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Nonadiabatic transition at a level crossing with dissipation
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A comprehensive investigation of the transition dynamics of a level-crossing system with quantum dissipa-
tion is carried out for the Landau-Zener model coupled with a system of phonons. Analytical study by the
formal perturbation expansion series with respect to the off-diagonal matrix element shows that the transition
dynamics is characterized by the competition between the energy fluctuation and the energy dissipation. Closed
expressions of the transition rate are derived for various limiting situations in a unified way. In the case of
strong decoherence, a formula of the transition rate is obtained, which covers the high-temperature limit and
the low-temperature, strong-coupling limit. Numerical calculation by utilizing the damping hyperoperator
technique is performed, which clarifies the overall features of the time evolution of the system.
[S0163-182608)03320-7

I. INTRODUCTION magnetic field has been studied as a kind of nonadiabatic
level-crossing problertf The proposal to control the tunnel-
The nonadiabatic transition at a level crossing is a fundaing probability in the double-well potentials by periodically
mental process that plays a crucial role in various aspects shodulating the localized levels with the external fiéfdsan
the dynamical evolution of quantum systems. We may referlso be regarded as coming in this category. In this connec-
to a number of examples both in physics and chemistry. Théon, the effect of the environmental perturbation on the tran-
best known is the atomic inelastic collisions with chargesition dynamics of a periodically driven system has been
transfert The Born-Oppenheimer approximation breaksinvestigated by several authds? The role of the phase
down around the avoided crossing of the potential curvesoherence and its breakdown at successive crossing events is
associated with each charge state, and the nonadiabatic travf- special interest in this case. In some cases, the off-
sition here is of primary importance in determining the diagonal transfer element itself is induced by the coupling
branching ratio to respective scattering channels. Since theith the medium and, therefore, is fluctuating. The quantum
discovery of the celebrated Landau-Zener formula in 1832, dynamics of such a system has been studied for a level-
continuous effort has been devoted to elaborating the the@rossing modéf and for a biased two-level systethFi-
retical treatment. nally, we would like to add to our long but incomplete list of
In the present paper, we focus our attention on the levelreferences an interestingxperimentalwork,?® in which it
crossing problem in condensed matter. The nonradiativevas demonstrated that a classical analogue of the repeated
transitions in the strongly coupled localized electron-phonorevel crossing was realized in an optical-ring resonator and
system in solids is a typical example of this subject. In thisthat the time-dependent behavior of the electromagnetic
case, the level crossing is defined in the configuration coorfields was well reproduced by the Landau-Zener model.
dinate space instead of in the real space, and the nonradiative In contrast to the case of atomic collisions, the dynamical
transition occurs during the lattice relaxation as the waverocesses in condensed systems are, in many cases, subject
packet passes the crossing point of the adiabatic potentialsto the perturbation by the elementary excitations in the sur-
The analysis of the transition dynamics by referring to therounding media that have infinite degrees of freedom. The
Landau-Zener formula has been done by several authtts. coupling with the surrounding media will generally modulate
As another example, a sort of chemical reaction at the sutthe transition rate at level crossings. One of the standpoints
face of crystals' and in the solverit can be classified in this to investigate such an effect is to take the time-dependent
category, in which the nonadiabaticity of the process must benodel of Zenet coupled with a bath of many mode phonons.
taken into account. It is pointed out that an analogous nonaAlthough it may seem a little artificial to assume an explicit
diabatic level crossing is relevant in some nucleartime dependence for the diabatic energies of the crossing
reactions=> A slightly different version of the same problem levels, this model is useful to get insight into the essential
can be found in the area of magnetic resondhemd in  dynamics of the nonadiabatic transitions at a single crossing
nonlinear opticg® By changing the applied magnetic fields event, and it is called a standard model. The effect of the
or the electric fields, one can attain a level crossing betweeanvironmental perturbation in the level-crossing problem has
the two discrete levels. The so-called adiabatic rapid passad®en investigated by several authors within the standard
or its optical analogue has been analyzed in the frameworknodel?’~3°From the theoretical point of view, this problem
equivalent to the Landau-Zener formdfal” The quantum gives an interesting time-dependent version of the quantum
dynamics of a coupled spin system under a time-dependemtinneling with dissipatiori**? See Leggetet al>3 for a re-
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view on the dynamics of the dissipative two-level system and 2> . >
references therein.

We would like to emphasize here that the concept of
guantum dissipation should be understood from two distinct
viewpoints. One is the dissipation of energy and the other is
the fluctuation of energy, or in other words, the dissipation of
the phase memory. The relative magnitudes of the effects of o gy
these mechanisms are connected to each other through the vt
fluctuation-dissipation theorem. One of the present authors i
investigated the effect of the phase relaxation on the transi- 11> |2>
tion probability by reducing the standard model to a stochas- t
tic model at high temperatufé.It was shown that the exis-
tence of the phase relaxation generally increases the apparent FIG. 1. The Landau-Zener model of level crossing.
nonadiabaticity. Especially, a closed formula of the transition
rate was obtained in the limit of strong dephasing, whicha peculiar feature of the damping operator technique as a tool
shows an incoherent or a diffusionlike transfer. Ao andfor such a calculation is also critically examined.

Rammet® developed an extensive analysis for the original In Sec. Il, the model is presented with some remarks
standard model. They obtained analytical expressions of thabout the physical parameters. The analytical study is carried
transition rate for some extreme cases of the parameter vaput in Sec. lll. Section IV is devoted to the introduction of
ues. A remarkable conclusion is that the effect of the envithe interaction mode and the formulation of the damping
ronmental perturbation on the transition rate disappears aperator method. The results of the numerical calculation are
low temperatures in the case that the system starts from theresented in Sec. V. Some concluding comments are given in
lower branch in the initial state. This assertion is not consisSec. VI.

tent with the previous result of the analytical study in the

2]

same modet? in which the authors investigated the transi- Il. MODEL

tion process from the adiabatic limit and concluded that, at

zero temperature, the coupling with the phonon fiedigs We are interested in the transition dynamics at a level
creasesthe apparent nonadiabaticity. crossing as an elementary process of the evolution of a quan-

