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Green-function theory of plasmons in two-dimensional semiconductor structures:
Zero magnetic field
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A theoretical investigation has been made of the plasmon excitations in various two-dimensional~2D!
semiconductor heterostructures in the framework of a Green-function~or response function! theory. The
plasmon excitations in the periodic and nonperiodic systems are implicitly defined by the electromagnetic
fields that are localized at and decay exponentially away from the interfaces. The Green-function theory
generalized to be applicable to the 2D systems enables one to derive explicit expressions for the corresponding
response functions~associated with the electromagnetic fields!, which can in turn be used to calculate almost
all physical properties of the systems at hand. A rigorous analytical diagnosis of the general results for all the
systems investigated here leads one to reproduce exactly the previously well-established results obtained within
a different theoretical framework. The elegance of the theory lies in its simplicity and the compact form of the
desired results. The impact and relevance of the analytical results have been discussed briefly.
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I. INTRODUCTION

The seminal paper of Esaki and Tsu1 laid the foundation
of a field that is now becoming known as the ‘‘physics a
fabrication of the systems of reduced dimensionality’’ a
represents nearly 50% of the efforts devoted to semicond
tor physics worldwide.2 In this paper, the authors speculat
that a periodic modulation of the composition or doping o
semiconductor at a length scale shorter than the elec
mean free path would result in a folding of the Brillouin zo
into minizones showing strong dispersion effects leading
exotic electronic and optical properties different from tho
found in the bulk. Early attempts on such quantized str
tures were focused on layered structures that confine ch
carriers to two dimensions, quantum wells, for example. T
original proposal had included two kinds of superlattic
compositional and doping. Compositional superlattices c
sist of alternating layers of two different semiconducto
The compositional variation modulates the electronic pot
tial on a length scale shorter than the electron mean free p
The doping superlattices consist of alternatingn- andp-type
layers of a single semiconductor. Electric fields generated
the charged dopants modulate the electronic potential.
keystone to the designed electronic and/or optical prope
in the superlattice systems is the band-gap discontinuity
the consecutive layers in the unit cell of the superstructu

In this paper, we will confine ourselves to the compo
tional superlattices that have seen relatively wide inter
both theoretical and experimental, in the recent past. Th
are known as type-I and type-II superlattices. Type-I sup
lattices are typified by a GaAs-AlxGa12xAs system, in which
the band gap of GaAs is smaller than, and lies within, tha
Al xGa12xAs, giving rise to the band-gap discontinuities
both the valence and conduction bands of the resultant
perstructure. The simplest model of the type-I superlat
that we will be concerned with is the low-temperature pe
570163-1829/98/57~20!/13020~13!/$15.00
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odic system of a two-dimensional electron gas~2DEG!.
Type-II superlattices are typified by the InAs-GaSb syste
in which the conduction-band minimum of InAs is lowe
than the valence-band maximum of GaSb, leading to a tra
fer of electrons from one~GaSb! layer to the other~InAs!
layer and resulting into a spatial separation of electrons
holes in the adjacent potential wells, with the formation
electrons and hole subbands~or minibands!. For our purpose
it is sufficient to consider type-II superlattices as a perio
arrangement of alternating 2DEG and two-dimensional h
gas~2DHG!.

Initial theoretical investigations into these man-ma
semiconductors focused on various types of collective e
tations, such as phonons, magnons, plasmons, polarons
magnetoplasmons. The literature reveals that the elemen
excitations in these superstructures have most often b
treated in the framework of conventional theories,3 such as
the random phase approximation~RPA!, the hydrodynamical
model, or the transfer matrix method using electrodynam
with appropriate electromagnetic boundary conditions. T
present work embarks on an investigation of the respons
the heterointerfaces in these systems, using a Green-fun
~or response function! theory in a compact form. In a way i
is the generalization of Dobrzynski’s interface respon
theory4 ~IRT! to the 2D systems. The Green functions
response functions in the IRT are calculated as function
bulk response functions of each subsystem and of theinter-
faceresponse operators. These operators are shown to b
linear superposition of the responses to a cleavage ope
of the corresponding ideal free surfaces of all subsyste
and of the responses to the coupling operator of all in
faces. The resultant response functions can then be mad
of to derive, literally speaking, any physical property of t
system at hand. They play a crucial role in the theories
light scattering~both Raman and Brillouin!, as well as in
various other physical phenomena.5 The elegance of the
13 020 © 1998 The American Physical Society
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57 13 021GREEN-FUNCTION THEORY OF PLASMONS IN TWO- . . .
present theory lies particularly in its simplicity. It is impo
tant to note that our accomplishment lies in presenting a
lytical solutions and thus physical insight into a rather co
plex problem. The illustrative analytical diagnoses have b
made at all stages to reproduce the well established re
and hence to embolden our confidence in the adequacy o
theoretical development. The computation is deferred t
future work.

This paper is organized as follows. In Sec. II we der
the bulk response function for an infinite semiconductor.
Sec. III we analyze the infinite medium limited by a ‘‘black
box surface’’ and thus calculate the surface response fu
tion. Section IV is devoted to the calculation of the respon
functions for a black-box slab~i.e., an infinite semiconducto
limited by two black-box surfaces! in the limit that the thick-
ness of the slab approaches zero. This applies to the ca
a 2DEG bounded by two identical or nonidentical dielect
media. In Sec. V we study the case of double inversion l
ers, which could be considered a buiding block of the type
superlattice. Section VI deals with an infinite type-II supe
lattice. The case of a truncated~semi-infinite! type-II super-
lattice is worked out in Sec. VII. All the results in Secs. V
and VII are shown, with a formal trick, to be reducible
those valid for the type-I superlattice. Finally, we comme
in Sec. VIII, on how the IRT in its compact form has be
able to reproduce exactly the previously reported w
established results and discuss briefly the implications of
response functions derived in the framework of IRT for t
systems considered in the present work.

II. AN INFINITE SEMICONDUCTING MEDIUM

First we describe the geometry at hand. We consider
electromagnetic waves propagating along theŷ axis with an-
gular frequencyv and wave vectorq[qy . Thex̂ component
of the wave vector may be taken to be zero without loss
generality. The plasma waves, here as well as in the la
part of the work, will be assumed to observe the spatial
calization along theẑ axis. This refers to the fact that theŷ- ẑ
plane is the sagittal plane.

