate polariton coupling. These observations w
followed by favorable comparisons with perturbatio
theory,12 as well as calculations that suggested experime
extensions.13 Other theoretical works have addressed the
gular correlation functions of the scattered light,14 where
more subtle consequences of the constructive interfere
are apparent. Further, a theoretical study of diffuse seco
harmonic generation from rough metal surfaces has con
ered the effects of plasmon-polariton excitation at the fun
570163-1829/98/57~20!/13209~11!/$15.00
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mental and harmonic frequencies;15 peaks were predicted
both at backscattering and in a direction normal to the av
age surface. Despite what appeared to be rapid experime
confirmations,16 later works have claimed that the first pea
is instead a deep minimum17,18 and that the second does n
exist.19

In this paper, we provide an experimental and theoret
study of polariton-related backscattering enhancement.
purpose is to demonstrate that there are two types of
effect that may arise distinctly from one another. In the fir
light-polariton coupling is fully responsible for the effect an
there is no need to consider polariton-polariton scatteri
This is the nature of the previous experimen
observations,10,11 where polariton-polariton coupling is for
bidden by the power spectrum of the surface roughne
These observations thus agree closely with perturbation
culations in (s/l) that are exact to only fourth order,12 an
order that includes light-polariton coupling but neglec
polariton-polariton coupling. A second example that is a
proximately of this type is presented in Fig. 2~a! of Ref. 3;
the scattering distribution was shown to be reasonably c
sistent with fourth-order theory in a later work.8

Our main efforts here are made to introduce the sec
type of the effect, in which the backscattering peak ari
solely from polariton-polariton coupling. In particular, an e
sential step in the formation of the peak is that a plasm
polariton must be roughness coupled to a counterpropaga
plasmon polariton. The total isolation of this polarito
polariton process arises in a natural way from our surf
roughness spectrum. The effect is clearly observable in
experiments but the surface structure must be unusu
finely scaled and, under the conditions employed here,
angle of incidence must be large.

The paper is organized as follows. In Sec. II, we fi
describe experimental observations of this backscattering
fect with a well-characterized surface having highly on
dimensional roughness. The experiment is conducted in
13 209 © 1998 The American Physical Society
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13 210 57K. A. O’DONNELL, C. S. WEST, AND E. R. ME´ NDEZ
infrared with a roughness power spectrum of a displa
rectangular form. The measured diffuse intensities are th
briefly compared with perturbation theory that is exact
fourth order in the parameter (s/l). Even though the param
eter is small (s/l>1022), the polariton-polariton coupling
is neglected and the backscattering effect is absent.

After pointing out the limitations of this theory in Sec. II
in Sec. IV we present the theoretical development neces
to produce the effect. A perturbation term of sixth order th
expresses the polariton-polariton scattering processes is
veloped and evaluated without approximation. Excell
comparisons are made with the experimental predictions,
additional calculations based on numerical solution
Green’s integral theorem also support the results. Furthe
relation is pointed out between the effect considered here
certain aspects of earlier theoretical calculations. Appro
mate forms of our results are obtained in Sec. V, where pr
erties of the backscattering effect considered here are sh
to be different from the fourth-order effect.

II. EXPERIMENTAL RESULTS

In the experimental work described here, we employ
surface having a power spectrum of a displaced rectang
form. This spectrum is related to that developed for the
servations of the fourth-order backscattering effect;10,11 here
the effect may be observed as long as the plasmon-pola
wave number falls within the nonzero part of the rectangu
spectrum.11 It will be seen in Sec. V that the high-orde
backscattering effect requires a spectrum that is significan
twice the plasmon polariton wave number. We stress that
rectangular spectrum remains an experimental necessity
us; the broad Gaussian spectra common in theore
works7–9 are far beyond our fabrication capabilities.

The surface was made using extensions of holograp
grating fabrication techniques.10 Briefly, a 50350-mm glass
plate was coated with a 1.5-mm layer of Shipley S1400-27
photoresist. The plate was exposed toN5500 sinusoidal in-
tensity distributions arising at the intersection of two lig
beams. The source was a HeCd laser of wavelength 442
Each sinusoidal pattern had a different spatial wave num
k in the direction along the plate and was randomly pha
with respect to all other exposures. The minimum and ma
mum exposure wave numbers~kmin59.9331023 nm21 and
kmax51.4931022 nm21, respectively! were well-known
from the exposing geometry. With the exposure wave nu
bers evenly spaced betweenkmin andkmax, the net exposure
behaves as a Fourier series that, in the limit of largeN,
becomes consistent with a Gaussian random process.10 The
plate was then developed in a manner producing a lin
relation between exposure and resulting surface height~30
sec in Shipley 352 developer!. The surface roughness ob
tained was highly one-dimensional as is assumed in our l
calculations.

