
PHYSICAL REVIEW B 15 MAY 1998-IIVOLUME 57, NUMBER 20
Nonadiabatic transition at a level crossing with dissipation
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A comprehensive investigation of the transition dynamics of a level-crossing system with quantum dissipa-
tion is carried out for the Landau-Zener model coupled with a system of phonons. Analytical study by the
formal perturbation expansion series with respect to the off-diagonal matrix element shows that the transition
dynamics is characterized by the competition between the energy fluctuation and the energy dissipation. Closed
expressions of the transition rate are derived for various limiting situations in a unified way. In the case of
strong decoherence, a formula of the transition rate is obtained, which covers the high-temperature limit and
the low-temperature, strong-coupling limit. Numerical calculation by utilizing the damping hyperoperator
technique is performed, which clarifies the overall features of the time evolution of the system.
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I. INTRODUCTION

The nonadiabatic transition at a level crossing is a fun
mental process that plays a crucial role in various aspect
the dynamical evolution of quantum systems. We may re
to a number of examples both in physics and chemistry.
best known is the atomic inelastic collisions with char
transfer.1 The Born-Oppenheimer approximation brea
down around the avoided crossing of the potential cur
associated with each charge state, and the nonadiabatic
sition here is of primary importance in determining t
branching ratio to respective scattering channels. Since
discovery of the celebrated Landau-Zener formula in 19322,3

continuous effort has been devoted to elaborating the th
retical treatment.4

In the present paper, we focus our attention on the le
crossing problem in condensed matter. The nonradia
transitions in the strongly coupled localized electron-phon
system in solids is a typical example of this subject. In t
case, the level crossing is defined in the configuration co
dinate space instead of in the real space, and the nonradi
transition occurs during the lattice relaxation as the wa
packet passes the crossing point of the adiabatic potenti5

The analysis of the transition dynamics by referring to
Landau-Zener formula has been done by several authors6–10

As another example, a sort of chemical reaction at the
face of crystals11 and in the solvent12 can be classified in this
category, in which the nonadiabaticity of the process mus
taken into account. It is pointed out that an analogous no
diabatic level crossing is relevant in some nucle
reactions.13 A slightly different version of the same problem
can be found in the area of magnetic resonance14 and in
nonlinear optics.15 By changing the applied magnetic field
or the electric fields, one can attain a level crossing betw
the two discrete levels. The so-called adiabatic rapid pass
or its optical analogue has been analyzed in the framew
equivalent to the Landau-Zener formula.16,17 The quantum
dynamics of a coupled spin system under a time-depen
570163-1829/98/57~20!/13099~14!/$15.00
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magnetic field has been studied as a kind of nonadiab
level-crossing problem.18 The proposal to control the tunne
ing probability in the double-well potentials by periodical
modulating the localized levels with the external fields19 can
also be regarded as coming in this category. In this conn
tion, the effect of the environmental perturbation on the tra
sition dynamics of a periodically driven system has be
investigated by several authors.20–23 The role of the phase
coherence and its breakdown at successive crossing eve
of special interest in this case. In some cases, the
diagonal transfer element itself is induced by the coupl
with the medium and, therefore, is fluctuating. The quant
dynamics of such a system has been studied for a le
crossing model24 and for a biased two-level system.25 Fi-
nally, we would like to add to our long but incomplete list o
references an interestingexperimentalwork,26 in which it
was demonstrated that a classical analogue of the repe
level crossing was realized in an optical-ring resonator a
that the time-dependent behavior of the electromagn
fields was well reproduced by the Landau-Zener model.

In contrast to the case of atomic collisions, the dynami
processes in condensed systems are, in many cases, s
to the perturbation by the elementary excitations in the s
rounding media that have infinite degrees of freedom. T
coupling with the surrounding media will generally modula
the transition rate at level crossings. One of the standpo
to investigate such an effect is to take the time-depend
model of Zener3 coupled with a bath of many mode phonon
Although it may seem a little artificial to assume an expli
time dependence for the diabatic energies of the cros
levels, this model is useful to get insight into the essen
dynamics of the nonadiabatic transitions at a single cross
event, and it is called a standard model. The effect of
environmental perturbation in the level-crossing problem
been investigated by several authors within the stand
model.27–30 From the theoretical point of view, this problem
gives an interesting time-dependent version of the quan
tunneling with dissipation.31,32 See Leggettet al.33 for a re-
13 099 © 1998 The American Physical Society
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13 100 57YOSUKE KAYANUMA AND HIROYUKI NAKAYAMA
view on the dynamics of the dissipative two-level system a
references therein.

We would like to emphasize here that the concept
quantum dissipation should be understood from two dist
viewpoints. One is the dissipation of energy and the othe
the fluctuation of energy, or in other words, the dissipation
the phase memory. The relative magnitudes of the effect
these mechanisms are connected to each other throug
fluctuation-dissipation theorem. One of the present auth
investigated the effect of the phase relaxation on the tra
tion probability by reducing the standard model to a stoch
tic model at high temperature.28 It was shown that the exis
tence of the phase relaxation generally increases the app
nonadiabaticity. Especially, a closed formula of the transit
rate was obtained in the limit of strong dephasing, wh
shows an incoherent or a diffusionlike transfer. Ao a
Rammer30 developed an extensive analysis for the origin
standard model. They obtained analytical expressions of
transition rate for some extreme cases of the parameter
ues. A remarkable conclusion is that the effect of the en
ronmental perturbation on the transition rate disappear
low temperatures in the case that the system starts from
lower branch in the initial state. This assertion is not cons
tent with the previous result of the analytical study in t
same model,29 in which the authors investigated the tran
tion process from the adiabatic limit and concluded that
zero temperature, the coupling with the phonon fieldsde-
creasesthe apparent nonadiabaticity.

On the other hand, a numerical calculation of the tran
tion dynamics was done by Tsukada27 for a semiclassica
version of the standard model by utilizing the stochas
trajectory method. It was clearly shown in this work th
because of the back-transfer effect, the energy relaxation
matically modifies the transition rate in the case that
system initially occupies the upper level. The validity of t
approximation adopted to derive the force term in the s
chastic equation is, however, not always justified since
environmental oscillators are assumed as being driven b
common force irrespective of the electronic subspace. Th
a drawback often seen in this type of calculation. Note t
the Hellmann-Feynman force is well defined only for t
adiabatic eigenstates.

In view of this situation, it will be worthwhile to carry ou
a further study of this subject. The purpose of the pres
work is to make a comprehensive investigation of the lev
crossing problem in condensed matter within the framew
of the standard model, both analytically and numerically.
the analysis of the formal perturbation expansion ser
closed expressions of the transition rate, some of which h
been obtained previously, are derived in a unified way. S
cifically, a formula is obtained that covers the limit of th
strong-phase relaxation, bridging the high-temperature li
and the low-temperature limit. In order to clarify the featur
of the transition dynamics all over the parameter space,
perform a numerical investigation utilizing the damping h
peroperator technique. Through the numerical calculation
the time-dependent behavior of the reduced density matri
is clearly seen what is going on in the electronic syst
during the level crossing under the influence of the quan
dissipation. In the extreme cases of the parameter values
results of the analytical formulas are ascertained. In addit
d
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a peculiar feature of the damping operator technique as a
for such a calculation is also critically examined.

