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Scattering by time-periodic potentials in one dimension and its influence on electronic transport
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We investigate electron scattering by time-periodic potentials of finite range in one dimension. A general
scattering potential is approximated by a sequence of rectangular barriers, and can be handled within a
multiple-scattering approach. The scattering is described in terms of a scattering-amplitude operator which
takes into account propagating as well as evanescent states. The general properties of this operator are dis-
cussed. Our approach permits us to study the transport in time-periodic mesoscopic systems. In particular, we
investigate quantum-coherent pumping of electr¢86163-182@08)11019-9

I. INTRODUCTION Il. THEORETICAL APPROACH

. . . A. Potential
Quantum interference effects in mesoscopic systems have

been extensively studied in the dc regime, where the scatter- \ye consider electron scattering by a short-range potential
ing of electrons is due to static perturbatidnd/hereas the V(x,t) in one dimension, and periodic in time with perid
description of scattering by time-independent potentials igy, this case, a particle moving freely fors —= outside the
straightforward, the calculation becomes much more difﬁcu”potential region is scattered by the potential, and moves
for time-dependent potentials, where inelastic contribution%u‘:]ain freely after scattering far— +, i.e., the asymptotic

have to be considered. _ ~condition is satisfied® It is worthwile to note that we use an
Scattering by time-dependent potentials was reexaminegtoctive one-electron approach, and therefore the time-

recently in Ref. 2. In the present work, we discuss the case Qfgrindic potential corresponds to the screened potential and
time-periodic potentials which has been investigated in Refsshou1d not be confounded with the external potential.
3-8. Photon-assisted tunneling through quantum dots has | o S=(xo,Xy]CR be the support ol/(x,t), and L=

been observed experimentally® and has also been dis-

; i : - 27 (—2,%X9]CR andR=(xy,>)CR the free-evolution regions
cussed theoretically includiftyor neglecting the potential

= 1213 (Fig. 1). The final state for an incoming electron with energy
variations due to Coulomb blockirig:"* _ E is described by a superposition of all free scattering states
Time per_lodlcny implies that incoming waves Wlth en- ith energieE, =E+nw, neZ, w=_2/P being the angu-
ergy E are inelastically scattered into sidebands with ener; frequency of the potentidlin one dimension, the scatter-
giesE+nw,neZ,0=27/P, P being the period of the po- jng states are plane waves. For an incoming wave at energy
tential. In order to calculate the respective scatteringe the corresponding reflection and transmission amplitudes
amplitudes, we adopt the procedure proposed in Refs. 4, (E) and T,o(E) can be calculated from the matching
and 7, i.e., we approximate the scattering potential by a seonditions at the junctiong, andxy for the wave function
quence of time-periodic rectangular barriers. We first solvey(x,t) and its derivatived,(x,t). Negative energie€,
the problem for an arbitrary rectangular barrier. The scatter< 0 correspond to evanescent wave functions which describe
ing matrix for the overall potential is then obtained using athe situation near the scattering potential.
multiple-scattering approach which is based on the calcu- Following Refs. 4, 6, and 7, we represevifx,t) by a
lated generalized scattering matrices comprising propagatingequence of time-periodic rectangular potentials on finite in-
as well as evanescent waves. In this way we avoid the rathéervals, as shown in Fig. 1,
awkward law of error propagation inherent to the transfer-
matrix techniquésee, e.g., Ref. 24employed in Refs. 4 and \
6. ! [
Our approach is used to describe the electron transpor :
through time-periodic mesoscopic systems. We consider ¢
sample connected to two electron reservoirs with the same
chemical potential. In contrast to the case of static barriers,
the scattering is generally not left-right symmetric when dy-
namic barriers are present. This left-right asymmetry of the