After eliminating the magnetic field variableB from the
Maxwell’s curl-field equations, we obtain the wave-fie
equation in terms of the macroscopic electric field vectorE,

“3~“3“ !2q0
2eE50. ~2.1!

Here the dielectric functione is a scalar, since the system w
are concerned with is not subjected to any external mag
tostatic field and the physical system is assumed to be
tropic. Also, note that we are interested in the nonmagn
materials, so thatB[H in the Maxwell’s curl-field equa-
tions. In Eq.~2.1! q05v/c is the vacuum wave vector,c
being the velocity of light in vacuum. We will take the sp
tial and temporal dependence of the fields of the form
ei (q•r2vt). In the present situation, Eq.~2.1! can thus be cas
in the form

F q0
2e2q22]z

2 0 0

0 q0
2e1]z

2 2 iq]z

0 2 iq]z q0
2e2q2

G FEx

Ey

Ez

G5F 0
0
0
G .

~2.2!
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Here ]z[]/]z . Since we are interested in the TM
~p-polarized modes!, Eq. ~2.2! essentially takes the form

Fq0
2e1]z

2 2 iq]z

2 iq]z q0
2e2q2G FEy

Ez
G5F00G . ~2.3!

The condition of nontrivial solutions of such a set of th
linear equations yields

2qz
2[a25q22q0

2e~v!, ~2.4!

wheree(v)5eL(12vp
2/v2) is the local dielectric function;

vp5(4pn0e2/m* eL)1/2 is the screened plasma frequen
and eL the background dielectric constant. Herea refers to
the decay constant in the medium concerned. Employing
appropriate Green function~or response function! G(z,z8),
Eq. ~2.3! may be written as

Fq0
2e1]z

2 2 iq]z

2 iq]z q0
2e2q2G FGyy Gyz

Gzy Gzz
G5d~z2z8!II, ~2.5!

where II is 232 unit matrix andGi j (z,z8) refers to the
( i , j )th element of the bulk response functionGI (z,z8). Solv-
ing Eq. ~2.5! yields

Gyy~z,z8!5
a

2q0
2e

e2auz2z8u, ~2.6a!

Gzy~z,z8!5 i
q

2q0
2e

sgn~z2z8!e2auz2z8u, ~2.6b!

Gyz~z,z8!5 i
q

2q0
2e

sgn~z2z8!e2auz2z8u, ~2.6c!

Gzz~z,z8!5
1

2q0
2ae

@2ad~z2z8!2q2e2auz2z8u#.

~2.6d!

In Eqs. ~2.5! and ~2.6! d(z2z8) is the Dirac delta function
andGi j (z,z8) are the elements of the bulk response functio
which will be made use of in the following sections.

III. AN INTERFACE BETWEEN TWO MEDIA

We now consider a semiconducting medium limited by
black-box surface~BBS! at z50. By BBS we mean an en
tirely opaque surface through which electromagnetic fie
cannot propagate. Conceptually this is achieved by stres
thatc ~the vacuum speed of light! ande ~the dielectric func-
tion! vanish forz<0. As such, we write the Maxwell’s curl
field equations for the semiconducting medium (z.0) lim-
ited by a black-box surface as

u~z!@c“3E#1Ḃ50, ~3.1!

u~z!@c“3B2Ḋ#54pJ. ~3.2!

The overdot onB andD refers to the time derivative of the
respective quantities andu(z) is the step function. Eliminat-
ing B from Eqs.~3.1! and~3.2! and performing all differen-
tiations provides us with

u~z!@“3~“3E!2q0
2eE#1d~z!VI~rW !E50, ~3.3!
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13 022 57M. S. KUSHWAHA AND B. DJAFARI-ROUHANI
where the so-called black-box cleavage operatorVI ~r ! is de-
fined as a 333 matrix.4 It is noteworthy thatVI ~r ! has to
have the opposite sign if one considers the complemen
~in the infinite space! medium.VI ~r ! in the present configu
ration takes the form

VI~r !5F ]z 0 0

0 ]z 2 iq

0 0 0
G . ~3.4!

As such, the part of Eq.~3.3! concerned with the TM
waves is written in terms of the surface response func
gI(z,z8) as

u~z!Fq0
2e1]z

2 2 iq]z

2 iq]z q0
2e2q2G Fgyy gyz

gzy gzz
G1d~z!F ]z 2 iq

0 0 G
3Fgyy gyz

gzy gzz
G5d~z2z8!II. ~3.5!

This, after some algebra, yields

gyz~z,z8!52
iq

q0
2e2q2 ]z8gyy~z,z8!, ~3.6a!

gzy~z,z8!5
iq

q0
2e2q2 ]zgyy~z,z8!, ~3.6b!

gzz~z,z8!5
iq

q0
2e2q2 gyz~z,z8!1

d~z2z8!

q0
2e2q2 . ~3.6c!

Then one obtains, from Eq.~3.5!,

C@u~z!~]z
22a2!gyy1d~z!]zgyy#5d~z2z8!, ~3.7!

whereC52q0
2e/a2. It should be pointed out that we wil

henceforth consider only theŷ- ŷ component of the Green
function. Now the response operator at the surface~z
.0⇒positive half space! of a black-box crystal is written a

As~0,z8!5V~z!G~z,z8!uz5052 1
2 e2auz8u ~3.8!

and define

Ds~0,0!511As~0,0!5 1
2 . ~3.9!

The inverse of the surface response function is given by

gs
21~0,0!5Ds~0,0!G21~0,0!52aC ~3.10!

and the complete surface response function

gs~z,z8!5G~z,z8!2G~z,0!Ds
21~0,0!As~0,z8!

52
1

2aC
@e2auz2z8u1e2a~z1z8!#. ~3.11!

Let us now write Eq.~3.5! in the negative half spac
(z,0) by changing the sign of the cleavage operatorVI. We
get, corresponding to Eq.~3.7!,

C@u~z!~]z
22a2!gyy2d~z!]zgyy#5d~z2z8!. ~3.12!

Then following a procedure analogous to Eqs.~3.8!–~3.11!
leaves us with

gs~z,z8!5G~z,z8!2G~z,0!Ds
21~0,0!As~0,z8!

