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Voltage-dependent STM image of a charge density wave

William Sacks, Dmitri Roditchev, and Jean Klein
Groupe de Physique des Solides, Universite´s Paris 7 et Paris 6, Laboratoire Associe´ au CNRS, 2 place Jussieu,

75251 Paris Ce´dex 5, France
~Received 17 November 1997!

In the present work we write a general expression for the local density of states~LDOS! due to a commen-
surate charge density wave~CDW!. The main goal is to investigate the voltage dependence of the contrast in
the scanning tunneling microscope~STM! images of materials showing CDW’s. For layered materials, having
nearly two-dimensional electronic structures, the problem is complicated by the many-band situation near the
Fermi level, and by the incomplete band gapping. Nevertheless, a simple perturbation method allows one to
relate the amplitude and phase of the CDW to features of the band structure. We emphasize the role of
particular characteristic energies, at which the CDW has a large contribution from specialk points of the
surface Brillouin zone, leading to different modulations in the STM image. In a second part of the paper, we
consider the voltage-dependent contrast of NbSe2. For this material, we find that the amplitude and the phase
of the CDW change significantly as a function of energy~or voltage!, resulting in a number of different
possible motifs. For example, the direct comparison between occupied and empty states reveals that new states
on the order ofEF6D, giving a dominant contribution to the LDOS, have different phases. As a result, in the
corresponding STM images, the maxima of the corrugation have shifted positions along the diagonal of the
conventional unit cell.@S0163-1829~98!00320-8#
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I. INTRODUCTION

While a large number of STM experiments exploit
unmatched atomic resolution, in many instances it is the
ditional voltage dependence of the tunneling current t
gives full information on the local electronic structure of t
sample. This fact was recognized early on, and was app
to the visualization of different localized electronic states
semiconductor surfaces, for example Si~1,1,1!, at selected
bias voltages.1–5 This voltage~or equivalently energy! de-
pendence of the images was in some cases decisive in
determination of the surface structure.6 Since then, there
have been other cases in which the STM was shown to
sensitive to the local surface electrons~or holes! rather than
to the ‘‘topography.’’ Among the earlier works, one can c
the screening charge due to oxygen on GaAs,7 or a small
molecule on a surface,8 and the direct imaging of the charg
density wave~CDW! in transition-metal dichalcogenides.9–12

The interpretation of such experiments follows quali
tively from Lang’s extension13 of the theory of Tersoff and
Hamann14 expressing the bias-dependent tunneling curre
If ck(r ) is the surface wave function at the positionr of the
tip, then the local density of states~LDOS! at the energyE is
defined as

r~r ,E!5(
k

uck~r !u2d~E2Ek!. ~1!

When the junction is biased with a voltageV ~sample
grounded!, the ~zero temperature! tunnel current is

I 5
e

h E
EF

EF1eV

T~V,E!r~r ,E!r t~E2eV!dE, ~2!
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where r t is the tip state density andT(V,E) is a barrier
coefficient. Thus for very small bias, the Ohmic part of E
~2! gives back Tersoff and Hamann’s result.

The energy window for tunneling at zero temperature
the rangeEF to EF1eV. By merely choosing the sign ofV,
one can image either the occupied states~electrons tunneling
from the sample to the tip! or the unoccupied states~elec-
trons tunneling to the sample!. Using simultaneous imaging
(1V,2V) in the study of GaAs and Si~1,1,1! 231, Feenstra
found the directspatial difference between the filled an
empty states.4–6 In the latter case, thep-bonded chain mode
accounts well for the phase opposition of the surface st
across the band gap. On Si(1,1,1)737, selecting different
bias voltages reveals electronic states having maxima at
ferent sites within the surface unit cell,2,3 which can be iden-
tified on the basis of the structure and bonding at this s
face.

The question that arises is, for which other samples d
one expect the STM image to deviate from the atomic top
raphy, and to be strongly influenced by the electronic str
ture? In a general way, for anisotropic materials that sh
quasi-two-dimensional~or one-dimensional! electronic struc-
tures, the wave-vector sum in the LDOS@Eq. ~1!# is re-
stricted due to the Fermi surface topology. For example
an ideal layered structure, a constant energy surface con
of open cylinders running perpendicular to the layers. Th
the wave vectorki takes on a value along a curve in th
surface Brillouin zone. We thus expect stronger electro
effects in the STM image to occur in materials such
graphite, MoS2, and even high-Tc superconductors
~BiSrCaCuO, etc.!. Graphite is actually an extreme cas
since, near the Fermi level, states are confined to near
point at the zone edge. Tersoff has shown15 that this leads to
an unusually large corrugation of the STM image.
13 118 © 1998 The American Physical Society
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Charge density wave materials, such as the transit
metal dichalcogenides~NbSe2, NbSe3, TaSe2, etc.!, fall into
this class of anisotropic properties. Our particular motivat
in the study of 2H-NbSe2 is to investigate the electroni
structure effects in the STM images when the material is
the CDW state. As is well known, NbSe2 has both a CDW
transition (TCDW'35 K) as well as a superconducting on
at Tc57.2 K. In Ref. 16, we described low-temperatu
STM observations of the charge density wave at 4.2 K. T
specific problem we addressed was the possibility of a r
tive change in contrast for states above, or below, the C
energy gap. In a simultaneous and reversed-bias mode
showed that there was a phase shift occurring in the LD
corresponding to states at opposite energies with respe
the Fermi level, and even for energies within the gap. T
was not a simple contrast reversal, as one might have
pected, but an unknown phase shift in the LDOS. In additi
since the total density is a superposition of the atomic co
gation with the CDW one, the STM image results in an
tricate moirépattern. Some theoretical questions natura
arise: What phase shift in the corresponding electron~hole!
wave function does one expect? What is the dependenc
this phase on the energy, and hence the tunneling volta
Despite the voluminous literature on CDW materials a
previous STM investigations,9–12,17–24these questions wer
almost never asked, and a simple theory is still needed.

The full description of the electronic structure in th
CDW state is a challenging problem: The CDW involves n
only the static modulation of the charge density, but also
detailed periodic lattice distortion~PLD! involving the dis-
placement of often many atoms per unit cell~54 for
2H-NbSe2!. Our approach to the problem is to notice th
~within the Tersoff and Hamann framework! the STM mea-
sures the local density of states at some distance from
surface, and hence is quite insensitive to the precise,
small, atomic displacements. We assume that the CDW
exactly commensurate to the lattice, for simplicity. Then
perturbation theory, the Bloch functions are formed by
coupling of states labeled byk, k2g, k2g8,... whereg is a
reciprocal-lattice vector of the CDW system. The STM th
responds to the lowest nontrivial terms of the relevant Blo
function, together with the usual atomic corrugation.

It is then possible to write a quite general expression
the LDOS, and to investigate the physical parameters,
amplitude and phase, at different characteristic energies
spite of the many-band situation near the Fermi level, so
of them overlapping, we show that the largest contribution
the CDW modulation arises from specialk points of the
surface Brillouin zone, in particular at the zone boundar
As a result, the problem becomes tractable, and it is
aspect we hope could be useful in the study of differ
surfaces.