On the other hand, a numerical calculation of the transifum system. Consider that the energy levels of two electronic
tion dynamics was done by Tsukdddor a semiclassical States|1) and|2), approach and cross each other as shown in
version of the standard model by utilizing the stochasticFig- 1 in accordance with the motion of a heavy degree of
trajectory method. It was clearly shown in this work that, freedom or by an external modulation. The system initially
because of the back-transfer effect, the energy relaxation dr&Xists in|1) makes a transition {?) through a constant off-
matically modifies the transition rate in the case that thediagonal matrix elemeni around the crossing. Throughout
system initially occupies the upper level. The validity of the this paper, we choose diabatic basis |[¢¢nd|2) to define
approximation adopted to derive the force term in the stothetransition The whole system is assumed as being subject
chastic equation is, however, not always justified since thdéo the perturbation by the elementary excitations in the sur-
environmental oscillators are assumed as being driven by gunding medium represented by phonons. By extending Ze-
common force irrespective of the electronic subspace. This i§er's model, a prototype Hamiltonian to discuss the situation
a drawback often seen in this type of calculation. Note thagan be written as
the Hellmann-Feynman force is well defined only for the
adiabatic eigenstates. H(t)=He(t) + Hpnt Hy, @

In view of this situation, it will be worthwhile to carry out L
a further study of this subject. The purpose of the present  Hei(t)=320t(|1)(1[—[2)(2))+I(|1)(2[+]2)(1]), (2)
work is to make a comprehensive investigation of the level-
crossing problem in condensed matter within the framework Hy=S wblb 3)
of the standard model, both analytically and numerically. By ph™ &2 @kPkPko
the analysis of the formal perturbation expansion series,
closed expressions of the transition rate, some of which have
been obtained previously, are derived in a unified way. Spe- H =35> (bt bh)(|1)(1]—]2)(2]), 4)
cifically, a formula is obtained that covers the limit of the k

strong-phase relaxation, l_ariqlging the high-te_mperature limityherew is the velocity of the change of the energy differ-
and the low-temperature limit. In order to clarify the featuresgpce a, is the coupling constant with tHeh phonon mode
of the transition dynamics all over the parameter space, wgg fréquencywk. Here and hereafter we adopt=1. It is

perform a numeric;al investigation utilizing t_he damping_ Y- assumed that at= —, the total system is represented by
peroperator technique. Through the numerical calculation of;,o density matrix; given by
1

the time-dependent behavior of the reduced density matrix, it
is clearly seen what is going on in the electronic system =|1)(1] (5)

. . . Pi >< P1s
during the level crossing under the influence of the quantum
dissipation. In the extreme cases of the parameter values, thieherep, represents the phonon equilibrium in the subspace
results of the analytical formulas are ascertained. In addition1), namely,
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pr=exp(—H,/kgT)/Tr exp(—H, /kgT), (6)  This is the case described well by the stochastic moteh
. the other hand, in the limit of strong coupling and low tem-
with perature, the effect of the energy relaxation as well becomes
important since in this limit,
_ 1 T
Ha=Hprt 3.2 avon(bi by, “ @<D=\So<AE. (15
We calculate the probability? that the electronic system The stochastic fluctuation of the energy difference generally
exists in|2) att=o. Note that the transition rate depends |eads to the phase relaxation. In the case t&b>1, the
also on the sign ofv unlike the original Landau-Zener relative-phase memory is completely lost within a short time
model. of order of ;=D !(<w !). ForD/w=1, the phase relax-
Because of the Gaussian character of the linear electroration is incomplete. This is a feature of the linear coupling
phonon interaction, the dynamics of the quantum dissipatiomodel and is connected with the presence of a sharp zero-
can be completely specified by the spectral-density functiophonon line in the optical-transition spectrum.

¢(w) defined by The time constant, of the relaxation of the energy is
given by 7o~ y,jl, where v, is the width of $(w) at low

b(w)= i fx (V(1)V(0))oe “dt tempe_rature._ln_ most caseg, is roughly the same order of
27 ) o magnitude as itself. The time constants,, and 7, should

be compared with the time intervaj, within which the sys-
22 aﬁwﬁ[(nkJr1)5(w—wk)+nk6(w+wk)], (8) tem e_:X|sts in the transition region. Since the off-diagonal
K coupling works for the energy difference of order of or less

where thanJ, =, is primarily given by, in the order of magnitude,

Te=Jl|v|, (16)

- T I .
V_Ek @bt by, V(O =expliHpl)V exp—iHph), 5 moderate values of. As shown in the next section, the

whole transition process is characterized by the degree of

andn=1fexp(w/keT)—1}. In the above equatiod;-*)o IS coherence, which is measured by the ratiorgfand .

the average over the density matig=exp(—Hp,/kgT)/
Tr exp(—Hpn/kgT). o IIl. ANALYTICAL CONSIDERATION
The relaxation energE is given by

In this section, we investigate the transition dynamics

[ 1 analytically by the formal perturbation expansion series of
AE= f,md’(w)w do, ©) P. The density matrixp(t) at timet is given by
which is half of the Stokes shift for the optical transition. [t [t
The amplitude of the energy fluctuati@n is given by p(t)=exp, —IJ_WH(T)dT pi exp- lf_mH(T')dT' :
, ([~ 17
b*= fﬁwqb(w)dw. (10 where exp (exp_) means the time-ordered exponential with
_ _ _ ) increasing time toward leftright). The probabilityP is then
We define the dimensionless coupling const@uy given by
_ 2 o
5=2 «f (11 P=<[exp_ if H()d7' }
_°° 1,2

and the representative phonon enesgypy

X { exp;

—ifiH(T)dT

AE=Sw. (12)

21/ ¢
The transition dynamics is insensitive to the detailed func- . o
tional form of ¢(w) but is characterized by the parameters " Which {---}i j means that thei(j) component should be
J, @, S, andkgT. It should be noted thaAE and D are taken and(---); indicates the expectation value over the

related to each other through the Einstein relation equilibrium phonon in the spade),
D2=2ksT* AE, (13 (- 0=Tr{ps}. (19

where, recoveringi, T*=(hw/2kg) coth(iwl2kgT) is the  The probability P is expanded in a power series dfto
effective temperature. Therefore, the effect of the energynfinite orders. Each term is expressed as a sum of multiple
fluctuation becomes dominant while the energy dissipatiofiime-ordered integrals of higher-order generating functions.
can be neglected in the limit of weak coupling and highThe calculation of the generating functions is essentially an
temperature, elementary exercise. Analytical expressions of the same kind
have been derived time and again by several authors within

AE—0, kgT—o with D finite. (14)  different context$1%32We present here a compact form,
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T T Pairing-off theoremOut of all the configurations of the

time vertices that appear in the diagrams shown in Fig. 2,

T3 n Ts
—flo — &) —— — FonN JE—
\\ only those make nonvanishing contributions to the integral in
—co D+oo Eq. (21), in which 2n vertices make pairs with intrapair dis-
. // tance less thamD ~! except for special cases in which an
I .~ \
Te

even number of vertices not less than four make groups with
mutual distance less thamD)2

