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Voltage-dependent STM image of a charge density wave
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In the present work we write a general expression for the local density of $t&3€XS) due to a commen-
surate charge density wav€DW). The main goal is to investigate the voltage dependence of the contrast in
the scanning tunneling microscof®&TM) images of materials showing CDW's. For layered materials, having
nearly two-dimensional electronic structures, the problem is complicated by the many-band situation near the
Fermi level, and by the incomplete band gapping. Nevertheless, a simple perturbation method allows one to
relate the amplitude and phase of the CDW to features of the band structure. We emphasize the role of
particular characteristic energies, at which the CDW has a large contribution from speooihts of the
surface Brillouin zone, leading to different modulations in the STM image. In a second part of the paper, we
consider the voltage-dependent contrast of Nb&er this material, we find that the amplitude and the phase
of the CDW change significantly as a function of enefgy voltage, resulting in a number of different
possible motifs. For example, the direct comparison between occupied and empty states reveals that new states
on the order oE- = A, giving a dominant contribution to the LDOS, have different phases. As a result, in the
corresponding STM images, the maxima of the corrugation have shifted positions along the diagonal of the
conventional unit cell[S0163-182¢08)00320-9

I. INTRODUCTION where p, is the tip state density andi(V,E) is a barrier
coefficient. Thus for very small bias, the Ohmic part of Eq.
While a large number of STM experiments exploit its (2) gives back Tersoff and Hamann's result.

unmatched atomic resolution, in many instances it is the ad- The energy window for tunneling at zero temperature is
ditional voltage dependence of the tunneling current thathe rangeEr to Ex+eV. By merely choosing the sign of,
gives full information on the local electronic structure of the gne can image either the occupied stdtdsctrons tunneling
sample. This fact was recognized early on, and was appliefom the sample to the tjpor the unoccupied statdslec-
to the visualization of different localized electronic states onyong tunneling to the sampleUsing simultaneous imaging
s_emiconductorssurfaces, for example(151,1), at selected (+V,—V) in the study of GaAs and &i,1,) 2X 1, Feenstra
bias voltages® This voltage(or equivalently energyde- ¢,y the directspatial difference between the filled and

pendence of the images was in some cases decisive in t'(]-.\‘?hpty stateé7% In the latter case, the-bonded chain model

determination of the surface struct§réSince then, there o
have been other cases in which the STM was shown to b%ccounts well for the phase opposition of the surface states

sensitive to the local surface electraios holeg rather than across the band gap. On S'(.l'l’kﬁ’ seleptmg dnfferent .
to the “topography.” Among the earlier works, one can cite bias voI_tages_re_veaIs electronic _states ha}vmg maxima at dif-
the screening charge due to oxygen on Ga&s,a small erent sites within the surface unit céff which can be iden-
molecule on a surfacéand the direct imaging of the charge tified on the basis of the structure and bonding at this sur-
density wave(CDW) in transition-metal dichalcogeniddst?  face. . o .

The interpretation of such experiments follows qualita- The question that arises is, for which other samples does
tively from Lang’s extensiol? of the theory of Tersoff and One expect the STM image to deviate from the atomic topog-
Hamann* expressing the bias-dependent tunneling currentr@phy, and to be strongly influenced by the electronic struc-
If 4, (r) is the surface wave function at the positionf the ~ ture? In a general way, for anisotropic materials that show
tip, then the local density of statésDOS) at the energf is  quasi-two-dimensiondbr one-dimensionakelectronic struc-
defined as tures, the wave-vector sum in the LDQ&q. (1)] is re-

stricted due to the Fermi surface topology. For example, in
an ideal layered structure, a constant energy surface consists
p(r,E):2 | ()]|26(E—E,). (1) of open cylinders running perpendicular to the layers. Then
k the wave vectok; takes on a value along a curve in the
surface Brillouin zone. We thus expect stronger electronic
When the junction is biased with a voltagé (sample effects in the STM image to occur in materials such as
grounded, the (zero temperatusetunnel current is graphite, Mo$, and even highF, superconductors
(BiSrCaCuO, etg. Graphite is actually an extreme case
e [Ep+ev since, near the Fermi level, states are confined to nearly a
|=— J’ T(V,E)p(r,E)p(E—eV)dE, 2) point at the zone edge. Tersoff has shéuthat this leads to
h Je an unusually large corrugation of the STM image.
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Charge density wave materials, such as the transitiorwhich arise on the order &, the gap parameter. In Sec. llI
metal dichalcogenidedNbSe, NbSe, TaSe, etc), fall into  we show that these states, having characteristic phases, must
this class of anisotropic properties. Our particular motivationlead to a definite motif in the STM image. There we empha-
in the study of H-NbSe is to investigate the electronic Size thek dependence of the modulation, and show wich
structure effects in the STM images when the material is ifP0ints give the major contribution. In Sec. IV, we discuss the
the CDW state. As is well known, NbSéas both a CDW amplitude and phase of the CDW as a function of energy, for
transition (Tepw~35 K) as well as a superconducting one, & Wide range of values, from within to beyond the gap. Ex-
at T,=7.2K. In Ref. 16, we described low-temperature amining the modulation in real space, we find that the

STM observations of the charge density wave at 4.2 K. Théhaxima of the LDOS have different positions within the
specific problem we addressed was the possibility of a re|a(_:o_nvent|onal unit cell, depending on the energy. This is used
tive change in contrast for states above, or below, the cDWP interpret the final results for the voltage dependence of the
energy gap. In a simultaneous and reversed-bias mode, we' M IMages.

showed that there was a phase shift occurring in the LDOS

corresponding to states at opposite energies with respect tb PESCRIPTION OF THE METHOD: CDW COMPONENT
the Fermi level, and even for energies within the gap. This OF THE LDOS

was not a simple contrast reversal, as one might have ex- gjacyronic structure calculations of CDW systems are
pected, but an unknown phase shift in the LDOS. In add't'onusually quite complex, even in a tight-binding approatt

since the total density is a superposition of the atomic corfupior o the STM. the main focus was on the energy of the

gation with the CDW one, the STM image results in an in-qytem and the displacement of the atoms. Our concern here

tricate moirepattern. Some theoretical questions naturallyg'y extract the main features of the real-space charge modu-
arise: What phase shift in the corresponding electtwie) tion, relevant to the STM image. The principal simplifica-

wave function does one expect? What is the dependence gh, i the theoretical treatment is a consequence of the bar-

this phase on the energy, and hence the tunneling voltageig penetration damping on the surface Bloch functions. As
Despite the voluminous literature on CDW materials andyaaijed by Tersoff and Hamartha key aspect is that the
previous STM investigatior's,>"*these questions were g1y measures the LDOS at some distaadieom the sur-
almost never asked, and a simple theory is still needed. face, on a scale larger tharr '= \ilZme~1 A, the decay

The full description of the electronic structure in the L .
. . ) . length of the wave function into the vacuum, wherés the
CDW state is a challenging problem: The CDW involves Oy ork function. In this regime, the tunneling is exponentially

only the static modulation of the charge density, but also th . —2xkz ; : i
detailed periodic lattice distortiofPLD) involving the dis- :Slr? ?(l)liIICJO\jv(es th e’ sznrg ;h:si?rﬁzltgt(iacnzgg;states defined in Eq.
placement of often many atoms per unit cg84 for Exploiting this property, we begin by writing the Bloch

