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Scattering by time-periodic potentials in one dimension and its influence on electronic transport
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We investigate electron scattering by time-periodic potentials of finite range in one dimension. A general
scattering potential is approximated by a sequence of rectangular barriers, and can be handled within a
multiple-scattering approach. The scattering is described in terms of a scattering-amplitude operator which
takes into account propagating as well as evanescent states. The general properties of this operator are dis-
cussed. Our approach permits us to study the transport in time-periodic mesoscopic systems. In particular, we
investigate quantum-coherent pumping of electrons.@S0163-1829~98!11019-6#
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I. INTRODUCTION

Quantum interference effects in mesoscopic systems h
been extensively studied in the dc regime, where the sca
ing of electrons is due to static perturbations.1 Whereas the
description of scattering by time-independent potentials
straightforward, the calculation becomes much more diffic
for time-dependent potentials, where inelastic contributio
have to be considered.

Scattering by time-dependent potentials was reexam
recently in Ref. 2. In the present work, we discuss the cas
time-periodic potentials which has been investigated in R
3–8. Photon-assisted tunneling through quantum dots
been observed experimentally,9,10 and has also been dis
cussed theoretically including11 or neglecting the potentia
variations due to Coulomb blocking.12,13

Time periodicity implies that incoming waves with en
ergy E are inelastically scattered into sidebands with en
gies E1nv,nPZ,v52p/P, P being the period of the po
tential. In order to calculate the respective scatter
amplitudes, we adopt the procedure proposed in Refs.
and 7, i.e., we approximate the scattering potential by a
quence of time-periodic rectangular barriers. We first so
the problem for an arbitrary rectangular barrier. The scat
ing matrix for the overall potential is then obtained using
multiple-scattering approach which is based on the ca
lated generalized scattering matrices comprising propaga
as well as evanescent waves. In this way we avoid the ra
awkward law of error propagation inherent to the transf
matrix technique~see, e.g., Ref. 14! employed in Refs. 4 and
6.

Our approach is used to describe the electron trans
through time-periodic mesoscopic systems. We conside
sample connected to two electron reservoirs with the sa
chemical potential. In contrast to the case of static barri
the scattering is generally not left-right symmetric when d
namic barriers are present. This left-right asymmetry of
scattering probabilities induces a net current between the
ervoirs, i.e., the system acts as an electron pump, the pu
ing efficiency depending strongly on the chemical potent
570163-1829/98/57~20!/13050~11!/$15.00
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II. THEORETICAL APPROACH

A. Potential

We consider electron scattering by a short-range poten
V(x,t) in one dimension, and periodic in time with periodP.
In this case, a particle moving freely fort→2` outside the
potential region is scattered by the potential, and mo
again freely after scattering fort→1`, i.e., the asymptotic
condition is satisfied.15 It is worthwile to note that we use a
effective one-electron approach, and therefore the tim
periodic potential corresponds to the screened potential
should not be confounded with the external potential.

Let S5(x0 ,xN#,R be the support ofV(x,t), and L5
(2`,x0#,R andR5(xN ,`),R the free-evolution regions
~Fig. 1!. The final state for an incoming electron with ener
E is described by a superposition of all free scattering sta
with energiesEn5E1nv, nPZ, v52p/P being the angu-
lar frequency of the potential.2 In one dimension, the scatter
ing states are plane waves. For an incoming wave at en
E, the corresponding reflection and transmission amplitu
Rn0(E) and Tn0(E) can be calculated from the matchin
conditions at the junctionsx0 andxN for the wave function
c(x,t) and its derivative]xc(x,t). Negative energiesEn
,0 correspond to evanescent wave functions which desc
the situation near the scattering potential.

Following Refs. 4, 6, and 7, we representV(x,t) by a
sequence of time-periodic rectangular potentials on finite
tervals, as shown in Fig. 1,

FIG. 1. Scattering by a time-periodic potential.
13 050 © 1998 The American Physical Society
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V~x,t !5 (
n51

N

V~n!~ t !C~n!~x!, ~1!

with

C~n!~x!5H 1 if xP~xn21 ,xn#, xn21,xn , n51, . . . ,N

0 otherwise.
~2!

B. Time-periodic rectangular barrier

For a single rectangular barrier with periodic time depe
dence, the Schro¨dinger equation is

i ] tc~x,t !52]x
2c~x,t !1V~x,t !c~x,t !, ~3!

where we have set\51 andm5 1
2. We use Floquet’s theo

rem to write the solution as

c~x,t !5e2 iEtw~x,t ! with i ] tw52]x
2w1@V~x,t !2E#w

~4!

andw(x,t)5w(x,t1P). At this point,E is an arbitrary real
number.