In Sec. II, the model is presented with some rema
about the physical parameters. The analytical study is car
out in Sec. III. Section IV is devoted to the introduction
the interaction mode and the formulation of the damp
operator method. The results of the numerical calculation
presented in Sec. V. Some concluding comments are give
Sec. VI.

II. MODEL

We are interested in the transition dynamics at a le
crossing as an elementary process of the evolution of a q
tum system. Consider that the energy levels of two electro
states,u1& andu2&, approach and cross each other as shown
Fig. 1 in accordance with the motion of a heavy degree
freedom or by an external modulation. The system initia
exists inu1& makes a transition tou2& through a constant off-
diagonal matrix elementJ around the crossing. Throughou
this paper, we choose diabatic basis setu1& and u2& to define
the transition. The whole system is assumed as being sub
to the perturbation by the elementary excitations in the s
rounding medium represented by phonons. By extending
ner’s model, a prototype Hamiltonian to discuss the situat
can be written as

H~ t !5Hel~ t !1Hph1HI , ~1!

Hel~ t !5 1
2 vt~ u1&^1u2u2&^2u!1J~ u1&^2u1u2&^1u!, ~2!

Hph5(
k

vkbk
†bk, ~3!

HI5
1
2 (

k
akvk~bk1bk

†!~ u1&^1u2u2&^2u!, ~4!

wherev is the velocity of the change of the energy diffe
ence,ak is the coupling constant with thekth phonon mode
of frequencyvk . Here and hereafter we adopt\51. It is
assumed that att52`, the total system is represented b
the density matrixr i given by

r i5u1&^1ur1 , ~5!

wherer1 represents the phonon equilibrium in the subsp
u1&, namely,

FIG. 1. The Landau-Zener model of level crossing.
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57 13 101NONADIABATIC TRANSITION AT A LEVEL CROSSING . . .
r15exp~2H1 /kBT!/Tr exp~2H1 /kBT!, ~6!

with

H15Hph1
1
2 (

k
akvk~bk1bk

†!. ~7!

We calculate the probabilityP that the electronic system
exists in u2& at t5`. Note that the transition rate depen
also on the sign ofv unlike the original Landau-Zene
model.

Because of the Gaussian character of the linear elect
phonon interaction, the dynamics of the quantum dissipa
can be completely specified by the spectral-density func
f~v! defined by

f~v!5
1

2p E
2`

`

^V~ t !V~0!&0eivtdt

5(
k

ak
2vk

2@~nk11!d~v2vk!1nkd~v1vk!#, ~8!

where

V[(
k

akvk~bk1bk
†!, V~ t ![exp~ iH pht !V exp~2 iH pht !,

andnk[1/$exp(vk /kBT)21%. In the above equation,^¯&0 is
the average over the density matrixr0[exp(2Hph/kBT)/
Tr exp(2Hph/kBT).

The relaxation energyDE is given by

DE5E
2`

`

f~v!v21dv, ~9!

which is half of the Stokes shift for the optical transitio
The amplitude of the energy fluctuationD is given by

D25E
2`

`

f~v!dv. ~10!

We define the dimensionless coupling constantS by

S5(
k

ak
2 ~11!

and the representative phonon energyv̄ by

DE5Sv̄. ~12!

The transition dynamics is insensitive to the detailed fu
tional form off~v! but is characterized by the parametersv,
J, v̄, S, and kBT. It should be noted thatDE and D are
related to each other through the Einstein relation

D2.2kBT* DE, ~13!

where, recovering\, T* [(\v̄/2kB) coth(\v̄/2kBT) is the
effective temperature. Therefore, the effect of the ene
fluctuation becomes dominant while the energy dissipa
can be neglected in the limit of weak coupling and hi
temperature,

DE→0, kBT→` with D finite. ~14!
n-
n
n

-

y
n

This is the case described well by the stochastic model.28 On
the other hand, in the limit of strong coupling and low tem
perature, the effect of the energy relaxation as well becom
important since in this limit,

v̄!D.ASv̄!DE. ~15!

The stochastic fluctuation of the energy difference gener
leads to the phase relaxation. In the case thatD/v̄@1, the
relative-phase memory is completely lost within a short tim
of order oftph.D21(!v̄21). ForD/v̄&1, the phase relax-
ation is incomplete. This is a feature of the linear coupli
model and is connected with the presence of a sharp z
phonon line in the optical-transition spectrum.

The time constantten of the relaxation of the energy i
given by ten.gp

21, wheregp is the width off~v! at low
temperature. In most cases,gp is roughly the same order o
magnitude asv̄ itself. The time constantstph andten should
be compared with the time intervalt tr within which the sys-
tem exists in the transition region. Since the off-diagon
coupling works for the energy difference of order of or le
thanJ, t tr is primarily given by, in the order of magnitude

t tr.J/uvu, ~16!

for moderate values ofJ. As shown in the next section, th
whole transition process is characterized by the degree
coherence, which is measured by the ratio oftph andt tr .

III. ANALYTICAL CONSIDERATION

In this section, we investigate the transition dynam
analytically by the formal perturbation expansion series
P. The density matrixr(t) at time t is given by

r~ t !5exp1F2 i E
2`

t

H~t!dtGr i exp2F i E
2`

t

H~t8!dt8G ,
~17!

where exp1 (exp2) means the time-ordered exponential wi
increasing time toward left~right!. The probabilityP is then
given by

P5K H exp2F i E
2`

`

H~t8!dt8G J
1,2

3H exp1F2 i E
2`

`

H~t!dtG J
2,1
L

1

, ~18!

in which $¯% i , j means that the (i , j ) component should be
taken and^¯&1 indicates the expectation value over th
equilibrium phonon in the spaceu1&,

^¯&1[Tr$r1¯%. ~19!

The probability P is expanded in a power series ofJ to
infinite orders. Each term is expressed as a sum of mult
time-ordered integrals of higher-order generating functio
The calculation of the generating functions is essentially
elementary exercise. Analytical expressions of the same k
have been derived time and again by several authors wi
different contexts.8–10,32We present here a compact form,
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13 102 57YOSUKE KAYANUMA AND HIROYUKI NAKAYAMA
P52 (
n51

`

~2J2!nL ~n!, ~20!

L ~n!5 (
m51

n E
2`

`

dt1E
t1

`

dt2¯E
t2m22

`

dt2m21

3E
2`

`

dt2mE
2`

t2m
dt2m11¯E

2`

t2n21
dt2n

3expF i (
j 51

2n

~21! j S v
2

t j
22DEt j D

1(
i 52

2n

(
j 51

i 21

~21! i 1 jG~t i2t j !G , ~21!

where

G~ t ![E
0

t

dsE
0

t

ds8^V~s!V~s8!&0

5E
2`

`

dvf~v!@~12e2 ivt!v222 i tv21#. ~22!