The paper is then presented in the following order: Us
the approximate Bloch functions for the CDW, in Sec. II w
write a general expression for the CDW component of
LDOS. The textbook example of a one-dimensional atom
chain is used to clarify many aspects prior to treating
two-dimensional CDW. In Secs. III and IV we apply ou
method to the problem of NbSe2. Beginning with the ques-
tion of the Fermi surface nesting, and the gapping of
band structure due to the CDW, we identify the new sta
n-
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which arise on the order ofD, the gap parameter. In Sec. I
we show that these states, having characteristic phases,
lead to a definite motif in the STM image. There we emph
size thek dependence of the modulation, and show whichk
points give the major contribution. In Sec. IV, we discuss t
amplitude and phase of the CDW as a function of energy,
a wide range of values, from within to beyond the gap. E
amining the modulation in real space, we find that t
maxima of the LDOS have different positions within th
conventional unit cell, depending on the energy. This is u
to interpret the final results for the voltage dependence of
STM images.

II. DESCRIPTION OF THE METHOD: CDW COMPONENT
OF THE LDOS

Electronic structure calculations of CDW systems a
usually quite complex, even in a tight-binding approach.17,18

Prior to the STM, the main focus was on the energy of
system and the displacement of the atoms. Our concern
is to extract the main features of the real-space charge m
lation, relevant to the STM image. The principal simplific
tion in the theoretical treatment is a consequence of the
rier penetration damping on the surface Bloch functions.
detailed by Tersoff and Hamann,14 a key aspect is that the
STM measures the LDOS at some distancez from the sur-
face, on a scale larger thank215A\/2mw'1 Å, the decay
length of the wave function into the vacuum, wherew is the
work function. In this regime, the tunneling is exponentia
small: I}e22kz, and the local density of states defined in E
~1! follows the same asymptotic decay.

Exploiting this property, we begin by writing the Bloc
wave function associated with a CDW, which is assum
periodic in the plane of the surface. It is straightforward
show14 that it must have the form

ck~x,z!5(
g

ck2ge
i ~k2g!•xe2kk2gz, ~3!

wherek5(kx ,ky) andg is the two-dimensional~2D! recip-
rocal lattice. The inverse decay length is

kk2g5S ~k2g!21
2m

\2 uEu D 1/2

,

whereE is measured from the vacuum level. Therefore, ea
plane wave in the sum,ei (k2g)•x, has an amplitude that de
cays very fast asg increases, and this property determin
the limiting resolution of the instrument.14,25

To extract from Eq.~3! the dominant term owing to the
CDW, we can consider at the outset a number of simplify
assumptions: First, supposing thatkz@1, then only the
smallest wave vectorsgn will contribute significantly to the
Bloch sum. Ifk is restricted to the first Brillouin zone, the
the gn can be the nearest reciprocal lattice points. Most i
portantly, thegn then coincide with the generating vectors
the CDW, i.e.,gn5Qn . Keeping only two terms as a firs
example, thus ignoring the atomic corrugation, we have

ck~x,z!'eik•x~cke
2kkz1ck2ge

2 ig•xe2kk2gz!. ~4!

Second, as will be justified in the specific case of a CD
the wave vectork is on or near the Brillouin zone boundary
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13 120 57WILLIAM SACKS, DMITRI RODITCHEV, AND JEAN KLEIN
for energies near the Fermi level. Since the exponen
damping factors are slowly varying functions, we can si
plify further by settingk5g/2 in their arguments:

ck~x,z!'eik•xw~z!~ck1ck2ge
2 ig•x!, ~5!

where w(z)5e2kg/2z. The physical interpretation is the
straightforward: quite far from the surface, the wave funct
associated with the CDW modulation appears as if onl
single Bragg reflection occurs. Once the complex amplitu
ck and ck2g are determined from the particular band stru
ture, using a variety of possible methods, it is then a re
tively direct calculation for the corresponding LDOS. O
can use either forms~4! or ~5! for the wave function, since
the accuracy depends on the distancez and the variation ofk
in the surface Brillouin zone. Finally, we note that the a
proximation~5! leads to the factoring of the LDOS into pe
pendicular and parallel parts:

r~r ,E!'w~z!2(
k

uck~x!u2d~E2Ek!, ~6!

which is often assumed to be valid. This approximation
actually quite correct for graphite, since the Fermi surfa
lies very close to the zone boundary, at theK corner point.15

We will show explicitly in Sec. III that it is still reasonable i
the case of a CDW.

In the following we pursue the idea of single Bragg r
flection, and its consequence on the CDW modulat
through the amplitudesck and ck2g . Given the complexity
of the general problem, we give a very brief summary of
1D case, but stressing those aspects that are relevant t
energy dependence of the 2D modulation and LDOS.

A. One-dimensional modulation

As is well known, from the electronic point of view th
one-dimensional metal having a band dispersion,

Ek5«012b cos~ka!, ~7!

is unstable to a period doubling, or dimerization.19 This is
because the Fermi wave vectorkF lies at 1

2 GM , the band
being half-filled@Fig. 1~a!#. Period doubling, with new recip
rocal vectorg5G/2, lowers the total electron energy b
opening a gap at the new zone boundary, them point. The
Fermi ‘‘surface,’’ which consisted of only two points~kF
and2kF! for the unperturbed chain, is completely remov
in the dimerized chain@Fig. 1~b!#. This metal-insulator tran-
sition is characterized by the perfect nesting of the Fe
surface: the wave vectorQ5g translates one Fermi poin
onto the other. A general discussion of nesting in lo
dimensional conductors can be found in Ref. 20.

A simple model to describe the CDW modulation, hen
the coefficients in the Bloch expansion~5!, uses degenerat
perturbation theory. If the system has a new period 2a, then
the bandsEk andEk2g become degenerate at them point of
the new Brillouin zone. The corresponding states,uk& and
uk2g&, are coupled through the periodic potential,V(x)
5VCDW(x), with fundamental Fourier componentVg

CDW

5D, which we associate with the static charge-lattice int
action. Then, using the linear combination
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ck5Nk~ uk&1akuk2g&), ~8!

one obtains two bands,E1 andE2, separated by a gap 2D at
the m point, and the corresponding solutions forak :

ak
65

E62Ek

D
5

D

E62Ek2g
. ~9!

There are also two different CDW modulations, for the o
cupied and unoccupied bands:

uck
6~x!u2511Ck

6cos~gx!, ~10!

where the new amplitude isCk
652Nk

2ak
6 . This expression

for the modulation, which neglects the atomic contributio
has a period 2a and a wave vectorg5Q, as expected.

Although quite standard, we anticipate some import
features of the 2D modulation by considering these relatio

FIG. 1. Prior to treating the 2D case, it is useful to consider
gap opening in a one-dimensional conductor with a half-filled ba
assuming period doubling.~a! The unperturbed band~solid line!
and the folded band~dotted line! are doubly degenerate atkF ~or
GM /2!. ~b! A gap of magnitude 2D at the new Brillouin zone
boundary~m point! separates the two bandsE1 andE2 . The cor-
responding DOS is shown in the right panels of~a! and~b!. ~c! The
k-dependent CDW amplitudeCk

6 has two branches, that tend to61
at the m point, the standing wave conditions. The correspond
modulationsuCk

6(x)u2 of wave vectorQ5g are in phase opposi
tion.
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In particular, the CDW amplitudeCk
6 is k-dependent and

using the normalization factorNk51/A11ak
2, it is related to

the band structure via

Ck
65

2ak
6

11~ak
6!2 . ~11!