The potential is given by

V~x,t !5V~x,t1P!5H V01V1~ t ! if xPS5~x0 ,x01Dx#

0 otherwise,
~5!

with V05(1/P)*0
PV(x,t) dt , xPS, and *0

PV1(t) dt50.
Thus forxPS, Equation ~4! becomes

i ] tw~x,t !52]x
2w~x,t !1@V01V1~ t !2E#w~x,t !. ~6!

Equation~6! is separable, so we may use

w~x,t !5 f ~ t !g~x! ~7!

with f (0)51. This leads to the equations

2]x
2g~x!1V0g~x!5hg~x!, ~8!

i ] t f ~ t !2V1~ t ! f ~ t !5~h2E! f ~ t !, ~9!
te
-

with the solutions

g~x!5e6 ikSx, kS
25h2V0 , ~10!

f ~ t !5e2 i ~h2E!t exp S 2 i E
0

t

V1~ t8! dt8D . ~11!

V1(t) and f (t) are periodic in time with the same periodP.
This impliesh2E5mv, mPZ. The solution to Eq.~6! is
thus

wm~x,t !5e6 ikS~m!xe2 imvtexp S 2 i E
0

t

V1~ t8! dt8D ,

~12!

with kS(m)25Em2V0. Inserting the Fourier expansion

exp S 2 i E
0

t

V1~ t8! dt8D 5 (
n52`

`

Fne2 invt, ~13!

we obtain

wm~x,t !5e6 ikS~m!x(
n

Fn2me2 invt, mPZ, xPS.

~14!

For eachE, we define a set of modes

ME5$EnuEn5E1nv%nPZ , ~15!

with E05E. The solution in the regionS is a superposition
of all modes in the setME . In the regionsL and R, the
potential V(x,t) is zero, and the solutions to Eq.~6! are
given by the plane waves

wn~x,t !5e6 ik~n!xe2 invt, xPLøR, nPZ, ~16!

where

k2~n!5En . ~17!

We consider an incoming wave from the left with ener
E5E05k2(0). Introducing the reflection and transmissio
amplitudesRn0(E) and Tn0(E) in mode En , the solution
w(x,t) to Eq. ~4! can be written as
w~x,t !55
eik~0!x1(

n
Rn0e2 ik~n!xe2 invt, xPL

(
m,n

~am0eikS~m!x1bm0e2 ikS~m!x!Fn2me2 invt, xPS

(
n

Tn0eik~n!xe2 invt, xPR,

~18!
with the conventionk(n),kS(n)PR1ø iR1 , nPZ. The re-
flection and transmission amplitudesRn0 andTn0 are defined
by the matching conditions for the wave functionc(x,t) and
its derivative]xc(x,t) at x0 andx15x01Dx. Because of the
unicity of the Fourier expansion, each mode can be trea
separately. We obtain
d

eik~n!x0dn01Rn0e2 ik~n!x05(
m

~am0eikS~m!x0

1bm0e2 ikS~m!x0!Fn2m ,

~19!
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13 052 57G. BURMEISTER AND K. MASCHKE
k~n!~eik~n!x0dn02Rn0e2 ik~n!x0!

5(
m

kS~m!~am0eikS~m!x02bm0e2 ikS~m!x0!Fn2m , ~20!

(
m

~am0eikS~m!~x01Dx!1bm0e2 ikS~m!~x01Dx!!Fn2m

5Tn0eik~n!~x01Dx!, ~21!

(
m

kS~m!~am0eikS~m!~x01Dx!2bm0e2 ikS~m!~x01Dx!!Fn2m

5k~n!Tn0eik~n!~x01Dx! ~22!

for all nPZ. For an incoming wave with energyEn85E
1n8v, we just have to replace the index 0 byn8. Defining
the linear operatorsR, T, a, andb by their respective matrix
elementsRnn8, Tnn8, amn8, and bmn8, and introducing the
operators

Kmn5k~n!dmn , ~23!

~KS!mn5kS~n!dmn , ~24!

~LL!mn5eik~n!x0dmn , ~25!

~LR!mn5eik~n!~x01Dx!dmn , ~26!

~LS!mn5eikS~n!x0dmn , ~27!

~LD!mn5eikS~n!Dxdmn , ~28!

Fmn5Fm2n , ~29!

Eqs.~19!–~22! can be written as

LL1LL
21R5F~LSa1LS

21b!, ~30!

K~LL2LL
21R!5FKS~LSa2LS

21b!, ~31!

F~LSLDa1LS
21LD

21b!5LRT, ~32!

FKS~LSLDa2LS
21LD

21b!5KLRT. ~33!

Using the identity~see Appendix A!

F†F5I, ~34!

whereF† is the Hermitian conjugate ofF, we multiply Eqs.
~30!–~33! on the left byF† and on the right byLL

21 , and
eliminate the operatorsa and b to obtain two independen
equations

@~LD2I!KSF†2~LD1I!F†K#~ T̃1R̃!

5~I2LD!KSF†2~I1LD!F†K, ~35!

@~LD1I!KSF†2~LD2I!F†K#~ T̃2R̃!