Vixe) }
‘ |

|
scattering probabilities induces a net current between the res L ! S | R
ervoirs, i.e., the system acts as an electron pump, the pump-
ing efficiency depending strongly on the chemical potential. FIG. 1. Scattering by a time-periodic potential.
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% with the solutions
V(x,t)= 2> V() cM(x 1 _
( 2 (HCM(x), () 9=k, k2= 7= Vo, 10
with ‘
f — *i(?]*E)t _fv ! ! 11
(n)( ) 1 if xe(Xq-1,%Xn)s Xp—1<Xp, N=1,... N t=e &P I 0 a(t7) dt 1y
C"(x)= .
0 otherwise. V,(t) andf(t) are periodic in time with the same periéd
@  This implies n— E=mw, meZ. The solution to Eq(6) is
thus
B. Time-periodic rectangular barrier t
For a single rectangular barrier with periodic time depen-  @p(x,t)=e*ks(M*e 'm“’texp( —if Vy(t') dt’ |,
dence, the Schdinger equation is 0
(12
F0up(x,t) = — F3p(x, 1) + VD g(x,1), () with kg(m)2=E,,— V. Inserting the Fourier expansion
where we have sét=1 andm=3. We use Floquet’s theo-
rem to write the solution as exp( f Vi(t') ) E_ Fe vt (13)
x,t)=e Elo(x,t) with idp=—d2e+[V(X,t)—E .
P(x,t) e(xt) L@ xe+[V(x,t) ](sz) we obtain
and ¢(x,t) = ¢(x,t+ P). At this point, E is an arbitrary real on(x.) = =ik m)xE F._ et me7 xeS.
number.
The potential is given by (14)
Vo+Vy(t) if xeS=(Xg,Xo+AX] For eachE, we define a set of modes
V(X,t)=V(x,t+P)= .
otherwise, Meg={E,|E,=E+nw}, 7, (15

. o o © with Eo=E. The solution in the regiol® is a superposition
with Vo=(1/P)[oV(x,t) dt, xeS, and [oVi(t) dt=0.  of all modes in the seMe. In the regionsL and R, the
Thus forx e S, Equation (4) becomes potential V(x,t) is zero, and the solutions to E¢6) are

. 5 given by the plane waves
idrp(X,1) = — dip(X,t) +[Vo+ V() —Ele(x,t).  (6)

+ik(n)xq—inwt 7
Equation(6) is separable, so we may use enix,t)=e e, XelLUR, neZ (16

e(x,t)=f(t)g(x) (7
with f(0)=1. This leads to the equations

where

K2(n)=E,. 17

We consider an incoming wave from the left with energy

—929(x) + Vog(x) = g(x), (8) E=E,=k?(0). Introducing the reflection and transmission
amplitudesRo(E) and T,o(E) in mode E,, the solution
idf (1) = V(O () =(n—E)f(1), (9)  ¢(x,t) to Eq.(4) can be written as
|
.
eik(O)x+ E Rnoe—ik(n)xe—inwt, xel
n
p(x,t)= 2 (amoeiks(m)x+IBmOeiikS(m»()anmeimwta XeS (18
m,n
2 Tnoeik(n)xe—inwt’ xeR,
n

with the conventiork(n),kg(n) e RL UiR,, neZ. The re-

flection and transmission amplitudBs, and T, are defined e (MX05,5+ Ryge ™ (M¥o= %‘4 (armoe'fs™o
by the matching conditions for the wave functigfix,t) and
its derivatived, (x,t) atxy andx;=Xy+ Ax. Because of the + Bmoe KsMxo)F

unicity of the Fourier expansion, each mode can be treated

separately. We obtain (19
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k( n)(eik(n)xo 5n0 - Rnoe_ ik(n)xo)

= E ks( m)( a,moeiks(m)xo_ ,Bmoe_ iks(m)xo) l:n— m» (20)
m

z (amoeiks(m)(x0+Ax)+Igmoefiks(m)(onrAx))Fn_m
m

— Tnoeik(n)(x0+ AX) '

2 ks(m)(amoeiks(m)(X0+AX)_Bmoefiks(m)(X0+Ax))Fn
m

— k(n)Tnoeik(n)(xo+Ax)

(21)

—m

(22

for all neZ. For an incoming wave with energl, =E

+n’w, we just have to replace the index 0 by. Defining
the linear operatorR, T, «, andB by their respective matrix
elementsR,,/, Thny @mn, @and By, and introducing the

operators
Kinn=K(1) 8pnn,
(K8)mn=Ks(n) mn,
(LL)mn=e€" M08,
(LR)ma=€"(M0" 205,
(Lg)mn=e€"s"05,,
(LA)mn: eikS(n)AX5mn,