After a thick layer~400 nm! of silver was evaporated ont
the sample at a pressure less than 1026 Torr, it was charac-
terized with a Talystep stylus profilometer. The power sp
trum G(k) of the surface roughness was computed from
profilometer data and is shown in Fig. 1. The measured s
trum rises significantly betweenkmin andkmax and is near the
rectangular form desired. The rms roughnesss is 11.1 nm.
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This sample has been employed elsewhere for o
purposes.17

The scattering instrument is of simple principle similar
that described elsewhere.10,11The source was a Jodon HN-2
HeNe laser of wavelengthl51152 nm. The slightly conver-
gent incident beam wasp polarized ~electric field in the
plane of incidence! and had diameter 4 mm at the samp
The sample was mounted on a rotation stage to set the
dence angleu i . A detector arm mounted on a concentr
motorized rotation stage produced scans in scattering a
us along the plane of incidence. The detector was a coo
InSb detector whose signal was processed by an Ithaco 3
lock-in amplifier. In front of the detector, a slit 60 cm from
the surface determined the detector integration angle to b
0.4° full width. To reduce speckle noise, the sample w
translated over the uniformly rough surface area~25 mm
width! as the detector signal was averaged to provide e
data point. Further, results are expressed as a norma
diffuse intensityI p(us) that represents the mean diffuse
scattered power per radian for unit incident power. T
specular reflection was of narrow width and is not shown
the diffuse data presented here.

The experimental results are shown in Fig. 2. For mod
u i , the surface produces little diffuse scatter. This is tr
from normal incidence tou i550°, which is the smallest in-
cidence angle shown in Fig. 2. Foru i556°, I p(us) has in-
creased for bothus,254° andus.54°, and a distinct peak
is seen at backscattering (us52u i). For u i558°, 60°, and
62°, this peak persists there, with height comparable to
of the surrounding distribution. The distribution is seen
rise rapidly for negativeus near grazing~this increase is
seen, for example, forus,270° with u i562°!. We find that
the backscattering peak is difficult to discern when it fa
near the steep slope inI p(us) ~which occurs for 62°,u i
,70°!, but the peak can again be seen foru i570° and 76°
as shown in Fig. 2. In these latter two cases it appears in
midst of high levels ofI p(us), but the absolute height of th
peak above the surrounding scattering levels has not cha
greatly upon comparison with results for smalleru i . Surpris-
ingly, asu i increases in Fig. 2, the diffusely scattered pow
continues to rise from 0.0041 (u i550°) to 0.023 (u i
558°), 0.031 (u i562°), and 0.070 (u i576°).

FIG. 1. Top: Segment of a typical profilometer scan of the s
face. The vertical scale is630 nm and horizontal axis ticks ar
spaced by 5000 nm. Bottom: For positivek, the measured powe
spectrumG(k) of the surface roughness~solid curve!, compared
with the idealizedG(k) used in calculations~dashed rectangle!.
Normalization is such that 2ps2 is *2`

` G(k)dk.
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In order to make some initial comparisons with these da
we have evaluated the perturbation theory of Ref. 8
I p(us), which is exact to fourth order in (s/l). In these
calculations, the roughness spectrumG(k) was assumed to
have an ideal rectangular form fors511.1 nm~see Fig. 1!,
all integrals were evaluated numerically without approxim
tion, and we have assumed the dielectric constant to be«5
261.016.2i . This value of« was obtained by slightly in-
creasing the imaginary part of a published value,20 so as to
provide agreement with the experimental height ofI p(us) for
us.54°. The results are shown in Fig. 3 foru i562° and
76°. There is some agreement between theory and ex
ment; forus.54° the perturbation theory closely reproduc
the shape of the experimental distribution. Further, in
case foru i562°, atus>270° the perturbation theory repro
duces well the steep slope of the experimentalI p(us) fol-
lowed by its more gradual fall towardus5290°. However,
the experimental scatter falling for270°,us,254°,
which includes the backscattering peak, is completely ab
in this calculation. In the second case withu i576°, the high
distribution for negativeus is generally similar to the experi
mental result and diffuse scatter now appears at backsca
ing, but the backscattering peak is again absent.

FIG. 2. Measurements of the mean diffuse intensityI p(us) for
wavelength 1152 nm,p polarization, and incidence anglesu i as
shown. A peak persists at backscattering~note the inverted tri-
angles! for all cases exceptu i550°.

FIG. 3. For the incidence anglesu i shown, the mean diffuse
intensityI p(us) calculated from the perturbation theory that is exa
to fourth order.
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We have tried using more accurate models of the exp
mental spectrum in the calculations. For example, includ
the low levels ofG(k) seen in Fig. 1 for smallk produces
low levels of scatter for 0°,us,50° in a manner more con
sistent with the experimental results, and accounting for
modest linear trend seen betweenkmin andkmax in Fig. 1 does
change the height of the results of Fig. 3 slightly. Howev
these modifications are minor. It is thus clear that this p
turbation theory, although fully capable of predicting bac
scattering effects with other surface spectra, predicts no s
effect in the case discussed here.

III. DISCUSSION

In order to resolve this situation, we consider the scat
ing processes occurring on this rough surface. We start w
the processes that are included in the perturbation theor
Sec. II, and then discuss what processes are missing in
theory.

The arguments made consider the sequence of scatte
events shown in Fig. 4. First, in Fig. 4~a!, the incident wave
strikes the surface and is scattered by the roughness
lowest-order perturbation theory, the diffuse scatter emer
from the surface at scattering anglesus satisfying the cou-
pling equation

q5k1kr , ~1!

wherek5(v/c)sinui is the component of the incident wav
vector parallel to the mean surface,q5(v/c)sinus is an
analogous quantity for a propagating scattered wave,v is the
frequency, andkr is a roughness wave number where t
spectrumG(kr) is significant. We term this process sing
scatter.