It is quite small except for points near the zone bound
@Fig. 1~c!#. Indeed, at them point we obtain the extrema
valuesCk

6561. Thus at the energies corresponding to
band edges,E656D, we have the standing wave conditio
uCk

6u51, and the CDW modulation~10! has nodes. The
change in sign ofCk

6 , or a phase change ofp in the LDOS,
would appear as a relative contrast inversion of the S
image between the filled and the empty states.

These arguments are nearly identical to the Pandeyp-
bonded chain model that Feenstra used to explain the
trast inversion observed on the Si(1,1,1)231 surface
states.4,5 It is an open question whether a phase shift in
density can occur across a CDW gap, by analogy. In
general 2D problem, we define an analogousk-dependent
amplitude, which becomes a complex function. Its argum
will have an important influence on the phase of the LDO
associated with the charge modulation.

B. CDW modulation in two dimensions

The details of the Fermi surface nesting in NbSe2, its
band structure in the CDW state, and explicit calculations
the wave function, will be treated in the following section.
the expansion of a 2D modulation, the approximate Blo
function ~5! should contain at least the nearest recipro
vectorsgn . The price to pay for the reduced zone scheme
the inevitable multiple band situation. Indeed, even if t
normal spectrum is only a single band, in the reduced z
scheme of the CDW state, there are a number of someti
overlapping bands. Still, this seems to be the simplest
scription.

The CDW in materials such as NbSe2 has ternary symme
try and, if we assume it is exactly commensurate to the
derlying lattice, the hexagonal reciprocal lattice is genera
by the three vectors$g0 ,g1 ,g2%:

g05g~)/2,1/2!,

g15g~0,1!,

g25g~2)/2,1/2!,

where g is the reciprocal-lattice constant. Including on
three plane waves as a first approximation, the wave func
is then

ck5Nk~ uk&1akuk2g0&1bkuk2g1&), ~12!

with the normalization factorNk5A11uaku21ubku2. We
stress that the electronic structure enters the problem thro
the complex coefficientsak and bk , as in the one-
dimensional case above. In all expressions, we omit the
tation of the band index. Using the obvious propertyg2
5g12g0 , the modulation density is
y
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uck~x!u25112Nk
2Re@ake

2 ig0•x

1bke
2 ig1•x1ak* bke

2 ig2•x#, ~13!

from which a useful form can be written if we define thre
new complex amplitudesCk,n , one for each of the three
directions$g0 ,g1 ,g2%:

Ck,n5$Ck,0 ,Ck,1 ,Ck,2%52Nk
2$ak ,bk ,ak* bk%. ~14!

We finally obtain

uck~x!u2511 (
n50

2

uCk,nucos~gn•x2uk,n!, ~15!

where uk,n5arg(Ck,n). For a givenk, this modulation has
quite a simple interpretation: It is a hexagonal stand
wave, due to the lowest-order Bragg reflection associa
with the new superlattice. This expression could also be
tended to a larger number of plane waves, or modified
include thez dependence of the amplitude, if higher prec
sion is required. The atomic corrugation gives an additio
term similar to Eq.~15!, but with a larger wave vector.

As a consequence of extending to two dimensions,Ck,n is
a function ofk throughout the new Brillouin zone. The am
plitude and the phase of the CDW can be computed once
complex functionsCk,n are known, these being directly re
lated to the band structure via Eq.~14!. We find that for
NbSe2, the amplitudesuCk,nu retain some aspects of the 1
problem. More significantly, sinceCk,n has a complex value
it introduces a new phaseuk,n in the modulation~15!. The
motif in the STM image then becomes energy dependen

C. General expression for the LDOS

We conclude this section by deriving a simple form f
the CDW part of the LDOS. Using the cosine form of th
modulation ~15!, together with the definition~1!, we must
determine

r~x,E!5(
k

H 11 (
n50

2

uCk,nucos~gn•x2uk,n!J d~E2Ek!,

~16!

where we omit the sums over spin and band index, for s
plicity. In two dimensions, the above sum~or integral! is
over all values ofk on the constant energy contour,l (k),
implied by the equationE5Ek . If E5EF , then the integra-
tion is along the cross section of the Fermi surface. Thus,
exact evaluation of the LDOS, except for the most sim
contoursl (k), is quite difficult, and one usually must reso
to subtle numerical techniques.

For the purposes of interpreting the STM images, we
tice that the first term in Eq.~16!, which is independent ofx,
is just the average DOS of the system,r(E), but in the CDW
state:

r~E!5(
k

d~E2Ek!. ~17!

The second term,dr(x,E), is the corrugation, which can b
understood as the excess density transferred to the CDW
removed: r(x,E)5r(E)1dr(x,E). By expanding the co-
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sine, one eliminates the undesirablex argument in the sum
over k in Eq. ~16!. Then, by elementary means one obtai

dr~x,E!5 (
n50

2

ancos~gn•x!1bnsin~gn•x! ~18!

with the coefficients

an5(
k

Re~Ck,n!d~E2Ek!, ~19a!

bn5(
k

Im~Ck,n!d~E2Ek!. ~19b!

These amplitudes (an ,bn) involve the sum of the complex
coefficientsCk,n along the constant energy contourl (k).
This summation is analogous to the usual DOS but withCk,n
as a weighting factor at the relevantk points. Its real and
imaginary parts thus contribute to the amplitude of the sy
metric and antisymmetric parts of the density, respective

In order to interpret the phase observed in the STM
ages, it is more convenient to write Eq.~18! in terms of the
cosine again. Obviously Eqs.~19a! and ~19b! can be com-
bined into the single complex equation:

an1 ibn5(
k

Ck,nd~E2Ek!, ~20!

which leads to the simple final result for the density:

r~x,E!5r~E!1 (
n50

2

An~E!cos@gn•x2wn~E!#, ~21!

with

An~E!5uan1 ibnu5U(
k

Ck,nd~E2Ek!U, ~22a!

wn~E!5arg~an1 ibn!5argS (
k

Ck,nd~E2Ek! D .

~22b!

The latter is a quite general form of the LDOS for a CD
involving only the smallest nontrivial Bragg reflection term
In particular, the argumentwn(E) appears, which could be
responsible for any phase changes in the bias-depen
STM images. For example, ifwn(E) were to change from
$0,0,0% to $p,2p,p%, for two different energies, this would
be a complete contrast inversion. A definite phase shift
been found on the Pb/Ge~1,1,1! surface, which, although at
tributed to the formation of a CDW, is not a classic system26

In reality, due to thek summation in Eq.~20!, the phase
of the LDOSwn(E) is not directly the argument ofCk,n ~i.e.,
uk,n!, as it would be for a one-dimensional problem. Nev
theless, we shall find that in many instances, a particulak
point dominates the sum due to the intensity of Bragg refl
tion there: A straightforward physical interpretation is th
possible. On the other hand, the correct energy-depen
amplitudesAn(E) can only be obtained by evaluating th
integration implied by Eq.~22a!. We now focus on the par
-
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-
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ent
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ticular example of NbSe2, on which voltage-dependent STM
studies have been done, and calculate explicitly the qua
ties derived here.