Proof. In order to prove the theorem, we divide the expo-
nent of the generation function in E(1) into the real part
R(71,72,...,79,) and the imaginary part(7q,75,...,72,)-
The real part

o T T8 Ty

FIG. 2. The double-path Feynmann diagram for ral2order
term of the perturbation expansion series of the probatflityrhe
system makes a transition at each vertex figj(solid line) to |2)
(dashed ling and vice versa. In the limit of large amplitude fluc-
tuation, time vertices encircled by the ellipses must be paired off. on i1
R(Tl,rz,...,72n)=Rei22 le (—1)7IG(r— 1)

P=— }_}1 (—3%)nLm, (20)

n
L(n): 2 f dTlf de"'f dTmel
m=1J- ™ Tom-2

* 2m T2n—-1
X d7om d7omer d7z,
— o0 — —

2n
xexp{iZl (—1)1'(% Tf—AET,-)

originates from the fluctuation of the energy. We observe
thatR(7y,75,...,75,) Can be rewritten as

1= -2
R(71,72,.,Ton) = — > Jiwdwd)(w)w

2

X (24

2n
> (—1len
=1

Note thatR(7,,75,...,72,) IS @ nonpositive definite quantity.

2n i-1 Since
+2, 2 (—1)'IG(ri— )|, (22) .
=2t j dw ¢(0)o ?=D?w’>1,
where o
¢ - R(71,72,...,7,) becomes negative with a large absolute
G(t)Ef dsf ds'(V(s)V(s'))o value unless the following condition is satisfied:
0 0

2n

21 (—1)le7| <wlD. (25)
=

=f dewd(e)[(1-e Yo ?2—ite"1]. (22

The diagrammatic representation of the above expression Bince the integral with respect toruns over the interval of
shown in Fig. 2 as a double-path propagator for the densitprder of y,, the above condition is satisfied in the limit
matrix. D/w—c only when 2 vertices are paired off, namely, a
We note that the lowest-order term Bf coincides with  time vertex with even suffix coincides with a time vertex
that of the Landau-Zener formula irrespective of the phonomwith odd suffix to be canceled out as shown in Fig. 2. By

coupling®* since expanding the expressidbi™ ,(—1)Ie'“7 in a power series
around the paired-off configuration, the theorem is immedi-
L(l):f d f d ately prov_e_d. _
IRES B The pairing-off property of the strongly coupled localized

electron-phonon syslgt?(]am has been described by Kustiimoki
A I N N _ a less clear way. Sumcorrectly stated the pairing-off ansatz
Xexp{| 7 (727 7) T1AR(r2m 1) = G2 = 71) in his study of the nonradiative process in solids, but the
. . 2ar context in which it was used was inappropriate. See Sec. VI
_ i i _ _2" for more details. The pairing-off theorem plays an essential
fﬁmd,uﬁxdo exflivou—iABo—G(o)] lv]’ role in understanding the dual character of the Raman scat-
23) tering and the luminescence in the second-order optical pro-
cess of the strongly coupled electron-phonon system.
where we have introduced new variables=(7,+ 75)/2 The above theorem provides a mathematical basis for the
ando=r1,—7,. It is difficult to evaluate the multiple inte- noninteracting blip approximatigff which is widely used in
grals for general terms. However, the meaning of formulahe study of the dynamics of the spin-boson system. In its
(21) becomes clear in the limit of large amplitude fluctuationlowest order, the noninteracting blip approximation requires
D/w>1, namely, in the limit of strong coupling and/or high us to simply drop all the term&(7;— 7;) that extend over
temperature. The following theorem is of primary impor- different pairs® By this approximation, the memory of the
tance for the analysis of the dynamical process in this fifhit. boson system about the previous history is instantly lost at
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each blip. In order to correctly describe the energy relax- 2 ! 2 !

ation, which is important in the strong-coupling limit, the _
history must be taken into account as the interaction between

blips. \1 N\ % \//2

The pairing-off theorem is a consequence of the ultrafast ~—" N—1

phase relaxation in the large-amplitude fluctuation limit. As ~ 1

can be seen from Fig. 2, the density matrix propagates al-

most always in the diagonal form in this limit. In the remain- a b c d e

ing part of this section, we mainly focus our attention on this

limit. FIG. 3. The schematic time evolution of the configuration coor-
If one notices that dinate diagram for the level crossing with energy relaxation. The

time evolution is from(a) to (e) in the casey >0 and from(e) to (a)
in the casey <0.

2n i—1 2n
2 2 (~)Mn-n)==2 (-7,
: ] Eg)q)(/uz)fﬂvz!""ﬂvq;ﬂp)
the imaginary part(7q,7,,...,7,) Of the exponent of Eq. q
(21) can be rewritten as =vppt+(—1) @ VAE+ 2> (—1)]
i=1
2n o
_Y 2 —1)is2— -2 - -1
1(72, 72 T2n) = 5 ,-:1( Dirf=] do ¢(o) X | do ¢(w)o ! coso(up,—ui). (30
2n i—-1
X_Ez 21 sin w(7— 7). (260 In the above equations, . iy, - iy, are the times for the
i=2 j=

vertical pairs that lie to the left ok, in Fig. 2. For the case

We classify the paired configuration into two groups: thethat there is no vertical pair befoye, , E( should read as
vertical pairs and the horizontal pairs. The vertical pair liesE}”=v u,—AE. Although the derivation is somewhat com-
across the upper and the lower propagator like pairplicated, the meaning of the above formula is obvious. The
(73,710, (77,74), and (r5,7g) in Fig. 2. The horizontal pair energyE&,Q) is nothing but the negative value of the Franck-
lies within the upper or the lower propagator like; () Condon energy measured frdi to |2) for the phonon wave
and (r9,7g). Denote the pairs as 7(,7,), packet, which has the following history: it starts from the

(7y.i7y )sees(mn. .7y ) as they are ordered from left to- equilibrium distribution in the subspa¢®, makes a vertical
3 4 2n—1 2n e . . . .
ward right, where we tak& ,,_,=odd andh ,=even. In- j[rangltlon to the adlal'aatlc:. pote'ntl'al surfacgyfat tlmel,uvl,
troduce a set of new variables as is driven by the Hamiltonian within the subspg2guntil the
time u,, at which it jumps again to the adiabatic potential
um=(m. +1. 2, on=7. —1. .. (27 Surface of/1), and so on. Fog even, the packet lies on the
am o tem-l am - tamoL adiabatic potential surface |h) and forq odd, in|2). There-
Then in the limitD/@> 1, the saddle-point method can be fore, it can be said that the vertical pair corresponds to the
! transitionwhile the horizontal pair corresponds to thelar-

applied to the evaluation of the multiple time-ordered inte-._ ™" . . . .
grals by expandingR( 71, 7,,....75s) andl (1, 7y,....71) t0 ization At each time the system makes a transition, the equi-