5~I1LD!KSF†2~I2LD!F†K, ~36!

with
R→5LLR̃LL , ~37!

T→5LR
21T̃LL . ~38!

The arrow indicates incoming waves from the left.
For incoming waves from the right, we obtain the sam

Eqs.~35! and~36!, and the corresponding operatorsR← and
T← are

R←5LR
21R̃LR

21 , ~39!

T←5LLT̃LR
21 . ~40!

R̃ andT̃ are independent of the positionx0 of the barrier, and
are associated with a specific set of modesME .

C. Multibarrier scattering

For a rectangular barrier, the position-independent ope
tors R̃ and T̃ are identical for incoming waves from the le
or from the right. This left-right symmetry is no longer ex
pected for the potential given by Eq.~1!. We thus describe
the scattering by the scattering-amplitude operator

S5S R̃→T̃←

T̃→R̃←
D . ~41!

The reflection and transmission amplitudes are given by

R→5LLR̃→LL , ~42!

T→5LR
21T̃→LL , ~43!

R←5LR
21R̃←LR

21 , ~44!

T←5LLT̃←LR
21 , ~45!

with

~LL!mn5eik~n!x0dmn , ~46!

~LR!mn5eik~n!xNdmn . ~47!

Let us consider two potentialsVI(x,t) andVII(x,t) with the
same time-periodicity and separated in space by a distancd.
Suppose that the operators

SI5S R̃→
I T̃←

I

T̃→
I R̃←

I D , SII5S R̃→
II T̃←

II

T̃→
II R̃←

II D ~48!

are known. Instead of using the transfer-matrix techniqu4,6

to calculate the overall scattering-amplitude operatorS, we
connect modules I and II and sum directly the contributio
due to multiple scattering. We obtain

R̃→5R̃→
I 1T̃←

I ~I2LdR̃→
II LdR̃←

I !21LdR̃→
II LdT̃→

I , ~49!

T̃→5T̃→
II ~I2LdR̃←

I LdR̃→
II !21LdT̃→

I , ~50!

R̃←5R̃←
II 1T̃→

II ~I2LdR̃←
I LdR̃→

II !21LdR̃←
I LdT̃←

II , ~51!
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T̃←5T̃←
I ~I2LdR̃→

II LdR̃←
I !21LdT̃←

II , ~52!

with

~Ld!mn5eik~n!ddmn . ~53!

Iterating this procedure, we obtain the scattering-amplitu
operatorS for an arbitrary sequence of rectangular barri
with the same time periodicity@Eq. ~1!#. Equations~49!–~52!
generalize the corresponding relations for the case of s
barriers derived in Ref. 14.

For an incoming wave from the left at energyE, the mean
current per periodP through a barrier is~see Appendix B 1!

j→~E!5 (
En.0

j→,n~E!, ~54!

where

j→,n~E!52AEnuT̃→,n0~E!u2 ~55!

is the contribution of modeEn.0. The corresponding equa
tions for an incoming wave from the right are

j←~E!5 (
En.0

j←,n~E!, ~56!

j←,n~E!52AEnuT̃←,n0~E!u2. ~57!

D. Properties of the scattering-amplitude operatorS

Shifting the reference energyE by lv, lPZ, we have,
obviously

R̃mn~E!5R̃m2l,n2l~E1lv!, ~58!

T̃mn~E!5T̃m2l,n2l~E1lv!. ~59!

The scattering-amplitude operatorS satisfies~see Appendix
B 1!

S†S K1K† 0

0 K1K†DS

5S K1K† 0

0 K1K†D 1S†S K2K† 0

0 K2K†D
2S K2K† 0

0 K2K†DS, ~60!

where we use multiplication by blocks. Equation~60! gen-
eralizes the unitarity relation for the standard scattering m
trix. The last two terms contribute only to the properties
evanescent modes. Considering only propagating mo
from Eq. ~60! we obtain

Sp
†S Kp 0

0 Kp
DSp5S Kp 0

0 Kp
D , ~61!

where the indexp stays for the restriction of the respectiv
operator to propagating modes. This relation was already
tained in Ref. 4. With the standard scattering matrix
e
s

tic

-
f
s,

b-

s5S r→ t←

t→ r←
D 5S AKp 0

0 AKp
D SpS AKp 0

0 AKp
D 21

,

~62!

we obtain the unitarity relation

s†s5ss†5I. ~63!

In particular, the elementnn in the upper left block of Eq.
~63! is

~r→
† r→!nn1~t→

† t→!nn51, ~64!

or

(
Em.0

2AEm@ uR̃→,mn~E!u21uT̃→,mn~E!u2#52AEn,

~65!

which expresses the conservation of the mean current
waves incoming from the left. We note that Eq.~65! implies

j→~En!<2AEn, ~66!

i.e., the mean current is reduced in presence of barriers.
From Eq.~63!, it also follows that

t→
† t→2t←t←

† 5r→r→
† 2r→

† r→ ~67!

and, since Tr (r→
† r→),` ~see Appendix B 2!, we have

Tr ~t→
† t→2t←

† t←!5 Tr ~r→r→
† 2r→

† r→!50. ~68!