ZH{hNb?k?).TOur ?fpprzalih to thef problemﬂti]s thrll/(ljtice thatwave function associated with a CDW, which is assumed
(within the Tersoff and Hamann framewdrtne mea- eriodic in the plane of the surface. It is straightforward to

sures the local dens[ty of_stqtes at ‘some distance from thp ow that it must have the form

surface, and hence is quite insensitive to the precise, an

small, atomic displacements. We assume that the CDW is )

exactly commensurate to the lattice, for simplicity. Then by P(x,2)= 2 g K 9 Ne -7, ()
perturbation theory, the Bloch functions are formed by the g

coupling of states labeled by k—g, k—g',... wheregisa  wherek= (k,,k,) andg is the two-dimensional2D) recip-
reciprocal-lattice vector of the CDW system. The STM thenrocal lattice. The inverse decay length is

responds to the lowest nontrivial terms of the relevant Bloch
function, together with the usual atomic corrugation.

It is then possible to write a quite general expression for
the LDOS, and to investigate the physical parameters, its .
amplitude and phase, at dg}fferent cﬁa?/acterisptic energies. IwhereE IS mgasured froir(rllfh)ngacuum level. Therefore, each
spite of the many-band situation near the Fermi level, som&!ane wave in the sung™~ 9% has an amplitude that de-
of them overlapping, we show that the largest contribution td"@YS Very fast ag increases, and this property determines

A~ - - 25
the CDW modulation arises from specikl points of the the limiting resolution of the instrument: .
surface Brillouin zone, in particular at the zone boundaries, 1 © €xtract from Eq(3) the dominant term owing to the

As a result, the problem becomes tractable, and it is thi&PW, we can cqnsider at th? outset a number of simplifying
aspect we hope could be useful in the study of differen@SSUMPptions: First, supposing thaz>1, then only the
surfaces. smallest wave vectorg, will contribute significantly to the
The paper is then presented in the following order: UsingBIOCh sum. Ifk is restricted to. the first B_rillouir_1 zone, the.n
the approximate Bloch functions for the CDW, in Sec. Il we the g €an be the nearest reciprocal lattice points. Most im-
write a general expression for the CDW component of thaPortantly, thegn then COInCIde.WIth the generating vector_s of
LDOS. The textbook example of a one-dimensional atomidh® CDW, i.e..g,=Q,. Keeping only two terms as a first
chain is used to clarify many aspects prior to treating the€X@mple, thus ignoring the atomic corrugation, we have
two-dimensional CDW. In Secs. Il and IV we apply our
method to the problem of NbgeBeginning with the ques-
tion of the Fermi surface nesting, and the gapping of theSecond, as will be justified in the specific case of a CDW,
band structure due to the CDW, we identify the new stateshe wave vectok is on or near the Brillouin zone boundary,

m 1/2
Ky—g= (k—g)2+?|E| ,

(X, 2)~e"X(cpe e e 0 %e Mkdf).  (4)
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for energies near the Fermi level. Since the exponential (@)
damping factors are slowly varying functions, we can sim-
plify further by settingk=g/2 in their arguments:

P(x,2)~e**o(2)(citcy_ge™'9), (5)

_ . . c e A N E

where ¢(z)=e™ “92?, The physical interpretation is then F LJ
straightforward: quite far from the surface, the wave function

associated with the CDW modulation appears as if only a
single Bragg reflection occurs. Once the complex amplitudes

Ck andcy_q4 are determined from the particular band struc-
ture, using a variety of possible methods, it is then a rela- (b)
tively direct calculation for the corresponding LDOS. One E o(E)
can use either form&) or (5) for the wave function, since
the accuracy depends on the distan@ad the variation ok

in the surface Brillouin zone. Finally, we note that the ap- B

proximation(5) leads to the factoring of the LDOS into per- /\

pendicular and parallel parts: *_ﬁ LJ
E

p(nE)w(z)@ | (X)|28(E—Ey), (6) m v m

E p(E)

which is often assumed to be valid. This approximation is (c)
actually quite correct for graphite, since the Fermi surface Cy
lies very close to the zone boundary, at theorner point®

We will show explicitly in Sec. lll that it is still reasonable in
the case of a CDW.

In the following we pursue the idea of single Bragg re-
flection, and its consequence on the CDW modulation
through the amplitudes, andcy 4. Given the complexity
of the general problem, we give a very brief summary of the
1D case, but stressing those aspects that are relevant to th
energy dependence of the 2D modulation and LDOS.

f,|*

N

_ _ _ FIG. 1. Prior to treating the 2D case, it is useful to consider the
A. One-dimensional modulation gap opening in a one-dimensional conductor with a half-filled band,
As is well known, from the electronic point of view the assuming period doublinga) The unperturbed bansolid line

one-dimensional metal having a band dispersion and the folded banddotted ling are doubly degenerate k&t (or
' I'M/2). (b) A gap of magnitude & at the new Brillouin zone

_ boundary(m point) separates the two banels andE_ . The cor-

Ey=20+2p cogka), @) responding DOS is shown in the right panelg@fand(b). (c) The
is unstable to a period doubling, or dimerizatidrThis is ~ k-dependent CDW amplitud, has two branches, that tenddl
because the Fermi wave vectie lies at%FM the band @&t them point, the standing wave conditions. The corresponding
being half-filled[Fig. 1(a)]. Period doubling, with new recip- Medulations|¥; (x)|* of wave vectorQ=g are in phase opposi-
rocal vectorg=G/2, lowers the total electron energy by Yo"
opening a gap at the new zone boundary, th@oint. The _
Fermi “surface,” which consisted of only two point&kg 1= N[k + ail k=), ®)
and —kg) for the unperturbed chain, is completely removedone obtains two band&" andE ", separated by a gap\2at

in the dimerized chaifiFig. 1(b)]. This metal-insulator tran- them point, and the corresponding solutions fay:

sition is characterized by the perfect nesting of the Fermi

surface: the wave vectd@=g translates one Fermi point 4 E* —Ex A

onto the other. A general discussion of nesting in low- TN T E*—E( g ©

dimensional conductors can be found in Ref. 20. . .
A simple model to describe the CDW modulation, henceThe,re are also two @fferent CDW modulations, for the oc-

the coefficients in the Bloch expansi¢B), uses degenerate CuPied and unoccupied bands:

perturbation theory. If the system has a new periad then N2 +

the band<€, andE,_, become degenerate at threpoint of |9 (X)]*= 1+ Ciccoggx), (10

the new Brillouin zone. The corresponding statég, and  where the new amplitude i€, =2N2a; . This expression

|k—g), are coupled through the periodic potentii(x) for the modulation, which neglects the atomic contribution,

=VCPW(x), with fundamental Fourier componenthW has a period @ and a wave vectog=Q, as expected.