. . . librium point of the phonon system shifts from left to right
the lowest order i, . The real part can be readily approxi- and vice versa. Such a situation may be visualized by the
mated as . . ) . -

configuration coordinate diagram as shown in Fig. 3. The
meaning of the coordinate in Fig. 3 will be made clear in the
* do (o) next section. _ _ _
o Now we come to the point of a crucial observation. So
far, we have not considered the time duratigp within
which the system exists in the transition region. The tipe
Xp§=:1 q§="1 Cosw(pp=pq)op0q- (28 s 3 measure of the time interval for which the multiple in-
tegral of Eq.(21) converges. On the other hand, the pairing-

On the other hand, the imaginary part can be evaluated by £ff theorem tells us that the contribution from the integral
elementary but somewhat tedious counting up of the diagrarﬁver o, for each pair is restricted within the time interval

and by some exercise of trigonometry as crp|s_q-ph(:D_*1) in the order of magnitude. The transition
associated with each pair becomeseal transition only in

the case that the phase relaxation time is far less than the
transition time, namely7,,< 7y .
First, we consider the opposite case that the veldoitys
(29 so large that the conditiom,,> 7 is satisfied. In this case,
the real partR(74,75,...,7o5) given in Eq.(24) can be ap-
whereEéq)(,uvl,,uvz,...,,uvq;,up) is given by proximated as

1
R(Tl’TZ!""TZFI):_E f

n n

n
I(T]_,TZ,..-,Tzn):le Eg)q)(lu’vlvl‘l’l)zy---uu’vq;lu’p)o-py
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Cm=f dxlf dxz---J dXm
- X1 Xm-1

R(Tl,Tz,...,TZn):_

éilw

[\)II—\

E ypﬂ. (37

Since the integral is unchanged by arbitrary permutations of
2n - (X1,X2,...,X,), the integration is carried out as
1(T1,72,...,T2n) = 3V 1(_1)'Tj- (32

=
Cn= —If dxlf dx,: - f dxm

Equation(31) means that the fluctuation of the energy be-
haves as a static Gaussian distribution of the energy for a % o o
very short time interval. In fact, the effect of f d)ﬁf dy, f dYm
R(7y,75,...,79,) Can be eliminated from the integral of Eq.
(21) by applying the identity

since|,up—,uq|<yrj1 for all p andq. Likewise, the imagi- xex;{ iv 2 XpYpt
nary part can be approximated simply as p=1

m iv m 2
xex;{ivE xpyp+? 2 yp) }
p=1 p=1

exq—D2X2/2]=(\/ED)’1£O dq exd —q%/2D2—igX] 1 [ pm
(33 :—(m)

where the second equality is obtained by first performing the

2n j
for X=2{=,(—1)'7; and by interchanging the order of the integrations ovek, . Inserting the above result into EG@4),
|ntegrat|on overg and 7; with the shift of the originr;— 7 we find

—g/v. This is a consequence of the feature of the Landau-

Zener model that the transition rate is independent of the 1 /(2
constant shift of the relative energy. M=— ( )
It is instructive to calculaté (™ explicitly in this limit. By o]
an inspection of the integral domain{" can be rewritten as and inserting this into E¢(20), we obtain the Landau-Zener

(LZ) formula,

(39

(39

L(n)_z C Cn . (34) PZPLZE:L_eX[X_ZW\]ZHUD. (40)

The argument here was the essence of the proof of the ap-
plicability of the Landau-Zener formula to the nonradiative
hot transitions in the strongly coupled localized electron-
phonon system with an adiabatic potential crossthg.
Co=1, Next, we turn to the limit of slow passage,> 7. In
this case, the coherence is interrupted every moment in the
" " " relatively long time intervalr, and the vertical pairs in Fig.
Cn= f dTlf dry - f d7om 2 can be interpreted as representing real transitions. The sys-
> Tam-1 tem makes multiple transitions betwe¢h and |2) while
relaxing toward the equilibrium state within the respective
m=1. (35) electronic subspace. Therefore, the probabifityvould de-
pend on the relative length af, and 7.,. Useful expressions
of P can be obtained in the case that a little stronger condi-
The following transformation of the variables is useful for tion
the evaluation of the ordered integtal,

where

2m
xex;{i Y > (—1)i7?|,
2 &

Tr= Ten (41)
X1=T1q, is satisfied. In this cas&R(7y,75,...,75,) Can be approxi-
mated as
p-1 n
Xp=71+j21 (T2j41— T25), 2sps=m, R(71,72,... TZn)———DZ(Z ) (42
since the cross terms vanish because of the dephasing,
yp: T2p™ T2p-1» 1< p=m, (36)

71 _ —
by which C,,, is written as f do $(w)w " cOsw(up— e =0,
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for general configurations of, and uq with |uwp— gl
=0(7ey). The variables of integration are changed from
(TlvTZ!"'vTZr'I) to (/.Ll,/.LQ,...,,an,0'1,0'2,...,0'n). We as-
sign a set of signatures€{,é,,...,&,) to each diagram cor-
responding to a serial time ordering, wheég=+1 if
Thpr 1= Thypy and ¢,=—1 if Thpy < Thpp_ - PO example,
(€1,65,65,64,65)=(+1,—1,+1,—1,+1) in the case of
time ordering in Fig. 2. Then, the following lemma can be
proved by an elementary counting up of the diagfim.

Lemma 1.In the total set of possible time ordering that
appears in the &th-order terms of the perturbation expan-
sion, every set{;,&,,...,&p) with §,==1 for p=1,2,..n
appear 27! times.

Since the integral oveo, converges follop|<p,, the
restriction on the integral domain fqr, can be safely re-
laxed as— o< pu 1< pu,<---<u,<%. On the other hand, the
integral domain ofo, can be extended te- <o ,<x for
the vertical pairs and to 9o ,<» or —»<o,<0 for the
horizontal pairs.