For potentials with time-inversion symmetryV(x,t)
5V(x,2t), the scattering-amplitude operatorS can be
shown to satisfy

S K 0

0 K DS5STS K 0

0 K D , ~69!

whereST is the transpose ofS as indicated in Appendix B 3
In particular, the elementmn in the upper left block of Eq.
~69! gives, forEm ,En.0,

AEm

AEn

uR̃→,mn~E!u25
AEn

AEm

uR̃→,nm~E!u2, ~70!

which expresses the detailed equilibrium in the reflect
probabilities, i.e., the reflected current in modeEm for an
incoming unit current in modeEn is equal to the reflected
current in modeEn for an incoming unit current in mode
Em . Similarly, the elementmn in the lower left block of Eq.
~69! gives, forEm ,En.0,

AEm

AEn

uT̃→,mn~E!u25
AEn

AEm

uT̃←,nm~E!u2 ~71!

i.e., the transmitted current in modeEm for a unit current in
modeEn incoming from the left is equal to the transmitte
current in modeEn for a unit current in modeEm incoming
from the right.
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III. RESULTS

A. Single time-periodic rectangular barrier

We consider a single rectangular barrierV(x,t)5V0
1V1 cos (vt1w), xPS. For this potential, Eq.~13! yields

exp S 2 i E
0

t

V1 cos~vt81w! dt8D
5ei ~V1 /v! sin w (

m52`

`

e2 imwJmS V1

v De2 imvt, ~72!

whereJm(z) is the Bessel function of the first kind of orde
m. The global phase factorei (V1 /v) sinw can be dropped, so

Fm5e2 imwJmS V1

v D , ~73!

which gives the operatorF defined in Eq.~29!. With the
definitions

Jmn5Jm2nS V1

v D , ~74!

Fmn5eimwdmn , ~75!

we obtain the factorization

F5F†JF. ~76!

The ratioV1 /v determines the number of coupled mode
For V1 /v50, we haveF5I, which corresponds to a stati
barrier.

The mean current does not depend on the direction of
incoming wave with energyE, sinceT̃→5T̃← for a single
rectangular barrier, i.e., we have

j→,n~E!5 j←,n~E!5 j n~E! ~77!

and

j ~E!5 (
En.0

j n~E!. ~78!

The energy dependence of the current through a static
angular barrierV0510 of widthDx52.5 is presented in Fig
2. In this case the scattering is elastic, i.e., the modes are
coupled and only the termn50 in Eq.~78! contributes to the
current. The barrier is nearly opaque forE,V0. The Fabry-
Pérot oscillations found forE.V0 disappear at large ene
gies where the barrier becomes transparent.

For an oscillating rectangular barrier the electrons are
elastically scattered into the modesEn , and each modeEn
.0 contributes to the current. This implies

n.2
E

v
. ~79!

The contributionsj n(E), together with the mean curren
j (E), are shown in Fig. 3 forv53, V1 /v51 ,V050, and
Dx52.5. The small structures inj (E) found for energiesE
close tolv, lPN, correspond to the change of the numb
of contributing modes described by Eq.~79!. Regarding the
mean current, the barrier is nearly transparent. It just dist
.

e

ct-

ot

-

r

-

utes the mean current over the modesEn . As shown in Ap-
pendix B 2, the asymptotic behavior ofj 61(E) for E→` is
given by

j 61~E!.
~V1Dx!2

8

1

AE
. ~80!

B. Composed barrier

For arbitrary static barriers in one dimension, the rig
side of Eq.~67! is zero, and the left-to-right and right-to-le
mean currents, Eqs.~54! and ~56!, are equal~see also Ref.
16!. This is no longer true for dynamic barriers. As an e
ample, we take a composed barrier consisting of the
rectangular barriers considered in Sec. III A, the left be
dynamic ~I; parameters:v53, V1 /v51, V050, and Dx
52.5) and the right being static~II; parameters:V0510 and
Dx52.5). The distance between the barriers isd50. Using
Eqs.~49!–~52!, we calculate the scattering-amplitude ope
tor S. Obviously, the mean current does not depend on
phasew. The results are presented in Fig. 4. Correspond

FIG. 2. Current through a static barrier as a function of t
energy of the incoming electrons. The current in the absence o
barrier is given for reference~dotted line!.

FIG. 3. Mean current through an oscillating barrier and the c
tributions of different modesEn as a function of the energy of th
incoming electrons. The current in the absence of the barrie
given for reference~dotted line!. The labelsn denote the modesEn .
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to the small coupling parameterV1 /v51, the mean curren
is essentially given by the contributions of modesE05E and
E61.