=A, which we associate with the static charge-lattice inter- Although quite standard, we anticipate some important

action. Then, using the linear combination features of the 2D modulation by considering these relations.
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In particular, the CDW amplitude:,f is k-dependent and, | h(x)|2=1+ ZNﬁRe[ake“QO‘x

using the normalization factod,=1/\/1+ akz, it is related to X i X

the band structure via +Bke I+ ap Bre 2, (13

. from which a useful form can be written if we define three
+ 2ay new complex amplitude€, ,,, one for each of the three
Ch=T""—=53. (11 o ) ’
1+ (ay) directions{gy,9; ,9,}:
It is quite small except for points near the zone boundary Ck,n:{Ckvo,Ckvl,Ck2}=2N§{ak,,Bk,a’k* Bt (19

[Fig. X(c)]. Indeed, at then point we obtain the extremal . .

valuesC, =+ 1. Thus at the energies corresponding to theWe finally obtain

band edges* = + A, we have the standing wave condition, 2

|Cc|=1, and the CDW modulatiori10) has nodes. The [ ()|2=1+ > |C.nl COK G- X— Oy 1), (15)
change in sign o€, , or a phase change afin the LDOS, n=0

yvould appear as a 'relative contrast inversion of the STMyhere 8, n=argC, ). For a givenk, this modulation has
image between the filled and the empty states. quite a simple interpretation: It is a hexagonal standing
These arguments are nearly identical to the Pandey \yave, due to the lowest-order Bragg reflection associated
bonded chain model that Feenstra used to explain the CORyith the new superlattice. This expression could also be ex-
trast jnversion observed on the Si(1,1,K2 surface tended to a larger number of plane waves, or modified to
states'® It is an open question whether a phase shift in theinclude thez dependence of the amplitude, if higher preci-
density can occur across a CDW gap, by analogy. In thgjon is required. The atomic corrugation gives an additional
general 2D problem, we define an analogdudependent ierm similar to Eq(15), but with a larger wave vector.
amplitude, which becomes a complex function. Its argument ag g consequence of extending to two dimensi@s, is
will have an important influence on the phase of the LDOS, fynction ofk throughout the new Brillouin zone. The am-

associated with the charge modulation. plitude and the phase of the CDW can be computed once the
complex functionsCy , are known, these being directly re-
B. CDW modulation in two dimensions lated to the band structure via E{L4). We find that for

NbSe, the amplitudesC, ,| retain some aspects of the 1D
problem. More significantly, sincgy , has a complex value,
it introduces a new phase , in the modulation(15). The
pmotif in the STM image then becomes energy dependent.

The details of the Fermi surface nesting in NRSis
band structure in the CDW state, and explicit calculations o
the wave function, will be treated in the following section. In
the expansion of a 2D modulation, the approximate Bloc
function (5) should contain at least the nearest reciprocal
vectorsg, . The price to pay for the reduced zone scheme is C. General expression for the LDOS

the inevitable mu|tlp|e band situation. Indeed, even if the We conclude this section by deriving a Simp'e form for
normal spectrum is only a single band, in the reduced zonghe CDW part of the LDOS. Using the cosine form of the

scheme of the CDW state, there are a number of sometim@godulation (15), together with the definitior{1), we must
overlapping bands. Still, this seems to be the simplest dedetermine

scription.

The CDW in materials such as NbSw®as ternary symme- 2
try and, if we assume it is exactly commensurate to the un- p(X,E)ZE 1+ E |Ck.nlcoggn-X— Oy ) { S(E—Ey),
derlying lattice, the hexagonal reciprocal lattice is generated k n=0

by the three vector§gy,g:.9,}: (16)
where we omit the sums over spin and band index, for sim-
9o=09(v3/2,1/2), plicity. In two dimensions, the above sufor integra) is
over all values ofk on the constant energy contouitk),
0,.=9(0,1), implied by the equatioE=E, . If E=E, then the integra-
tion is along the cross section of the Fermi surface. Thus, the
0,=9(—v3/2,1/2), exact evaluation of the LDOS, except for the most simple

contoursl (k), is quite difficult, and one usually must resort
where g is the reciprocal-lattice constant. Including only to subtle numerical techniques.
three plane waves as a first approximation, the wave function For the purposes of interpreting the STM images, we no-

is then tice that the first term in Eq16), which is independent of,
is just the average DOS of the systen(E), but in the CDW
=N (|K) + ar[k—go) + Bilk— 1)), (12 state:
with the normalization factomN,= 1+][a[?+[B]>. We
stress that the electronic structure enters the problem through p(E)= ; S(E—Ey). (17)

the complex coefficientsey and By, as in the one-

dimensional case above. In all expressions, we omit the noFhe second termdp(x,E), is the corrugation, which can be
tation of the band index. Using the obvious propegy understood as the excess density transferred to the CDW, or
=0;—dg, the modulation density is removed: p(X,E)=p(E)+ dp(x,E). By expanding the co-
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sine, one eliminates the undesirabl@rgument in the sum 347 A ® Se
overk in Eqg. (16). Then, by elementary means one obtains — o Nb
C K
2 ] Jo
Sp(%,E)= 2, anCos gy X) +bsin(gyX)  (18) <

with the coefficients

2,= 2 Re(Cyp) A(E~Ey), (193 or=

bn=; IM(Cy ) S(E—Ey). (19b pd
These amplitudesa(, ,b,,) involve the sum of the complex || OO

coefficientsCy , along the constant energy contol(k).
This summation is analogous to the usual DOS but With
as a weighting factor at the relevaktpoints. Its real and
imaginary parts thus contribute to the amplitude of the sym-
metric and antisymmetric parts of the density, respectively.
In order to interpret the phase observed in the STM im-
ages, it is more convenient to write Ed.8) in terms of the
cosine again. Obviously Eq$19a and (19b can be com-
bined into the single complex equation:

a,+ib,= Ci6(E—Ey), 20
" " Ek: kndl o 20 FIG. 2. Structure of NbSeshowing basic unitupper panélof

. ) . ) a layer, a perspective view of two layefmiddle panel, and the
which leads to the simple final result for the density: surface view of a single laygtower pane). Black circles indicate
Se sites, and open circles indicate the Nb sites. In the surface view,

2 the Se atoms are in the first plane, the Nb atoms lying in the second
p(X,E)=p(E)+ nzo An(E)cod gy Xx—¢n(E)], (21)  plane, 1.47 A below.

with ticular example of NbSg on which voltage-dependent STM
studies have been done, and calculate explicitly the quanti-
ties derived here.

An(E):|an+ibn|:; Ck,né(E_Ek) ) (229

Ill. BAND STRUCTURE AND WAVE FUNCTIONS
FOR THE CDW IN NbSe,

E)=arga,tib,)=ar Cknd(E—Ey)|.
en(B)=arga,+iby) 4; kndl k)) The mechanisms behind the contrast in STM images be-

(22b comes interesting for materials having very anisotropic elec-
tronic structures. In these materials, such as layered struc-

The latter is a quite general form of the LDOS for a CDW v e or chains, the band structure and Fermi surface have

involving only the smallest nontrivial Bragg reflection terms. unique properties, and electronic instabilities are typieA!.