The diagrammatic representation of the above expressio
shown in Fig. 2 as a double-path propagator for the den
matrix.

We note that the lowest-order term ofP coincides with
that of the Landau-Zener formula irrespective of the phon
coupling28,30 since

L ~1!5E
2`

`

dt1E
2`

`

dt2

3expF i
v
2

~t2
22t1

2!2 iDE~t22t1!2G~t22t1!G
5E

2`

`

dmE
2`

`

ds exp@ ivsm2 iDEs2G~s!#5
2p

uvu
,

~23!

where we have introduced new variables,m[(t11t2)/2
and s[t22t1 . It is difficult to evaluate the multiple inte
grals for general terms. However, the meaning of form
~21! becomes clear in the limit of large amplitude fluctuati
D/v̄@1, namely, in the limit of strong coupling and/or hig
temperature. The following theorem is of primary impo
tance for the analysis of the dynamical process in this limi34

FIG. 2. The double-path Feynmann diagram for a 2nth-order
term of the perturbation expansion series of the probabilityP. The
system makes a transition at each vertex fromu1& ~solid line! to u2&
~dashed line! and vice versa. In the limit of large amplitude fluc
tuation, time vertices encircled by the ellipses must be paired o
is
ty

n

a

Pairing-off theorem.Out of all the configurations of the
time vertices that appear in the diagrams shown in Fig
only those make nonvanishing contributions to the integra
Eq. ~21!, in which 2n vertices make pairs with intrapair dis
tance less thanD21 except for special cases in which a
even number of vertices not less than four make groups w
mutual distance less than (v̄D)1/2.

Proof. In order to prove the theorem, we divide the exp
nent of the generation function in Eq.~21! into the real part
R(t1 ,t2 ,...,t2n) and the imaginary partI (t1 ,t2 ,...,t2n).
The real part

R~t1 ,t2 ,...,t2n!5Re (
i 52

2n

(
j 51

i 21

~21! i 1 jG~t i2t j !

originates from the fluctuation of the energy. We obse
that R(t1 ,t2 ,...,t2n) can be rewritten as

R~t1 ,t2 ,...,t2n!52
1

2 E
2`

`

dvf~v!v22

3U(
j 51

2n

~21! jeivt jU2

. ~24!

Note thatR(t1 ,t2 ,...,t2n) is a nonpositive definite quantity
Since

E
2`

`

dv f~v!v22.D2/v̄2@1,

R(t1 ,t2 ,...,t2n) becomes negative with a large absolu
value unless the following condition is satisfied:

U(
j 51

2n

~21! jeivt jU&v̄/D. ~25!

Since the integral with respect tov runs over the interval of
order of gp , the above condition is satisfied in the lim
D/v̄→` only when 2n vertices are paired off, namely,
time vertex with even suffix coincides with a time verte
with odd suffix to be canceled out as shown in Fig. 2.
expanding the expression( j 51

2n (21) jeivt j in a power series
around the paired-off configuration, the theorem is imme
ately proved.

The pairing-off property of the strongly coupled localize
electron-phonon system has been described by Kusunok8 in
a less clear way. Sumi9 correctly stated the pairing-off ansa
in his study of the nonradiative process in solids, but
context in which it was used was inappropriate. See Sec
for more details. The pairing-off theorem plays an essen
role in understanding the dual character of the Raman s
tering and the luminescence in the second-order optical
cess of the strongly coupled electron-phonon system.34

The above theorem provides a mathematical basis for
noninteracting blip approximation,32 which is widely used in
the study of the dynamics of the spin-boson system. In
lowest order, the noninteracting blip approximation requi
us to simply drop all the termsG(t i2t j ) that extend over
different pairs.33 By this approximation, the memory of th
boson system about the previous history is instantly los

.
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57 13 103NONADIABATIC TRANSITION AT A LEVEL CROSSING . . .
each blip. In order to correctly describe the energy rel
ation, which is important in the strong-coupling limit, th
history must be taken into account as the interaction betw
blips.

The pairing-off theorem is a consequence of the ultra
phase relaxation in the large-amplitude fluctuation limit.
can be seen from Fig. 2, the density matrix propagates
most always in the diagonal form in this limit. In the remai
ing part of this section, we mainly focus our attention on t
limit.

If one notices that

(
i 52

2n

(
j 51

i 21

~21! i 1 j~t i2t j !52(
j 51

2n

~21! jt j ,

the imaginary partI (t1 ,t2 ,...,t2n) of the exponent of Eq.
~21! can be rewritten as

I ~t1 ,t2 ...,t2n!5
v
2 (

j 51

2n

~21! jt j
22E

2`

`

dv f~v!v22

3(
i 52

2n

(
j 51

i 21

sin v~t i2t j !. ~26!

We classify the paired configuration into two groups: t
vertical pairs and the horizontal pairs. The vertical pair l
across the upper and the lower propagator like p
(t3 ,t10), (t7 ,t4), and (t5 ,t6) in Fig. 2. The horizontal pair
lies within the upper or the lower propagator like (t1 ,t2)
and (t9 ,t8). Denote the pairs as (tl1

,tl2
),

(tl3
,tl4

),...,(tl2n21
,tl2n

) as they are ordered from left to

ward right, where we takel2m215odd andl2m5even. In-
troduce a set of new variables as

mm5~tl2m
1tl2m21

!/2, sm5tl2m
2tl2m21

. ~27!

Then in the limitD/v̄@1, the saddle-point method can b
applied to the evaluation of the multiple time-ordered in
grals by expandingR(t1 ,t2 ,...,t2n) andI (t1 ,t2 ,...,t2n) to
the lowest order insm . The real part can be readily approx
mated as

R~t1 ,t2 ,...,t2n!.2
1

2 E
2`

`

dv f~v!

3 (
p51

n

(
q51

n

cosv~mp2mq!spsq . ~28!

On the other hand, the imaginary part can be evaluated b
elementary but somewhat tedious counting up of the diag
and by some exercise of trigonometry as

I ~t1 ,t2 ,...,t2n!. (
p51

n

Ep
~q!~mv1

,mv2
,...,mvq

;mp!sp,

~29!

whereEp
(q)(mv1

,mv2
,...,mvq

;mp) is given by
-

en

st

l-

s

s
rs

-

an
m

Ep
~q!~mv1

,mv2
,...,mvq

;mp!

5vmp1~21!~q11!DE12(
j 51

q

~21! j

3E
2`

`

dv f~v!v21 cosv~mp2m j !. ~30!