Fon=Fm-n,
Egs.(19)—(22) can be written as

L +L '*R=F(Lsa+Lg'P),
K(L,—L, 'R)=FKg(Lsa—Ls'B),
F(LsLaa+Lg L i B)=LgT,

FKg(LsLaa—Lg L 'B)=KLRgT.
Using the identity(see Appendix A

FTF=1,

whereF T is the Hermitian conjugate d¥, we multiply Egs.
(30—(33) on the left byF' and on the right by, *, and
eliminate the operatora and 8 to obtain two independent

equations

[(La=DKsFT=(Ly+DFTK](T+R
=(I-Ly)KsFT=(I+L,)F'K,

[(LatDKsFT=(Ly=DF'K](T-R

=(I+Ly)KsFT=(I-L,)F'K,
with

(23
(249
(29
(26)
(27)
(28)

(29

(30
(31
(32

(33

(34

(39

(36)

RH:LLNRLL, (37)

T_=L:'TL,. (38)

The arrow indicates incoming waves from the left.

For incoming waves from the right, we obtain the same
Egs.(35) and(36), and the corresponding operat®s and
T_ are

R_=L;'RLR1, (39)

T =L, TLR . (40)

R andT are independent of the positio of the barrier, and
are associated with a specific set of modés.

C. Multibarrier scattering

For a rectangular barrier, the position-independent opera-
torsR andT are identical for incoming waves from the left
or from the right. This left-right symmetry is no longer ex-
pected for the potential given by E@Ll). We thus describe
the scattering by the scattering-amplitude operator

(41)

The reflection and transmission amplitudes are given by

R.=L,R.L,, (42)
T =LT_L,, (43)
R_=L;'R_Lg!, (44)
T =L, T_Lg%, (45)
with
(L)mp=e X5, (46)
(LR)mn=e* NS, (47)

Let us consider two potential'(x,t) andV'"(x,t) with the
same time-periodicity and separated in space by a distAnce
Suppose that the operators

R'T!
. S'= FiI Rl (48)

—

are known. Instead of using the transfer-matrix techrfifue
to calculate the overall scattering-amplitude oper&owe
connect modules | and Il and sum directly the contributions
due to multiple scattering. We obtain

R.o=R +T (I-LR LR )TIL4R" LT ., (49

—

T =TLO-LaRULGRL) LT, (50

R_=R!+TN(I-LR_LGR") "ML4R LT, (52)

—



T =TL(-LRLLGRL) THgTE (52
with

(La)mn= eik(n)démn- (53

Iterating this procedure, we obtain the scattering-amplitude
operatorS for an arbitrary sequence of rectangular barriers

with the same time periodicityEq. (1)]. Equationg49)—(52)

generalize the corresponding relations for the case of stat

barriers derived in Ref. 14.
For an incoming wave from the left at enerythe mean
current per period through a barrier igssee Appendix B

iL(E)= > j_n(E), (54)
E,>0
where
i n(E)=2VE,|T_ no(E)|? (55)

is the contribution of mod&,;>0. The corresponding equa-
tions for an incoming wave from the right are

i_(E)=2 j_n(E), (56)
E,>0
i n(E)=2VE|T_ o(E)|% (57)

D. Properties of the scattering-amplitude operatorS

Shifting the reference enerdy by Nw, \ eZ, we have,
obviously

ﬁmn(E):ﬁmf)\,nfx(E‘F)\w)y (58

:'rmn(E)::I‘—mfx,nf)\(E"')\w)- (59

The scattering-amplitude operatBrsatisfies(see Appendix
B1)
K+K' 0

:
S0 k+kt)®

K+KT 0
0 K+KT
K-K' 0

_( 0 K—KT)S’

where we use multiplication by blocks. Equati¢é0) gen-

K—KT 0
0 K—KT

+ST(

(60)

eralizes the unitarity relation for the standard scattering ma:
trix. The last two terms contribute only to the properties of
evanescent modes. Considering only propagating mode

from Eq. (60) we obtain

gk Ol _[Ke O o1
Plo K,/ 10 Ky 61
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- L) K, 0 S(m 0|
BRI A B B RN
(62)
we obtain the unitarity relation
oclo=co'=1 (63

In particular, the elementn in the upper left block of Eq.