52
1

2aC
@e2auz2z8u1e1a~z1z8!#. ~3.13!
ry

n

In Eqs. ~3.11! and ~3.13! gs(z,z8) are the corresponding
complete response functions. Assuming now that the ne
tive and positive half spaces are filled, respectively, by m
terials 1 and 2, we calculate

gI
21~0,0!5gs1

21~0,0!1gs2
22~0,0!52~a1C11a2C2!.

~3.14!

HeregI
21(0,0) is the inverse of the response function in t

interface space. All other elements ofgI can be obtained
from4

gI~z,z8!5G~z,z8!2G~z,0!G21~0,0!G~0,z8!

1G~z,0!G21~0,0!gI~0,0!G21~0,0!G~0,z8!.

~3.15!

Equation~3.15! allows us to study the four different situa
tions, i.e.,z,z8.0; z,z8,0; z.0; z8,0, andz,0; z8.0.

The interface plasmons are describable via the disper
relation obtained through detugI

21(0,0)u50 that yields a well-
established result6 specified by

e1

a1
1

e2

a2
50. ~3.16!

IV. A FILM BOUNDED BY TWO MEDIA

We now consider a semiconducting film limited by tw
parallel black-box surfaces~see Fig. 1!, such that2h<z<
1h. The basic formalism for this black-box slab can eas
be generalized by making use of the concepts developed
the semi-infinite black-box surfaces in the preceding sect
However, this is not our end point. We will intend to take t
limit d(52h, the thickness of the film)→0, which implies a
2DEG virtually limited by two unidentical semiconductors
dielectrics. We will specify that situation by assumingd→0
ande→` but ed→ finite in medium III of Fig. 1. This then
leads us to define the following physical approximations
be imposed:a2→2`, a2d2→0, a/e→0, a2/e→2q0

2 and
hence

ed→4pxe⇒a2d→24pq0
2xe , ~4.1!

wherexe52(nse
2/m* v2) is the 2D polarizability function,

which is related to the conductivity~s! such that s
52 ivxe , with ns[n0d being the surface carrier concentr
tion in the resulting 2D sheet. Equation~4.1! will play a very
important role in the obtention of the desired results in
remaining part of this paper.

The response operator is written, with the aid of E
~3.11! and ~3.13!, as

FIG. 1. The schematics of the semiconducting film~shaded re-
gion! limited by two black-box surfaces (2h<z<1h) before tak-
ing the limit d(52h)→0.
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As~z,z!5H 2
1

2
e2a~h1z!, z52h

2
1

2
e2a~h2z!, z51h.

~4.2!

Therefore

DIs~M ,M !5II1AIs~M ,M !5F 1

2
2

1

2
e2ad

2
1

2
e2ad

1

2

G ,

~4.3!

where d52h is the film thickness, and the bulk respon
function
he
in

ng
r
ti-
it
e

e

GI~M ,M !52
1

2aC F 1 e2ad

e2ad 1 G . ~4.4!

Then

gIs
21~M ,M !5DIs~M ,M !GI21~M ,M !

52
aC

sinh~ad!
Fcosh~ad!

21
21

cosh~ad!G .
~4.5!

Now, if we consider a real film bounded by two unide
tical media, say 1 and 2, respectively, in the negative a
positive half spaces, the inverse of the total response fu
tion in the interface space (M ,M ) is given by
gIf
21~M ,M !5gIs1

21~M ,M !1gIs
21~M ,M !1gIs2

21~M ,M !5F2a1C12aC coth~u!

aC csch~u!

aC csch~u!

2a2C22aC coth~u!G , ~4.6!
ns.
an-

yer
har-

p-
p-
whereu5ad, Ci52q0
2e i /a i

2, and i[1, 2 is the suffix as-
signed to the quantities in the media I and II of Fig. 1. T
complete response functions in the whole space are obta
from4

gIf~D,D !5GI~D,D !2GI~D,M !GI21~M ,M !GI21~M ,D !

1GI~D,M !GI21~M ,M !gIf~M ,M !GI21

3~M ,M !GI~M ,D !, ~4.7!

where gIf(M ,M ) is the inverse ofgIf
21(M ,M ). Remember,

we are finally interested in this section in calculati
gIf(D,D) when the pointsz,z8 belong to either medium I o
medium II, but not to medium III. This is because we ul
mately intend to eliminate the medium III by taking the lim
d→0 (⇒2DEG): In view of this, it is necessary that w
write gIf

21(M ,M ) and hencegIf(M ,M ) within the said limits.
Making use of the series expansion

coth~u!5
1

u
1

u

3
2

u3

45
1¯ ,

csch~u!5
1

u
2

u

6
1

7u3

360
2¯ , ~4.8!

we write gIf
21(M ,M ), Eq. ~4.6!, to the first order~in correc-

tion! as

gIf
21~M ,M !5q0

2F e

a2d
1S e1

a1
1

ed

3 D 2
e

a2d
1

ed

6

2
e

a2d
1

ed

6

e

a2d
1S e2

a2
1

ed

3 D G .

~4.9!

In view of the limits imposed, the first term in each of th
four elements predominates. As such,
ed

detugIf
21~M ,M !u5q0

4S e

a2dD S e1

a1
1

e2

a2
14pxeD . ~4.10!

Then to first order~in correction! the inverse ofgIf
21(M ,M )

is found to be

gIf
21~M ,M !5

1

q0
2 S e1

a1
1

e2

a2
14pxeD F1 1

1 1G . ~4.11!

This implies that the determinant ofgIf(M ,M )50. This is,
however, least troublesome for any part of the calculatio
What is important is to make use of the proper series exp
sion ingIf

21(M ,M ) in order to have detugIf
21(M ,M )uÞ0. The

plasmon dispersion relation specified by detugIf
21(M ,M )u

50 is given, from Eq.~4.10!,

e1

a1
1

e2

a2
14pxe50. ~4.12!

This represents the plasma modes of a single 2DEG la
sandwiched between two semiconductors or dielectrics c
acterized by the dielectric constantse1 ande2 , and is a stan-
dard result@see, for example, Eq.~8! of Kushwaha7#.

It is important to note that the meaning of the above a
proximation, literally speaking, is that for a single film a
proaching the limit of a 2DEG~or 2DHG!, one can approxi-
mate,

gIs
21~M ,M !5q0

2F e

a
coth~u! 2

e

a
csch~u!

2
e

a
csch~u!

e

a
coth~u!