In the above equation,mv1
,mv2

,...,mvq
are the times for the

vertical pairs that lie to the left ofmp in Fig. 2. For the case
that there is no vertical pair beforemp , Ep

(q) should read as
Ep

(0)[vmp2DE. Although the derivation is somewhat com
plicated, the meaning of the above formula is obvious. T
energyEp

(q) is nothing but the negative value of the Franc
Condon energy measured fromu1& to u2& for the phonon wave
packet, which has the following history: it starts from th
equilibrium distribution in the subspaceu1&, makes a vertical
transition to the adiabatic potential surface ofu2& at timemv1

,
is driven by the Hamiltonian within the subspaceu2& until the
time mv2

at which it jumps again to the adiabatic potent

surface ofu1&, and so on. Forq even, the packet lies on th
adiabatic potential surface inu1& and forq odd, in u2&. There-
fore, it can be said that the vertical pair corresponds to
transitionwhile the horizontal pair corresponds to thepolar-
ization. At each time the system makes a transition, the eq
librium point of the phonon system shifts from left to righ
and vice versa. Such a situation may be visualized by
configuration coordinate diagram as shown in Fig. 3. T
meaning of the coordinate in Fig. 3 will be made clear in t
next section.

Now we come to the point of a crucial observation. S
far, we have not considered the time durationt tr within
which the system exists in the transition region. The timet tr
is a measure of the time interval for which the multiple i
tegral of Eq.~21! converges. On the other hand, the pairin
off theorem tells us that the contribution from the integ
over sp for each pair is restricted within the time interv
uspu&tph(.D21) in the order of magnitude. The transitio
associated with each pair becomes areal transition only in
the case that the phase relaxation time is far less than
transition time, namely,tph!t tr .

First, we consider the opposite case that the velocityuvu is
so large that the conditiontph@t tr is satisfied. In this case
the real partR(t1 ,t2 ,...,t2n) given in Eq.~24! can be ap-
proximated as

FIG. 3. The schematic time evolution of the configuration co
dinate diagram for the level crossing with energy relaxation. T
time evolution is from~a! to ~e! in the casev.0 and from~e! to ~a!
in the casev,0.
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R~t1 ,t2 ,...,t2n!52
1

2
D2S (

p51

n

(
q51

n

spsqD
52

1

2
D2H (

j 51

2n

~21! jt j J 2

, ~31!

sinceump2mqu!gp
21 for all p andq. Likewise, the imagi-

nary part can be approximated simply as

I ~t1 ,t2 ,...,t2n!5 1
2 v(

j 51

2n

~21! jt j
2. ~32!

Equation~31! means that the fluctuation of the energy b
haves as a static Gaussian distribution of the energy fo
very short time interval. In fact, the effect o
R(t1 ,t2 ,...,t2n) can be eliminated from the integral of Eq
~21! by applying the identity

exp@2D2X2/2#5~A2pD !21E
2`

`

dq exp@2q2/2D22 iqX#

~33!

for X[( j 51
2n (21) jt j and by interchanging the order of th

integration overq andt j with the shift of the origint j→t j
2q/v. This is a consequence of the feature of the Land
Zener model that the transition rate is independent of
constant shift of the relative energy.

It is instructive to calculateL (n) explicitly in this limit. By
an inspection of the integral domain,L (n) can be rewritten as

L ~n!5 (
m50

n

CmCn2m* , ~34!

where

C051,

Cm5E
2`

`

dt1E
t1

`

dt2¯E
t2m21

`

dt2m

3expF i
v
2 (

j 51

2m

~21! jt j
2G , m>1. ~35!

The following transformation of the variables is useful f
the evaluation of the ordered integral,17

x15t1 ,

xp5t11 (
j 51

p21

~t2 j 112t2 j !, 2<p<m,

yp5t2p2t2p21 , 1<p<m, ~36!

by which Cm is written as
-
a

-
e

Cm5E
2`

`

dx1E
x1

`

dx2¯E
xm21

`

dxm

3E
0

`

dy1E
0

`

dy2¯E
0

`

dym

3expF iv (
p51

m

xpyp1
iv
2 S (

p51

m

ypD 2G . ~37!

Since the integral is unchanged by arbitrary permutations
(x1 ,x2 ,...,xn), the integration is carried out as

Cm5
1

m! E2`

`

dx1E
2`

`

dx2¯E
2`

`

dxm

3E
0

`

dy1E
0

`

dy2¯E
0

`

dym

3expF iv (
p51

m

xpyp1
iv
2 S (

p51

m

ypD 2G
5

1

m! S p

uvu D
m

, ~38!

where the second equality is obtained by first performing
integrations overxp . Inserting the above result into Eq.~34!,
we find

L ~n!5
1

n! S 2p

uvu D
n

, ~39!

and inserting this into Eq.~20!, we obtain the Landau-Zene
~LZ! formula,

P5PLZ[12exp~22pJ2/uvu!. ~40!

The argument here was the essence of the proof of the
plicability of the Landau-Zener formula to the nonradiati
hot transitions in the strongly coupled localized electro
phonon system with an adiabatic potential crossing.10

Next, we turn to the limit of slow passage,t tr@tph. In
this case, the coherence is interrupted every moment in
relatively long time intervalt tr and the vertical pairs in Fig
2 can be interpreted as representing real transitions. The
tem makes multiple transitions betweenu1& and u2& while
relaxing toward the equilibrium state within the respecti
electronic subspace. Therefore, the probabilityP would de-
pend on the relative length oft tr andten. Useful expressions
of P can be obtained in the case that a little stronger con
tion

t tr.ten ~41!

is satisfied. In this case,R(t1 ,t2 ,...,t2n) can be approxi-
mated as

R~t1 ,t2 ,...,t2n!52
1

2
D2S (

p51

n

sp
2D , ~42!

since the cross terms vanish because of the dephasing,

E dv f~v!v21 cosv~mp2mq!.0,
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for general configurations ofmp and mq with ump2mqu
.O(ten). The variables of integration are changed fro
(t1 ,t2 ,...,t2n) to (m1 ,m2 ,...,mn ,s1 ,s2 ,...,sn). We as-
sign a set of signatures (j1 ,j2 ,...,jn) to each diagram cor
responding to a serial time ordering, wherejm511 if
tl2m21

,tl2m
and jm521 if tl2m

,tl2m21
. For example,

(j1 ,j2 ,j3 ,j4 ,j5)5(11,21,11,21,11) in the case of
time ordering in Fig. 2. Then, the following lemma can
proved by an elementary counting up of the diagram.28

Lemma 1.In the total set of possible time ordering th
appears in the 2nth-order terms of the perturbation expa
sion, every set (j1 ,j2 ,...,jn) with jp561 for p51,2,...,n
appear 2n21 times.

Since the integral oversp converges foruspu&tph, the
restriction on the integral domain formp can be safely re-
laxed as2`,m1<m2<¯<mn,`. On the other hand, the
integral domain ofsp can be extended to2`,sp,` for
the vertical pairs and to 0<sp,` or 2`,sp<0 for the
horizontal pairs.

First, we calculateP for the case that the energy dissip
tion is negligible,DE→0, while the conditionD/v̄@1 is
still satisfied. This corresponds to the high-temperature li
with small coupling. The imaginary partI (t1 ,t2 ,...,t2n)
can be written as

I ~t1 ,t2 ,...,t2n!5v (
p51

n

mpsp , ~43!

and, because of the above lemma, we find

L ~n!52n21E
2`

`

dm1E
m1

`

dm2¯E
mn21

`

dmn

3E
2`

`

ds1E
2`

`

ds2¯E
2`

`

dsn

3expF i (
p51

n

$vmpsp2 1
2 D2sp

2%G
5

2n

n! F E
2`

`

dmE
2`

`

ds exp~ ivms2 1
2 D2s2!Gn

5
1

2

1

n! S 4p

uvu D
n

. ~44!