'(%3) is

(o)t (7L 7 ) =1, (64)
or
2 2B R B+ mn(B)*1=21E,,
) (65

which expresses the conservation of the mean current for
waves incoming from the left. We note that E5) implies

i L(En=<2VE,,

i.e., the mean current is reduced in presence of barriers.
From Eq.(63), it also follows that

(66)

=Tt =p_pl—plp.

(67)

and, since Trg' p )< (see Appendix B we have

Tr(r 7 —7 7 )="Tr(p_p" . —plp_)=0. (68

For potentials with time-inversion symmetry(x,t)
=V(x,—t), the scattering-amplitude operat@ can be

shown to satisfy
S=s' 0
T lo Kk

whereS' is the transpose @ as indicated in Appendix B 3.
In particular, the elemennn in the upper left block of Eq.
(69) gives, forE,,E,>0,

, (69

K 0
0 K

_\/E—anH,mn(E” —\/?m“%,nm(E)l , (70)

which expresses the detailed equilibrium in the reflection
probabilities, i.e., the reflected current in moHg, for an
incoming unit current in mod&,, is equal to the reflected
current in modekE,, for an incoming unit current in mode
E.,. Similarly, the elemenin in the lower left block of Eq.
g69) gives, forg,,E,>0,

%li,mnﬁﬂz: Eli,nm@lz (72)

i.e., the transmitted current in modsg, for a unit current in

where the indexp stays for the restriction of the respective modeE, incoming from the left is equal to the transmitted
operator to propagating modes. This relation was already olsurrent in modeE,, for a unit current in modé&,,, incoming
tained in Ref. 4. With the standard scattering matrix from the right.
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Ill. RESULTS ' ' | '
10 f e without barrier
A. Single time-periodic rectangular barrier —— with barrier

We consider a single rectangular bari®(x,t)=V, | .~
+V, cos t+¢), xeS. For this potential, Eq(13) yields

t )
exp(—ifvl cos(wt' +¢) dt’) =S5tk .
0
— ei(Vl/m) sin ¢ i e—imgoJ ﬁ e—imwt (72)
m=—oo m w ’
whereJ,(2) is the Bessel function of the first kind of order 0 : !
m. The global phase facta'(V1/®) S"¢ can be dropped, so 0 10 E 20 30
F —e ime] ﬁ (73) FIG. 2. Current through a static barrier as a function of the
m ™ o)’ energy of the incoming electrons. The current in the absence of the

. . . ) ) barrier is given for referenc@otted ling.
which gives the operatoF defined in Eq.(29). With the

definitions utes the mean current over the modigs As shown in Ap-
V, pendix B 2, the asymptotic behavior pf(E) for E— is
‘]mn:‘]m—n( ), (74) given by
D= eim"D5mni (75 (VlAX)2 1
1 1 H i -+ E = r—
we obtain the factorization J22(B) 8 JE (80
F=0"Jo. (76)

The ratioV,/w determines the number of coupled modes. B. Composed barrier

For V,/w=0, we haveF =1, which corresponds to a static ~ For arbitrary static barriers in one dimension, the right
barrier. side of Eq.(67) is zero, and the left-to-right and right-to-left
The mean current does not depend on the direction of thenean currents, Eq$54) and (56), are equalsee also Ref.
incoming wave with energf, sinceT .=T. for a single 16). This is no longer true for dynamic barriers. As an ex-

rectangular barrier, i.e., we have ample, we take a composed barrier consisting of the two
rectangular barriers considered in Sec. lll A, the left being
jon(E)=j_n(E)=jn(E) (77)  dynamic (I; parameters:o=3,V,/w=1, V=0, and Ax

=2.5) and the right being statitl; parametersV,= 10 and

Ax=2.5). The distance between the barrierslis0. Using
Egs.(49—(52), we calculate the scattering-amplitude opera-
i(E)= >, jn(E). (78  tor S. Obviously, the mean current does not depend on the
En=0 phasee. The results are presented in Fig. 4. Corresponding

The energy dependence of the current through a static rect-
angular barrievy= 10 of widthAx=2.5 is presented in Fig. ' : ' :
2. In this case the scattering is elastic, i.e., the modes are not ~ 10 | """ without barrier .
coupled and only the term=0 in Eq.(78) contributes to the — with barrier |
current. The barrier is nearly opaque B« V,. The Fabry- -
Paot oscillations found fole>V, disappear at large ener- |
gies where the barrier becomes transparent.