First, we calculaté® for the case that the energy dissipa-
tion is negligible, AE—0, while the conditionD/w>1 is

still satisfied. This corresponds to the high-temperature limit

with small coupling. The imaginary patt(7;,75,...,75p)
can be written as
n
I(TlvT21"'l7-2ﬂ):vp21 Mpo-pv (43)
and, because of the above lemma, we find
L(”)=2”_1J d:“lf sz"'f dun
- M1 Mn—-1
XJ dO'1J da’z---f do,
n
Xex;{i > {oppop— %DZO'%}
p=1
2n o) % n
=ar f d,u,f do explivuo—3D%0?)
11 (4w n 44
2n\ o) “4
Inserting the above result into ER0), we obtain
P=Pgp=3{1—exp—4mI?%|v|)}. (45)

This formula has been derived by one of the presen
authoré® with a slightly different argument for the stochastic
model. It should be noted that

Pso—2md?/|v| for J?%/|v]|—0, (46)
as is consistent with the previous argument and
Psp—3 for J%/|v|—oe. (47
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Next we consider the effect of the energy dissipation for
general values oAE. According to the pairing-off theorem
and the lemma for the signature, we have

©

d,bLz
M1

0

L(n)=2”71Jac dug f
- Mn—1
XJ’ dO'IJ da’z---f do,
n

Xg exp{ipz EE)q)(,Uzvl,l-vay---,Myq;/-Lp)O'p

dun

=1

(48)

where the summatioX; runs over all of the possible con-
figurations of the vertical pairs. The integration ovef

gives
L(n)zznflf dMl sz"'f d,U«n
- M1 Hn-1
n
XEC: pl;[l KRy g oo sbho g p). (49
where
K(/J*vllﬂ“vz!"'!/*l“vq;lu“p)
V2w Efo“)(uvl,mz,---,qu:up)z
p &~ 2D2
(50)

Equation(49) indicates that the probabiliti? is determined

by the successive incoherent transitions of the wave packets
of phonons, which are subject to sudden shift of the equilib-
rium position while undergoing the relaxed oscillation. In the
case of slow-passage limit, we can approximate the Franck-
Condon energ;Ef)q)(le,Mvz,...,,u,,q;,up) by its asymptotic
value E®=vu,+(—1) 9 DAE for |uy— u;|> e since

the variablesu, are distributed sparsely in the integral do-
main of order ofr,. This means that the phonon system is
relaxed to the equilibrium configuration immediately after
the transition so that each transition event occurs always
from the bottoms of the adiabatic potentials of the respective
electronic subspace. The equilibrium configuration at time
up depends on the numbgrof the vertical pairs beforg,, .

{f we define the line-shape functidp. (1) by

2

Fi(ﬂ):fio exr{—i(AEiv,u)O'—T o?|do
2
zgexq—(AEivu)ZIZDZ], (51)

the integrand of Eq(49) is given as a sum of all the
possible combinations of the terms like

This means that the strong decoherence reduces the whdfe (u1)F - (u2)F . (m3) - -Fi(un). Note that the first com-
transition process to diffusionlike so that the system existponent is alway$ _(u,). Again, an inspection leads to the
with even probability in both states after the slow passage.following lemma.
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Lemma 21In the total set of possible diagrams that appearOn the other hand, in the case0, bothF, (u) andF _ ()

in the 2nth-order terms of the perturbation expansion, all themust be considered. By using the identi§6), Eq. (54) can

combinations ofj,(u,)Fjs(us): - Fjn(mn) with jo== (p  be rewritten as

=2,3,...n) appear once.

M is qi * *
ThenL'" is given by P=J2f d,U«lF(Ml)EXF{—JZJ' dﬂzF(Mz)}
- M1
|_(n):foc du fxd,u,---fw dunF_(uq) o o
S PR R ! X[l_sz dM3F+(M3)eXF{_sz dM4F+(M4)H-
| m1 u3
X T {F () + F (). (52) 58

Since the nonvanishing domains Bf, (u) andF _(u) are
Since the integral is unchanged against the permutations &eparated far from each other and since the contribution of
(2. fh3,- ... tn), We have the integral overu,; comes fromu,;=AE/v<0, the lower

limit of the integration overu; can be safely extended to

1 . —o. Thus the integration over,; and x5 can be decoupled
L(“)z_—f duiF_(mq) and we find
(n=1)! J_o
” n-1 P_={1—exp(—2mJ%|v|)}exp —27I%|v|)
X duo{F +F_ , 53
" lu’Z{ +(1u’2) (Iu‘Z)} ( ) — PLZ(l_ PLZ)- (59)
and, by inserting this into Eq20), Ao and Rammeé¥ first pointed out that, at zero tempera-

ture, the transition rate becomes identical with the Landau-
Y Zener formula in spite of the dissipation. This is correct pro-
P=J _mdﬂlF*(“l) vided that the speed of passage is slow enough and the
crossing occurs from the lower-energy side. For intermediate
o[~ values ofv, P, deviates fromP,, to increase the apparent
xXexg —J37 [ dua{Fi(u2)+F_(u2)t|- (34 ponadiabaticity, as will be shown in Sec. V. It is a little
- surprising thatP , becomes identical withP , both in the
This is a central result of this section. limit of rapid passage as shown in E40), and in the slow

In the case of weak coupling and high temperature, wedassage as shown in E&7). The reason is, however, quite
may put  Fo(u)=F_(u)=F(u) with F(u) different between the two cases. Since the original Landau-

= (J27/D)exp(~v2u?/2D?) and find Zener formula is derived for the coherent process, it may be
said that the formul#57) obtained for the incoherent limit is
a result of coincidenc® In the casev<0, the sequential
} application of P, leads to Eq.(59) as a whole transition
rate. The level crossing effectively occurs twice in this case,
= H1—exd —473%|v|]}, (55) first att=—AE/|v| and next at=AE/|v| as shown in Fig.
3. If one notes that, and F_ are interchanged by the
which recovers the formuléd5). In deriving the above re- change of the sign of, a useful relation is obtained from
sult, use is made of the identity Eq. (54) as

exp“'bdt f(t) =1+J’bdt f(t)ex;{fbdr f(7)
a a t

In the limit of strong coupling at low temperature, we set
AE—Sw andD— \/Sw. It should be noted the, (1) and
F_(w) bhave nonvanishing values only at around
=—AE/v and u=AE/v, respectively. The value oP  which is generally valid in the limit of strong decoherence
strongly depends on the sign @f We denote the value &t irrespective of the temperature.
for v>0 (v<0) asP, (P_) hereafter. In the case>0, Finally, we briefly discuss another extreme situation that
F.(w) in the exponent of Eq(54) can be neglected since is specified by Eq(14), namely, the limit of the energy fluc-
the contribution fromgu, integration is limited at around tuation alone. In this case, it is appropriate to treat the envi-
pn1=AE/v. Then, we have ronmental perturbation as a Gaussian stochastic fluctuation

of the energy levels with the amplitud® and the decay
} constant of the correlation of order qu.28 It has been

P=J2jxd,U~1F(,U«1)eXl{ —23% | duoF(up)

My

. P++P—:sziodﬂl{lz+(#1)+Ff(,le)}

(56)

Xex% —szwduz{F+(M2)+ F_(u2)}
H1

=1—exp —4md?%/|v])=2Pgp, (60)

shown that, as a function of the speed of the passage, there is
an optimum value ob that maximizes the transition rate,
=1—exp —2mwI%|v|)=P5. (57) andP tends to3 in the limit of slow passage. GeneralR,is