Inserting the above result into Eq.~20!, we obtain

P5PSD[ 1
2 $12exp~24pJ2/uvu!%. ~45!

This formula has been derived by one of the pres
authors28 with a slightly different argument for the stochast
model. It should be noted that

PSD→2pJ2/uvu for J2/uvu→0, ~46!

as is consistent with the previous argument and

PSD→ 1
2 for J2/uvu→`. ~47!

This means that the strong decoherence reduces the w
transition process to diffusionlike so that the system ex
with even probability in both states after the slow passag
it

t

ole
ts
.

Next we consider the effect of the energy dissipation
general values ofDE. According to the pairing-off theorem
and the lemma for the signature, we have

L ~n!52n21E
2`

`

dm1E
m1

`

dm2¯E
mn21

`

dmn

3E
2`

`

ds1E
2`

`

ds2¯E
2`

`

dsn

3(
c

expF i (
p51

n

Ep
~q!~mv1

,mv2
,...,mvq

;mp!sp

2 1
2 D2(

p51

n

sp
2G , ~48!

where the summation(c runs over all of the possible con
figurations of the vertical pairs. The integration oversp
gives

L ~n!52n21E
2`

`

dm1E
m1

`

dm2¯E
mn21

`

dmn

3(
c

)
p51

n

K~mv1
,mv2

,...,mvq
;mp!, ~49!

where

K~mv1
,mv2

,...,mvq
;mp!

5
A2p

D
expF2

Ep
~q!~mv1

,mv2
,...,mvq

;mp!2

2D2 G .

~50!

Equation~49! indicates that the probabilityP is determined
by the successive incoherent transitions of the wave pac
of phonons, which are subject to sudden shift of the equi
rium position while undergoing the relaxed oscillation. In t
case of slow-passage limit, we can approximate the Fran
Condon energyEp

(q)(mv1
,mv2

,...,mvq
;mp) by its asymptotic

value Ep
(q)[vmp1(21)(q11)DE for ump2m j u@ten since

the variablesmp are distributed sparsely in the integral d
main of order oft tr . This means that the phonon system
relaxed to the equilibrium configuration immediately aft
the transition so that each transition event occurs alw
from the bottoms of the adiabatic potentials of the respec
electronic subspace. The equilibrium configuration at ti
mp depends on the numberq of the vertical pairs beforemp .
If we define the line-shape functionF6(m) by

F6~m!5E
2`

`

expF2 i ~DE6vm!s2
D2

2
s2Gds

5
A2p

D
exp@2~DE6vm!2/2D2#, ~51!

the integrand of Eq.~49! is given as a sum of all the
possible combinations of the terms lik
F2(m1)F2(m2)F1(m3)¯F1(mn). Note that the first com-
ponent is alwaysF2(m1). Again, an inspection leads to th
following lemma.
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Lemma 2.In the total set of possible diagrams that app
in the 2nth-order terms of the perturbation expansion, all t
combinations ofF j 2(m2)F j 3(m3)¯F jn(mn) with j p56 (p
52,3,...,n) appear once.

ThenL (n) is given by

L ~n!5E
2`

`

dm1E
m1

`

dm2¯E
mn21

`

dmnF2~m1!

3 )
m52

n

$F1~mm!1F2~mm!%. ~52!

Since the integral is unchanged against the permutation
(m2 ,m3 ,...,mn), we have

L ~n!5
1

~n21!! E2`

`

dm1F2~m1!

3F E
m1

`

dm2$F1~m2!1F2~m2!%Gn21

, ~53!

and, by inserting this into Eq.~20!,

P5J2E
2`

`

dm1F2~m1!

3expF2J2E
m1

`

dm2$F1~m2!1F2~m2!%G . ~54!

This is a central result of this section.
In the case of weak coupling and high temperature,

may put F1(m)5F2(m)[F(m) with F(m)
5(A2p/D)exp(2v2m2/2D2) and find

P5J2E
2`

`

dm1F~m1!expF22J2E
m1

`

dm2F~m2!G
5 1

2 $12exp@24pJ2/uvu#%, ~55!

which recovers the formula~45!. In deriving the above re-
sult, use is made of the identity

expF E
a

b

dt f~ t !G511E
a

b

dt f~ t !expF E
t

b

dt f ~t!G .
~56!

In the limit of strong coupling at low temperature, we s
DE→Sv̄ andD→ASv̄. It should be noted thatF1(m) and
F2(m) have nonvanishing values only at aroundm
52DE/v and m5DE/v, respectively. The value ofP
strongly depends on the sign ofv. We denote the value ofP
for v.0 (v,0) as P1 (P2) hereafter. In the casev.0,
F1(m) in the exponent of Eq.~54! can be neglected sinc
the contribution fromm1 integration is limited at around
m1.DE/v. Then, we have

P15J2E
2`

`

dm1F2~m1!expF2J2E
m1

`

dm2F2~m2!G
512exp~22pJ2/uvu!5PLZ . ~57!
r
e

of

e

t

On the other hand, in the casev,0, bothF1(m) andF2(m)
must be considered. By using the identity~56!, Eq. ~54! can
be rewritten as

P5J2E
2`

`

dm1F2~m1!expF2J2E
m1

`

dm2F2~m2!G
3H 12J2E

m1

`

dm3F1~m3!expF2J2E
m3

`

dm4F1~m4!G J .

~58!

Since the nonvanishing domains ofF1(m) and F2(m) are
separated far from each other and since the contribution
the integral overm1 comes fromm1.DE/v!0, the lower
limit of the integration overm3 can be safely extended t
2`. Thus the integration overm1 andm3 can be decoupled
and we find

P25$12exp~22pJ2/uvu!%exp~22pJ2/uvu!

5PLZ~12PLZ!. ~59!

Ao and Rammer30 first pointed out that, at zero tempera
ture, the transition rate becomes identical with the Land
Zener formula in spite of the dissipation. This is correct p
vided that the speed of passage is slow enough and
crossing occurs from the lower-energy side. For intermed
values ofv, P1 deviates fromPLZ to increase the apparen
nonadiabaticity, as will be shown in Sec. V. It is a litt
surprising thatP1 becomes identical withPLZ both in the
limit of rapid passage as shown in Eq.~40!, and in the slow
passage as shown in Eq.~57!. The reason is, however, quit
different between the two cases. Since the original Land
Zener formula is derived for the coherent process, it may
said that the formula~57! obtained for the incoherent limit is
a result of coincidence.30 In the casev,0, the sequential
application ofPLZ leads to Eq.~59! as a whole transition
rate. The level crossing effectively occurs twice in this ca
first at t52DE/uvu and next att5DE/uvu as shown in Fig.
3. If one notes thatF1 and F2 are interchanged by the
change of the sign ofv, a useful relation is obtained from
Eq. ~54! as

P11P25J2E
2`

`

dm1$F1~m1!1F2~m1!%

3expF2J2E
m1

`

dm2$F1~m2!1F2~m2!%G
512exp~24pJ2/uvu!52PSD, ~60!

which is generally valid in the limit of strong decoheren
irrespective of the temperature.