For an oscillating rectangular barrier the electrons are in-
elastically scattered into the modgg, and each modé&,
>0 contributes to the current. This implies

and

E
n>-——. (79
w

The contributionsj,(E), together with the mean current 0 30

j(E), are shown in Fig. 3 fow=3,V;/0=1 V,=0, and
Ax=2.5. The small structures if(E) found for energies FIG. 3. Mean current through an oscillating barrier and the con-
close tohw, Nel, COWGSDOUd to the change of thf—' numbertributions of different mode&,, as a function of the energy of the
of contributing modes described by E9). Regarding the incoming electrons. The current in the absence of the barrier is
mean current, the barrier is nearly transparent. It just distribgiven for referencédotted ling. The labelsr denote the modes,, .




57 SCATTERING BY TIME-PERIODIC POTENTIALS IN ... 13055

v ! v T R T T T
10 | without barrier -
— withbarrier 1k 4
~ ' Sh
25l I
-1F
+2
-:: -2 i " 1 L 1 2
0 10 20 30
0 E
10 oo without barrier FIG. 5. Net mean current through the composed barrier as a
— withbarrier . function of the energy of the incoming electrons.
““““““““ The left-right asymmetry of the scattering by the com-
‘‘‘‘‘‘ posed barrier is visualized in Fig. 5 where we show the net
) mean current
=5l
Aj(BE)=] (BE)=]_(E). (83
Y U/ 5= O N The asymmetry is most important fr=V{, , and disappears
0 ] y with increasingE.
0 10 20 30

C. An electron pump

FIG. 4. Mean current through the composed barrier and the \ye consider a system of time-periodic barriers connected
contributions of different modeg,, as a function of the energy of through wave guides to two electron reservoirs with the
the electrons incoming) from the right andb) from the left. The chemical potentialsu; and u, with u;>pu, (Fig. 6). As

. . . . 1 2 l 2 . . =
current in the absence of the barrier is given for referefuicsted suming reflection-free ideal contacts, the total mean current
line). The labelsn denote the modeg,, . S

through the system is given by

to the small coupling parametsf; /w=1, the mean current

is essentially given by the contributions of modg&s=E and * . .
i l(ul,m):Jo dE g(E)[j_(E)f(E. 1)~ _(E)F(E.u2)],
Electrons incoming from the right with enerdy have to (84)

pass first the static barrier Il. This case is presented in Fig.
4(a). ForE<V{)', the electrons are reflectésee Fig. 2 For

E>V})', practically all electrons passing the static barrier
contribute to the mean current, since the oscillating barrier |

is nearly transparerisee Fig. 3. Under these conditions, we 1
it E)=—— 85
may write g(E) 27 JE (89
j—n(B)=2Eq[To(E)*[Too( E) 2. (81)

is the density of electrons contributing to the current in one
. L direction, andf(E, is the Fermi-Dirac distribution. At
In our case, the electrons are just 0!|str|bute_d over the modezsero temperatuge, Igh)e total mean current becomes
Eo=E, E.4, andE.., by the oscillating barrier.

Electrons incoming from the left are first scattered into
modes E,; only modes E,=E+nw>Vy, ie., n>(Vy
—E)/w, contribute to the mean current, as can be seen in

Fig. 4(b), with \ X /
Hy [ 1 27)
\_

i nE)=2\E (B Ma(B)2 (82 %

, I I : .
In particular for Vo—w<E<Vj, electrons scattered into  F|G. 6. A mesoscopic system connected to two electron reser-
modeE , ; may now pass the static barrier. VOIrs.
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I(w)

L 1 L | L
0 10 20 30
7

FIG. 7. Total mean current through the composed barrier as
function of the chemical potential.

(e, )= OMZdEEE \/—[|Tﬁno
— [T no(E)?]

+f2dEﬁE VEL[T_ no(E)[2.

(86)

erators for each barrier in the sequence. We have shown that,
in contrast to the case of static barriers, generally no left-
right symmetry of the scattering properties can be expected
when dynamic barriers are present.

Using these results, we have described the coherent elec-
tron transport in a dynamic mesoscopic system connected to
two electron reservoirs with the same chemical potential.
The left-right asymmetry leads to a net current between the
reservoirs. The pumping efficiency depends strongly on the
relative position of the chemical potential and the threshold
energy of the static barriers, and vanishes in the limit of large
chemical potentials.