G , ~4.13!

in Eq. ~4.5!, by
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gIs
21~M ,M !5q0

2F e

au S 11
u2

3 D 2
e

au S 12
u2

6 D
2

e

au S 12
u2

6 D e

au S 11
u2

3 D G ,

~4.14!

where the correction term isimportant and necessaryat the
stage of calculating the determinant ofgIf

21(M ,M ). The con-
cept and consequence of this statement will be encount
at many places in the following sections.

Now, the Green functions for media I and II virtuall
separated by a 2DEG can be easily written down from
~4.7!. The result is as follows:

~i! z,z8Pmedium I:

gf~z,z8!5
a1

2q0
2e1

Fe2a1uz2z8u

1
e1 /a12e2 /a224pxe

e1 /a11e2 /a214pxe
ea1~z1z8!G ; ~4.15!

~ii ! z,z8Pmedium II:

gf~z,z8!5
a2

2q0
2e2

Fe2a2uz2z8u

1
e2 /a22e1 /a124pxe

e1 /a11e2 /a214pxe
e2a2~z1z822d!G ;

~4.16!

~iii ! zPmedium I andz8Pmedium II:

gf~z,z8!5
1

q0
2

1

e1 /a11 e2/a2 14pxe
ea1ze2a2~z82d!;

~4.17!
to

ak
e

ed

.

~iv! zPmedium II andz8Pmedium I:

gf~z,z8!5
1

q0
2

1

e1 /a11e2 /a214pxe
ea1z8e2a2~z2d!.

~4.18!

Within the framework of IRT, one can build up two ne
systems depicting semi-infinite and finite systems. Th
systems can further serve the purpose of our building blo
to construct a double inversion layer and a unit cell of type
superlattice systems.

V. DOUBLE INVERSION LAYERS

To be precise, we start with a system, as depicted in F
2, with four interfaces delinking the five media. Ultimatel
we will go to the limit de ,dh→0, which implies a double
inversion layer system. The inverse of the response func
of such a system, prior to taking the above-mentioned lim
can be written by addinggIsi

21(M ,M ) of the different layers
and the semi-infinite media. The result is

FIG. 2. The schematics of a double-inversion-layer system
2DEG ~shaded region! and a 2DHG~blank region! separated by
medium II of thicknessd2 . The symbolsde and dh refer to the
thickness of 2DEG and 2DHG layers, respectively.
gId
21~M ,M !5q0

21
2a1C1 aeCe csch~ue! 0 0

2aeCe coth~ue!

aeCe csch~ue! 2aeCe coth~ue! a2C2 csch~u2! 0

2a2C2 coth~u2!

0 a2C2 csch~u2! 2a2C2 coth~ue! ahCh csch~uh!

2ahCh coth~uh!

0 0 ahCh csch~uh! 2ahCh coth~uh!

2a3C3

2 , ~5.1!
r,
tly

e

where Ci52q0
2e i /a i

2, i[1,e,h,2,3, and u j5a jdj ;
j [e,h,2. It is straightforward and simple algebra
calculate the inverse and the determinant ofgId

21(M ,M ).
The pertinent question at this stage is whether to t
the limits de ,dh→0 before or after calculating the invers
e

of gId
21(M ,M ). A careful analytical diagnosis, howeve

proves that the two alternatives turn out to be exac
identical.

Let us first take the limitde ,dh→0 and consequently
write Eq. ~5.1! to the first order in corrections. Then w
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calculate the detugId
21(M ,M )u to the first order. In view of the

limits imposed, the most significant and predominant ter
are those proportional toe i /a i

2di( i[e,h). As such, we ob-
tain

detugId
21~M ,M !u5q0

8 ee

ae
2de

eh

ah
2dh

H F e1

a1
1

e2

a2
coth~u2!

14pxeGF e3

a3
1

e2

a2
coth~u2!14pxhG

2F e2

a2
csch~u2!G2J . ~5.2!

The dispersion relation defined by detugId
21(M ,M )u50 is

given by
o

ch
s S e1

a1
1

e2

a2
coth~u2!14pxeD S e3

a3
1

e2

a2
coth~u2!14pxhD

2S e2

a2
csch~u2! D 2

50. ~5.3!

This is exactly the same as Eq.~7! of Kushwaha,7 and
thus represents the plasmon dispersion relation in the dou
inversion-layer system. Equation~5.3! subjected to the
limit d2→` reproduces two independent plasm
modes supported by 2DEG and 2DHG@see Eqs.~8! in
Kushwaha7#.

Now we calculate the inverse ofgId
21(M ,M ). The result

is
gJd~M ,M !5
1

q0
2D

l

e3

a3
1

e2

a2
ctnh~u2!

e3

a3
1

e2

a2
ctnh~u2!

e2

a2
csch~u2!

e2

a2
csch~u2!

14pxh 14pxh

e3

a3
1

e2

a2
ctnh~u2!

e3

a3
1

e2

a2
ctnh~u2!

e2

a2
csch~u2!

e2

a2
csch~u2!

14pxh 14pxh

e2

a2
csch~u2!

e2

a2
csch~u2!

e1

a1
1

e2

a2
ctnh~u2!

e1

a1
1

e2

a2
ctnh~u2!

14pxe 14pxe

e2

a2
csch~u2!

e2

a2
csch~u2!

e1

a1
1

e2

a2
ctnh~u2!

e1

a1
1

e2

a2
ctnh~u2!

14pxe 14pxe

m

~5.4!
nc-
ple
dic

it

r-
e-

-

t

ne
where

D5S e1

a1
1

e2

a2
coth~u2!14pxeD S e3

a3
1

e2

a2
coth~u2!

14pxhD2S e2

a2
csch~u2! D 2

. ~5.5!

The complete response function in the whole space is n
obtained from Eq. ~4.7! with gIf(M ,M ) replaced by
gId(M ,M ), which allows us to study many situations, su
as, for example,z,z8PI; z,z8PII; z,z8PIII; z(z8)PI,
z8(z)PII; z(z8)PII; z8(z)PIII; z(z8)PI, z8(z)PIII, etc.
For instance, forz,z8PI, we obtain

gd~z,z8!5
a1

2q0
2e1

Fe2a1uz2z8u1
1

D H S e1

a1
2

e2

a2
coth~u2!

24pxeD S e3

a3
1

e2

a2
coth~u2!14pxhD

1F e2

a2
csch~u2!G2J ea1~z1z8!G. ~5.6!
w

Similarly, one can write down the complete response fu
tions in other situations. We do not expand on this sim
writing and leap ahead to the case of an infinite, perio
superstructure.