Finally, we briefly discuss another extreme situation th
is specified by Eq.~14!, namely, the limit of the energy fluc
tuation alone. In this case, it is appropriate to treat the en
ronmental perturbation as a Gaussian stochastic fluctua
of the energy levels with the amplitudeD and the decay
constant of the correlation of order ofgp .28 It has been
shown that, as a function of the speed of the passage, the
an optimum value ofv that maximizes the transition rate
andP tends to1

2 in the limit of slow passage. Generally,P is
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bounded asPSD<P<PLZ for a fixed value ofJ2/uvu. In the
limit of the large amplitude fluctuation,P agrees withPSD as
it should.

IV. INTERACTION MODE AND DAMPING OPERATOR

In order to see the overall features, we perform numer
calculations of the transition dynamics by using the damp
operator technique. The damping operator is a hyperoper
operating on the density matrix and is widely utilized
describe the quantum damping of photon fields.35 It was also
applied to the calculation of the second-order optical sp
trum of a localized electron-phonon system.36 Recently, Mu-
rao and co-workers37 developed an elegant formalism
solve the equation of motion for the density matrix with
damping term and carried out a numerical calculation of
transition dynamics of a level-crossing system. But the ty
of interaction considered by them is different from th
treated here.

Since we are interested not only in the weak-coupl
case with the phonons but also in the strong-coupling cas
is appropriate to separate out a part of the phonon degre
freedom as the system mode and regard the rest as the
ervoir modes. This can be achieved by introducing theinter-
action mode. The interaction mode was first proposed
Toyozawa and Inoue38 for the Jahn-Teller system. In a littl
different form, it was also introduced by O’Brien.39 The es-
sential point of the interaction mode is that one can c
struct, out of a tremendous number of normal modes, a s
number of modes that bear all of the relaxation energy wit
the relevant electronic subspace as components of the
tem. The rest of the modes span a basis set of the orthog
complement of the interaction mode, which can be regar
as the reservoirR. In the present case, the annihilation o
eratorsB for the interaction mode andRj for the reservoir
modes are defined by the unitary transformation39

B5 (
k51

N

U0,kbk , ~61!

Rj5 (
k51

N

U j ,kbk , j 51,2,...,N21. ~62!

The condition that the interaction mode carries all of t
relaxation energy requires

U0,k5ak /a, ~63!

with a2[(kak
2([S). The transformation coefficientsU j ,k

( j 51,2,...,N21) are defined so thatRj ’s lie in the orthogo-
nal complement of B and are mutually orthogona
Lagrange’s method of indeterminate coefficients tells us

U j ,k5
ak

~vk2V j !cj
, j 51,2,...,N21, ~64!

wherecj
2[(kak

2/(vk2V j )
2 andV j is the frequency of the

j th reservoir mode given by the root of the equation

(
k

ak
2

vk2V
50. ~65!
al
g
tor

c-

e
e
t

g
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-
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The Hamiltonian~1! is then rewritten, in the matrix form, a

H~ t !5Hsys~ t !1Vsys1HR1VR , ~66!

Hsys~ t !5S 1
2 vt1v̄B1

†B1

0

0

2 1
2 vt1v̄B2

†B2
D , ~67!

Vsys5S 0 J
J 0D , ~68!

HR5(
j

V jRj
†Rj S 1 0

0 1D , ~69!

VR5S (
j

b j~B1
†Rj1B1Rj

†! 0

0 (
j

b j~B2
†Rj1B2Rj

†!
D ,

~70!

where

B1[B1
a

2
, B2[B2

a

2
,

v̄ is the frequency of the interaction mode given by

v̄5(
k

vkU0,k
2 ~71!

andb j is the coupling constant between the interaction mo
and the reservoir modes,

b j5(
k

vkU j ,kU0,k . ~72!

In the above equations, the (i , j ) element represents^ i uHu j &.
It should be noted that the above definition correctly guar
tees the relaxation of the interaction mode to the lowest s
within the respective electronic subspace. It can be sho
that the concept of the interaction mode is extended i
unique way to genericn-level systems coupled linearly with
boson fields. Details will be presented elsewhere.

The damping operator for the interaction mode coup
with the two-level system is introduced by extending t
well-known procedure.35 The equation of motion for the tota
density matrix in the interaction representation is solved fo
short time interval by perturbation expansion to first ord
with respect toVsys and to second order with respect toVR .
The variables for the reservoir modes are then eliminated
taking the trace overR. Under the assumption that the the
mal equilibrium ofR is undisturbed by the interaction an
that the spectrum ofR is wide enough to guarantee the Ma
kovian approximation, we obtain the reduced equation
motion for the density matrix of the system. In the Schr¨-
dinger picture, it reads

i
]

]t
r̃5@Hsys~ t !1Vsys,r̃ #1 iGr̃, ~73!

in which G is a hyperoperator defined for the 232 density
matrix
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r̃[S r1,1 r1,2

r2,1 r2,2
D , ~74!

as

Gr̃5S G1,1,r1,1

G2,1r2,1

G1,2r1,2

G2,2r2,2
D , ~75!

with

G i , jr i , j5k~ n̄11!~2Bir i , jBj
†2Bi

†Bir i , j2r i , jBj
†Bj !

1kn̄~2Bi
†r i , jBj2BiBi

†r i , j2r i , jBjBj
†!. ~76!

In the above equation,k is the effective coupling constan
with the reservoir modes given byk[pb̄2 whereb̄2 is the
value ofb j

2 at V j5v̄ multiplied by the density of state, an
n̄[1/$exp@v̄/kBT#21%. The energy relaxation timeten is
given by ten.k21. We will treat k as a free parameter
although the above equations are derived under rathe
stricted conditions on the spectrum of the reservoir mo
and the coupling constant as well.

V. NUMERICAL RESULTS

Equation~73! is transformed into a simultaneous equati
for the coefficients of the number state representation of
interaction mode and solved numerically. In the typical ca
of high temperature, about 120 000 basis states are ne
for the calculation. The probabilityp(t) that the system ex
ists in u2& at time t under the condition it starts fromu1& at a
remote past is calculated. The notationsp1(t) andp2(t) are
used in order to specify the sign ofv; p1(t) for v.0 and
p2(t) for v,0. In the presentation of the results, we ado
the dimensionless parameters normalized byv̄; J̃[J/v̄, ṽ
[v/v̄2, k̃[k/v̄, T̃[kBT/v̄, andD̃[D/v̄.