As shown in Fig. 1, we idealizeG(kr) as being of constan
height and nonzero only within the limits of@2kmax,
2kmin# and@kmin ,kmax#. One may then compute the scatterin
angle coupling ranges that follow from Eq.~1!. The positive
wave numbers ofG(kr) produce only evanescent scatter~i.e.,
uqu.v/c! but the negative wave numbers ofG(kr) produce
scatter to negativeus from q5k2kmin out to grazing~q5k
2kmax remains evanescent!. These ranges are290°,us,
270° for u i562° and 290°,us,258° for u i576°. In

t

FIG. 4. The sequence of scattering events occurring on
rough metal surface. In~a!, the incident wave produces diffuse sca
ter and an initial excitation of2ksp . Then, in~b!, 2ksp is scattered
to produce diffuse light and an excitation of1ksp . Finally, 1ksp is
scattered to produce diffuse light and an excitation of2ksp in ~c!.
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13 212 57K. A. O’DONNELL, C. S. WEST, AND E. R. ME´ NDEZ
Fig. 3, the theory produces single-scattering distributions
leading order (s/l)2 within these ranges.

However, this type of coupling may also lead to the ex
tation of plasmon polaritons. This excitation will occur ifq
in Eq. ~1! coincides with a plasmon polariton as in

6ksp5k1kr , ~2!

where 6ksp56(v/c)A« r /(« r11) is the wave number o
the plasmon polariton traveling to the right~1! or left ~2!,
«5« r1 i« i is the dielectric constant, and we findksp
>1.01(v/c) for the value of« cited earlier. It is readily
verified that, for the idealizedG(kr), Eq. ~2! is consistent
with the excitation of2ksp , but1ksp is not excited becaus
there is no appropriate wave number present inG(kr).

The excited surface wave2ksp may significantly affect
the scattering distribution as it is scattered by the surf
roughness, producing the waves of Fig. 4~b!. This scattering
process would again be described by Eq.~2!, but with k
being replaced by2ksp as in

q52ksp1kr8 , ~3!

wherekr8 is a second wave number available inG(kr8). We
find that only the positive-wave-number part ofG(kr8) pro-
duces propagating scatter in Eq.~3!. This coupling range
may be readily calculated from the properties ofG(kr8) and
appears at 54°,us,90° in Fig. 3. In the self-consisten
theory, the mechanism just discussed produces a distribu
there of order (s/l)4. We term this process double scatte
ing, as the net coupling requires bothkr andkr8 .

We now consider the processes missing in the pertu
tion theory of Ref. 8. First, we note that the coupling of t
previous paragraph may lead to excitation of1ksp . This
follows if we replaceq by 1ksp in Eq. ~3! as

1ksp52ksp1kr8 . ~4!

The roughness wave number required iskr852ksp , which is
clearly present inG(kr8) in Fig. 1. The excited surface wav
1ksp may now give rise to diffuse scatter, producing t
waves of Fig. 4~c!. The coupling equation follows analo
gously to Eq.~3! as

q51ksp1kr9 , ~5!

wherekr9 is an appropriate roughness wave number. Eq
tion ~5! predicts that the negative-wave-number part ofG(kr9)
is consistent with diffuse scatter directed to290°,us,
254°. We term this process triple scattering and it is e
pected to arise in a perturbation term of order (s/l)6.

The experimental results of Fig. 2 show a distributi
lying within this angular range. Because the backscatte
peak is seen within this distribution, in Sec. IV we seek
sixth-order perturbation term as the origin of the backscat
ing effect. We also note that, becauseG(62ksp).0, the
roughness will produce yet further couplings of1ksp to
2ksp and vice versa, of increasing order in (s/l). However,
these processes become less and less significant, particu
when it is realized that the next plasmon-related contribut
to this backscattering peak would require two more rou
ness couplings and hence would appear in the tenth or
Here, we evaluate only the sixth-order term.
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IV. THEORY

A complete description of the perturbation approa
based on the reduced Rayleigh equations may be foun
Ref. 8. Equations that follow directly from Ref. 8 will thu
be presented here with little justification, but the evaluat
of the relevant term has not appeared elsewhere and wi
described in more detail. As in Sec. II, all scattering dist
butions computed throughout Secs. IV–V assume that«5
261.016.2i , s511.1 nm,l51152 nm, and thatG(k) has
the ideal rectangular form of Fig. 1.