III. BAND STRUCTURE AND WAVE FUNCTIONS
FOR THE CDW IN NbSe2

The mechanisms behind the contrast in STM images
comes interesting for materials having very anisotropic el
tronic structures. In these materials, such as layered st
tures or chains, the band structure and Fermi surface h
unique properties, and electronic instabilities are typical.19,20

In some instances, there are still debated questions conc
ing the nesting, gapping, and Fermi surface reduction,21,22as
is the case for NbSe2. Wangboet al.23 have recently aimed
to clarify the picture for the transition-metal dichalcogenide
and also the STM and AFM images.24 In this section, we use
a perturbation model for the band structure of NbSe2, in both
the normal and the CDW states. As a result we sugge
simple interpretation for the nesting in NbSe2.

A. Unperturbed band structure and the nesting question

In Fig. 2 we show both the bulk and surface structures
2H-NbSe2. Band-structure calculations of this material,
the related 2H-TaSe2, show that qualitatively the Ferm
level is crossed by a band associated with the transi
metal. The recentab initio calculation of Kikushi and

FIG. 2. Structure of NbSe2 showing basic unit~upper panel! of
a layer, a perspective view of two layers~middle panel!, and the
surface view of a single layer~lower panel!. Black circles indicate
Se sites, and open circles indicate the Nb sites. In the surface v
the Se atoms are in the first plane, the Nb atoms lying in the sec
plane, 1.47 Å below.
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Tsukada~KT! ~Ref. 22! shows that the width of this band i
about 2 eV, and is derived from the Nb 4dz2 orbital. The
narrow 4p Se bands are all occupied, and the remain
niobium bands are empty. We assume that this Nb ban
due to a single conduction electron per unit cell: the ban
therefore half-filled. Since only a very small portion near t
Fermi level is involved in the CDW,21 this should be a rea
sonable starting point for determining the CDW band str
ture. KT do suggest a small Nb-Se hybridization in th
paper.

Since the coupling between the layers is small, our fo
will be only on a single sandwich consisting of three atom
planes~Se-Nb-Se!. This is analogous to the graphene mod
of graphite, i.e., the consideration of only a single lay
Using t1 and t2 as free parameters, and«0 the Nbd orbital
energy, the 2D band can be approximated by

Ek5«01t1(
an

cos~k•an!1t2(
bn

cos~k•bn!, ~23!

where thean and thebn are nearest neighbors, and ne
nearest neighbors, respectively. The three parameters a
to the band calculation of KT. In Fig. 3~a! we show the
Fermi surface given by Eq.~23!, consisting of a central cyl-
inderSI around theG point, and six cylindersSII centered on
the K corner points of the hexagonal Brillouin zone. F
future reference, we note that for a lattice constanta, the
values ofG andK areG54p/)a, andK54p/3a, respec-
tively. In Fig. 3~b! we show the band dispersion along t
high-symmetry directions, together with the total DOS@Fig.
3~c!#. The main features within the band are the relat
maximum, at theK point, and the saddle point along theGK
direction. These give rise to a discontinuity and a singula
in the DOS, as expected for a 2D system. The vanishing
the group velocity at the relevantk points accounts for this
behavior. Interlayer coupling will tend to round off the si
gularities. Nevertheless, one might have expected the sa
point to play a role in the CDW formation. Wilson argues21

that, in view of its position in energy, and its aspect with
without the CDW gap, the saddle point is probably not
volved in the mechanism.

We believe that it is theSII portions of the Fermi surface
i.e., those centered around theK point, that are involved in
the formation of the CDW, leavingSI approximately intact.
While being far from a proof, we will show below that this
consistent with a 3a superlattice formation. In Ref. 22, KT
propose the nesting of theSI surface, which naturally lead
to a perioddoublingCDW. It is clear from the STM images
and previous neutron diffraction,27 that the 3a superlattice is
observed. Still, the electronic structure in the CDW state
not well established: Wilson21 gives some detail on the pos
sible Fermi surface of the similar material, 2H-TaSe2. He
uses the band structure of Wexler and Woolley,17 together
with a Harrison construction for a period tripling, to dedu
four distinct pieces of the Fermi surface. Later work on t
same material is largely based on the calculation of Do
and Woolley,18 who also assume the exact 3a condition, so
the ‘‘nesting question’’ is still not settled.

The main characteristic of nesting in one dimension,
discussed previously, is that the entire Fermi surface is c
pletely removed by the CDW gap, resulting in an insulat
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Indeed, the nesting vectorQ maps the Fermi ‘‘surface’’
point at2kF onto the symmetric point atkF . Then the den-
sity modulation has a wave vectorQ52kF5G/2, giving pe-
riod doubling. While Fermi surface nesting is perfect in o
dimension, in two dimensions~and still worse three! there is
no exact nesting. In Ref. 20, Pouget gives examples of n
ing in two or three dimensions, where portions of the Fer
surface have similar curvature, and can thus overlap sig
cantly upon translation by a givenQ. The same assumptio
was apparently made by KT in their work.

FIG. 3. ~a! Reciprocal lattice of single layer NbSe2 ~black dots!.
High-symmetry points of the hexagonal Brillouin zone are labe
(G,K,M ). The Fermi surface has two parts,SI being the portion
aroundG andSII the portion centered onK. We also indicate with
S the saddle point in the band dispersion.~b! Band dispersion for
single layer NbSe2 using a tight-binding approximation. The cha
acteristic minimum atM , and a relative maximum atK, give the
discontinuities in the DOS.~c! The saddle pointS leads to a sharp
singularity in the DOS, characteristic of a 2D system.
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Our approach for NbSe2, which we prefer to term
quasinesting, is to notice that even if the Fermi surface d
not overlap completely in the 3a condition, it may beclose
enoughso that gap opening reduces the electron energy
the required amount. Although the full analysis is quite
tricate, let us assume that the superlattice is exactly comm
surate to 3a; hence it is generated by the new reciproc
vectors: gn5Gn/3. The new Brillouin zone is exactly19 the
parent zone, and the corner point is reduced by three:gk
5GK/3 ~small letters shall refer to the new zone!. Now con-
sider the folding of the single band of Fig. 3 into the ne
reduced zone, Fig. 4~a!, prior to any charge-lattice interac
tion, which gives a total of nine bands. Then the 3a periodic
system has highly degenerate bands, as expected, atk
corner points and them points. Most importantly, the degen
erate pointsk2 andm of Fig. 4~b! are within 50 meV of the
Fermi level, i.e., within the CDW interaction range. If ga
are opened in the band structure near the Fermi level du
this interaction, then the DOS will be significantly lowere
there.