First we show results for the low-temperature, stron
coupling limit. In Fig. 4, examples of the calculatedp1(t)
are given for fixed values ofS(510), J̃(50.5), and k̃
(50.2) at zero temperature withṽ as a parameter. In Fig.
is also shownp2(t) for the same parameter values as in F
4, but for the negative sign ofv. The behaviors ofp1(t) and
p2(t) are very similar in the rapid passage case,uṽu525, for
example, andP1[ limt→` p1(t) and P2[ limt→` p2(t)
agree with the Landau-Zener formula,P15P25PLZ , fairly
well. This is the case of coherent transition given by E
~40!. As uṽu becomes smaller, the difference betweenp1(t)
and p2(t) becomes evident. The behavior ofp2(t) clearly
shows the back-transfer effect. One of the remarkable res
is that in the case of slow passage, the relationp1(t)
1p2(t)51 holds fort*0 for the same value ofuvu, as can
be seen from the comparison of the curves foruṽu50.25.
This means that the branching ratio to the upper and
lower state after the crossing does not depend on the in
condition whether the system starts from the upper branc
the lower, as if it forgets the history from which it came.

In order to see the dependence of the transition dynam
on the speed of passage, the values ofP1 ~circle! and P2

~diamond! are plotted in Fig. 6 against 1/uṽu for a fixed value
of the adiabaticity parameterJ2/uvu (50.2) at zero tempera
ture with S510.0 and k̃50.2. The values ofPLZ and
PLZ(12PLZ) are also shown in the figure. In the limit o
re-
s
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rapid passage, 1/uṽu→0, the process becomes coherent
thatP15P25PLZ as described earlier. As the speed of pa
sage decreases, bothP1 andP2 deviates fromPLZ to lower
values by the same amount. This increase of the nonadi
ticity is due to the phase relaxation. Asuvu decreases further
P1 takes a minimum value at an intermediate value of 1/uvu
and then increases again to approach toPLZ in the limit of
slow passage, consistently with formula~57!. On the other
hand,P2 decreases dramatically fromPLZ to PLZ(12PLZ)
asuvu is decreased. The small discrepancies between the

FIG. 4. The time-dependent probabilityp1(t) in the zero tem-
perature, strong-coupling case withv.0 that the system exists in
u2& for the initial condition that it starts fromu1& at a remote past.

FIG. 5. The same as Fig. 4 forp2(t) wherev,0.
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culated results and the prediction by formulas~57! and ~59!
in the limit 1/uṽu→` are due to the peculiar character of t
damping operator and will be investigated later. We a
note a dip in P2 as a function of 1/uṽu at around 1/uṽu
.0.1. This is interpreted as reflecting the dynamical mot
of the wave packet in the configuration coordinate space
the interaction mode. The wave packet that has transferre
the potential curve ofu2& at the first crossing shown in Fig.
undergoes a damping oscillation around the new equilibr
point. For 1/uṽu.0.1, the crossing point of the two potenti
curves moves down in synchronization with this motion
that the transfer rate form a dip at around 1/uṽu.0.1 because
of the nearly adiabatic back transfer.

In Fig. 7, the transition ratesP1 andP2 are plotted for a
fixed value ofJ̃(50.5) againstJ2/uvu with T̃50, S510, and
k̃50.2. The value of (P11P2)/2 is also plotted by tri-
angles. The values ofPLZ , PLZ(12PLZ), and PSD are
shown by dashed lines. ForJ2/uvu not greater than 0.5,P1

and P2 agree with the formulaPLZ and PLZ(12PLZ), re-
spectively, fairly well. The discrepancy, which becomes
lient for J2/uvu*0.5 is again attributed to the special chara

FIG. 6. The transition rateP1 ~circle! and P2 ~diamond! as a
function of uṽu21 for a fixed value ofJ2/uvu in the zero-temperature
strong-coupling case. The predicted values by the formulasPLZ ,
andPLZ(12PLZ) are shown by the dashed lines.

FIG. 7. The transition rateP1 ~circle! and P2 ~diamond! as a
function ofJ2/uvu in the zero-temperature, strong-coupling case
fixed values ofk̃, J̃, and S. The value of (P11P2)/2 is also
plotted by the triangles. The prediction by the formulasPLZ ,
PLZ(12PLZ), andPSD are shown by the dashed lines.
o

n
of
to

m

-
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ter of the damping operator. It is remarkable that the form
(P11P2)/25PSD given in Eq. ~60! works quite well all
through the parameter region.

The dependence onS of P1 andP2 at zero temperature
is shown in Fig. 8 for a fixed value ofJ̃(50.5) in the case of
slow passage,uṽu51.25. It is remarkable thatP1 is essen-
tially independent ofS and is given byPLZ . On the contrary,
P2 is reduced strongly by the coupling with phonons even
the weak-coupling region.

Now, we discuss the origin of the discrepancy betwe
the formulas given in the previous section and the numer
results. It is essentially the difference in the short-time b
havior of the correlation function between the original mod
given by Eqs.~1!–~4! and the reduced model given by Eq
~73!–~76!. In order to see this, we performed an analysis
the formal perturbation expansion series of the solution
Eq. ~73! parallel to that given in Sec. III. The formal solutio
of Eq. ~73! for the initial valuer̃0 is written as

r̃~ t !5Exp1F2 i E
2`

t

dt L~t!G r̃0 , ~77!

with

L~ t !5L0~ t !1L8, ~78!

where the hyperoperatorL0(t) andL8 are defined by

L0~ t !r̃5@Hsys~ t !,r̃ #1 iGr̃ ~79!

and

L8r̃5@Vsys,r̃ #, ~80!

and Exp1@¯# now represents the time-ordered exponen
for the hyperoperators. By an analogous procedure give
Sec. III, r(t) is expanded in a formal power series ofL8 as

Exp1F2 i E
2`

t

dt L~t!G r̃0

5Exp1F2 i E
2`

t

dt L0~t!G
3 (

n50

`

~2 i !nE
2`

t

dtnE
2`

tn
dtn21¯E

2`

t2
dt1

r

FIG. 8. The transition rateP1 ~circle! and P2 ~diamond! as a
function of S in the zero temperature, slow passage case for fi
values ofJ̃, uvu, and k̃. The values ofPLZ and PLZ(12PLZ) are
given by the dashed lines.
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3L8~tn!L8~tn21!¯L8~t1!r̃0 , ~81!

whereL8(t) is the interaction representation ofL8. The ex-
pectation value of the above term is obtained after a so
what complicated calculation by using the properties of
damping operatorG. We arrive at the expression of the tra
sition rateP,

P52 (
n51

`

~2J2!nL̃ ~n! ~82!

where L̃ (n) is given by the same form as given in Eq.~21!
except that the functionG(t) is replaced byG̃(t) given by

G̃~ t !52 iSv̄t1S~12e2 i v̄t2kutu!, ~83!

at zero temperature. Note thatG̃(t) mimics the behavior of
G(t) fairly well but, in the limit t→0, it behaves as

G̃~ t !.Skutu1
S

2
~v̄22k2!t2, ~84!

for S@1. This should be contrasted with the limiting value
G(t),

FIG. 9. Thek̃ dependence ofP1 as a function ofJ2/uvu. The
prediction by the formula~54! with replacementF6(m)→F̃6(m) is
shown by the solid lines.