We emphasize that our results are obtained in the coher-
ent limit. This should be distinguished from the situation
discussed in Refs. 9-13, where coupling between quantum
dots is rather small and relaxation in the dots becomes im-
portant. We note also that the pumping effect discussed here
is different from the one in Ref. 13, where the pumping is
caused by the Pauli exclusion principle.
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APPENDIX A: IDENTITY F'F=I

Let f(t)=e "t exp[—iftVi(t') dt'], veZ, Eq. (11).

In the following we assume that the chemical potentials aréVe have

equal, i.e.,u1=u,=u. Then the second term in E(B6) is
zero. In the case of an arbitrary static barrier, we have

1T no(E)?=[T_o(E)]% neZ, (87)

and thereford (u)=1(u,u)=0. This is no longer true for
dynamic barriers, as is demonstrated in Fig. 7 for our com

P * —imot 1P —imot
Efo f*(t)f(t)e dt=5f0 e dt= 6o -
(A1)
With the Fourier expansion df(t), we obtain

1 1 1 1 1 P . 1 P : !
posed barrier discussed in Sec. lll B. This system acts as anﬁf £* (1) f(t)e~ Mt d= 5 D F*F, (N0 ~mot

electron pump. The pumping efficiency is largest for chemi-

cal potentialsu close to the heighv'g of the static barrier.
The total mean current(w) vanishes for large chemical
potential since

fim 1 () = lim fo dEE [ (B i (En]

0 A—©

277\/—
1 (o
= ;fo dE Tr[7".(E)7_(E)— 7' (E)7.(E)]=0

(88)
according to Eq(68).

IV. CONCLUSION

We have presented an efficient method to describe th
scattering by time-periodic potentials. The solution is ex-
pressed in terms of a scattering-amplitude oper&tofhe
general properties d have been given. We emphasize that
this operator treats propagating as well as evanescent wave

in contrast to the usual scattering matrix, which describes

only the propagating solutions. The inclusion of the evanes

cent waves allows us to obtain the scattering solution for a

0nn'
=(F'F)om, (A2)
and thusFTF=1.
APPENDIX B: PROPERTIES OF THE SCATTERING-
AMPLITUDE OPERATOR S
1. Generalized continuity equation

Let e 'Blg(x,t) ande 'E'h(x,t) be two solutions to the

Schralinger equation(3) for the set of modes
Mg={E,|E,=E+nw, neZ}. (B1)

The time-periodic functiong andh are solutions of Eq(4).
Multiplying the equation foh by g* and the equation fay*

by h, we obtain, after subtraction, the generalized continuity
€quat|on

i91(g* )= —dx(g* dxh—d,g*h). (B2)

Integratlon over a time perioB leads to

- &XBL dt (g*9,h—a,g*h)=0. (B3)

sequence of barriers in terms of the scattering-amplitude opFherefore,
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i (P
_Bfo dt (g*ﬂxh—ﬁxg*h)zcg’h (84)

is a constant in space associated with the solutions

e "Elg(x,t) and e 'Eth(x,t). In particular, forg=h, Eq.

13 057
i (E)=(TL(K+KNT.)oo=(2Kp7", 7 )00
(B15)

= 2 2VE|(T no(B) 2,

(B4) expresses the conservation of the mean current. Considthich proves Eq(54). Equation (B14) leads to

ering two sets of solution§gm}mez and {hy}tm ez €x-
pressed in terms of the operat@dsandH as

Or(X,1)= 2, Gun(x)e""", (B5)
N ()= 2 Hpr ()€Y, (B6)
nez
we can write Eq(B4) as
—i(G'oH—3,G™H) mm = Crnr (B7)
or
G'o,H-9,GTH=iC, (BY)
with the operatolC independent ok.
Defining the operatok (x) by
Lmn(x):eik(n)xamnr (B9)

R(K+KHR+T(K+KHT,

=K+K+R.(K-K"H—(K-KNHR,. (B16)

Similarly, for G=H=B(x), we obtain, multiplying from the
left by L}Q and from the right byt g,

R(K+KHR +T (K+KNHT_

=K+K™+R (K-KH—(K-K"HR_. (B17)
For G=B(x) andH=A(x) we obtain, multiplying from the
left by L% and from the right by ?,
T (K+KHR.+R (K+KHT,