In particular, the argumenp,(E) appears, which could be |, ome instances, there are still debated questions concern-
respo_nS|bIe for any phase _changes in the blas—dependel% the nesting, gapping, and Fermi surface reducidhas
STM images. For example, ib,(E) were to change from js'he case for NbSe Wangboet al2® have recently aimed
10,0, to {m,—m,m}, for two different energies, this would , ¢|ayify the picture for the transition-metal dichalcogenides,
be a complete contrast inversion. A definite phase shift hagp,§ 4150 the STM and AFM imag@&in this section, we use

been found on the Pb/&@k1,]) surface, which, althoughf@at- a perturbation model for the band structure of Np$e both
tributed to the formation of a CDW, is not a classic systém. the normal and the CDW states. As a result we suggest a

In reality, due to thek summation in Eq(20), the phase simple interoretation for the nesting in NbSe
of the LDOS¢,(E) is not directly the argument @, , (i.e., P P g bS

6k n), as it would be for a one-dimensional problem. Never-
theless, we shall find that in many instances, a partidalar
point dominates the sum due to the intensity of Bragg reflec- In Fig. 2 we show both the bulk and surface structures of
tion there: A straightforward physical interpretation is then2H-NbSe. Band-structure calculations of this material, or
possible. On the other hand, the correct energy-dependetite related 2i-TaSe, show that qualitatively the Fermi
amplitudesA,(E) can only be obtained by evaluating the level is crossed by a band associated with the transition
integration implied by Eq(229. We now focus on the par- metal. The recentab initio calculation of Kikushi and

A. Unperturbed band structure and the nesting question
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Tsukada(KT) (Ref. 29 shows that the width of this band is (a)
about 2 eV, and is derived from the N4 orbital. The R
narrow 4p Se bands are all occupied, and the remaining G,
niobium bands are empty. We assume that this Nb band i<
due to a single conduction electron per unit cell: the band is
therefore half-filled. Since only a very small portion near the
Fermi level is involved in the CDV¥! this should be a rea-
sonable starting point for determining the CDW band struc-
ture. KT do suggest a small Nb-Se hybridization in their
paper.

Since the coupling between the layers is small, our focus
will be only on a single sandwich consisting of three atomic
planes(Se-Nb-S¢ This is analogous to the graphene model
of graphite, i.e., the consideration of only a single layer.
Usingt; andt, as free parameters, arg the Nbd orbital
energy, the 2D band can be approximated by

Ex=go+t; > cos(k~an)+t2b2 cogk-b), (23  (b)

where thea, and theb,, are nearest neighbors, and next 2
nearest neighbors, respectively. The three parameters are 1 1.5
to the band calculation of KT. In Fig.(8 we show the 1
Fermi surface given by Ed23), consisting of a central cyl- ous
inder S, around thd" point, and six cylinders;, centered on E \
the K corner points of the hexagonal Brillouin zone. For F ' NJ
future reference, we note that for a lattice constanthe
values ofG andK areG=4m/v3a, andK=4/3a, respec- 2
tively. In Fig. 3b) we show the band dispersion along the
high-symmetry directions, together with the total D{Fyg. ) o(E)
3(c)]. The main features within the band are the relative
maximum, at the&K point, and the saddle point along th&
direction. These give rise to a discontinuity and a singularity
in the DOS, as expected for a 2D system. The vanishing of
the group velocity at the relevakt points accounts for this
behavior. Interlayer coupling will tend to round off the sin- _}\
gularities. Nevertheless, one might have expected the saddl \L
point to play a role in the CDW formation. Wilson argéks
that, in view of its position in energy, and its aspect with or N e ' s E ()
without the CDW gap, the saddle point is probably not in- | ‘ |
volved in the mechanism. E, Eg E, Ep
We believe that it is th&,, portions of the Fermi surface,
i.e., those centered around tKepoint, that are involved in ~ FIG. 3. (a) Reciprocal lattice of single layer Nbgelack dots3.
the formation of the CDW, leaving, approximately intact. High-symmetry pomt_s of the hexagonal Brllloum zone are Iabeled
While being far from a proof, we will show below that this is (I'K.M). The Fermi surface has two parss, being the portion
consistent with a 8 superlattice formation. In Ref. 22, KT 2roundl” andS, the portion centered oK. We also indicate with
propose the nesting of g surface, which naturally leads S (1€ saddle point in the band dispersié) Band dispersion for
to a perioddoublingCDW. It is clear from the STM images, Sn9!e 1aver NbSgusing a tight-binding approximation. The char-

. . . N acteristic minimum aM, and a relative maximum &, give the
and preVIOUS.neutron dlﬁrac.tl&ﬁ’that the_31 superlattice is . discontinuities in the DOSc) The saddle poin§ leads to a sharp
observed. Stl||! the eleqtronlc.structure in thg CDW state iSsingularity in the DOS, characteristic of a 2D system.
not well established: WilsGh gives some detail on the pos-
sible Fermi surface of the similar materialH2TaSe. He  Indeed, the nesting vectd®@ maps the Fermi “surface”
uses the band structure of Wexler and Woolleyogether  point at— kg onto the symmetric point &g . Then the den-
with a Harrison construction for a period tripling, to deducesity modulation has a wave vect@=2kr=G/2, giving pe-
four distinct pieces of the Fermi surface. Later work on theriod doubling. While Fermi surface nesting is perfect in one
same material is largely based on the calculation of Doramlimension, in two dimension@nd still worse threethere is
and Woolley'® who also assume the exaca 8ondition, so  no exact nesting. In Ref. 20, Pouget gives examples of nest-
the “nesting question” is still not settled. ing in two or three dimensions, where portions of the Fermi

The main characteristic of nesting in one dimension, asurface have similar curvature, and can thus overlap signifi-
discussed previously, is that the entire Fermi surface is comeantly upon translation by a giveQ. The same assumption
pletely removed by the CDW gap, resulting in an insulator.was apparently made by KT in their work.
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FIG. 5. Gapped band structure for the two-dimensional CDW
(left pane) and the computed DO@ight pane). The new bands are
labeled according to their position at the point. Them, band
crosses the Fermi level, and gives a Fermi surface portion centered
on thek point. Two new band$m, and m,) associated with the
CDW appear on either side of the Fermi level, which lead to a
different phase in the LDOS. The energy dgap+ A nearly coin-
cides with saddle points of the, andm, bands, and not the band

(b) edges.

cell defined by{gy,0,}. In the figure, we see the near overlap
particularly near then point, whose symmetry is also evi-
dent. More significantly, th§,, portions of the Fermi surface
are near the boundasgr Bragg planes particularly at thek
) _and m points. We deduce that the Fermi surface will be
FIG. 4. (8 Folded band structure into the new hexagonal Bril- o q,ced significantly, being cut up into new pieces, when the
:;nggrfggiassummg tthftengen(.)dt trlp(I:;ntgilcondltl.qt;k.:I;K/Sc.j ngm gapping potentiaVCDW intervenes.
9 y occurs at tiepoint and theém point just under the A remarkable feature of Figs(@ and 4b) is the symme-