The idea of quasinesting can also be viewed another
by the folding of theSII portions of the Fermi surface int
the new reduced zone of Fig. 4~b!. For reasons that will
become apparent, we prefer to display the conventional

FIG. 4. ~a! Folded band structure into the new hexagonal B
louin zone assuming the period tripling condition:gk5GK/3. High
degeneracy occurs at thek point and them point just under the
Fermi level~i.e., within 50 meV!. ~b! Folding of theSII portions of
the Fermi surface into the Brillioun zone. Note the overlap parti
larly near them point, whose high symmetry is also evident. Mo
significantly, the Fermi surface is very near the boundary, part
larly at thek andm points. Here we prefer to display the conve
tional cell, since the cutting up of the Fermi surface, due to
CDW interaction, is easier to visualize~cf. Fig. 6!.
es

y
-
n-
l

e

to

y
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cell defined by$g0 ,g2%. In the figure, we see the near overla
particularly near them point, whose symmetry is also ev
dent. More significantly, theSII portions of the Fermi surface
are near the boundary~or Bragg planes!, particularly at thek
and m points. We deduce that the Fermi surface will
reduced significantly, being cut up into new pieces, when
gapping potentialVCDW intervenes.

A remarkable feature of Figs. 4~a! and 4~b! is the symme-
try of thek andm points in the vicinity of the Fermi surface
All the m points are equivalent, and there are two types ok
points labeledk1 and k2 in Fig. 4~a!. The folding of the
bands reveals that thek points are each threefold degenera
as expected, but them point is sixfold degenerate. In sum
mary, we find that in the reduced zone, the folded bands h
a significantly different band topology in the 3a and 2a su-
perlattice conditions, in addition to their multiplicity~nine
bands compared to four!. Why the system prefers the forme
case cannot be decided here, and must depend on the ph
part of the total energy, i.e., the low-frequency modes of
lattice.

B. Gapped band structure in the 3a condition

The potentialVCDW therefore pushes bands away from t
Fermi level, as shown in Fig. 5. In addition to the new ba
structure, the figure shows the calculated total DOS in
200 meV range. As a direct consequence of the gapping,
DOS at the Fermi level is lowered, as expected, whilenew
states appear on the order ofEF6D, at or near the high
symmetry points~k andm! of the Brillouin zone boundary.
The main aspect is that these new states, highly degenera
k and m in the unperturbed problem, have a new pha
Recall that in the 1D problem the lifting of twofold degen
eracy led to phase opposition in the period doubling mo
lation. As shown in Sec. II, the new phases are precis
determined by the argument of the complex amplitudeCk,n
of the modulation. In the following paragraphs, we explicit
calculatedCk,n for the single layer model of the CDW in
NbSe2, which leads to the band structure of Fig. 5. In th

-

-

e

FIG. 5. Gapped band structure for the two-dimensional CD
~left panel! and the computed DOS~right panel!. The new bands are
labeled according to their position at them point. Them̄1 band
crosses the Fermi level, and gives a Fermi surface portion cent
on thek point. Two new bands~m1 and m0! associated with the
CDW appear on either side of the Fermi level, which lead to
different phase in the LDOS. The energy gapEF6D nearly coin-
cides with saddle points of them1 andm0 bands, and not the ban
edges.
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simple model, the complex amplitudes can be related to
band structure at anyk point, but also their values at thek
and m points can be determined analytically. The idea
quasinesting, while not being strictly quantitative, is a use
starting point to determine the amplitude and phase of
new CDW states.

Focusing on only one of thek points of Fig. 4~a!, for
examplek2 , we can calculate analytically the lifting of th
threefold degeneracy if we neglect all but the lowest Fou
coefficients of the potential, as well as accidental band cro
ing. Since the wave-function expansion is exactly as
~12!, the complex CDW amplitudesCk,n depend onak and
bk through the established relation

Ck,n52Nk
2$ak ,bk ,ak* bk%.

In turn, ak andbk are solutions to

S lk

2Vg0
*

2Vg1
*

2Vg0

lk2g0

2Vg2
*

2Vg1

2Vg2

lk2g1

D S 1
ak

bk

D 50, ~24!

where l is the energy differencelk2g5E2Ek2g , and
where we have used the matrix elements^kuVCDWuk2g&
5V2g5Vg* . This potential is not known explicitly, but we
assume thatVg has the form

Vgn
5$D0eiw0,D0e2 iw0,D0eiw0%,

corresponding to the directionsgn5$g0 ,g1 ,g2%. HereD0 is a
free parameter, andw0 is a phase that restrictsVCDW(x) to
the symmetry of the underlying lattice. The lattice is sy
metric under a rotation of 120°, but also a combined rotat
of 60° and a reflection. It is notablynot symmetric under a
60° rotation alone~or sixfold symmetry!, which excludes the
possible valuew050. There is then still a choice for a valu
of w0 consistent with these symmetries, and we admit thi
a weakness of the model. However, we choose the valu
w05p/2, which is consistent with the results of Ref. 18 f
the related material TaSe2.

The eigenvalue problem differs significantly from the 1
case since Eq.~24! leads to a cubic equation inE, which
gives a splitting into three distinct bands, instead of tw
From Eq.~24!, we find for the eigenvalue equation

lklk2g0
lk2g1

5D0
2~lk1lk2g0

1lk2g1
!, ~25!

and the coefficients are

ak52S lk1 iD0

lk2g0
2 iD0

D , ~26a!

bk52S lk2 iD0

lk2g1
1 iD0

D . ~26b!

The procedure is to solve the eigenvalue problem varyingD0
to reasonably fit the experimental DOS. The result in Fig
shows the five principal bands arising fromk1 andk2 in the
vicinity of the Fermi level that are the most relevant to t
CDW modulation. Each band is labeled according to its
sition at the newm point. Thek3 point being out of range
e

f
l
e

r
s-
.

-
n

is
of

.

5

-

the bands shown with the dotted lines in Fig. 4~a! will be
ignored for the present discussion.

Here we note the characteristic curvature near the h
symmetry points,k and m, where in addition to new band
edges, there are new saddle points. The Fermi level lies
gap between them0 andm1 bands, but still crosses them̄1

band. Thus the gapping leaves a triangular shaped Fe
surface piece centered on thek point, Fig. 6~a!. This has two
important consequences: It is clear that there is no
‘‘gap’’ in the CDW band structure, and the material remai
metallic. This is consistent with the tunneling spectrosco
measurements.10 Second and contrary to the one-dimension
problem, when tunneling involves states within the gap, i
for small voltages, we expect to see the CDW modulation
the STM image. Indeed, Fig. 6~a! shows that the remaining
Fermi surface piece comes close to or even crosses the
boundary neark.

In Figs. 6~b! and 6~c! we show the constant energy co
tours at the gap limits,E5EF6D, where new states arise
At a given energy, there aretwo contours, each giving a
characteristic phase to the wave function. As evident a

FIG. 6. Constant energy contours plotted in the conventio
unit cell for the characteristic energiesEF andEF6D. The CDW
contributes to the LDOS even for very small energies, since in~a!
the Fermi surface piece crosses the zone boundary~or Bragg plane!.
The contours of gapped states, due to the CDW are allowed to c
very close to or on thek and m points. In ~b! both the CDW
amplitude and phase are dominated by the new states neark1 and
m1 , while in ~c! the states neark0 dominate~cf. Fig. 9!.
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glance at Fig. 5, the 2D problem has the complication t
tunneling will occur simultaneously to more than one ba
Fortunately, the energy contours atFF6D, which arise from
gapped bands, are then allowed to come very close to e
the m point or thek point. We shall show in the following
paragraphs that these points dominate the value for the p
of the complex amplitudeCk,n .