P+:sz_ dMlF—(MﬂeXF{—JZJ duaF - (u2)

M1
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bounded a®sp=<P=<P, for a fixed value of)%/|v|. Inthe  The Hamiltonian(1) is then rewritten, in the matrix form, as
limit of the large amplitude fluctuatio® agrees withPgp as

it should. H(t):Hsy&t)"f_Vsys"'HR"_VRa (66)
1 1t
IV. INTERACTION MODE AND DAMPING OPERATOR Hodt)= zut+wBiB; 0_ 67)
Sy 0 —Lvt+wBiB,)’

In order to see the overall features, we perform numerical
calculations of the transition dynamics by using the damping 0J
operator technique. The damping operator is a hyperoperator Vsys—(J 0)
operating on the density matrix and is widely utilized to
describe the quantum damping of photon fieftlk.was also (1 0)
] 1

, (68)

applied to the calculation of the second-order optical spec- HR:E Q.
trum of a localized electron-phonon syst&hRecently, Mu- i
rao and co-workefé developed an elegant formalism to
solve the equation of motion for the density matrix with a + t
damping term and carried out a numerical calculation of the 2,: Bi(B1R;+BaRy) 0
transition dynamics of a level-crossing system. But the type Vg= .
of interaction considered by them is different from that 0 2 ﬁj(BZRﬁBszT)
treated here. ]

Since we are interested not only in the weak-coupling (70)
case with Fhe phonons but also in the strong-coupling case, jtere
is appropriate to separate out a part of the phonon degrees of
freedom as the system mode and regard the rest as the res- a a
ervoir modes. This can be achieved by introducingititer- B;=B+ 2 B,=B~— PE
action mode The interaction mode was first proposed by
Toyozawa and Inou® for the Jahn-Teller system. In a little @ is the frequency of the interaction mode given by
different form, it was also introduced by O'BriéiThe es-
sential point of the interaction mode is that one can con- _:2 U2 (71)
struct, out of a tremendous number of normal modes, a small @ & PkFok
number of modes that bear all of the relaxation energy within
the relevant electronic subspace as components of the sy80dp; is the coupling constant between the interaction mode
tem. The rest of the modes span a basis set of the orthogon@ind the reservoir modes,
complement of the interaction mode, which can be regarded
as the reservoiR.' In the.present case, the annihilation.op— ,31:2 o Yo (72)
eratorsB for the interaction mode an®; for the reservoir
modes are defined by the unitary transformation

(69

In the above equations, thé ) element represents|H|j).
N It should be noted that the above definition correctly guaran-

B= z Uokbi. (62) tees the relaxation of the interaction mode to the lowest state

k=1 within the respective electronic subspace. It can be shown
that the concept of the interaction mode is extended in a
unigue way to generio-level systems coupled linearly with
boson fields. Details will be presented elsewhere.

The damping operator for the interaction mode coupled
The condition that the interaction mode carries all of thewith the two-level system is introduced by extending the

N
Rf:gl Ujkbk, j=12,..N—1. (62)

relaxation energy requires well-known proceduré® The equation of motion for the total
density matrix in the interaction representation is solved for a
Uok= ol e, (63)  short time interval by perturbation expansion to first order

with respect tdV,s and to second order with respect\g .

o < : o The variables for the reservoir modes are then eliminated by

gJaT 1&%)}'_{'}"}'(3 mle)n?reo?gﬂnzg dsoatrheajridltiallﬂ thiﬁﬂtgogﬁg taking the trace oveR. Under the assumption that the ther-
P y 9 . _mal equilibrium ofR is undisturbed by the interaction and

Lagrange’s method of indeterminate coefficients tells us thatthat the spectrum R is wide enough to guarantee the Mar-

with aZEEkaE(ES). The transformation coefficientd;

kovian approximation, we obtain the reduced equation of

Uj]k:L, ji=12,..N—1, (64) motion for the density matrix of the system. In the Sehro
(0= Qj)c; dinger picture, it reads
wherec’=Sa/ (w—Q))? and(; is the frequency of the P
jth reservoir mode given by the root of the equation i ETF[HSys(t)Jerys:TJ]HFTJ’ (73
2
“k -0 (65) in which I' is a hyperoperator defined for thex2 density

x o —Q matrix
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1 1 ¥
~E(P1,1 P1,2>' (74)
P21 P22 S=10.0 9=+0.25
as T=0
F~:(111,1l?1,1 Fl,Zpl,Z) (75) 078 - .’?:0‘2 ! S
P Top21 Topay’ =05 i
with |
v>0

Ty jpij=«(n+1)(2Bip; ;B —BBip; j—pi ;B[ B))

+xn(2Bp; ;Bj—BiBlp; ;—pi B;B]). (76

In the above equatiork is the effective coupling constant
with the reservoir modes given by= 782 where8? is the
value of,Bj2 at();=w multiplied by the density of state, and 0.25
n=1/exdwlkgT|—1}. The energy relaxation timer, is

given by 7o=x"1. We will treat x as a free parameter,

although the above equations are derived under rather re-

stricted conditions on the spectrum of the reservoir modes

and the coupling constant as well. 0

Transition Rate
[

V=+25.0

. L

100 200
it/ @

V. NUMERICAL RESULTS . - .
FIG. 4. The time-dependent probabilipy. (t) in the zero tem-

Equation(73) is transformed into a simultaneous equationperature, strong-coupling case wigh>0 that the system exists in
for the coefficients of the number state representation of th§) for the initial condition that it starts frorfl) at a remote past.
interaction mode and solved numerically. In the typical cases
of high temperature, about 120 000 basis states are need&@pid passage, [I/]—0, the process becomes coherent so
for the calculation. The probabilitg(t) that the system ex- thatP,=P_=P ; as described earlier. As the speed of pas-
ists in |2) at timet under the condition it starts frofl) at a  sage decreases, bdth andP_ deviates fromP , to lower
remote past is calculated. The notatigngt) andp_(t) are  values by the same amount. This increase of the nonadiaba-
used in order to specify the sign of p.(t) for v>0 and ticity is due to the phase relaxation. A decreases further,
p_(t) for v<0. In the presentation of the results, we adoptP . takes a minimum value at an intermediate value of|1/
the dimensionless parameters normalizeddbyJ=J/w, 7  and then increases again to approactg in the limit of
=vl0?, "=l 'NI'EkBT/E, andD=D/o. slow passage, consistently with formufa7). On the other