Fermi level(i.e., within 50 meV. (b) Folding of theS,, portions of . . S : .
the Fermi surface into the Brillioun zone. Note the overlap par’[icu-try of thek andm points in the vicinity of the Fermi surface:

larly near them point, whose high symmetry is also evident. More AII.the m points are eqUI\./aIer?t, and there are t_WO typek of
significantly, the Fermi surface is very near the boundary, particuPOINtS labeledk; and k; in Fig. 4@. The folding of the
larly at thek andm points. Here we prefer to display the conven- Pands reveals that tfiepoints are each threefold degenerate,
tional cell, since the cutting up of the Fermi surface, due to the?S expected, but the point is sixfold degenerate. In sum-
CDW interaction, is easier to visualiZef. Fig. 6). mary, we find that in the reduced zone, the folded bands have
a significantly different band topology in thea3and 2a su-

Our approach for NbSe which we prefer to term perlattice conditions, in addition to their multiplicitynine
guasinesting, is to notice that even if the Fermi surface doesands compared to fourwWhy the system prefers the former
not overlap completely in thesBcondition, it may beclose  case cannot be decided here, and must depend on the phonon
enoughso that gap opening reduces the electron energy bpart of the total energy, i.e., the low-frequency modes of the
the required amount. Although the full analysis is quite in-lattice.
tricate, let us assume that the superlattice is exactly commen-
surate to &; hence it is generated by the new reciprocal
vectors: g,=G,/3. The new Brillouin zone is exactly the
parent zone, and the corner point is reduced by threé The potentiaV“P" therefore pushes bands away from the
=T"K/3 (small letters shall refer to the new zondlow con-  Fermi level, as shown in Fig. 5. In addition to the new band
sider the folding of the single band of Fig. 3 into the newstructure, the figure shows the calculated total DOS in the
reduced zone, Fig.(d), prior to any charge-lattice interac- 200 meV range. As a direct consequence of the gapping, the
tion, which gives a total of nine bands. Then the @eriodic  DOS at the Fermi level is lowered, as expected, whigev
system has highly degenerate bands, as expected, & thestates appear on the order BE+ A, at or near the high
corner points and th points. Most importantly, the degen- symmetry pointgk andm) of the Brillouin zone boundary.
erate pointk, andm of Fig. 4(b) are within 50 meV of the The main aspect is that these new states, highly degenerate at
Fermi level, i.e., within the CDW interaction range. If gapsk and m in the unperturbed problem, have a new phase.
are opened in the band structure near the Fermi level due fdecall that in the 1D problem the lifting of twofold degen-
this interaction, then the DOS will be significantly lowered eracy led to phase opposition in the period doubling modu-
there. lation. As shown in Sec. Il, the new phases are precisely

The idea of quasinesting can also be viewed another wagletermined by the argument of the complex amplit@e,
by the folding of theS,, portions of the Fermi surface into of the modulation. In the following paragraphs, we explicitly
the new reduced zone of Fig(b}. For reasons that will calculatedCy , for the single layer model of the CDW in
become apparent, we prefer to display the conventional unilbSe, which leads to the band structure of Fig. 5. In this

B. Gapped band structure in the 3a condition



57 VOLTAGE-DEPENDENT STM IMAGE OF A CHARE . . . 13125

simple model, the complex amplitudes can be related to the 3
band structure at ank point, but also their values at the ’
and m points can be determined analytically. The idea of m
guasinesting, while not being strictly quantitative, is a useful A
starting point to determine the amplitude and phase of the
new CDW states.

Focusing on only one of th& points of Fig. 4a), for
examplek,, we can calculate analytically the lifting of the
threefold degeneracy if we neglect all but the lowest Fourier
coefficients of the potential, as well as accidental band cross-
ing. Since the wave-function expansion is exactly as Eg.
(12), the complex CDW amplitude§, , depend o, and
B through the established relation

(@)

Cion=2Ni{ax. Bk, af By}

In turn, &, and B, are solutions to

(b)

)\k _Vgo _Vgl 1

_\J*

Vgo )\k*QO _V92 ay | =0, (24)
*

—Vg, _ng Ne-gy P

where \ is the energy difference\k,ng—Ekw, and
where we have used the matrix elemegksVv<PWVk—g)
=V,g=V§ . This potential is not known explicitly, but we
assume tha¥/, has the form

©
Vgn:{AOei (PO,AOe*i(PO’AOei‘PO},

corresponding to the directiomg=1{g,,09:.09,}. HereAy is a
free parameter, ang, is a phase that restrict¢“°"(x) to o
the symmetry of the underlying lattice. The lattice is sym- . )
metric under a rotation of 120°, but also a combined rotation F'C: 6- Constant energy contours plotted in the conventional
of 60° and a reflection. It is notablyot symmetric under a unit cell for the characteristic energi& andE+A. The CDW

60° rotation alondor sixfold symmetry, which excludes the contributes to the LDOS even for very small energies, sind@)in
. ) - . the Fermi surface piece crosses the zone boun@argragg plang
possible valuepy=0. There is then still a choice for a value

. . . 277 The contours of gapped states, due to the CDW are allowed to come
of ¢q consistent with these symmetries, and we admit this iery close to or on thé and m points. In (b) both the CDW

a weakness of the model. However, we choose the value Qfmplitude and phase are dominated by the new stateskneand
®o= /2, which is consistent with the results of Ref. 18 for i, " while in (c) the states nedt, dominate(cf. Fig. 9.
the related material Tage

The eigenvalue problem differs significantly from the 1D {he pands shown with the dotted lines in Figa)awill be
case since Eq(24) leads to a cubic equation i&, which ignored for the present discussion.
gives a splitting into three distinct bands, instead of two. ™ Here we note the characteristic curvature near the high
From Eq.(24), we find for the eigenvalue equation symmetry pointsk and m, where in addition to new band
edges, there are new saddle points. The Fermi level lies in a
gap between then, andm_. bands, but still crosses the,
band. Thus the gapping leaves a triangular shaped Fermi
surface piece centered on tkeoint, Fig. §a). This has two

Mihk-gohk—g, = B0 Me—gyFhk—g)r  (29)

and the coefficients are

NeHiA important consequences: It is clear that there is no real
a=— —Z) (26a  “gap” in the CDW band structure, and the material remains
Me—go~ 180 metallic. This is consistent with the tunneling spectroscopy

measurement®. Second and contrary to the one-dimensional
problem, when tunneling involves states within the gap, i.e.,
for small voltages, we expect to see the CDW modulation in
the STM image. Indeed, Fig(& shows that the remaining
The procedure is to solve the eigenvalue problem varging Fermi surface piece comes close to or even crosses the zone
to reasonably fit the experimental DOS. The result in Fig. Sooundary neak.

shows the five principal bands arising frdm andk, in the In Figs. 6b) and Gc) we show the constant energy con-
vicinity of the Fermi level that are the most relevant to thetours at the gap limitsE=E-* A, where new states arise:
CDW modulation. Each band is labeled according to its poAt a given energy, there argvo contours, each giving a
sition at the newm point. Theks point being out of range, characteristic phase to the wave function. As evident at a

)\k_iAO

ﬁk:_(m . (26b)
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glance at Fig. 5, the 2D problem has the complication tha
tunneling will occur simultaneously to more than one band.
Fortunately, the energy contourskat+ A, which arise from
gapped bands, are then allowed to come very close to eitht
the m point or thek point. We shall show in the following
paragraphs that these points dominate the value for the pha
of the complex amplitud€, .