FIG. 10. The time-dependent probabilityp1(t) ~solid line! and
p2(t) ~dashed line! in the case of high temperature, weak couplin
e-
e

G~ t !.
S

2
v̄2t2. ~85!

Consequently, the line-shape functionF̃6(m) becomes

F̃6~m!5E ds exp@2 i ~DE6vm!s2G̃~s!#

5
1

p

Sk

A2pD*
E

2`

`

dx
1

x21~Sk!2

3expF2
~DE6vm2x!2

2D* 2 G ~86!

with D* 2[S(v̄22k2), namely, the convolution of a Gauss
ian function with a Lorentzian function of widthSk . This is
a consequence of the Markovian approximation assume
the derivation of Eqs.~73!–~76!. SinceF̃6(m) has a Lorent-
zian tail for um6DE/vu*D* /uvu unlike F6(m), the transi-
tion region is not confined well around the crossing tim
m.6DE/uvu. This off-resonant transition causes the deriv
tion of P from the formulas. In fact, the hump before th
steplike increase and the gradual decrease after it seen in
4 for the caseṽ50.25, for example, correspond to this e
fect. In order to ascertain this point, we have calculatedP1

as a function ofJ2/uvu for a number of parameter values o
k̃. In Fig. 9, the calculated results are shown with the va
of formula ~57! in which F2(m) is replaced byF̃2(m). The
agreement is almost perfect. This analysis indicates that
simulation of the nonadiabatic processes by the damping
erator technique is useful, but one must take care about
spurious effect peculiar to this method in the case of slo
passage limit.

Next, we turn to the high-temperature weak-coupli
limit. In Fig. 10, an example of the numerical result is show
for p1(t) and p2(t) with parameter valuesT̃510.0, D̃
51.0, J̃50.5, k̃50.2, anduṽu51.0. In this case, the transi
tion rate is almost independent of the sign ofv and is
strongly reduced from the value ofPLZ . In Fig. 11, the de-
pendence on the adiabaticity parameterJ2/uvu of P1 andP2.

FIG. 11. The transition rateP1 ~circle! andP2 ~diamond! in the
case of high temperature, weak coupling. The results forD̃50.5
and D̃51.0 are shown by the solid and the open symbols, resp
tively.
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is shown for the two parameter values ofD̃ with other pa-
rameters fixed asJ̃50.5, k̃50.2. The coupling constantS
and the temperatureT̃ are chosen so that the condition~14!
of the fluctuation dominance is satisfied;S50.0499, T̃
510.0 for D̃51.0 andS50.0249,T̃55.0 for D̃50.5. This
figure should be directly related with the results of the s
chastic model.28 As noted in Sec. III,P is generally bounded
as PSD<P<PLZ except for small deviations, takes a max
mum value at an intermediate value ofuvu because of the
tradeoff between the influence of the phase relaxation, wh
increases the nonadiabaticity, and the slowness of the
sage, which favors the adiabaticity.17 It is shown thatP tends
to PSD in the limit D̃→`.

Finally, in Fig. 12, we show numerical results ofP1 in
the limit of large-amplitude fluctuation by changing the s
of parameters (S,T̃) for the fixed value ofD̃2[S(2n̄11)
(510) from the low-temperature, strong-coupling limit
the high-temperature, weak-coupling limit. The prediction
the general formula~54! with replacementF6(m)→F̃6(m)
is shown by the solid curve. The agreement is good, wh
indicates the correctness of the analysis in Sec. III. The
viation from P15PLZ in the limit T̃50 is again due to the
Lorentzian tail of the line-shape function. If the line-sha
function F6(m) has only a Gaussian tail,P1 should coin-
cide with PLZ in this limit. See how the functional form o
the transition rate changes fromPLZ to PSD as the tempera
ture increases.

VI. CONCLUDING REMARKS

In this work, we have clarified the transition dynamics
a level-crossing system with dissipation both by analyti
consideration and by numerical calculation. It has be
shown that there are two extreme situations with respec
the ratio of the transition timet tr and the phase relaxatio
time tph, namely, the essentially coherent case witht tr
!tph and the incoherent case witht tr@tph. The latter case is
further classified into two in accordance with the magnitu
of the energy relaxation, the strong-coupling limit, and t

FIG. 12. The transition rateP1 as a function ofJ2/uvu for the
case of strong decoherence. The parameterD̃ is fixed asD̃2510
and the temperatureT̃ is varied from 0 to 5 with correspondin
change ofS. The prediction by the formula~54! with the replace-
mentF6(m)→F̃6(m) is shown by the solid lines.
-
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weak-coupling high-temperature limit. A closed express
of the transition rate that covers the incoherent limit has b
obtained. Numerical simulation of the time evolution of th
two-level system has been carried out by applying the da
ing operator technique to the interaction mode.

It may be said that the Landau-Zener formula has a k
of stability against the dissipative perturbation. It is unalter
in the limit of rapid passage, or the slow modulation limit,
shown in Eq.~40!. It is also valid to describe the transitio
rate in the limit of slow passage at low temperature, nam
the rapid modulation limit, as shown in Eq.~57!. This stabil-
ity is most clearly exhibited in Fig. 7. In the analysis
nonradiative hot transition at a potential curve crossing i
strongly coupled electron-phonon system, Sumi9 concluded
that the transition rate is given by the Landau-Zener form
under the condition that the wave packet of the phonon
relaxed from a higher state. This is correct, but his argum
is constructed upon the assumption of strong decohere
just the same as developed in the derivation of Eq.~57!. The
truth is that the Landau-Zener formula becomes applicabl
this case because the wave packet passes the crossing r
so rapidly that the modulation is in the slow limit10 as de-
scribed in the derivation of Eq.~40!. It should be noted that
in this case, the condition of coherence is satisfied only fo
time intervalt tr but may be broken in a longer time scal
This is the case classified into the short-range coherenc21

The consideration about the degree of coherence over a
time scale is very important for the analysis of the dynami
processes involving repeated level crossing, since the p
coherence between the crossing levels plays an essentia
in determining the successive transition rate.20,21,23,40

In the present model, the energies of the two electro
levels are assumed to be explicit functions of time, like t
case of external modulation. This assumption is justified
the analysis of a single crossing event of dynamical syste
if the degree of freedom, which modulates the electro
levels, is heavy enough. In actual situations, however, it m
be that the reaction from the dissipative media modifies
motion of the heavy coordinate. Furthermore, we often
counter the cases where the electronic system is so stro
coupled with the dissipative media that the modulation of
energy itself is caused by this coupling. The strongly coup
localized electron-phonon system in solids mentioned ab
is a typical example. In order to analyze the experimen
data of various dynamical phenomena of such systems,
whole process should be treated as an autonomous evolu
It is also required to develop an efficient and reliable te
nique of numerical calculation. A preliminary result of th
analysis of the nonradiative hot transition in a localized c
ter with potential curve crossing has been reported,41 and its
full account will be presented in a forthcoming paper.
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