First we show results for the low-temperature, strong-1@ndP- decreases dramatically frofy; t0 P z(1—Py7)
coupling limit. In Fig. 4, examples of the calculated (t) as|v| is decreased. The small discrepancies between the cal-

are given for fixed values of(=10), J(=0.5), andx
(=0.2) at zero temperature withas a parameter. In Fig. 5
is also showrp_(t) for the same parameter values as in Fig. {\ 5=10.0
4, but for the negative sign @f. The behaviors op, (t) and o
p_(t) are very similar in the rapid passage cdsés 25, for N
example, andP  =lim;_, p.(t) and P_=lim,_. p_(t) 075 . k=02
agree with the Landau-Zener formuR, =P_=P,,, fairly 7=0.5
well. This is the case of coherent transition given by Eq.
(40). As |v| becomes smaller, the difference betweer(t)

and p_(t) becomes evident. The behavior pf (t) clearly
shows the back-transfer effect. One of the remarkable results
is that in the case of slow passage, the relatpn(t)
+p_(t)=1 holds fort=0 for the same value db|, as can

be seen from the comparison of the curves ffof=0.25.
This means that the branching ratio to the upper and the
lower state after the crossing does not depend on the initial
condition whether the system starts from the upper branch or
the lower, as if it forgets the history from which it came.

In order to see the dependence of the transition dynamics
on the speed of passage, the values$qf (circle) and P_
(diamond are plotted in Fig. 6 against|Z/ for a fixed value
of the adiabaticity parametd?/|v| (=0.2) at zero tempera-
ture with S=10.0 and’x=0.2. The values ofP,, and
P z(1-P,7) are also shown in the figure. In the limit of FIG. 5. The same as Fig. 4 far_(t) wherev <0.

1 T T

v<0

05| B

Transition Rate

100 200
vit/ @



57 NONADIABATIC TRANSITION AT A LEVEL CROSSING . .. 13109
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FIG. 8. The transition rat®_ (circle) and P_ (diamond as a
FIG. 6. The transition rat®, (circle) andP_ (diamond as a  function of S in the zero temperature, slow passage case for fixed
function of[v] ~* for a fixed value 08%/|v| in the zero-temperature, values ofJ, |v|, and’%. The values of?,; and P ,(1— P, ;) are
strong-coupling case. The predicted values by the formBlags given by the dashed lines.
andP, ,(1—-P,,) are shown by the dashed lines.
ter of the damping operator. It is remarkable that the formula

culated results and the prediction by formuia3) and(59)  (P++P_)/2=Pgp given in Eq.(60) works quite well all

in the limit 1/v|— o are due to the peculiar character of the through the parameter region.

damping operator and will be investigated later. We also The dependence o of P, andP_ at zero temperature

note a dip inP_ as a function of 15| at around 1b| is shown in Fig. 8 for a fixed value @f(=0.5) in the case of

=0.1. This is interpreted as reflecting the dynamical motiorslow passagelp|=1.25. It is remarkable tha®, is essen-

of the wave packet in the configuration coordinate space dfially independent o§ and is given byP, ;. On the contrary,

the interaction mode. The wave packet that has transferred #_ is reduced strongly by the coupling with phonons even in

the potential curve of2) at the first crossing shown in Fig. 3 the weak-coupling region.

undergoes a damping oscillation around the new equilibrium Now, we discuss the origin of the discrepancy between

point. For 1fv|=0.1, the crossing point of the two potential the formulas given in the previous section and the numerical

curves moves down in synchronization with this motion soresults. It is essentially the difference in the short-time be-

that the transfer rate form a dip at aroun{b{#0.1 because havior of the correlation function between the original model

of the nearly adiabatic back transfer. given by Eqgs(1)—(4) and the reduced model given by Egs.
In Fig. 7, the transition rateB, andP_ are plotted fora (73)—(76). In order to see this, we performed an analysis by

fixed value 06(20_5) against?/|v| with ?:o, S=10,and the formal perturbation expansion series of the solution of

k=0.2. The value of P.+P_)/2 is also plotted by tri- Eq. (73) parallel to that given iQ Sec. lll. The formal solution

angles. The values oP,,, P z(1-P.z), and Pgp are  Of Eq.(73) for the initial valuep, is written as

shown by dashed lines. F3¢/|v| not greater than 0.5,

and P_ agree with the formul#®,; and P, ,(1—P,5), re- p(t)=Exp,| —i ft dr £(7) |po, (77
spectively, fairly well. The discrepancy, which becomes sa- —o
lient for J%/|v|=0.5 is again attributed to the special charac-,
1 : : — L(t)=Lo(t) + L', (78)
. oo where the hyperoperatdiy(t) and £’ are defined by
$=10.0 Pz ~ ~ T

ﬂ.,c; orsf " e . Lo()p=[Hg,d1),p]+ilp (79

a2 T=0 . and

g J=0.5 P

©  osf ' UGS - — L 5=[VarT (80)

E %02 /‘ o p=[ syS1P],

= e and Exp [---] now represents the time-ordered exponential

S ’ for the hyperoperators. By an analogous procedure given in

0.25 B B . . .
&= i \‘?\0 Sec. lll, p(t) is expanded in a formal power series &f as
- Piz(1-Piz) * * _t 3
| S . B Exp, —If d7r L(7)|po
0.0 2 0.1 —®
J</ vl
t
FIG. 7. The transition rat®_ (circle) andP_ (diamond as a =Exp, —iJ dr Lo(7)

function of J¥/|v| in the zero-temperature, strong-coupling case for
fixed values ofk, J, andS. The value of P, +P_)/2 is also

plotted by the triangles. The prediction by the formulgs;, X >, (_i)nft drnan dTn_l...fTZ dry
P 2(1-P.7), andPgp are shown by the dashed lines. n=0 —o - —
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FIG. 9. Thek dependence oP_. as a function otJZ/~|v|. The FIG. 11. The transition rate, (circle) andP_ (diamongin the
prediction by the formul&54) with replacemenFE .. (u) —F . (w) is case of high temperature, weak coupling. The resultsDfer0.5
shown by the solid lines. andD=1.0 are shown by the solid and the open symbols, respec-
tively.
XL () L' (Th-1) L' (1) po, (82)
. . . . S
where £’ (7) is the interaction representation 6f. The ex- G(t)= > w2, (85)

pectation value of the above term is obtained after a some-

what complicated calculation by using the properties of th%onsequently, the line-shape functiﬁn(,u) becomes
damping operatoF. We arrive at the expression of the tran- -

sition rateP, - -
Fi(,u)zJ’ do exd —i(AExvu)o—G(o)]

P=—> (-33)L™ (82 1 Sk [
n=1
= dX 77
~ T \[27D* J,x X“+(Sk)
whereL(" is given by the same form as given in EQ1) m

except that the functio®(t) is replaced byG(t) given by (AE+vu—x)?
XeXQ T TRz

(86)