C. CDW modulation amplitude near the k and m points

Although we shall look at the fulk dependence of the
CDW amplitude, it is instructive to first determi@; ,, right
at thek point. There the degeneracy is exactly threefold, anc
thus

Ne=Ne-g=Mk—g, =\
and Eq.(25) then gives)\3=3A§)\, or the three distinct ei-
genvalues

A.=*V3A,,
and
No

At the k point, the theoretical value for the energy splitting
between then, andm, bands, i.e., across the Fermi level, is
‘/gAO.

The complex coefficients are easily found using the re-
sults (26a and (26b), and we have the following solutions
for Cy ,, for each eigenvalue:

)\+:‘/§AO! Ck’n:%{efiZ'rr/S’ei277/3,e7i2'n'/3}, (27@

Ao=0, Cyn=3%{1,1,1, (27b

N = _‘/§A01 Ck'n:%{ei2ﬂ/3,e—i2w/31ei2ﬂ'l3}. (270)

The CDW modulation has remarkably the same amplitude
|Cy.n|=35 in each of the three directions, and we can write

2
lwk<x>|2=1+%n§o coggo-X— 6y, (28)

where the phase angles, or dgf), take on the character-
istic values

N 27 2w 27
N =V3ho, 6y=\-—F . t5 .~ (299
No=0, 67={0,0,0, (29b)
__3A _ 2@ 2w 27 29
)\7__ (0R] en_ +?1_?1+? . ( C)

Consider the modulatiohy,|? for the middle eigenvalue
Ao=0. It has maxima on points of a triangular latticef
spacing &) and sixfold rotational symmetry. Ch&hrefers
to a similar function,®®(kx), as a “hexagonal cosine.”
Here the function$28), having the three phas#g , 62, and
6, are all hexagonal cosines, but cages and (c) have
shifted maxima with respect to faxed unit cell: 6, and 6,
select the maxima at the positiogsand 2 of the unit cell
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FIG. 7. LDOS, for a given band, at characteristic energies coin-
ciding with points of high symmetry of the Brillouin zone. We
separate the bands into two sg@, the bands arising from thie,
point and (b) from the k; point, of Fig. 5. In(a), the lifting of
threefold degeneracy gives three new states that ai@ dut of
phase. In(b) the motifs of the LDOS at then point are quite
different, showing threefold rotation symmetry, and the contrast is
nearly inverted. The Fermi level lies in a gap(& but not in(b),
which explains the reduction of the Fermi surface, and the spatial
separation between occupied states and empty states.

diagonal, respectivellFig. 7(a)]. We therefore expect to see
an identical contrast change in the LDOS, if the energy is
shifted from one eigenvalue to the next. The eigenvalues at
them point can be calculated in quite a similar fashion, and
the splitting of them bands gives two new motifs as those
shown in Fig. Th). There, the occupied state mit gives a
modulation that, in this case, is practically inverted with re-
spect to the empty state at the sakngoint. In summary, the
contrast changes described here result from the breaking of
the initially symmetric state, into a set of new orthogonal
states, such as Eg7) above, due to the charge-lattice in-
teraction.
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they have the expected property of being large whkeis

near or on the zone boundary. Note that all the curves pass
through the value of at thek point and eitheg or 1 at the

m point. This is the two-dimensional analog of the standing

wave condition: The former valug] results from lifting the

threefold degeneracy, leading to the three phases described
(a) above, while the latter resembles the case of twofold degen-

eracy, and leads to contrast inversion in the modulation.

The real and imaginary parts 6 , (but only for them_
band are illustrated in Figs. ®) and 8c) as contour plots.
Recall from the preceding section that the real and imaginary
parts ofCy ,, contribute, respectively, to the symmetric and
antisymmetric parts of the real-space modulation. Only the
case forn=1 is shown, i.e., for the, direction, the others
are qualitatively similaffor nine bands, and three directions,
there would be 27 such figures to displaffhe real part,
ReCx ), has a characteristic star shape centered orkthe
point and decreasing in the radial direction, except along the
Bragg planes. In€, , is particular in that it has a maximum
value along the portion of the Bragg plane thabithogonal

(b) to the g, direction, and decreases rapidly elsewhere, Fig.
8(c). Thek analysis of this model therefore provides a direct
visualization of the process of Bragg reflection in a two-
dimensional system: Thg, , plots tell us whak points are
significantly contributing to both the amplitude and the phase
of the CDW.

It would be temptinga priori, to interpret the STM im-
ages based only on the gap splitting at ther m points,
together with symmetry arguments. However, a few aspects
hinder this simple approach. First, the correct form of the

© LDOS, even at the characteristic energies, depends on the
details of the relevarit integration. One must also take into
account the competition arising from overlapping bands.
These aspects, and the interpretation of the STM images, we
leave to the final section.

FIG. 8. The complex CDW Coefﬁci_el'ﬁkyn as a function ok IV. ENERGY AND VOLTAGE DEPENDENCE
for the g, direction only, and for then_ band: In(a) |Cy 4| is OF THE STM IMAGE
plotted along the high symmetry directiofidark line of (b)] for
each of the five relevant bands. The characteristic values of 2/3 and A. Energy dependence of the CDW component

1 are due to the lifting of threefold and twofold degeneracies, re-
spectively. The amplitude decays away from the zone boundary,
in the 1D problem(Fig. 1). In (b) and (c) the real and imaginary
parts, which contribute to the even and odd parts of the LDOS, arsg
shown as contour plots in the conventional cell. The real part i
significant along the Bragg planes, while the imaginary part high-Su
lights the Bragg plane orthogonal to the direction.

As derived in Sec. I, the LDOS is determined as a func-
&on of energy by the summation ov€) ,, using Eq.(20).

or example, for a given barlde., one among a total of nine
ands in the gapped stateecall that the relevant complex
m is

D. k dependence of the complex amplitude, , antiby= ; Crnd(E-E), (30

Recalling that the LDOS, by E@21), involves the sum of where its modulus and argument give the amplitdléE)

Cy n over allk points on the constant energy contours, its
functional dependence dnis relevant. This is particularly &neddpi:]eist?grqga of the CDW component of the LDOS, for

true for contours that have portions curving away from the Apolving fairly standard ical thddsfor th
new zone boundary, such as in Fig. 6. We also need to show pplying Tairly standard numerical me stor the

that not all thek points of the Brillouin zone contribute to DO_S of NbSg in the CDW state, we find th{.ﬂ th_e excess
the amplitude and phase in an equal manner. If this were thgensny has the same amplitude in all three directions, i.e.,
case, then a direct physical interpretation would be quite dif-
ficult, due to thek summation.