=T (K-KH—(K-KNT.. (B18)

Finally, for G=A(x) andH=B(x) we obtain the Hermitian
conjugate of Eq(B18). Using block by block multiplication,
we obtain Eq.(60).

we obtain, for waves incoming from the left, the set of solu-

tions of Eq.(4):

2. Asymptotic behavior of S at large energies

Using the Fourier expansions

Vi) =2, Ve et (B19)

= Fpe ™l (B20)
n

t
exp(—if Vi(t") dt’
0

For waves incoming from the right, the respective operatorgye define the Hermitian operatvt=V" and the unitary op-

LxX)+L Y0R., x
ACO=1 | ot xer,  (B10
The corresponding spatial derivatives are given by
_ K[L(x)—L"*x)R_.], xelL
TIAAX= | 0T xer, B
are
- L Y(x)T._, xel
BOO=1 -104+L0R., xer B2
and
_ KL Y(x)T._, xel
1OBO=1 kL1 -L(xR_], xeR B

ForG=H=A(x), Eq.(B8) implies, with multiplication from
the left by (_, })T and from the right byt *,

Can=(ALLH (—igAL D+ (—igALL D (ALY

X=Xo

= (I+R)HK(I-R)+(I-ROKI(I+R.)

X=Xy

= TTKT_+TT KT, (B14)

where we have used Eq$42) and (43). In particular,

(Ca.A)oo Is the mean current for an incoming wave in mode

EOIE,

eratorF by their matrix elements

Vn=Vm-n: Fmn=Fm-n. (B21)
Together with the operata,
Nmn=Mdnn, (B22)
we rewrite Eq.(9) as
oNF—VF=wFN. (B23)

Let us consider a sum of potentials with time average zero,

In the same way as in EqB21), we define, for each poten-
tial,

V() (V,F), (B25)
W, (1)~ (W,H), (B26)
Uy(t)—(U,G). (B27)

From Egs.(B19) and (B20), we obtain
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U=V+W and G=FH=HF. (B28)

With the choiceW,(t)=V,(t), we haveU=2V and G
=F?2, and therefore

oNF?—2VF?= wF°N. (B29)

Using the unitarity ofF, from Eqgs.(B23) and (B29) we
obtain

oN—V=wFNFT,
oFNFT—FVF'=oF2N(FT)?,
woN—V—FVF'=0pN-2V,
V=FVFT,

VF=FV. (B30)

The operator®y andF commute and witlEl+ oN=K? [see
Eqg. (17)], Eq. (B23) becomes

FTK2F=K?2+V. (B31)
Introducing the operators

X=F'(T+RF, (B32

Y=F'(T-RF, (B33

we write Eqs.(35) and(36) as
[(Lya—DKg—(Ly+DFTKF]X
=(1-L,)Kg—(I+L,)F'KF, (B34)
[(Ly+DKg—(Ly—DF'KF]Y
=(I4+Ly)Ks—(I—L,)F'KF. (B35
Equation (B31) implies

FTKF=(F'K?F)Y2=(K2+ V)2 (B36)

In order to calculate K2+ V)2 we have to estimate the

matrix element of the commutatét— 1V — VK1,

(n—m)w v
[k(m)+k(n)Tk(m)k(n) ~™ "
(B37)

(K_lv_VK_l)mn:

In the following, we assume that the number of nonzero
Fourier components in EqB19) is finite, and we consider
large energiesE=E,=k?(0)=k? of the incoming wave.

Then Eq.(B37) can be written as

K V-VK 1=0(k™?), (B38)
and we may approximate
FIKF~K[I+3VK 2+ 0(k™ 4]
~K+3VK 1+0(k™3). (B39)

We now solve Eqgs(B34) and (B35) to the second order of

k1. Defining the operators
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A=(Ly—DKg—(Ly+ DK, (B40)
B=(I-Ly)Ks— (I+Ly)K, (B41)
C=(Ly+DKg—(Ly— DK, (B42)
D=(I+Ly)Ks—(I-Ly)K, (B43)

which correspond to a static rectangular barrier, we rewrite
Egs.(B34) and(B35) as

[A—2(Ly+ VK 14+ 0O(k 3)][Xo+ X+ O(k™3)]
=B—3(I+L,)VK 1+ 0O(k™3), (B44)