G(t)=—iSwt+S(1—e Tet=ltl) (83
with D*?=S(w?— k), namely, the convolution of a Gauss-

at zero temperature. Note th@{(t) mimics the behavior of ian function with a Lorentzian function of widtBx . This is
G(t) fairly well but, in the limitt—0, it behaves as a consequence of the Markovian approximation assumed in
the derivation of Eqs(73)—(76). SinceF .(u) has a Lorent-
zian tail for|u=AE/v|=D*/|v]| unlike F.(u), the transi-
tion region is not confined well around the crossing times

) ) o u==AE/|v|. This off-resonant transition causes the deriva-
for S>1. This should be contrasted with the limiting value of tjon of P from the formulas. In fact, the hump before the

- S
G(t)=Sk|t|+ > (02— k?)t?, (84)

G(1), steplike increase and the gradual decrease after it seen in Fig.
4 for the casé& =0.25, for example, correspond to this ef-
! N ! 0 — fect. In order to ascertain this point, we have calculd®ed
]~)=1.0 V<0 - as a function of)?/|v| for a number of parameter values of
1=10.0 P «. In Fig. 9, the calculated results are shown with the value
*°T %=02 ] of formula (57) in which F_ () is replaced byf _ (). The
7=0.5 agreement is almost perfect. This analysis indicates that the

LA simulation of the nonadiabatic processes by the damping op-
Psp > erator technique is useful, but one must take care about the
spurious effect peculiar to this method in the case of slow-
passage limit.
025 ' Next, we turn to the high-temperature weak-coupling
limit. In Fig. 10, an example of the numerical result is shown
for p,(t) and p_(t) with parameter value§=10.0, D
-20 ° e 2 40 _=1.0,J=Q.5,7<=0.2,_ and|v|=1.0. In this case, the transi-
tion rate is almost independent of the sign wfand is

FIG. 10. The time-dependent probability; (t) (solid line) and ~ strongly reduced from the value &f ;. In Fig. 11, the de-

p_(t) (dashed lingin the case of high temperature, weak coupling. pendence on the adiabaticity parameX@tv| of P, andP_

i¥l=1.0

Transition Rate
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T T T weak-coupling high-temperature limit. A closed expression
of the transition rate that covers the incoherent limit has been
obtained. Numerical simulation of the time evolution of the
two-level system has been carried out by applying the damp-
ing operator technique to the interaction mode.

It may be said that the Landau-Zener formula has a kind
of stability against the dissipative perturbation. It is unaltered
in the limit of rapid passage, or the slow modulation limit, as
shown in Eq.(40). It is also valid to describe the transition

0.75

Transition Rate

025 | J=0.5 A rate in the limit of slow passage at low temperature, namely,
%=0.2 the rapid modulation limit, as shown in EG7). This stabil-
V>0 ity is most clearly exhibited in Fig. 7. In the analysis of
. . . nonradiative hot transition at a potential curve crossing in a
% 05 1 15 strongly coupled electron-phonon system, Suotincluded
J°/v that the transition rate is given by the Landau-Zener formula

- _ ) under the condition that the wave packet of the phonon is

FIG. 12. The transition rat®, as a function o0/[v| for the  a|axed from a higher state. This is correct, but his argument
case of strong decoherence. The parambtes fixed asD?~10 s constructed upon the assumption of strong decoherence,
and the temperaturg is varied from O to 5 with corresponding just the same as developed in the derivation of (5@). The
change ofS. The prediction by the formulés4) with the replace-  truth is that the Landau-Zener formula becomes applicable to
mentF . (u)—F.(u) is shown by the solid lines. this case because the wave packet passes the crossing region
so rapidly that the modulation is in the slow liffitas de-

is shown for the two parameter values erWlth other pa- scribed in the derivation of Eq40) It should be noted that,
rameters fixed ad=0.5. *=0.2. The coupling constarg in this case, the condition of coherence is satisfied only for a

and the temperatur€ are chosen so that the conditi¢iv) tim_e @nterval Ty but may be_broken in a longer time scale.

. . . L = This is the case classified into the short-range coherénce.
of the fluctuation dominance is satisfie§=0.0499, T ¢ consideration about the degree of coherence over a long
=10.0 forD=1.0 andS=0.0249,T=5.0 forD=0.5. This  {jme scale is very important for the analysis of the dynamical
figure should be dlrectly_related Wlth the results of the stoprocesses involving repeated level crossing, since the phase
chastic modef® As noted in Sec. llIP is generally bounded  ¢coherence between the crossing levels plays an essential role
asPsp<P=<Py; except for small deviations, takes a maxi- in determining the successive transition r&té!234°
mum value at an intermediate value foff because of the | the present model, the energies of the two electronic
tradeoff between the influence of the phase relaxation, whicleyels are assumed to be explicit functions of time, like the
increases the nonadiabaticity, and the slowness of the pagase of external modulation. This assumption is justified for
sage, which favors the adiabaticitylt is shown thalP tends  the analysis of a single crossing event of dynamical systems
to Pgp in the limit D— o, if the degree of freedom, which modulates the electronic

Finally, in Fig. 12, we show numerical results Bf. in  levels, is heavy enough. In actual situations, however, it may
the limit of large-amplitude fluctuation by changing the setbe that the reaction from the dissipative media modifies the
of parameters $,T) for the fixed value ofD?>=S(2n+1)  motion of the heavy coordinate. Furthermore, we often en-
(=10) from the low-temperature, strong-coupling limit to counter the cases where the electronic system is so strongly
the high-temperature, weak-coupling limit. The prediction ofcoupled with the dissipative media that the modulation of the
the general formuld54) with replacement . (u)—F . (1) energy itself is caused by this coup_ling. '_I'he stron_gly coupled
is shown by the solid curve. The agreement is good, whicHocalized electron-phonon system in solids mentioned above

indicates the correctness of the analysis in Sec. Ill. The delS @ typical example. In order to analyze the experimental
viation from P, =P, in the limit T=0 is again due to the data of various dynamical phenomena of such systems, the

Lorentzian tail of the line-shape function. If the line-shape'Vhol€ process should be treated as an autonomous evolution.
function F-. () has only a Gaussian taiR, should coin- It is also required to develop an efficient and reliable tech-
cide with |5Lz in this limit. See how the functional form of "nidue of numerical calculation. A preliminary result of the

the transition rate changes froRy, to Psp as the tempera- analysis of the nonradiative hot transition in a localized cen-
{Ure Increases £ s ter with potential curve crossing has been repofteahd its

full account will be presented in a forthcoming paper.
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