VI. AN INFINITE TYPE-II SUPERLATTICE

We consider a four-layer superlattice~see Fig. 3!. Out of
these four layers in the unit cell, we will finally take the lim
de ,dh→0, and medium I[II. The resulting superstructure
will then represent a type-II superlattice in which the alte
nating 2DEG and 2DHG are embedded in a dielectric m
dium I[II.

To start with, each layer of widthdi is labeled by the
index i ([1,2,e,h) within the unit cell designated by an in
dex n. All the interfaces are taken to be parallel to thex̂- ŷ
plane. This means that theẑ axis is the superlattice axis tha
observes the periodicity with a periodD5dh1d11de
1d2 . We replace theẑ coordinate by two variables: (m,z)
such thatm[n,i ; 2`,n,1`. The equivalent notations
are m[(n,i )[ i 1Nn; N being the number of slabs within
the unit cell. Also, there are two different ways to label o
and the same interface:
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~m,1̄![H ~n,i ,1̄![~n,i 21,1!

~n,1,1̄![~n21,N,1!

if iÞ1
if i 51.

The response functiongI21(M ,M ) for an infinite superlat-
tice is an infinite ‘‘tridiagonal’’ matrix. With the aid of the
fir

fi-

he
Bloch theorem, we can use the space (M̃ ,k[qz) instead of
the infinite space (M ). The space (M̃ ) contains onlyfour
states~i.e., four interfaces! in the unit cell. In Fig. 3, the four
states are labeled by the encircled numbers 1, 2, 3, and 4
such, we write
gI21~M̃ ,M̃ ;k!5q0
2

¨

eh

ah
coth~uh! 2

eh

ah
csch~uh! 0 2

e2

a2
csch~u2!e2 if

1
e2

a2
coth~u2!

2
eh

ah
csch~uh!

eh

ah
coth~uh! 2

e1

a1
csch~u1! 0

1
e1

a1
coth~u1!

0 2
e1

a1
csch~u1!

e1

a1
coth~u1! 2

ee

ae
csch~ue!

1
ee

ae
coth~ue!

2
e2

a2
csch~u2!eif 0 2

ee

ae
csch~ue!

ee

ae
ctnh~ue!

1
e2

a2
coth~u2!

©

~6.1!
rial

fter

:

with f5kD. We now impose the limitsde ,dh→0 to calcu-
late the inverse ofgI21(M̃ ,M̃ ;k), which is, in principle,
needed to write the complete response functions. We
determine the determinant ofgI21(M̃ ,M̃ ;k) to the first order
in correction. In view of the limits imposed, the most signi
cant terms are the those proportional toe i /a i

2di ( i[e,h). As
such, we write

detug21~M̃ ,M̃ ;k!u5q0
8 ee

ae
2de

eh

ah
2dh

DSL , ~6.2!

where

DSL522
e1

a1

e2

a2

1

S1S2
H cos~f!2FC1C21

1

2
~4pxe

14pxh!S a2

e2
C1S21

a1

e1
C2S1D

1
1

2
S1S2S a1a2

e1e2
4pxe4pxh1

e1

a1

a2

e2
1

e2

a2

a1

e1
D G J ,

~6.3!

where the symbolsCi and Si stand forCi5cosh(ui) and Si
5sinh(ui). In the general situation considered hitherto, t
dispersion relation for the collective~bulk! excitations in the
st

type-II superlattice is given byDSL50, which implies that
the middle bracketed terms, in Eq.~6.3!, equated to zero
yields the desired dispersion relation.

Let us now consider the special case when the mate
layers I and II are identical. That means thate15e25e, a1
5a25a, d15d25d; u15u25u⇒S15S25S, C15C2
5C, andf5kD52kd. As such, Eq.~6.3! simplifies to

DSL522S e

a D 2 1

S2 H cos~2kd!2Fcosh~2u!1
a

e
sinh~2u!

3~2pxe12pxh!12 sinh2~u!S a

e D 2

2pxe2pxhG J .

~6.4!

The middle bracketed terms equated to zero yields, a
some algebraic manipulation,

S 11
2pa

e
xeSeD S 11

2pa

e
xhSeD2S 2pa

e D 2

xexhSh
250,

~6.5!

where the structure factorsSe andSh are defined as follows

Se5
sinh~2ad!

cosh~2ad!2cos~2kd!
, Sh5

2 sinh~ad!cos~kd!

cosh~2ad!2cos~2kd!
.

~6.6!
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Equation~6.5! is exactly identical to Eq.~11! of Kushwaha,8

which was derived there by making use of the transfer ma
method employing messy boundary conditions. The appa
difference of sign in Eq.~6.5! and Eq.~11! of Kushwaha
owes to the definitions ofxe andxh .

A formal trick to derive the dispersion relation for th
collective ~bulk! modes for the type-I superlattice is to su
stituted852d andxh50 in Eq. ~6.5!. The result is

11
2pa

e
xeSe850 ~6.7!

where the structure factorSe8 is now defined as
e

ix
nt

Se85
sinh~ad8!

cosh~ad8!2cos~kd8!
. ~6.8!

Equation~6.7! is the desired dispersion relation for the type
superlattice, and is exactly the same as Eq.~26! of
Kushwaha.8 Note that the period of the type-I superlattice
d8.

Next, we calculate the inverse ofgI21(M̃ ,M̃ ,k). Taking
the adjoint of the matrix of cofactors and dividing the resu
ing matrix by the determinant ofgI21(M̃ ,M̃ ,k), Eq. ~6.2!,
leaves us with
~6.9!
whereF j5q0
2e j /a j and

h5C1C21
1

2
~4pxeq0

214pxhq0
2!S C1S2

F2
1

C2S1

F1
D

1
1

2
S1S2S 1

F1F2
4pxeq0

24pxhq0
21

F1

F2
1

F2

F1
D .

~6.10!

In the present form Eq.~6.9! will help draw a direct parallel
between the following results and some earlier publish
ones.