In Fig. 8(a) we show typical plots ofCy | for each of the
five dominant bands, and only for tlre=1 case, i.e., corre-
sponding to they, direction. By comparison to the 1D case, and there is only @ingleindependent angle to specify:

2
5p<x.E>=A<E>n§O cog g, x—¢n(E)], (3D
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en(E)={¢(E),— ¢(E),@(E)}. (32

This property is actually to be expected given the symme-
try of the charge-lattice potential, chosen at the outset. Par-
ticular values ofp(E) are summarized in Fig. 7 for the char-
acteristic energies where the bands cross the high-symmetry
points, with the corresponding LDOS, as discussed previ-
ously. Here we prove that, for a given band, kiategration
conserves the phaskerived in the preceding section, i.e., by
considering the phase of the CDW only in the vicinity of the
k andm points. This result is somewhat surprising, given the
explicit contours of Fig. 6, which have portions that move
quite away from the zone boundary. This means {Gat,|
decays fast enough along a contour, away from the boundary
points, such that the phase in the intedf20) is conserved.
This is confirmed in Fig. &), where we shoWC, ,| decay-
ing rapidly away from thek point, for example in theyk
direction.

We therefore recover in the LDOS the five distinct motifs:
three motifs involving a shift in the maxima of the CDW,
and two a contrast inversion. These results are satisfactory
since, given the position of the Fermi level, there is a distinct
spatial separation between occupied and unoccupied states.
A closer look at the LDOS, however, reveals that the states
at them point lead to a motif having threefold rotational
symmetry, whereas those at thg@oint have exclusively six-
fold symmetry.

As we have noted, these solutions for the LDOS at the
characteristic points of Fig. 7 are insufficient to completely
interpret the STM images. At a given energy, tunneling oc-
curs to more than one band simultaneously. For example, at —x
the gap edgeds=Er*+ A, there are two bands involved si-
multaneously, as shown explicitly by the constBntontours
of Fig. 6. There is yet another contour, not shown in the
figure, associated with th§ portion of the Fermi surface. In
our model it is essentially ungapped, and contributes little to
the phase. Nevertheless it is included in all computations of
the total density.

At a given energyE, we then write the excess LDOS as
the explicit sum over the contributions arising from all
bands:

A (E)

0.3 <

0.

-0.

(b)

T
2n/3

—2n/3

2n/3

-2n/3

E(eV)

-7

5p(X,E)=; Spr(X,E). (33
This multiple band situation, characteristic of a 2D system, is
well illustrated in the plots in Fig. @ of the density
6p\(X,E) arising from each band individually. Note that in
this figure, we give theelative corrugation of the CDW to )

. . _each, the lower panel refers to the three bands of Ra), @nd the
the background density, and Figh shows the correspond upper panel refers to the two bands of Figh)7 We indicate the

ing phase. In each case, we label the important characteristi L X ) .
energies of Fig. 7, i.e., those energies that are at band ec aracteristic energies corresponding to band extresolid lineg

T . . Ahd saddle pointgdotted line$. At these energies, special values
trema (solid Ilnes)_ and saddle p(?‘lnt£d”0tted lines. In the for the phase are found: In the lower panel, there is a phase shift of
Iowerl panel of Fig. &) the only real” gap OCCWS, at f{he 27/3, due to the lifting of threefold degeneracy at thkeand m
Fermi level, between the energieg and Emo. Within this

= points. Notice the gap iA(E) in the lower panel ofa), separated
gap, the CDW still contributes to the LDOS through the by maxima occurring at the energigg  andEy, , which are not
band, and one expects to see the CDW in an STM imagpBand edges, but saddle points. The maximum CDW amplitude is

even for very small voltages. These properties are easily reagbout 20%. The corresponding phase difference showtb)iris

FIG. 9. Relative corrugation of the CDW densiiy, (x,E) as a
function of energy for the five principal bands near the Fermi level:
In (a) its relative amplitudeA(E) and in (b) its phasee(E). In

from the gapped band structure of Fig. 5.
A number of points can be drawn from thép, (x,E)
plots, first concerning the amplitude of the CDW component

2/3, which shifts the maxima in the LDOS. Within the gap, the
residual amplitude is about 10%, thus for small voltage one expects

fo still see the modulation in the STM image.
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and then the phase. As Fig.@ shows, the overall contribu-
tion of the CDW is quite small, for the 200 meV range given,
and reaches a maximum value of about 20% of the total £
DOS. Even at the energies200 meV, the CDW accounts
for 5% of the DOS, which may be surprising, but is under-
standable since, even for these energies, the constant enerc
contours still come sufficiently close to the zone boundary.
The most important feature of th#p, (x,E) plots is that

the maxima in the CDW amplitude do not occur at the band-
edge energies, but rather occur at the saddle pointEkoat

andEp, . In the 1D problem it is théand extremahat give

the largest amplitude, and a singular density of states at the
gap edgesas in Fig. 2. On the contrary, for the 2D problem,
the group velocity vanishes at the saddle points, and these
give rise to a logarithmic singularity in the DOS. Looking
again at these energies in the gapped band structure of Fig. Se=ms
we notice thatEg— A lies very close to the saddle point of ‘
themg band, atk,. Indeed, this is confirmed by the constant
energy contour in Fig. 6, as indicated by the arrow. In a pr;
similar way, the energf+ A is close to the saddle point at
m, (or atm,). In view of this coincidence betweek and

the characteristic energies described above, we speculate th:
the broadened peaks in the measured DOS, i.e., uditty ) _ )
spectroscopy, are due to the saddle points and not to the band F!G- 10. STM image simulations for a sequence of voltages
extrema. Indeed, the DOS calculated from our CDW band@nging from =60 to 60 mV showing only the CDW component.

structure closely resembles the experimental spectra of Refél€ unit cell of lattice constantzis indicated. Thus the image

10 and 30 appears as a hexagonal array of alternating dark gpotsma) and
The motif of the LDOS depends on the phase arg(E), whlt_e spotgmaxima. The motif change; gradually: at60 mV the
di d ab In Figh®) lot the CDW ph f maxima are at the corners of the unit cell, and+a60 mV the
as discussed above. In igbg, we plo he Phase or ., xima are shifted té the unit cell diagonal. In all images, the
the five bands that are near the Fermi level. Again we high

dark spots are located at the same sites, but change intensity. At the

light Fh? band extrema and th_e saddle points at which Charﬁarticular voltage-20 mV, within the gap energy, the motif is very
acteristic phase values occur: In the lower panel, there is goarly a hexagonal array of holes.

phase shift of 2r/3 in the density for the three band edges.