We assume that the one-dimensional surface roughne
consistent with a Gaussian process. In this case only e
powers of (s/l) appear in the perturbation series forI p(us);
the sixth is the next nonvanishing order. The exact six
order contribution toI p(us) follows from Ref. 8 as

I p
~6!~us!5

1

L1

2

p S v

c D 3

cos2 us cosu i uG0~q!u2uG0~k!u2

3$ 1
36 ^uT~3!~quk!u2&2 1

24 Re@^T~2!* ~quk!T~4!

3~quk!&2^T~2!* ~quk!&^T~4!~quk!&#

1 1
60 Rê T~1!* ~quk!T~5!~quk!&%, ~6!

whereT(n)(quk) is the transition matrix perturbation term o
ordern in the surface profile,L1 is the length of the illumi-
nated surface in the direction along the one-dimensio
roughness, and the angle brackets denote an ensemble
age.G0(k) is the plasmon polariton Green’s function for
flat metal surface,

G0~k!5
i«

«a0~k!1a~k!
, ~7!

wherea0(k)5A(v/c)22k2 and a(k)5A«(v/c)22k2. As
stated in Sec. III, we seek effects arising from scatter
processes involving three surface wave numbers. Such
cesses are present only in the term of Eq.~6! having
T(3)(quk). The term involvingT(1)* (quk)T(5)(quk) may be
shown to be a sixth-order correction to the single-scatter
distribution. Similarly, the term havingT(2)* (quk)T(4)(quk)
may be considered a correction to the double-scattering
tribution. Hence we restrict our efforts to an exact evaluat
of only ^uT(3)(quk)u2& and, although we thus neglect oth
terms of order (s/l)6, we do collect all contributions arising
from the scattering mechanism of interest.

The quantityT(3)(quk) is developed in Ref. 8 as

T~3!~quk!5V~3!~quk!13E
2`

` dp

2p
V~2!~qup!G0~p!V~1!~puk!

13E
2`

` dp

2p
V~1!~qup!G0~p!V~2!~puk!

16E
2`

` dp

2p E
2`

` dr

2p
V~1!~qup!G0~p!V~1!

3~pur !G0~r !V~1!~r uk!, ~8!
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where V(n)(quk) is the perturbation term of the scatterin
potential ofnth order in the surface profile. In particular, w
have

V~1!~quk!5 i
«21

«2 @«qk2a~q!a~k!#ẑ~q2k!, ~9!

where ẑ(k) is the Fourier transform of the surface profi
function z(x) as in

ẑ~k!5E
2`

`

dxz~x!exp~2 ikx!. ~10!
g

st
g

The quantitiesV(2)(quk) andV(3)(quk) are more lengthy but
are given explicitly in Ref. 8. For our purposes it is mo
useful to write Eq.~8! in a different form. By inserting the
expressions for theV(n)(quk), it is possible to cast Eq.~8! as

T~3!~quk!5E E
2`

` dp

2p

dr

2p

3A~qupur uk!ẑ~q2p!ẑ~p2r !ẑ~r 2k!,

~11!

whereA(qupur uk) is given by
A~qupur uk!5
3i ~«21!2

2«3 $~p21r 2!@«qk2a~q!a~k!#22@pk2a~k!2#a~q!a~p!%1
i ~«21!

«3 a~q!a~k!$ 3
2 ~«21!~q21k2!

22«a~q!a~k!1~«22!@a~q!21a~k!2#%1
i ~«21!

«3 qk$2a~q!a~k!2 1
2 «~«21!~q21k2!

1«@a~q!21a~k!2#%2
3i ~«21!2

«3 a~r !a~k!@qr2a~q!2#2
6i ~«21!3

«4 a~q!a~p!a~r !a~k!

2
3~«21!2

«4 @«rk2a~r !a~k!#G0~r !3H 2~«21!

«
a~q!a~p!a~r !1@a~q!1a~r !#@qr2a~q!a~r !#J

2
3~«21!2

«4 @«qp2a~q!a~p!#G0~p!3H 2~«21!

«
a~p!a~r !a~k!1@a~p!1a~k!#@pk2a~p!a~k!#

1
2i ~«21!

«2 @«pr2a~p!a~r !#G0~r !@«rk2a~r !a~k!#J . ~12!
ef.
A typographical error in line 3 of Eq.~3.24c! of Ref. 8 has
been corrected in Eq.~12! above. By squaring and averagin
Eq. ~11!, it follows directly that

^uT~3!~quk!u2&5E E E E
2`

` dp dr dp8 dr8

~2p!4

3A~qupur uk!A* ~qup8ur 8uk!

3^ẑ~q2p!ẑ~p2r !ẑ~r 2k!

3 ẑ* ~q2p8!ẑ* ~p82r 8!ẑ* ~r 82k!&.

~13!

The moment within the integral may be evaluated by sub
tuting Eq. ~10! for the six Fourier transforms and applyin
the Gaussian moment theorem toz(x). This produces 15
terms, each of which containsd functions. After carrying out
i-

the trivial integrations in a manner analogous to that of R
8, we obtain the expression

^uT~3!~quk!u2&5
s6

~2p!2 L1H E E
2`

`

A~qupur uk!S* ~q,p,r ,k!

3g~q2p!g~p2r !g~r 2k!dp dr

1g~q2k!U E
2`

`

A~qupuquk!g~q2p!dp

1E
2`

`

A~qukur uk!g~r 2k!dr

1E
2`

`

A~qupuk2q1puk!g~q2p!dpU2

,

~14!

whereS(q,p,r ,k) is given by
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S~q,p,r ,k!5A~qupur uk!1A~qupuk1p2r uk!1A~quq2p

1r ur uk!1A~quq1k2r uk1p2r uk!

1A~quq2p1r uq1k2puk!

1A~quq1k2r uq1k2puk!, ~15!

and s2g(k)5G(k). Equations~14! and ~15! thus represen
our general result for the term of interest.