After Fourier analyzinggI(M̃ ,M̃ ,k) and making use of the
identity
d

1

2 E dk
eiNkD

cos~kD!2h
5

p

D

t uNu11

t221
, ~6.11!

where

t5H h2Ah221,

h6 iA12h2,

h1Ah221,

h.1
21,h,1

h,1,
~6.12!

we write

g~n,I ,1̄;n8,I ,1̄!52FC1S2

F2
1

C2S1

F1

14pxeq0
2 S1S2

F1F2
G t un2n8u11

t221
, ~6.13a!
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g~n,I ,1̄;n8,I ,1!52F S2

F2
t un2n8u111

S1

F1
t un2n821u11G 1

t221
,

~6.13b!

g~n,I ,1;n8,I ,1̄!52F S2

F2
t un2n8u111

S1

F1
t un2n811u11G 1

t221
,

~6.13c!
-

on

nc
n

u-

ys

c-

er
g~n,I ,1;n8,I ,1!52FC1S2

F2
1

C2S1

F1

14pxhq0
2 S1S2

F1F2
G t un2n8u11

t221
~6.13d!

or, in matrix form,
gI~Mm ,Mm8!52
t

t221 F S C1S2

F2
1

C2S1

F1
14pxeq0

2 S1S2

F1F2
D t un2n8u S2

F2
t un2n8u1

S1

F1
t un2n821u

S2

F2
t un2n8u1

S1

F1
t un2n811u S C1S2

F2
1

C2S1

F1
14pxhq0

2 S1S2

F1F2
D t un2n8u

G . ~6.14!
te
lly
Here m[n,I; and m8[n8,I. The other elements, for ex
ample, gI(MnII ;Mn8II), gI(MnI ;Mn8II), and gI(Mn,II ;Mn8,I),
can be obtained by noticing the ‘‘periodic transformati
rules ~PTR!’’: ( n,II,1̄)[(n,I,1) and (n,II,1)[(n11,I,1̄).

Now it is necessary to conform the bulk response fu
tion, Eq. ~2.6a!, according to the geometrical configuratio
used in the superlattice system. This requires replacingz and
z8 by zdi /2 andz8di /2, respectively; whence one can calc
late GI i(M ,M ), GI i

21(M ,M ), and henceGi(z,1), Gi(z,1̄),
Gi(1,z8), andGi(1̄,z8), which have to be used later.

FIG. 3. The schematics of an infinite type-II superlattice s
tem. The symboldi ~i[1,2,e,h; with 1,2,e,h referring to the I,
II, shaded, and blank layers! stands for the thickness of the respe
tive layer. Encircled numbers refer to the four states~i.e., four
interfaces! in the unit cell belonging to the reduced spaceM̃ .
D5dh1d11de1d2 is the period of the superstructure. The lett
ẑ refers to the superlattice axis andŷ to the direction of
propagation.
-

We now have everything at hand to write the comple
response function in the whole space of eventua
N(52)-layer superlatticeĝ(m,z;m8,z8) to be defined by4

ĝ~m,z;m8,z8!5dmm8H Gm~z,z8!2@Gm~z,1̄!,Gm~z,1!#

3GIm
21~Mm ,Mm!FGm~ 1̄,z8!

Gm~1,z8! G J
1@Gm~z,1̄!,Gm~z,1!#GIm

21~Mm ,Mm!gI

3~Mm ,Mm8!G
I

m8
21

~Mm8 ,Mm8!

3FGm8~ 1̄,z8!

Gm8~1,z8! G , ~6.15!

which, after a few algebraic steps, leads us to write

ĝ~m,z;m8,z8!5dmm8H 1

2Fm
e~um/2!uz2z8u2

1

2FmSm

3Fe2~um/2!~11z!sinhH um

2
~12z8!J

1e2~um/2!~12z! sinhH um

2
~11z8!J G J

1
1

SmSm8
FsinhH um

2
~12z!J ,

sinhH um

2
~11z!J GgI~Mm ,Mm8!F sinhH um8

2
~12z8!J

sinhH um8
2

~11z8!J G ,

~6.16!

where the 232 matrix gI(Mm ,Mm8) can be easily obtained
through a careful diagnoses of Eqs.~6.14!, using PTR. It
should be pointed out that the formal analogy@considered
between Eqs.~6.5! and~6.8!# leading to Eq.~6.7! can easily
convert the results following Eq.~6.9! corresponding to

-
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those for the type-I superlattice. In what follows, we w
concentrate on the practically realistic situation of trunca
~semi-infinite! superlattices.

VII. A TRUNCATED TYPE-II SUPERLATTICE

We consider an infinite type-II superlattice truncated at
interfacez50, such that we have a semi-infinite superlatt
with a different medium~III ! in the region2`<z<0 ~Fig.
4!. Let us assign a subscript 3 to the quantities in this m
dium. The surfacez50@[(0,I,1̄)[(1̄,II,1)# perturbs an oth-
erwise periodic superstructure. This perturbation in
framework of IRT is accounted for by a cleavage opera
that removes the layerm@[(n,i )[(1̄,II) # and a filling op-
erator that fills in the negative half space (2`<z<0) with
a medium III. The cleavage operator for the existing situ
tion is defined as follows:

VIc~M̄ ,M̄ !5VI f2Fgs2
21~ 1̄,1̄!

gs2
21~1,1̄!

gs2
21~ 1̄,1!

gs2
21~1,1!G

5VI f2q0
2F e2

a2

C2

S2
2

e2

a2

1

S2

2
e2

a2

1

S2

e2

a2

C2

S2

G , ~7.1!

where the filling operator

VI f5q0
2F00 0

e3 /a3
G . ~7.2!

Equation~7.1! together with Eq.~7.2! can be cast in the form

FIG. 4. The schematics of a truncated~at the surfacez50!
type-II superlattice system. The truncation of an infinite superlat
~Fig. 3! results into a semi-infinite superstructure in which the
gion 2`<z<0 is filled with a medium III. The surfacez50 in the
framework of IRT is defined by (n,i ,z)[(0,I,1̄)[(1̄,II,1).
d

n

-

e
r

-

VIc~M̄ ,M̄ !5F 2C2

F2

S2

F2

S2

F2

S2
2C2

F2

S2
1F3

G . ~7.3!

Here M̄ is the set of the interface~n51̄, II, 61!. We are
interested in the response operator whose elements
A(1̄,II, 61;Mm8), whereMm is any of the interfaces of the
truncated superlattice. The response operator is given by

A~ 1̄,II,1;Mm8!5Vc~ 1̄,II,1;1̄,II,1̄!g~ 1̄,II,1̄;Mm8!