[C—3(Ly—DVK 1+ Ok 3 ][ Yo+ Y +0O(k 3]
=D—3(I-L,)VK 1+ 0O(k™3). (B45)

X andYy are the solutions for the static barrier described by

Tetatic= 3(Xo+ Yo, (B46)

T:g‘static: %(XO_ Yo). (B47)

We obtain
FAF=21(X+Y)
=Tt s[(La+ DA VK IATYI-L,)
+(Ly,—DC VWK IC Y1+ L) ]Kst O(k™3),
(B48)
FIRR=3(X-Y)
=Ruaict 7 [(La T DATVKTTATH(I-L,)
—(Ly,—DC VK IC Y1+ L) ]Kst O(k™3).
(B49)

At high energies, the static part of the potential becomes
negligible, i.e.Kg~K, and

Teaic=La s (B50)
Riaie=0, (B51)

and thus
FIMF=L,+3(L,V-VLy)K 2+0(k™%), (B52)
FIRR=1(V-L,VLy)K 2+ 0(k™9). (B53)

The matrix element of the commutatbgV—VL, is

. (m—n)w s
(LAV_VLA)mn:|LA,nnmAxvmfn+o(k )
(B54)
or
L,V—VL,=0(k™1). (B55)

It follows that
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FIME=L,+0(k %), (B56)
F'RF= \4—/(1—L§)K—2+0(k—3), (B57)

and finally, with Eq.(B30),
T=FL,FT+0O(k 3)=0(kY), (B58)

?@l—/F(ﬂ—Li)K*ZF*+o(k*3)=O(k*2> (B59

for a dynamic rectangular barrier and large energiesk?.
From Egs.(B58), (B59), and(49) we also have

R.=0(k™?) (B60)
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Thus the contribution of a sideband: 0 to the mean current
is

in(E)=2\E[To|?

AX?
= ——=|Vyol*+O(E™h),

for a sequence of barriers. Therefore, constructing the refleqt- follows that

tion partp_, of the usual scattering matrix according to Eq.

(62), we see that

lim (pT.p_)nn=0, (B6Y)

n—oe

i.e., the barrier becomes transparent for an incoming wav

with high energy. Moreover, asp{.p_.)nn=0(n"?) de-
creases rapidly when—, we have

Tr (plp_)<e, (B62)

which proves Eq(68).

Using Eq.(B15), we obtain the mean current to first order

in k™1,

[T(K+KNTgo=[FLIFT(K+KNFL,F g0+ O(k™2).

(B63)
With the expansion
: AXw AX?w?
— alkAX H _ 2 -3
Ly=e"| I+i—-N o2 N2 | +0(k™3),
(B64)
we obtain
- Ax AX?
T=glkax H+iEFwNFT—@Fw2N2FT +0(k™3).
(B65)
Using Eq.(B23), we have, finally,
XeikAx szeikAx
T AlkAX] _\)— _\)2
T=e"1+i oK (oN—V) oK (wN—V)
+0(k™3). (B66)

n+0. B6

2JE (B67)

The main contribution to the mean current is
WE)=2vE- 2 (V2 0E Y, (869

Jo = 2\/E 00 .

From

(V¥)a0= 2% [Viol?, (B69)
> Jn(E)+O(E™YH=24E, (B70)

n

i.e., electrons incoming at high energies are not reflected by
Ehe barrier.

In the particular cas¥/(t)=V,+V; cos @t+¢), the op-
eratorV is described by

\%
X for|m—n|=1
2

Vin= (B71)
0 otherwise,
which yields(see also Fig. B
2vi
in(E)= +0O(E™1), n#0. B72
in(B) 8E (E™9) (B72)

3. Time-reversal invariant potential

Let g and h be two solutions of Eq(4) for the set of
modes

Meg={E,|E,=E+nw, neZ}. (B73
For a time-reversal invariant potentd(x, —t) =V(x,t), we
defineg(t)=g(—t), satisfying

—id,g=—d5g+[V(x,t)—EJg (B74)

Multiplying the equation foth by gand the equation fog
by h, we obtain, after subtraction,
i9:(ch) = — ax(g9xh— 3, ). (B75)

Using the same procedure as in Appendix B1, we finally
obtain Eq.(69).
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