We have evaluated the integrals of Eq.~14! exactly using
numerical quadrature, employing the parameters of Sec.
allow comparisons with the experiment. First, we note t
the term that is the squared modulus of three integrals in
~14! contributes only in the region of single scatter beca
of the common factorg(q2k). The associated scatterin
contribution is found to be at most a few percent of t
height of the single-scatter distributions of Fig. 3 and,
though we include it in later results, this contribution is
secondary interest. Instead, the double integral of Eq.~14! is
far more significant; from Eq.~6! it produces a diffuse inten
sity contributionI(us) of

I~us!5
s6

72p3 S v

c D 3

cos2 us cosu i uG0~q!u2uG0~k!u2

3E E
2`

`

A~qupur uk!S* ~q,p,r ,k!

3g~q2p!g~p2r !g~r 2k!dp dr. ~16!

We show numerical results forI(us) in Fig. 5 for u i562°,
where a distribution rises for290°,us,254°. This range
is indeed that expected for the outward roughness coup
of 1ksp to diffuse scatter, as was discussed in Sec. III. F
ther, a distinct peak appears at backscattering, havin
height above the background exactly equal to the heigh
the surrounding distribution.

We briefly consider two simplifications of this theor
First, in Eq. ~8! for T(3)(quk), we consider the effect o
ignoring all term contributions havingV(2) and V(3), but
keeping the one involving onlyV(1). From Eqs.~8!, ~9!, and
~11!, it is clear thatA(qupur uk) is thus simplified to the form

A~qupur uk!56u~qup!G0~p!u~pur !G0~r !u~r uk!, ~17!

where

FIG. 5. The intensity contributionI(us) for u i562°. Results
are obtained from exact integration~solid curve!, the approximation
of Eq. ~17! ~finely-dashed curve, just below solid curve!, the ap-
proximations of both Eqs.~17! and~19! ~dot-dashed curve!, and the
pole approximation of Sec. V~coarsely dashed curve!.
to
t
q.
e

-

g
r-

a
of

u~quk!5 i
«21

«2 @«qk2a~q!a~k!#. ~18!

Results forI(us) using Eq.~17! are shown in Fig. 5 and are
only slightly below the exact calculations. The approxima
calculations are considerably faster and thus can be usef
this level of numerical accuracy is adequate.

Further, for either form ofA(qupur uk), we find that the
first and last terms ofS(q,p,r ,k) in Eq. ~15! are far more
significant than the other four terms. This suggests the
proximation

S~q,p,r ,k!5A~qupur uk!1A~quq1k2r uq1k2puk!.
~19!

Calculations ofI(us) using both approximations of Eqs.~17!
and~19! are also shown in Fig. 5, where the results are low
still than those of the first simplification, but the agreeme
with the exact evaluations remains good. The broad distri
tion of Fig. 5 arises largely from integration of the first ter
of Eq. ~19!, while only the second term produces the bac
scattering peak.

We now return to the exact calculations and evaluate
~14! with the complete versions ofA(qupur uk) and
S(q,p,r ,k). The contribution to the diffuse intensity from
only ^uT(3)(quk)u2& is found from Eq.~6! and is added to the
fourth-order self-consistent intensity of Sec. II. The total
tensity thus includes all perturbation terms of second a
fourth order in (s/l), as well as the sixth-order term chose
to include processes of interest. These results are show
Fig. 6 and are to be compared directly with the data of Fig
For u i550° there is no initial excitation of2ksp , the single-
scatter contribution is evanescent, and a low distribution
pears in the calculation that is similar to the experimen
results. Atu i556°, 62°, and 76°, the consequences of6ksp
excitation are seen foruusu.54°. In the former two cases th
backscattering peak occurs in isolated sixth-order scatter
in the latter case, it appears in the midst of high sing
scattering contributions. The agreement with the experim
tal data remains excellent throughout the results.

To further support our results we now briefly compa
with rigorous calculations using an integral equati

FIG. 6. For the incidence anglesu i shown, the diffuse intensity
I p(us) obtained by adding the intensity contribution from exa
evaluation of^uT(3)(quk)u2& to the results of the fourth-order self
consistent theory.
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formalism.2 Applying Green’s integral theorem to the re
gions above and below the interface, two coupled integ
equations are established. The solution of these equa
determines the source functions that are required for the
culation of the scattered field. Usually, the use of tape
beam illumination2,21 permits the truncation of the infinite
surface to a finite interval, without introducing significa
distortion of the scattering distribution due to edge effects
the present case, however, the excitation of surface po
tons plays a prominent role in the resulting scattering curv
Even for the longest surfaces that can be studied with c
puters available to us, the scattering results we obtain
length dependent because the surface length is comparab
the plasmon polariton decay length. One way of avoid
this problem is by imposing a periodicity to the surface p
file, so that an infinite sample can be considered. The s
tion to this problem can be obtained in the usual mann
with the added cost of evaluating the periodic Green’s fu
tions and their normal derivatives on the surface. The e
cient evaluation of these functions is critical for the feasib
ity of the method, and we use rapidly converging integ
forms for this purpose.22

Thus, we in fact calculate the scattering of light from
classical grating, albeit one with a long period and a Gau
ian random profile within that period, illuminated by a pla
wave. The scattering problem is then reduced to solvin
matrix equation for the amplitudes of the Bragg waves d
fracted by each realization of the grating. The estimate of
mean intensity is obtained by averaging over an ensemb
statistically identical surfaces. The total diffuse intensity
thus obtained directly without regard to the perturbation
der of the scattering contributions. The sampling interval
the surface was chosen asl/12 and a total of 1024 points pe
period were used. It is also convenient to choose the incid
angles in such a way that the matrix does not have to
recalculated for each angle. For this reason, theu i chosen are
close but not identical to those of Fig. 6. The calcula
points in the scattering distributions appear at the positi
of the grating orders and, for our choice ofu i , there is al-
ways a point in the backscattering direction.