C. CDW modulation amplitude near the k and m points

Although we shall look at the fullk dependence of the
CDW amplitude, it is instructive to first determineCk,n right
at thek point. There the degeneracy is exactly threefold, a
thus

lk5lk2g0
5lk2g1

5l,

and Eq.~25! then givesl353D0
2l, or the three distinct ei-

genvalues

l656)D0,

and

l050.

At the k point, the theoretical value for the energy splittin
between them0 andm1 bands, i.e., across the Fermi level,
)D0 .

The complex coefficients are easily found using the
sults ~26a! and ~26b!, and we have the following solution
for Ck,n , for each eigenvalue:

l15)D0 , Ck,n5 2
3 $e2 i2p/3,ei2p/3,e2 i2p/3%, ~27a!

l050, Ck,n5 2
3 $1,1,1%, ~27b!

l252)D0 , Ck,n5 2
3 $ei2p/3,e2 i2p/3,ei2p/3%. ~27c!

The CDW modulation has remarkably the same amplitu
uCk,nu5 2

3 in each of the three directions, and we can writ

uck~x!u2511 2
3 (

n50

2

cos~g0•x2un!, ~28!

where the phase angles, or arg(Ck,n), take on the character
istic values

l15)D0 , un
15H 2

2p

3
,1

2p

3
,2

2p

3 J , ~29a!

l050, un
05$0,0,0%, ~29b!

l252)D0 , un
25H 1

2p

3
,2

2p

3
,1

2p

3 J . ~29c!

Consider the modulationucku2 for the middle eigenvalue
l050. It has maxima on points of a triangular lattice~of
spacing 3a! and sixfold rotational symmetry. Chen28 refers
to a similar function,F6(kx), as a ‘‘hexagonal cosine.’
Here the functions~28!, having the three phasesun

1 , un
0, and

un
2 are all hexagonal cosines, but cases~a! and ~c! have

shifted maxima with respect to afixedunit cell: un
1 andun

2

select the maxima at the positions1
3 and 2

3 of the unit cell
t
.

er

se

d

-

e

diagonal, respectively@Fig. 7~a!#. We therefore expect to se
an identical contrast change in the LDOS, if the energy
shifted from one eigenvalue to the next. The eigenvalue
the m point can be calculated in quite a similar fashion, a
the splitting of them̄ bands gives two new motifs as thos
shown in Fig. 7~b!. There, the occupied state atm gives a
modulation that, in this case, is practically inverted with r
spect to the empty state at the samek point. In summary, the
contrast changes described here result from the breakin
the initially symmetric state, into a set of new orthogon
states, such as Eqs.~27! above, due to the charge-lattice in
teraction.

FIG. 7. LDOS, for a given band, at characteristic energies co
ciding with points of high symmetry of the Brillouin zone. W
separate the bands into two sets,~a! the bands arising from thek2

point and ~b! from the k1 point, of Fig. 5. In ~a!, the lifting of
threefold degeneracy gives three new states that are 2p/3 out of
phase. In~b! the motifs of the LDOS at them point are quite
different, showing threefold rotation symmetry, and the contras
nearly inverted. The Fermi level lies in a gap in~a! but not in ~b!,
which explains the reduction of the Fermi surface, and the spa
separation between occupied states and empty states.
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D. k dependence of the complex amplitudeCk,n

Recalling that the LDOS, by Eq.~21!, involves the sum of
Ck,n over all k points on the constant energy contours,
functional dependence onk is relevant. This is particularly
true for contours that have portions curving away from
new zone boundary, such as in Fig. 6. We also need to s
that not all thek points of the Brillouin zone contribute to
the amplitude and phase in an equal manner. If this were
case, then a direct physical interpretation would be quite
ficult, due to thek summation.

In Fig. 8~a! we show typical plots ofuCk,nu for each of the
five dominant bands, and only for then51 case, i.e., corre
sponding to theg1 direction. By comparison to the 1D cas

FIG. 8. The complex CDW coefficientCk,n as a function ofk
for the g1 direction only, and for them̄2 band: In ~a! uCk,1u is
plotted along the high symmetry directions@dark line of ~b!# for
each of the five relevant bands. The characteristic values of 2/3
1 are due to the lifting of threefold and twofold degeneracies,
spectively. The amplitude decays away from the zone boundar
in the 1D problem~Fig. 1!. In ~b! and ~c! the real and imaginary
parts, which contribute to the even and odd parts of the LDOS,
shown as contour plots in the conventional cell. The real par
significant along the Bragg planes, while the imaginary part hi
lights the Bragg plane orthogonal to theg1 direction.
e
w

he
f-

they have the expected property of being large whenk is
near or on the zone boundary. Note that all the curves p
through the value of23 at thek point and either23 or 1 at the
m point. This is the two-dimensional analog of the standi

wave condition: The former value (2
3 ) results from lifting the

threefold degeneracy, leading to the three phases desc
above, while the latter resembles the case of twofold deg
eracy, and leads to contrast inversion in the modulation.

The real and imaginary parts ofCk,n ~but only for them̄2

band! are illustrated in Figs. 8~b! and 8~c! as contour plots.
Recall from the preceding section that the real and imagin
parts ofCk,n contribute, respectively, to the symmetric an
antisymmetric parts of the real-space modulation. Only
case forn51 is shown, i.e., for theg1 direction, the others
are qualitatively similar~for nine bands, and three direction
there would be 27 such figures to display!. The real part,
Re(Ck,n), has a characteristic star shape centered on thk
point and decreasing in the radial direction, except along
Bragg planes. ImCk,n is particular in that it has a maximum
value along the portion of the Bragg plane that isorthogonal
to the gn direction, and decreases rapidly elsewhere, F
8~c!. Thek analysis of this model therefore provides a dire
visualization of the process of Bragg reflection in a tw
dimensional system: TheCk,n plots tell us whatk points are
significantly contributing to both the amplitude and the pha
of the CDW.

It would be tempting,a priori, to interpret the STM im-
ages based only on the gap splitting at thek or m points,
together with symmetry arguments. However, a few aspe
hinder this simple approach. First, the correct form of t
LDOS, even at the characteristic energies, depends on
details of the relevantk integration. One must also take int
account the competition arising from overlapping ban
These aspects, and the interpretation of the STM images
leave to the final section.

IV. ENERGY AND VOLTAGE DEPENDENCE
OF THE STM IMAGE

A. Energy dependence of the CDW component

As derived in Sec. II, the LDOS is determined as a fun
tion of energy by the summation overCk,n using Eq.~20!.
For example, for a given band~i.e., one among a total of nine
bands in the gapped state!, recall that the relevant comple
sum is

an1 ibn5(
k

Ck,nd~E2Ek!, ~30!

where its modulus and argument give the amplitudeAn(E)
and phasewn(E) of the CDW component of the LDOS, fo
the directionn.