1Vc~ 1̄,II,1;1̄,II,1!g~ 1̄,II,1;Mm8!.

~7.4!

With the aid of PTR, Eq.~7.4! assumes the form

A~0,I,1̄;n8,i 8,1̄!5Vc~ 1̄,II,1;1̄,II,1̄!g~ 1̄,I,1;n8,i 8,1̄!

1Vc~ 1̄,II,1;1̄,II,1!g~0,I,1̄;n8,i 8,1̄!

~7.5a!

and

A~0,I,1̄;n8,i 8,1!5Vc~ 1̄,II,1;1̄,II,1̄!g~ 1̄,I,1;n8,i 8,1!

1Vc~ 1̄,II,1;1̄,II,1!g~0,I,1̄;n8,i 8,1!.

~7.5b!

From Eqs.~6.13!, ~7.3!, and~7.5!, we write ~with n,n8.0!

A~0,I,1̄;n8,I,1̄![
tn811

t221
Y1 , ~7.6!

where

Y152t1C1C21
F2

F2
S1S21

C2S1

F1
4pxeq0

2

2F3S C1S2

F2
1

C2S1

F1
14pxeq0

2 S1S2

F1F2
D . ~7.7!

Similarly,

A~0,I,1̄;n8,I,1![
tn811

t221
Y2 , ~7.8!

where

Y25C22C1t2
S1t

F1
4pxhq0

22F3S S2

F2
1

S1t

F1
D . ~7.9!

Combining Eqs.~7.6! and ~7.8! yields

A~0,I,1̄;n8,i 8,1̄!5
tn811

t221
Yi 8 ; i 8[1,2. ~7.10!

In particular, the response operator in the truncating interf
space (Ms ,Ms) is given by

A~0,I,1̄;0,I,1̄![A~Ms ,Ms!5
t

t221
Y1[

t

t221
~X2t !,

~7.11!

e
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where the symbolX is defined byX5Y11t @see Eq.~7.7!#.
Then

D~Ms ,Ms!511A~Ms ,Ms!5
t

t221

1

Y1
W, ~7.12!

where

W5X222hX11. ~7.13!

A rigorous but straightforward algebra leads us to obtain
explicit expression ofW. The result is

W52S C1S2

F2
1

C2S1

F1
14pxeq0

2 S1S2

F1F2
D H C1S2F21C2S1F1

1C1C2~4pxeq0
214pxhq0

2!1
F2

F1
S1S24pxhq0

2

1
C1S1

F1
4pxeq0

2
•4pxhq0

22F3
2S C1S2

F2
1

C2S1

F1

14pxeq0
2 S1S2

F1F2
D1F3FS1S2S F2

F1
2

F1

F2
D

1S C2S1

F1
2

C1S2

F2
D4pxeq0

2

2S C1S2

F2
1

C2S1

F1
14pxeq0

2 S1S2

F1F2
D4pxhq0

2G J . ~7.14!

Since the first factor is independent of the surface, the sec
factor ~inside the middle bracket! equated to zero yields th
general dispersion relation for the plasmon polaritons in
truncated type-II superlattice.

In the limit of xe505xh , Eq. ~7.14! reduces to the form

W52F2S C1S2

F2
1

C2S1

F1
D FC2S1S F1

F2
2

F3
2

F1F2
D

1C1S2S 12
F2

3

F2
2D 2

F3

F2
S F1

F2
2

F2

F1
DS1S2G . ~7.15!

This is exactly the same as Eq.~104! of Kushwaha and
Djafari-Rouhani.9

Let us now look for the limit when medium I and mediu
II are identical@see the paragraph preceding Eq.~6.4!#. As a
consequence of this limit the general dispersion relation
plasmon polaritons@i.e., the middle bracket in Eq.~7.14!
equated to zero# assumes the following form:

S 11
4pa

e
xh coth~u8! D S 11

2pa

e
xe coth~u! D

2S 2pa

e D 2

xexh csch2~u!

5S ae3

ea3
D S ae3

ea3
1

4pa

e
xhD

3S 11
2pa

e
xe tanh~u! D . ~7.16!
n

nd

e

r

Note that this is exactly the same as Eq.~22! of Kushwaha,8

provided that we~i! interchangexe andxh and~ii ! replacex i
by 2x i( i[e,h). The point~ii ! has the same origin as ex
plained with reference to Eq.~6.5!, whereas the point~i!
refers to the difference that our superlattice in the pres
work terminates at the 2DHG layer instead of at the 2DE
layer as was the case in Ref. 8.

Substitutingxe50 in Eq.~7.16! and then replacingxh by
xe ~see the remarks made in the preceding paragraph! yields

11
4pa

e
xe coth~u8!5S ae3

ea3
D S ae3

ea3
1

4pa

e
xeD .

~7.17!

This is exactly the same as Eq.~31! of Kushwaha8 ~with
xe→2xe! and represents the dispersion relation of plasm
polaritons in the truncated type-I superlattice to include
effect of retardation. Hereu85ad852ad; with d8 as the
period of infinite type-I superlattice.

Next, we calculate the basic elements of the Green fu
tion dI(Mm ,Mm8), which would eventually lead one to ca
culate the complete response functiond̂(D,D) in the whole
space. The interface response theory4 provides us with

dI~Mm ,Mm8!5gI~Mm ,Mm8!

2g~Mm ,Ms!D
I21~Ms ,Ms!AI~Ms ,Mm8!.

~7.18!

This together with Eqs.~6.13!, ~7.10!, and~7.12! gives us all
the interface elements of the basic response functiondI of the
semi-infinite superlattice at hand. The results, forn,n8.0,
are

d~n,I,1̄;n8,I,1̄!52
t

t221
Z1F t un2n8u2

Y1
2

W
tn1n8G ,

~7.19a!

d~n,I,1̄,n8,I,1!52
t

t221 H F S2

F2
t un2n8u1

S1

F1
t un2n821uG

2Z1

Y1Y2

W
tn1n8J , ~7.19b!

d~n,I,1;n8,I,1̄!52
t

t221 H F S2

F2
t un2n8u1

S1

F1
t un2n811uG

2S S2

F2
1

S1t

F1
D Y1

2

W
tn1n8J , ~7.19c!

d~n,I,1;n8,I,1!52
t

t221 H Z2t un2n8u2S S2

F2
1

S1t

F1
D

3
Y1Y2

W
tn1n8J , ~7.19d!

whereZi stands for

Z1~2!5
C1S2

F2
1

C2S1

F1
14pxe~h!q0

2 S1S2

F1F2
. ~7.20!