These results are shown in Fig. 7 foru i556.1°, 61.5°,
and 75.2°. All cases contain backscattering peaks, altho

FIG. 7. Normalized mean diffuse intensityI p(us) calculated by
a rigorous numerical simulation in which a periodic rough surfac
illuminated by a plane wave. The results correspond to an ave
over 2250 surface realizations. The points shown represent
mean diffuse intensity due to the Bragg orders of the periodic
face.
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the angular structure of the peaks is not well resolved in
method, particularly for largeru i . It is quite impressive that
for all us where isolated contributions from̂uT(3)(quk)u2&
appear in Fig. 6~even in the ledge atus>257° for u i
576°!, the results of Fig. 7 are in excellent agreement w
the perturbation theory. Additionally, foru i556.1° and
61.5°, the scatter forus.54° in Fig. 7 is in close agreemen
with the perturbation results, although the perturbat
theory is slightly higher there foru i575.2°. Modest differ-
ences are also to be seen in the regions having single-sc
contributions, again particularly foru i575.2°. We speculate
that the latter differences could arise from the neglected 1
term in Eq.~6!, while the first difference could arise from th
neglected 2–4 term. Nonetheless, the agreement betw
Figs. 7 and 6 is satisfying.

Finally, we note that high-order processes were includ
in the two theoretical works that originally predicted bac
scattering enhancement for a slightly rough surface;3,4 later
work7 has also followed suit in estimating the effects
high-order coupling. Reference 3 is appropriate for the c
here and, to compare with our other calculations, we h
evaluated the expressions for our rectangular spectrum.
results are shown in Fig. 8 foru i562°. The general appear
ance of the resulting distribution is similar to our calculatio
and, most impressively, a distinct peak indeed appear
backscattering. The theory does contain fourth-order te
that produce much of the backscattering effect of Ref. 3 b
appropriately, these terms play no role in the backscatte
effect in Fig. 8. Instead this peak arises, as it should, fr
yet higher-order terms.

This theory was applied in Refs. 2 and 3 to the case o
wide Gaussian spectrum, centered on zero wave number
which backscattering enhancement would appear in term
fourth and higher orders. The intent of including the high
order terms was largely to provide height and width corr
tions to the backscattering peak; it was not recognized
the sixth-order effect could be isolated as it has been h
Hence the terms were approximated because it was imp
tical to make the theory self-consistent in each order. It w
only some years later that the exact fourth-order term w
first developed,8 and the sixth-order term of Eq.~6! still has
not been fully evaluated.

Indeed, it can be seen that the heights of the plasm
related scattering contributions in Fig. 8 are approximat
half of the levels of Fig. 6. However, the theory is being us
here in a manner far from its original intent and we do n
criticize it. References 3 and 4 are admirable for pointing

s
ge
he
r-

FIG. 8. The mean diffuse intensityI p(us) from Ref. 3 for u i

562° ~solid curve!. Also shown is the comparable result from Fi
6 ~dashed curve!.
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that, for the Gaussian spectrum, a backscattering peak w
appear in the fourth order, and that higher-order terms c
tain other coherent processes that contribute to the shap
the peak. Our work considers one of these processes in
sixth order, well isolated through the use of the rectangu
spectrum.

V. DISCUSSION

By examining the perturbation theory, we now consider
more detail the physical mechanisms that give rise to
backscattering effect. It was discussed in Sec. IV that ex
lent approximate results were obtained by keeping the t
having onlyV(1) in the expression forT(3)(quk). From Eq.
~8! we approximately have

T~3!~quk!56E
2`

` dp

2p E
2`

` dr

2p
V~1!~qup!G0~p!V~1!

3~pur !G0~r !V~1!~r uk!. ~20!

By reading the quantities within the integral from right
left, this scattering process is readily interpreted. The po
tial V(1)(r uk) represents the scatter of the incident wavek by
the roughness, with its transformation into a plasmon po
iton r 52ksp . This wave then travels along the surfa
@G0(r )# and is scattered to the statep51ksp by a second
scattering eventV(1)(pur ). As described by the Green’
functionG0(p), this wave propagates along the surface, u
it is converted to an outgoing waveq through a final scatter
ing eventV(1)(qup).

Direct evidence of this scattering process may be fou
through approximate evaluation of the results of Sec. IV.
substitute the approximations of Eqs.~17! and ~19! into the
sixth-order intensityI(us) of Eq. ~16!. The resulting inte-
grand contains products of Green’s functions that may
treated with pole approximations.8 For example, within the
pole approximation,

uG0~p!u2>
pC2

D«
@d~p2ksp!1d~p1ksp!# ~21!

and

G0~p!G0* ~x2p!>
2p iC2

2iD«2x
d~p2ksp!