Applying fairly standard numerical methods29 for the
LDOS of NbSe2 in the CDW state, we find that the exce
density has the same amplitude in all three directions, i.e

dr~x,E!5A~E! (
n50

2

cos@gn•x2wn~E!#, ~31!

and there is only asingle independent angle to specify:
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wn~E!5$w~E!,2w~E!,w~E!%. ~32!

This property is actually to be expected given the symm
try of the charge-lattice potential, chosen at the outset. P
ticular values ofw(E) are summarized in Fig. 7 for the cha
acteristic energies where the bands cross the high-symm
points, with the corresponding LDOS, as discussed pr
ously. Here we prove that, for a given band, thek integration
conserves the phasederived in the preceding section, i.e., b
considering the phase of the CDW only in the vicinity of t
k andm points. This result is somewhat surprising, given t
explicit contours of Fig. 6, which have portions that mo
quite away from the zone boundary. This means thatuCk,nu
decays fast enough along a contour, away from the boun
points, such that the phase in the integral~30! is conserved.
This is confirmed in Fig. 8~a!, where we showuCk,nu decay-
ing rapidly away from thek point, for example in thegk
direction.

We therefore recover in the LDOS the five distinct moti
three motifs involving a shift in the maxima of the CDW
and two a contrast inversion. These results are satisfac
since, given the position of the Fermi level, there is a disti
spatial separation between occupied and unoccupied st
A closer look at the LDOS, however, reveals that the sta
at the m point lead to a motif having threefold rotation
symmetry, whereas those at thek point have exclusively six-
fold symmetry.

As we have noted, these solutions for the LDOS at
characteristic points of Fig. 7 are insufficient to complete
interpret the STM images. At a given energy, tunneling
curs to more than one band simultaneously. For example
the gap edges,E5EF6D, there are two bands involved s
multaneously, as shown explicitly by the constantE contours
of Fig. 6. There is yet another contour, not shown in t
figure, associated with theSI portion of the Fermi surface. In
our model it is essentially ungapped, and contributes little
the phase. Nevertheless it is included in all computations
the total density.

At a given energyE, we then write the excess LDOS a
the explicit sum over the contributions arising from a
bands:

dr~x,E!5(
l

drl~x,E!. ~33!

This multiple band situation, characteristic of a 2D system
well illustrated in the plots in Fig. 9~a! of the density
drl(x,E) arising from each band individually. Note that
this figure, we give therelative corrugation of the CDW to
the background density, and Fig. 9~b! shows the correspond
ing phase. In each case, we label the important characte
energies of Fig. 7, i.e., those energies that are at band
trema ~solid lines! and saddle points~dotted lines!. In the
lower panel of Fig. 9~a! the only ‘‘real’’ gap occurs at the
Fermi level, between the energiesEk1

andEm0
. Within this

gap, the CDW still contributes to the LDOS through them̄1

band, and one expects to see the CDW in an STM im
even for very small voltages. These properties are easily
from the gapped band structure of Fig. 5.

A number of points can be drawn from thedrl(x,E)
plots, first concerning the amplitude of the CDW compone
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FIG. 9. Relative corrugation of the CDW densitydrl(x,E) as a
function of energy for the five principal bands near the Fermi lev
In ~a! its relative amplitudeA(E) and in ~b! its phasew(E). In
each, the lower panel refers to the three bands of Fig. 7~a!, and the
upper panel refers to the two bands of Fig. 7~b!. We indicate the
characteristic energies corresponding to band extrema~solid lines!
and saddle points~dotted lines!. At these energies, special value
for the phase are found: In the lower panel, there is a phase sh
2p/3, due to the lifting of threefold degeneracy at thek and m
points. Notice the gap inA(E) in the lower panel of~a!, separated
by maxima occurring at the energiesEk0

and Em1
, which are not

band edges, but saddle points. The maximum CDW amplitud
about 20%. The corresponding phase difference shown in~b! is
2p/3, which shifts the maxima in the LDOS. Within the gap, th
residual amplitude is about 10%, thus for small voltage one exp
to still see the modulation in the STM image.
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and then the phase. As Fig. 9~a! shows, the overall contribu
tion of the CDW is quite small, for the 200 meV range give
and reaches a maximum value of about 20% of the t
DOS. Even at the energies6200 meV, the CDW account
for 5% of the DOS, which may be surprising, but is und
standable since, even for these energies, the constant e
contours still come sufficiently close to the zone bounda

The most important feature of thedrl(x,E) plots is that
the maxima in the CDW amplitude do not occur at the ba
edge energies, but rather occur at the saddle points, atEk0

andEm0
. In the 1D problem it is theband extremathat give

the largest amplitude, and a singular density of states at
gap edges~as in Fig. 1!. On the contrary, for the 2D problem
the group velocity vanishes at the saddle points, and th
give rise to a logarithmic singularity in the DOS. Lookin
again at these energies in the gapped band structure of F
we notice thatEF2D lies very close to the saddle point o
them0 band, atk0 . Indeed, this is confirmed by the consta
energy contour in Fig. 6, as indicated by the arrow. In
similar way, the energyEF1D is close to the saddle point a
m1 ~or at m̄1!. In view of this coincidence betweenD and
the characteristic energies described above, we speculate
the broadened peaks in the measured DOS, i.e., usingdI/dV
spectroscopy, are due to the saddle points and not to the
extrema. Indeed, the DOS calculated from our CDW ba
structure closely resembles the experimental spectra of R
10 and 30.

The motif of the LDOS depends on the phase anglew(E),
as discussed above. In Fig. 9~b!, we plot the CDW phase fo
the five bands that are near the Fermi level. Again we hi
light the band extrema and the saddle points at which c
acteristic phase values occur: In the lower panel, there
phase shift of 2p/3 in the density for the three band edge
This is in agreement with the lifting of threefold degenera
as derived previously, and the corresponding LDOS is sho
in Fig. 7~a!. The upper panel shows the phase as a func
of energy for them gap, i.e., between the pointsm̄1 and
m̄2 . We find an abrupt change inw(E), from w5p/3 for
the occupied states tow52p/2 for the empty states. Th
gray scale plots of Fig. 7~b! show the apparent contrast in
version between these two densities. Here we emphasize
the LDOS shows, in this case, threefold rotational symme
and not sixfold. Put another way, the motif contains bo
white spots and dark spots, which is a general feature of
STM images.16,30

These remarks then allow us to understand the poss
changes in the motif observed in the LDOS at the particu
energies corresponding to the gap edges, i.e., atE5EF
6D. For instance, atEF2D, the LDOS is dominated by the
phase atk0 since, as Fig. 9~a! shows, the CDW amplitude is
largest there owing to the saddle point atEk0

. The corre-

sponding constant energy contour~at E5EF2D! of Fig.
6~c! shows the same result: the contour comes very clos
the k0 point, as indicated by the arrow. We then conclu
from Fig. 9~b! that the net phase isw(EF2D)'0. Reasoning
in a similar fashion for the unoccupied states at the ene
EF1D, the phase is dominated by states atm1 with some
small contribution from k1 , and we find w(EF1D)
'22p/3. We therefore have the result that the overall ph
change across the gap isDw'22p/3. The maxima, or
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white spots, in the CDW should shift by13 along the unit cell
diagonal. These arguments show that it is not at all trivia
extract the information on the CDW motif for a two
dimensional system, where bands are overlapping.