In a compact form, Eqs.~7.19! can be cast in the form
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dI~Mm ,Mm8!5Fd~n,I,1̄;n8,I,1̄!

d~n,I,1;n8,I,1̄!

d~n,I,1̄;n8,I,1!

d~n,I,1;n8,I,1! G .
~7.21!

Here m[n,I and m8[n8,I. The other elements, for ex
ample, dI(Mn,II ;Mn8,II), dI(Mn,I ;Mn8,II), and
dI(Mn,II ;Mn8,I), can be written with the aid of the PTR a
stated before. With these results in hand, the application
the following general equation, analogous to Eq.~6.15!,

d̂~m,z;m8,z8!5dmm8H Gm~z,z8!2@Gm~z,1̄!,G~z,1!#

3GIm
21~Mm ,Mm!FGm~ 1̄,z8!

Gm~1,z8! G J
1@Gm~z,1̄!,Gm~z,1!#GIm

21~Mm ,Mm!dI

3~Mm ,Mm8!G
I

m8
21

~Mm8 ,Mm8!

3FGm8~ 1̄,z8!

Gm8~1,z! G , ~7.22!

provides us with the expression of the complete respo
function for the semi-infinite type-II superlattice systems.
Eq. ~7.22!, just as in Eq.~6.15!, GIm

21(Mm ,Mm) is the matrix
inverse of the bulk response functionGIm(Mm ,Mm). The
elements of the rectangular matrices are calculated simila
those in Eq.~6.16!. As such, the complete response functi
for the truncated type-II superlattice can be written as

d̂~m,z;m8,z8!5dmm8H 1

2Fm
e2~um/2!uz2z8u2

1

2FmSm

3Fe2~um/2!~11z!sinhH um

2
~12z8!J

1e2~um/2!~12z!sinhH um

2
~11z8!J G J

1
1

SmSm8
FsinhH um

2
~12z!J ,

sinhH um

2
~11z!J dI~Mm ,Mm8!F sinhH um8

2
~12z8!J

sinhH um8
2

~11z8!J G .

~7.23!

Since we already know the bulk response function,
inverse, and other specific forms, the problem that remain
the determination ofdI(Mm ,Mm8) in order to calculate the
complete response functiond̂. This is albeit a rigorous bu
not a very complicated problem once thegI(Mm ,Mm8) of an
infinite superlattice are known. Equation~7.23! as such cor-
responds to the situation when both of the points (z,z8) lie
inside the superstructure. There are, however, other s
tions, for example, where both points lie in the homogene
medium (2`<z<0), and where one point is inside th
of

se

to

s
is

a-
s

superlattice and other in the homogeneous medium. In s
cases, Eq.~7.23! assumes essentially different forms depen
ing upon the bulk response functions conformed to the
spective situations. The reader is reminded of the fact
the above response functiond̂ is only theŷ- ŷ element. The
otherthreeelements can be easily obtained by making use
the constitutive relations@see, for example, Eqs.~3.6!#,
which are interweaved in Eq.~3.5!. This remark is also valid
for ĝ in Sec. VI as well as for other response functions
Secs. III–V. Finally, we should point out that the same an
ogy as used to obtain Eq.~7.17! can easily lead one to reduc
the results following Eq.~7.18! corresponding to those fo
truncated type-I superstructure.

VIII. CONCLUDING REMARKS

In this section, as stated earlier, we comment on the a
lytical formulation of IRT generalized to several 2D sem
conductor structures. One of the notable features of IRT
that its framework, for any composite layered structure, d
not require the messy electromagnetic boundary conditi
and it represents the required results in an elegantly com
form. We particularly refer to analytical results obtained
Eqs.~3.16!, ~4.12!, ~5.3!, ~6.5!, ~6.7!, ~7.16!, and~7.17!. The
obtainment of these previously well-established results
the respective geometries not only emboldens our confide
in the framework of IRT but also demonstrates how read
they can be arrived at. It is worth mentioning that most of t
analytical results in the present work are independent of
particular model. For instance, one can always include
collisional damping and spatial dispersion by allowing t
imaginary parts in the dielectric function and by making u
of the hydrodynamical model, respectively. One can also
corporate the frequency dependence of the background
electric constants, which allows the coupling of plasmons
optical phonons. It is worthwhile to do numerical comput
tion by treating the frequency or propagation vector as
complex variable. Doing so will help one investigate the lif
time and propagation length of the plasmons in a given s
tem. The calculation of the inverse penetration depth~l! may
lead one to determine the limitations of certain experimen
techniques; for example, low-energy electron spectrosco
which may not serve a useful purpose ifl is very small.

Besides studying the numerous propagation characte
tics of the plasmons in superlattice systems, we are basic
motivated in the framework of IRT to study the local and/
total density of states~DOS! of these modes. The DOS of th
concerned modes in a given system can be obtained dire
from the imaginary part of the respective response functio
Let us focus on the plasmon polaritons in the truncated
perlattice systems. In these systems the accumulation o
terfaces gives rise to peculiar electromagnetic modes dis
uted as continuous frequency~bulk! bands. The truncation o
the superlattice system at the surface modifies the DOS
these modes, as compared to the mode density of an o
wise truly periodic system. In particular, one finds the is
lated branches appearing above, below, and between the
bands. The specific spatial location of these plasm
polariton modes in thev-q space greatly depends on th
ratio of the background dielectric constants of the truncat
medium and the first inner layer in the system. The kno
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edge of the DOS provides complete information on the
lowed plasmon excitations as a function of frequency
propagation vector at any depth in the superlattice syste
As a result, one can elucidate the infrared optical exp
ments performed on the moderately thick-layered superst
tures.

The IRT generalized to be applicable to the 2D semic
ductor structures in this work is, to our knowledge, the fi
theoretical formulation of its kind for investigating plasmo
excitations in numerous composite systems. We curre
have this response theory for similar structures subjecte
an external magnetic field in the Voigt geometry at hand a
the results will be reported shortly. The illustrative numeric
l-
r
s.
i-
c-

-
t

ly
to
d
l

examples of the present work are deferred to a future pu
cation.
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