This is_ in agreement with the lifting of thregfold dege_neracy,white spots, in the CDW should shift Byalong the unit cell
as derived previously, and the corresponding LDOS is showRjjagonal. These arguments show that it is not at all trivial to
in Fig. 7(a). The upper panel shows the phase as a functioRyiract the information on the CDW motif for a two-

of energy for them gap, i.e., between the pointa. and  gimensional system, where bands are overlapping.
m_ . We find an abrupt change ip(E), from ¢= /3 for

the occupied states tp=— 7/2 for the empty states. The
gray scale plots of Fig.(B) show the apparent contrast in-
version between these two densities. Here we emphasize that In order to compare with the STM images, we use the
the LDOS shows, in this case, threefold rotational symmetrysimplest expression for the current, which neglects the elec-
and not sixfold. Put another way, the motif contains bothtric field in the barrier, and the DOS of the tip. For the small
white spots and dark spots, which is a general feature of theoltage range considered here, the simple expression for the
STM images-5-° zero temperature current,

These remarks then allow us to understand the possible
changes in the motif observed in the LDOS at the particular EpteVv
energies corresponding to the gap edges, i.e.EaEq (X, V)= fE p(x,E)dE, (34)
+A. Forinstance, dEg— A, the LDOS is dominated by the F

phase ak, since, as Fig. @ shows, the CDW amplitude is - should suffice. There are two remarks concerning expression
largest there owing to the saddle pointEt. The corre-  (34) to be made here. First, that experiments performed at
sponding constant energy contoat E=Er—A) of Fig. the temperature of liquid He, 4.2 K, will avoid the problem
6(c) shows the same result: the contour comes very close tof thermal smearing of the electronic effects we are inter-
the kg point, as indicated by the arrow. We then concludeested in. Second, the variation of the LDOS within the tun-
from Fig. 9b) that the net phase is(Er—A)~0. Reasoning neling energy window implies that a current imagéx, V),

in a similar fashion for the unoccupied states at the energwould differ from a conductance image, di(x,V)/dV.
E-+A, the phase is dominated by statesrat with some  Therefore, in view of the energy integration in expression
small contribution fromk,, and we find ¢(Ex+A) (34), one cannot make a simple correspondence between en-
~ —27/3. We therefore have the result that the overall phasergy and voltage: In the former case, the CDW amplitude,
change across the gap s¢~—2#/3. The maxima, or and phase, for the whole energy rar@g to Er+eV) will

B. Voltage dependence of the images
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(@) 35 mV

(b) -20 mV

FIG. 12. A selected STM 3930 A2 image of H-NbSe taken
at 4.2 K(R=100 M, V=-10 mV) to be compared to the simu-
lation Fig. 11b). Despite a small difference in bias voltage, the
similarity is striking. The image has been filtered to remove noise.

tained, but the hexagonal array of dark spots was observed
for a smaller bias\{=—-10 mV).

Adding to the CDW component of the LDOS the atomic
corrugation of the NbSelattice, we obtain the distinctive
moire patterns shown in Fig. 11. Ia) and (c) we give the
STM images that could be seen for the voltage set at the gap
edgesV=*A/e, while in (b) we selected the interesting
case ¥=—20 mV) where the CDW is a hexagonal array of
holes. In the latter case, the moipattern gives rise to a
distinctive motif consisting of “flowers” of seven dark spots

FIG. 11. STM simulation showing the CDW together with the (one Centra! dgrk sp(_)t, surrounded by six Oth.dm () and .
atomic corrugation for three selected voltages. In ima@esnd (c) the motif is dominated by _three _equally intense Wh't_e
(c), the tunneling window encompasses the gép:* A/e and the ~ SPOtS. A closer look at these simulations reveals that, while
relative shift in the maxima of the CDW component is seen. For &¢@Se(b) is very nearly sixfold symmetric, cas¢s) and (c)
voltage within the gap, the STM simulation can either appear simihave threefold rotational symmetry. In Fig. 12 we give the
lar to (a) or (c), or even as an array of dark spots, agtin Due to  real STM imagé? taken atV=—10mV, to be compared
the superposition of the atomic and CDW corrugation, the distincWwith Fig. 11(b).
tive moire patterns are found.

() -35mV

V. CONCLUSION

contribute, whereas in the latter case, the states\Vawill We h q imple th i lain th |
dominate. Still, the general pattern of the LDOS, as previ- e have presented a simple theory to explain the voltage

ously outlined, are confirmed by the STM simulations as aor energy dependence of the STM images of a CDW in two

function of voltage dimensions. Our main attention was focused on two physical
N " arameters, its amplitude and phase. Motivated by the suc-
In the current image)(x,V), the superposition of the b P p y

CDW signat th int | leads t i cess in the domain of semiconductors, to relate the spectro-
signatureé over the energy inteérval leads 1o a con Inu'scopic content of STM imaging to the electronic structure,
ous variation of the motif as a function of the bias. The

. . . . we have recently taken a closer look at the voltage depen-
sequence of STM simulations of Fig. 10, with the voltagegence of the CDW in B-NbSe, using low-temperature
ranging from—60 to 60 mV, illustrates the point. The major ST\, The main question is whether or not there is indeed a
overall effect follows the previous conclusion concerning thechange in contrast for energies within or larger than the
LDOS, i.e., a phase change &fp~ —27/3. Thus the white  CDW gap energyA. Using a simplified analysis of the band
spots shift position by moving of the diagonal of the unit gapping in the case of NbSewe showed that new states
cell. Although the motif gradually changes, the position ofarise on the order oA, contributing to the STM image at
the dark spotgminima of the CDW remains unchanged, selected bias voltages.

i.e., at3 the diagonal of the unit cell. Notice the particular A study of the gapped band structure, and the related
case atv=—20 mV, where the maxima become secondary,constant energy contours, revealed that for characteristic en-
giving a hexagonal array of holes. The phase angle in thigrgies near the Fermi level, the LDOS involves the points of
case isp~. These results correspond surprisingly well high symmetry of the new Brillouin zone. For these energies,
with the experimental STM images we have previously ob-we found special values for the phase and the amplitude of
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the CDW modulation. Specifically, due to the lifting of a have simplified may have some important effects: The per-

threefold degeneracy at tHe point of the new Brillouin  pendicular dispersion of the bands, the Nb-Se couplamgl

zone, we showed that the phase of the CDW component dhus the exact position of the Fermi leyehe details of the

the LDOS changes by2/3 at each eigenvalue. A more care- charge-lattice interaction, and the nesting question. These

ful analysis of the tunneling to the different bands, at the gagproblems existed prior to the STM, and further work is nec-

energiesEz+ A, gave the same result: the maxima of theessary to refine these details.

LDOS thus shift a distance dfthe diagonal of the unit cell. There have been few investigations of the energy or volt-
A second aspect of the problem was investigated, namelgige dependence of the CDW amplitude or phase. A quite

the energy dependence of the CDW amplitude arising frondetailed study of thell/dV spectra, as well as the distance

each band. In this analysis, we can conclude that the CDWependence of the corrugation, has been done in Ref. 10. In

should be seen in the STM image, even for very small voltthis area one could also investigate tio¢al charge ampli-

age,V<A/e. Indeed at the Fermi level, the CDW compo- tude, i.e., the amplitud&(E) of our work, but integrated

nent accounts for approximately 10% of the total DOS.over all occupied states. This perhaps could be achieved by

Moreover, we found that the maximum of the amplitude oc-measuring the CDW amplitude for a sufficiently large nega-

curs at energies corresponding to the saddle points of théve bias. The 1D chain model gives the well-known total

band structure, and not the band edges. It should be of sonamplitude A as a function of the gap and the electron

interest to investigate both the images and spectra of othgrarameters?

CDW systems to compare to the results we have given here

for NbSe. 2A 2E¢
Although our approach may be considered somewhat A= WUF I A

nawve, the goal is to understand, in a general way, how the

physical parameters of the STM measurement relate to thi would be of interest to investigate whether the STM image

band structure, withouab initio calculations. On the other could verify this result, or an analogous one for the two-

hand, it is true that a number of aspects of the problem welimensional system.
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