Electrons incoming from the right with energyE have to
pass first the static barrier II. This case is presented in
4~a!. For E,V0

II , the electrons are reflected~see Fig. 2!. For
E.V0

II , practically all electrons passing the static barr
contribute to the mean current, since the oscillating barri
is nearly transparent~see Fig. 3!. Under these conditions, w
may write

j←,n~E!.2AEnu T̃n0
I ~E!u2u T̃00

II ~E!u2. ~81!

In our case, the electrons are just distributed over the mo
E05E, E61, andE62 by the oscillating barrier.

Electrons incoming from the left are first scattered in
modes En ; only modes En5E1nv.V0

II , i.e., n.(V0
II

2E)/v, contribute to the mean current, as can be seen
Fig. 4~b!, with

j→,n~E!.2AEnu T̃n0
I ~E!u2u T̃nn

II ~E!u2. ~82!

In particular for V0
II2v,E,V0

II , electrons scattered int
modeE11 may now pass the static barrier.

FIG. 4. Mean current through the composed barrier and
contributions of different modesEn as a function of the energy o
the electrons incoming~a! from the right and~b! from the left. The
current in the absence of the barrier is given for reference~dotted
line!. The labelsn denote the modesEn .
g.

r
I

es

in

The left-right asymmetry of the scattering by the com
posed barrier is visualized in Fig. 5 where we show the
mean current

D j ~E!5 j→~E!2 j←~E!. ~83!

The asymmetry is most important forE.V0
II , and disappears

with increasingE.

C. An electron pump

We consider a system of time-periodic barriers connec
through wave guides to two electron reservoirs with t
chemical potentialsm1 and m2 with m1.m2 ~Fig. 6!. As-
suming reflection-free ideal contacts, the total mean curr
through the system is given by

I ~m1 ,m2!5E
0

`

dE g~E!@ j→~E! f ~E,m1!2 j←~E! f ~E,m2!#,

~84!

where

g~E!5
1

2pAE
~85!

is the density of electrons contributing to the current in o
direction, and f (E,m) is the Fermi-Dirac distribution. At
zero temperature, the total mean current becomes

e

FIG. 5. Net mean current through the composed barrier a
function of the energy of the incoming electrons.

FIG. 6. A mesoscopic system connected to two electron re
voirs.
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13 056 57G. BURMEISTER AND K. MASCHKE
I ~m1 ,m2!5E
0

m2
dE

1

pAE
(

En.0
AEn@ uT̃→,n0~E!u2

2uT̃←,n0~E!u2#

1E
m2

m1
dE

1

pAE
(

En.0
AEnuT̃→,n0~E!u2.

~86!

In the following we assume that the chemical potentials
equal, i.e.,m15m25m. Then the second term in Eq.~86! is
zero. In the case of an arbitrary static barrier, we have

uT̃→,n0~E!u25uT̃←,n0~E!u2, nPZ, ~87!

and thereforeI (m)5I (m,m)50. This is no longer true for
dynamic barriers, as is demonstrated in Fig. 7 for our co
posed barrier discussed in Sec. III B. This system acts a
electron pump. The pumping efficiency is largest for chem
cal potentialsm close to the heightV0

II of the static barrier.
The total mean currentI (m) vanishes for large chemica

potential since

lim
m→`

I ~m!5 lim
l→`

E
0

v

dE(
n50

l21
1

2pAEn

@ j→~En!2 j←~En!#

5
1

pE0

v

dE Tr @t→
† ~E!t→~E!2t←

† ~E!t←~E!#50

~88!

according to Eq.~68!.

IV. CONCLUSION

We have presented an efficient method to describe
scattering by time-periodic potentials. The solution is e
pressed in terms of a scattering-amplitude operatorS. The
general properties ofS have been given. We emphasize th
this operator treats propagating as well as evanescent wa
in contrast to the usual scattering matrix, which descri
only the propagating solutions. The inclusion of the evan
cent waves allows us to obtain the scattering solution fo
sequence of barriers in terms of the scattering-amplitude

FIG. 7. Total mean current through the composed barrier a
function of the chemical potential.
e

-
an
i-

e
-

t
es,
s

s-
a
p-

erators for each barrier in the sequence. We have shown
in contrast to the case of static barriers, generally no l
right symmetry of the scattering properties can be expec
when dynamic barriers are present.

Using these results, we have described the coherent e
tron transport in a dynamic mesoscopic system connecte
two electron reservoirs with the same chemical potent
The left-right asymmetry leads to a net current between
reservoirs. The pumping efficiency depends strongly on
relative position of the chemical potential and the thresh
energy of the static barriers, and vanishes in the limit of la
chemical potentials.