1
2p iC2

2iD«1x
d~p1ksp!, ~22!

where

C5
u« r u3/2

« r
221

~23!

and

D«5 1
2 « i

ksp

u« r u@ u« r u21#
. ~24!

Upon carrying out the integrations overd functions we ob-
tain eight terms. However, four of them containg(0) and are
thus zero for the idealized spectrum of Fig. 1. Two mo
ld
n-
of
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terms may be dropped because there is no direct couplin
the incident wave to1ksp @a factor g(ksp2k) thus van-
ishes#. We then obtain

I~us!5
s6

2p3 S v

c D 3

cos2 us cosu i uG0~q!u2uG0~k!u2

3g~q2ksp!g~2ksp!g~2ksp2k!

3H S pC2

D«
D 2

uu~quksp!u2uu~kspu2ksp!u2

3uu~2kspuk!u21
~pC2!2

D«
21@~q1k!/2#2 uu~quksp!u2

3uu~kspu2ksp!u2uu~2kspuk!u2J . ~25!

In the second term within the curly brackets we have seq
52k when it appeared in the arguments of the functio
u(), with an excellent approximation; the term’s dependen
on q and k is instead dominated by the narrow Lorentzi
factor. By reading the arguments of theu() from right to left
in Eq. ~25!, the wave-number sequencek→2ksp→1ksp
→q is apparent that is consistent with our earlier disc
sions. The two terms within the curly brackets of Eq.~25!
become identical at backscattering, with the second term
ducing a peak there of Lorentzian form. The full width
half maximum of the peak follows from the Lorentzian fa
tor as Dq54D« or, in scattering angleus , as Dus
54cD« /(v cosui). Equation~25! also makes clear that, al
though the effect appears only at high angles for the surf
considered here, this is not essential. In principle, this ba
scattering effect could appear for anyu i , as long asg(k) is
of adequate height at the points required by Eq.~25!.

The pole approximation is readily evaluated and is co
pared with earlier results in Fig. 5. It predicts a distributi
slightly lower than that obtained by exact evaluation of t
same integrand, but the comparison with the other result
still good. The peak widthDus is 0.42° in both the pole
approximation results and in the exact calculations, in agr
ment with the expression given above forDus . The results
obtained with the pole approximation hence contain all
sential features seen in the exact calculations.

We claim that, as is the case for other forms of bac
scattering enhancement, the distinct peak seen throug
our results arises from the constructive interference of m
tiple scattering contributions. Consider the situation sho
in Fig. 9~a!. An incident wave strikes the pointx1 of the
rough surface and launches the surface wave2ksp . This
wave is scattered at point atx2 into 1ksp , which travels
until it finally is scattered a third time, being converted to
propagating wave at pointx3 . For every such path shown
there is a time-reversed path in which the same scatte
events occur, but in a reversed order asx3→x2→x1 . The
scattering contributions from these two paths are phase
herent at backscattering and interfere perfectly constructiv
there, but they interfere with a random phase relationship
from backscattering. After averaging, the first term in t
curly brackets of Eq.~25! represents the total intensity aris
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ing from all such paths, and the second term represents
interference between pairs of paths related by time-reve
symmetry.

We have demonstrated here that this backscattering e
may be readily observed when the backscattering effec
order (s/l)4 is absent. It would thus seem reasonable
consider the two effects as being distinct from one anoth
We can provide additional, albeit subtle, evidence of t
assertion by consideration of the physical mechanism p
ducing the fourth-order effect.8 Here, as shown in Fig. 9~b!,
an incident wave is scattered from pointx1 and is converted
into the plasmon polariton1ksp . It is then scattered from a
point x2 to escape as a propagating wave. In the tim
reversed path, it is the counterpropagating polariton2ksp
that travels fromx2 to x1 . In this effect, the enhancemen
thus arises from the interference of the distinct processek
→1ksp→q andk→2ksp→q. However, both of these cou
plings are forbidden at backscattering by the spectrum of
surface, so the fourth-order effect is absent. As discus
earlier, in the sixth-order effect there is only the single p
cessk→2ksp→1ksp→q. That is, the sixth-order effect dif
fers in that the forward and time-reversed paths of Fig. 9~a!
use an identical wave-number scattering sequence.

This observation has the mathematical consequence
in the pole approximation, the sixth-order effect describ
here is simpler than the fourth-order effect. The intens
contribution of Eq.~25! is composed of only two terms
However, the pole approximation for the fourth-order effe
@see Eq.~5.9! of Ref. 8# necessarily yields four terms, wit
the interference between the two sequences clearly see
the two terms of the enhancement peak. No such interfere
is noted in the single term of Eq.~25! for the sixth-order
peak.

More significantly, these differences have physical con
quences. It has been demonstrated that the diffuse scatt
contributions from the forward and time-reversed paths
Fig. 9~b! may be physically separated for the fourth-ord
effect, in a manner described elsewhere.11 However, we
claim that no analogous separation can be observed for
sixth-order effect because Eq.~25! describes a single indivis
ible wave-number sequence.