B. Voltage dependence of the images

In order to compare with the STM images, we use t
simplest expression for the current, which neglects the e
tric field in the barrier, and the DOS of the tip. For the sm
voltage range considered here, the simple expression fo
zero temperature current,

I ~x,V!}E
EF

EF1eV

r~x,E!dE, ~34!

should suffice. There are two remarks concerning expres
~34! to be made here. First, that experiments performed
the temperature of liquid He, 4.2 K, will avoid the proble
of thermal smearing of the electronic effects we are int
ested in. Second, the variation of the LDOS within the tu
neling energy window implies that a current image,I (x,V),
would differ from a conductance image, ordI(x,V)/dV.
Therefore, in view of the energy integration in expressi
~34!, one cannot make a simple correspondence between
ergy and voltage: In the former case, the CDW amplitu
and phase, for the whole energy range~EF to EF1eV! will

FIG. 10. STM image simulations for a sequence of voltag
ranging from260 to 60 mV showing only the CDW componen
The unit cell of lattice constant 3a is indicated. Thus the image
appears as a hexagonal array of alternating dark spots~minima! and
white spots~maxima!. The motif changes gradually: at260 mV the
maxima are at the corners of the unit cell, and at160 mV the
maxima are shifted to13 the unit cell diagonal. In all images, th
dark spots are located at the same sites, but change intensity. A
particular voltage220 mV, within the gap energy, the motif is ver
nearly a hexagonal array of holes.
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contribute, whereas in the latter case, the states ateV will
dominate. Still, the general pattern of the LDOS, as pre
ously outlined, are confirmed by the STM simulations a
function of voltage.

In the current image,I (x,V), the superposition of the
CDW signature over the energy interval leads to a conti
ous variation of the motif as a function of the bias. T
sequence of STM simulations of Fig. 10, with the volta
ranging from260 to 60 mV, illustrates the point. The majo
overall effect follows the previous conclusion concerning
LDOS, i.e., a phase change ofDw'22p/3. Thus the white
spots shift position by moving13 of the diagonal of the unit
cell. Although the motif gradually changes, the position
the dark spots~minima of the CDW! remains unchanged
i.e., at 2

3 the diagonal of the unit cell. Notice the particul
case atV5220 mV, where the maxima become seconda
giving a hexagonal array of holes. The phase angle in
case isw'p. These results correspond surprisingly w
with the experimental STM images we have previously o

FIG. 11. STM simulation showing the CDW together with th
atomic corrugation for three selected voltages. In images~a! and
~c!, the tunneling window encompasses the gap:V56D/e and the
relative shift in the maxima of the CDW component is seen. Fo
voltage within the gap, the STM simulation can either appear s
lar to ~a! or ~c!, or even as an array of dark spots, as in~b!. Due to
the superposition of the atomic and CDW corrugation, the disti
tive moirépatterns are found.
i-
a

-

e

f

,
is
l
-

tained, but the hexagonal array of dark spots was obse
for a smaller bias (V5210 mV).

Adding to the CDW component of the LDOS the atom
corrugation of the NbSe2 lattice, we obtain the distinctive
moiré patterns shown in Fig. 11. In~a! and ~c! we give the
STM images that could be seen for the voltage set at the
edgesV56D/e, while in ~b! we selected the interestin
case (V5220 mV) where the CDW is a hexagonal array
holes. In the latter case, the moire´ pattern gives rise to a
distinctive motif consisting of ‘‘flowers’’ of seven dark spot
~one central dark spot, surrounded by six others!. In ~a! and
~c! the motif is dominated by three equally intense wh
spots. A closer look at these simulations reveals that, w
case~b! is very nearly sixfold symmetric, cases~a! and ~c!
have threefold rotational symmetry. In Fig. 12 we give t
real STM image,30 taken atV5210 mV, to be compared
with Fig. 11~b!.

V. CONCLUSION

We have presented a simple theory to explain the volt
or energy dependence of the STM images of a CDW in t
dimensions. Our main attention was focused on two phys
parameters, its amplitude and phase. Motivated by the
cess in the domain of semiconductors, to relate the spec
scopic content of STM imaging to the electronic structu
we have recently taken a closer look at the voltage dep
dence of the CDW in 2H-NbSe2, using low-temperature
STM. The main question is whether or not there is indee
change in contrast for energies within or larger than
CDW gap energyD. Using a simplified analysis of the ban
gapping in the case of NbSe2, we showed that new state
arise on the order ofD, contributing to the STM image a
selected bias voltages.

A study of the gapped band structure, and the rela
constant energy contours, revealed that for characteristic
ergies near the Fermi level, the LDOS involves the points
high symmetry of the new Brillouin zone. For these energi
we found special values for the phase and the amplitude

a
i-

-

FIG. 12. A selected STM 30330 Å2 image of 2H-NbSe2 taken
at 4.2 K ~R5100 MV, V5210 mV! to be compared to the simu
lation Fig. 11~b!. Despite a small difference in bias voltage, th
similarity is striking. The image has been filtered to remove no
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the CDW modulation. Specifically, due to the lifting of
threefold degeneracy at thek point of the new Brillouin
zone, we showed that the phase of the CDW componen
the LDOS changes by 2p/3 at each eigenvalue. A more car
ful analysis of the tunneling to the different bands, at the g
energiesEF6D, gave the same result: the maxima of t
LDOS thus shift a distance of13 the diagonal of the unit cell

A second aspect of the problem was investigated, nam
the energy dependence of the CDW amplitude arising fr
each band. In this analysis, we can conclude that the C
should be seen in the STM image, even for very small v
age,V!D/e. Indeed at the Fermi level, the CDW comp
nent accounts for approximately 10% of the total DO
Moreover, we found that the maximum of the amplitude o
curs at energies corresponding to the saddle points of
band structure, and not the band edges. It should be of s
interest to investigate both the images and spectra of o
CDW systems to compare to the results we have given h
for NbSe2.

Although our approach may be considered somew
naı̈ve, the goal is to understand, in a general way, how
physical parameters of the STM measurement relate to
band structure, withoutab initio calculations. On the othe
hand, it is true that a number of aspects of the problem
tru
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have simplified may have some important effects: The p
pendicular dispersion of the bands, the Nb-Se coupling~and
thus the exact position of the Fermi level!, the details of the
charge-lattice interaction, and the nesting question. Th
problems existed prior to the STM, and further work is ne
essary to refine these details.

There have been few investigations of the energy or v
age dependence of the CDW amplitude or phase. A q
detailed study of thedI/dV spectra, as well as the distanc
dependence of the corrugation, has been done in Ref. 10
this area one could also investigate thetotal charge ampli-
tude, i.e., the amplitudeA(E) of our work, but integrated
over all occupied states. This perhaps could be achieved
measuring the CDW amplitude for a sufficiently large neg
tive bias. The 1D chain model gives the well-known to
amplitude A as a function of the gap and the electro
parameters:19

A5
2D

p\vF
lnS 2EF

D D .

It would be of interest to investigate whether the STM ima
could verify this result, or an analogous one for the tw
dimensional system.
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