We emphasize that our results are obtained in the co
ent limit. This should be distinguished from the situatio
discussed in Refs. 9–13, where coupling between quan
dots is rather small and relaxation in the dots becomes
portant. We note also that the pumping effect discussed h
is different from the one in Ref. 13, where the pumping
caused by the Pauli exclusion principle.
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APPENDIX A: IDENTITY F †F 5I

Let f (t)5e2 invt exp@2i*0
t V1(t8) dt8#, nPZ, Eq. ~11!.

We have

1

PE0

P

f * ~ t ! f ~ t !e2 imvt dt5
1

PE0

P

e2 imvt dt5d0m .

~A1!

With the Fourier expansion off (t), we obtain

1

PE0

P

f * ~ t ! f ~ t !e2 imvt dt5
1

PE0

P

(
n,n8

Fn* Fn8e
i ~n2n82m!vt

5~F†F !0m , ~A2!

and thusF†F5I.

APPENDIX B: PROPERTIES OF THE SCATTERING-
AMPLITUDE OPERATOR S

1. Generalized continuity equation

Let e2 iEtg(x,t) and e2 iEth(x,t) be two solutions to the
Schrödinger equation~3! for the set of modes

ME5$EnuEn5E1nv, nPZ%. ~B1!

The time-periodic functionsg andh are solutions of Eq.~4!.
Multiplying the equation forh by g* and the equation forg*
by h, we obtain, after subtraction, the generalized continu
equation

i ] t~g* h!52]x~g* ]xh2]xg* h!. ~B2!

Integration over a time periodP leads to

]x

1

PE0

P

dt ~g* ]xh2]xg* h!50. ~B3!

Therefore,

a
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2
i

PE0

P

dt ~g* ]xh2]xg* h!5Cg,h ~B4!

is a constant in space associated with the soluti
e2 iEtg(x,t) and e2 iEth(x,t). In particular, for g5h, Eq.
~B4! expresses the conservation of the mean current. Con
ering two sets of solutions$gm%mPZ and $hm8%m8PZ ex-
pressed in terms of the operatorsG andH as

gm~x,t !5 (
nPZ

Gnm~x!e2 invt, ~B5!

hm8~x,t !5 (
n8PZ

Hn8m8~x!e2 in8vt, ~B6!

we can write Eq.~B4! as

2 i ~G†]xH2]xG
†H !mm85Cmm8 ~B7!

or

G†]xH2]xG
†H5 iC, ~B8!

with the operatorC independent ofx.
Defining the operatorL(x) by

Lmn~x!5eik~n!xdmn , ~B9!

we obtain, for waves incoming from the left, the set of so
tions of Eq.~4!:

A~x!5H L~x!1L21~x!R→ , xPL

L~x!T→ , xPR.
~B10!

The corresponding spatial derivatives are given by

2 i ]xA~x!5H K@L~x!2L21~x!R→#, xPL

KL~x!T→ , xPR.
~B11!

For waves incoming from the right, the respective operat
are

B~x!5H L21~x!T← , xPL

L21~x!1L~x!R← , xPR
~B12!

and

i ]xB~x!5H KL21~x!T← , xPL

K@L21~x!2L~x!R←#, xPR.
~B13!

For G5H5A(x), Eq.~B8! implies, with multiplication from
the left by (LL

21)† and from the right byLL
21 ,

CA,A5~ALL
21!†~2 i ]xALL

21!1~2 i ]xALL
21!†~ALL

21!

5

x5x0

~I1R̃→
† !K~I2R̃→!1~I2R̃→

† !K†~I1R̃→!

5

x5xN

T̃→
† KT̃→1T̃→

† K†T̃→, ~B14!

where we have used Eqs.~42! and ~43!. In particular,
(CA,A)00 is the mean current for an incoming wave in mo
E05E,
s

id-

-

rs

j→~E!5~ T̃→
† ~K1K†! T̃→!005~2Kpt→

† t→!00

5 (
En.0

2AEnu~ T̃→,n0~E!u2, ~B15!

which proves Eq.~54!. Equation ~B14! leads to

R̃→
† ~K1K†!R̃→1 T̃→

† ~K1K†! T̃→

5K1K†1R̃→
† ~K2K†!2~K2K†!R̃→ . ~B16!

Similarly, for G5H5B(x), we obtain, multiplying from the
left by LR

† and from the right byLR ,

R̃←
† ~K1K†!R̃←1 T̃←

† ~K1K†! T̃←

5K1K†1R̃←
† ~K2K†!2~K2K†!R̃← . ~B17!

For G5B(x) andH5A(x) we obtain, multiplying from the
left by LR

† and from the right byLL
21 ,

T̃←
† ~K1K†!R̃→1R̃←

† ~K1K†! T̃→

5 T̃←
† ~K2K†!2~K2K†! T̃→. ~B18!

Finally, for G5A(x) andH5B(x) we obtain the Hermitian
conjugate of Eq.~B18!. Using block by block multiplication,
we obtain Eq.~60!.