To provide a simple illustration of this point we consid
the quasiperiodic metal surface,

FIG. 9. Pairs of scattering processes related by time reversa
the sixth-order effect~a! and fourth-order effect~b!; lines below the
rough surface indicate plasmon polariton coupling.
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z~x!5A1 sin~k1x!1A2 sin~k2x1f!, ~26!

where all quantities are deterministic. An experimental stu
of the fourth-order scatter for this type of surface23 has re-
vealed the two scattering processes of Fig. 9~b!, because
such a surface allows simultaneous excitation of1ksp
~through, say, wave numberk1! as well as2ksp ~through
k2!. The scattered light then escapes from the surface
diffracted order that satisfies

v

c
sin us5

v

c
sin u i1nk11mk2 ~27!

with (n,m)5(1,21). We assume, somewhat arbitrarily, th
the simultaneous plasmon excitation occurs foru i510°,
which determines the values ofk1 and k2 . Using the com-
plete fourth-order perturbation theory, we compute t
power of the (1,21) order as shown in Fig. 10~a!. The high
peak occurs as the order passes through backscattering
contains contributions from both processes of Fig. 9~b!. The
two processes may now be seen as distinct from one ano
by simply tuning the source wavelength, as is apparent in
two peaks for otherl in Fig. 10~a!. In particular, the separat
peaks indicate that the distinct processes of Fig. 9 do ind
still occur, but they do not occur simultaneously. The heig
of the main peak of Fig. 10~a! is almost exactly four times
that of the detuned cases, which indicates perfectly const
tive interference.

To consider the analogous sixth order effect, we cha
only k1 to 2ksp so as to provide the coupling of counte
propagating plasmon polaritons. The triple-scattering proc
of Fig. 9~a! involves three roughness wave numbers and
thus found in the order (n,m)5(1,22) in Eq. ~27!. Using

or

FIG. 10. Top: From fourth-order theory, the dimensionle
power P of the (1,21) diffracted order from a quasiperiodic su
face with k150.004 552 nm21 and k250.006 446 nm21. Bottom:
From sixth-order theory,P for the (1,22) order with k1

50.011 00 nm21 and k2 unchanged. In both casesA151 nm, A2

51 nm, and simultaneous plasmon-polariton coupling occurs
l51152 nm~solid line!. Detuned cases havel51142 nm~dashed
curve! and l51162 nm ~dot-dashed curve!; these cases are to
small to be seen in the lower plot. For alll, we assume«5
261.016.2i .
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13 218 57K. A. O’DONNELL, C. S. WEST, AND E. R. ME´ NDEZ
the complete sixth-order perturbation theory, we compute
power in this order as shown in Fig. 10~b!. As was the case
in Fig. 10~a!, a single peak appears due to the trip
scattering process as the order passes through backscatt
However, as the source is detuned the peak disappears
little trace of scattering contributions remains. This tec
nique hence cannot separate the effect into two distinct c
tributions of equal amplitude.

Figure 10 thus simply illustrates an essential differen
between the two scattering processes. Related effects o
for rough surfaces; in a manner analogous to Fig. 10~a!, tun-
ing the source in the fourth-order effect can produce a c
angular separation of the two diffuse scattering contributi
arising via the forward and time-reversed paths of Fig. 9.11 A
similar tuning experiment with the pure sixth-order effe
would have quite different consequences, without such se
ration. As the source is tuned for our rectangular sp
trum, Eq. ~25! indicates that theentire distribution I(us)
would, as a whole, shift in angle because of the fac
g(q2ksp)g(2ksp2k). Further, the factorg(2ksp) indicates
that the distribution would simply vanish if the tuning we
so large thatg(2ksp)50.

VI. CONCLUSIONS

The work described here began with the unexpected
perimental observation of a backscattering peak in the l
diffusely scattered from a slightly rough silver surface. T
experiments made use of a well-characterized surface
scattering data were taken under fully controlled conditio
It was clear that the observed effect was not present in
theoretical prediction for the diffuse intensity exact to fou
.
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order in the parameter (s/l). In an evaluation of a sixth-
order perturbation term, the effect was found to arise fr
triple-scattering contributions related to the excitation of s
face plasmon polaritons. Excellent agreement with the c
trolled experimental data was obtained. Further comparis
were made with approximate evaluations of the perturba
term, computer simulations based on Green’s integral th
rem, and with a previous perturbation approach that inclu
terms of sixth and higher order.

There are a number of notable properties of the six
order backscattering effect as it has been described here
though the surface roughness is weak (s/l>1022), lowest-
order perturbation theory is inadequate and contributions
even sixth order ins/l play an essential role. In addition
this type of backscattering effect has been observed her
unusually large incidence angles as high as 76°. Our res
tion to largeu i is a consequence of the roughness spectr
employed here, but the same effect could also occur at s
u i for other surface spectra. Finally, it is remarkable that i
possible to isolate the scattering contributions of seco
fourth, and sixth order in (s/l), thus making obvious their
relative significance.

If our use of a roughness spectrum of a displaced rec
gular form may seem contrived, we point out that the sc
tering processes discussed here would occur to some e
for a sufficiently wide spectrum having, for example,
Gaussian form centered on zero wave number. However
scattering distribution of the less contrived surface would
far more difficult to interpret, with the various scattering pr
cesses overlapping in angle. Even though the displaced
angular spectrum remains an experimental necessity for
the distinct scattering contributions associated with it a
have been essential to the main conclusions of this pape
,
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