2. Asymptotic behavior of S at large energies

Using the Fourier expansions

V1~ t !5(
n

Vne2 invt ~B19!

exp S 2 i E
0

t

V1~ t8! dt8D 5(
n

Fne2 invt, ~B20!

we define the Hermitian operatorV5V† and the unitary op-
eratorF by their matrix elements

Vmn5Vm2n , Fmn5Fm2n . ~B21!

Together with the operatorN,

Nmn5mdmn , ~B22!

we rewrite Eq.~9! as

vNF2VF5vFN. ~B23!

Let us consider a sum of potentials with time average ze

U1~ t !5V1~ t !1W1~ t !. ~B24!

In the same way as in Eq.~B21!, we define, for each poten
tial,

V1~ t !°~V,F !, ~B25!

W1~ t !°~W,H !, ~B26!

U1~ t !°~U,G!. ~B27!

From Eqs.~B19! and ~B20!, we obtain
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U5V1W and G5FH5HF. ~B28!

With the choiceW1(t)5V1(t), we have U52V and G
5F2, and therefore

vNF222VF25vF2N. ~B29!

Using the unitarity ofF, from Eqs. ~B23! and ~B29! we
obtain

vN2V5vFNF†,

vFNF†2FVF†5vF2N~F†!2,

vN2V2FVF†5vN22V,

V5FVF†,

VF5FV. ~B30!

The operatorsV andF commute and withEI1vN5K2 @see
Eq. ~17!#, Eq. ~B23! becomes

F†K2F5K21V. ~B31!

Introducing the operators

X5F†~ T̃1R̃!F, ~B32!

Y5F†~ T̃2R̃!F, ~B33!

we write Eqs.~35! and ~36! as

@~LD2I!KS2~LD1I!F†KF#X

5~I2LD!KS2~I1LD!F†KF, ~B34!

@~LD1I!KS2~LD2I!F†KF#Y

5~I1LD!KS2~I2LD!F†KF. ~B35!

Equation ~B31! implies

F†KF5~F†K2F !1/25~K21V!1/2. ~B36!

In order to calculate (K21V)1/2, we have to estimate th
matrix element of the commutatorK21V2VK21,

~K21V2VK21!mn5
~n2m!v

@k~m!1k~n!#k~m!k~n!
Vm2n .

~B37!

In the following, we assume that the number of nonze
Fourier components in Eq.~B19! is finite, and we conside
large energiesE5E05k2(0)5k2 of the incoming wave.
Then Eq.~B37! can be written as

K21V2VK215O~k23!, ~B38!

and we may approximate

F†KF'K@I1 1
2 VK221O~k24!#

'K1 1
2 VK211O~k23!. ~B39!

We now solve Eqs.~B34! and ~B35! to the second order o
k21. Defining the operators
o

A5~LD2I!KS2~LD1I!K, ~B40!

B5~I2LD!KS2~I1LD!K, ~B41!

C5~LD1I!KS2~LD2I!K, ~B42!

D5~I1LD!KS2~I2LD!K, ~B43!

which correspond to a static rectangular barrier, we rew
Eqs.~B34! and ~B35! as

@A2 1
2 ~LD1I!VK211O~k23!#@X01X11O~k23!#

5B2 1
2 ~I1LD!VK211O~k23!, ~B44!

@C2 1
2 ~LD2I!VK211O~k23!#@Y01Y11O~k23!#

5D2 1
2 ~I2LD!VK211O~k23!. ~B45!

X0 andY0 are the solutions for the static barrier described

T̃static5
1
2 ~X01Y0!, ~B46!

R̃static5
1
2 ~X02Y0!. ~B47!

We obtain

F†T̃F5 1
2 ~X1Y!

5 T̃static1
1
2 @~LD1I!A21VK21A21~I2LD!

1~LD2I!C21VK21C21~I1LD!#KS1O~k23!,

~B48!

F†R̃F5 1
2 ~X2Y!

5R̃static1
1
2 @~LD1I!A21VK21A21~I2LD!

2~LD2I!C21VK21C21~I1LD!#KS1O~k23!.

~B49!

At high energies, the static part of the potential becom
negligible, i.e.,KS'K, and

T̃static5LD , ~B50!

R̃static50, ~B51!

and thus

F†T̃F5LD1 1
4 ~LDV2VLD!K221O~k23!, ~B52!

F†R̃F5 1
4 ~V2LDVLD!K221O~k23!. ~B53!

The matrix element of the commutatorLDV2VLD is

~LDV2VLD!mn5 iL D,nn

~m2n!v

k~m!1k~n!
DxVm2n1O~k22!

~B54!

or

LDV2VLD5O~k21!. ~B55!

It follows that
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F†T̃F5LD1O~k23!, ~B56!

F†R̃F5
V

4
~I2LD

2 !K221O~k23!, ~B57!

and finally, with Eq.~B30!,

T̃5FLDF†1O~k23!5O~k0!, ~B58!

R̃5
V

4
F~I2LD

2 !K22F†1O~k23!5O~k22! ~B59!

for a dynamic rectangular barrier and large energiesE5k2.
From Eqs.~B58!, ~B59!, and~49! we also have

R̃→5O~k22! ~B60!

for a sequence of barriers. Therefore, constructing the re
tion partr→ of the usual scattering matrix according to E
~62!, we see that

lim
n→`

~r→
† r→!nn50, ~B61!

i.e., the barrier becomes transparent for an incoming w
with high energy. Moreover, as (r→

† r→)nn5O(n22) de-
creases rapidly whenn→`, we have

Tr ~r→
† r→!,`, ~B62!

which proves Eq.~68!.
Using Eq.~B15!, we obtain the mean current to first ord

in k21,

@ T̃†~K1K†! T̃#005@FLD
† F†~K1K†!FLDF†#001O~k22!.

~B63!

With the expansion

LD5eikDxS I1 i
Dxv

2k
N2

Dx2v2

8k2
N2D 1O~k23!,

~B64!

we obtain

T̃5eikDxS I1 i
Dx

2k
FvNF†2

Dx2

8k2
Fv2N2F†D 1O~k23!.

~B65!

Using Eq.~B23!, we have, finally,

T̃5eikDxI1 i
DxeikDx

2k
~vN2V!2

Dx2eikDx

8k2
~vN2V!2

1O~k23!. ~B66!
c-
.

e

Thus the contribution of a sidebandnÞ0 to the mean curren
is

j n~E!52AEnu T̃n0u2

5
Dx2

2AE
uVn0u21O~E21!, nÞ0. ~B67!

The main contribution to the mean current is

j 0~E!52AE2
Dx2

2AE
~V2!001O~E21!. ~B68!

From

~V2!005(
n

uVn0u2, ~B69!

it follows that

(
n

j n~E!1O~E21!52AE, ~B70!

i.e., electrons incoming at high energies are not reflected
the barrier.

In the particular caseV(t)5V01V1 cos (vt1w), the op-
eratorV is described by

Vmn5H V1

2
for um2nu51

0 otherwise,

~B71!

which yields~see also Fig. 3!

j n~E!5
Dx2V1

2

8AE
1O~E21!, nÞ0. ~B72!

3. Time-reversal invariant potential

Let g and h be two solutions of Eq.~4! for the set of
modes

ME5$EnuEn5E1nv, nPZ%. ~B73!

For a time-reversal invariant potentialV(x,2t)5V(x,t), we
define g̃(t)5g(2t), satisfying

2 i ] t g̃52]x
2g̃1@V~x,t !2E# g̃. ~B74!

Multiplying the equation forh by g̃ and the equation forg̃
by h, we obtain, after subtraction,

i ] t~ g̃h!52]x~ g̃]xh2]xg̃h!. ~B75!

Using the same procedure as in Appendix B 1, we fina
obtain Eq.~69!.
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3M. Büttiker and R. Landauer, Phys. Scr.32, 429 ~1985!.
4D. D. Coon and H. C. Liu, J. Appl. Phys.58, 2230~1985!; Phys.

Scr.32, 429 ~1985!.
5A. Pimpale, S. Holloway, and R. J. Smith, J. Phys. A24, 3533
~1991!.

6M. Wagner, Phys. Rev. B49, 16 544~1994!; Phys. Rev. A51,
798 ~1995!; Phys. Rev. Lett.76, 4010~1996!.

7O. A. Tkachenko, D. G. Baksheyev, and V. A. Tkachenko, Ph
Rev. B54, 13 452~1996!.



, Y

ys

L.
n

13 060 57G. BURMEISTER AND K. MASCHKE
8J. A. Sto”vneng and E. H. Hauge, J. Stat. Phys.57, 841 ~1989!.
9L. P. Kouwenhoven, S. Jauhar, J. Orenstein, P. L. McEuen

Nagamune, J. Motohisa, and H. Sakaki, Phys. Rev. Lett.73,
3443 ~1994!.

10K. Tsukagoshi, K. Nakazato, H. Ahmed, and K. Gamo, Ph
Rev. B56, 3972~1997!.

11L. P. Kouwenhoven, S. Jauhar, K. McCormick, D. Dixon, P.
McEuen, Yu. V. Nazarov, N. C. van der Vaart, and C. T. Foxo
.

.

,

Phys. Rev. B50, 2019~1994!.
12Qing-feng Sun and Tsung-han Lin, Phys. Rev. B56, 3591~1997!.
13F. Hekking and Yu. V. Nazarov, Phys. Rev. B44, 9110~1991!.
14G. Burmeister, K. Maschke, and M. Schreiber, Phys. Rev. B47,

7095 ~1993!.
15W. O. Amrein, J. M. Jauch, and K. B. Sinha,Scattering Theory in

Quantum Mechanics~Benjamin, Reading, MA, 1977!.
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