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Green-function theory of plasmons in two-dimensional semiconductor structures:
Zero magnetic field
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A theoretical investigation has been made of the plasmon excitations in various two-dimeri2idnal
semiconductor heterostructures in the framework of a Green-funétibmesponse functiontheory. The
plasmon excitations in the periodic and nonperiodic systems are implicitly defined by the electromagnetic
fields that are localized at and decay exponentially away from the interfaces. The Green-function theory
generalized to be applicable to the 2D systems enables one to derive explicit expressions for the corresponding
response function@ssociated with the electromagnetic figJdshich can in turn be used to calculate almost
all physical properties of the systems at hand. A rigorous analytical diagnosis of the general results for all the
systems investigated here leads one to reproduce exactly the previously well-established results obtained within
a different theoretical framework. The elegance of the theory lies in its simplicity and the compact form of the
desired results. The impact and relevance of the analytical results have been discussed briefly.
[S0163-182698)05016-4

I. INTRODUCTION odic system of a two-dimensional electron ge@DEG).
Type-Il superlattices are typified by the InAs-GaSb system,
The seminal paper of Esaki and tdaid the foundation in which the conduction-band minimum of InAs is lower
of a field that is now becoming known as the “physics andthan the valence-band maximum of GaSb, leading to a trans-
fabrication of the systems of reduced dimensionality” andfer of electrons from onéGaSh layer to the othelInAs)
represents nearly 50% of the efforts devoted to semicondudayer and resulting into a spatial separation of electrons and
tor physics worldwidé.In this paper, the authors speculated holes in the adjacent potential wells, with the formation of
that a periodic modulation of the composition or doping of aelectrons and hole subban@s miniband$. For our purpose
semiconductor at a length scale shorter than the electroihis sufficient to consider type-Il superlattices as a periodic
mean free path would result in a folding of the Brillouin zone arrangement of alternating 2DEG and two-dimensional hole
into minizones showing strong dispersion effects leading tgas(2DHG).
exotic electronic and optical properties different from those Initial theoretical investigations into these man-made
found in the bulk. Early attempts on such quantized strucsemiconductors focused on various types of collective exci-
tures were focused on layered structures that confine chardations, such as phonons, magnons, plasmons, polarons, and
carriers to two dimensions, quantum wells, for example. Thenagnetoplasmons. The literature reveals that the elementary
original proposal had included two kinds of superlattices:excitations in these superstructures have most often been
compositional and doping. Compositional superlattices contreated in the framework of conventional theorfesych as
sist of alternating layers of two different semiconductors.the random phase approximatiRPA), the hydrodynamical
The compositional variation modulates the electronic potenmodel, or the transfer matrix method using electrodynamics
tial on a length scale shorter than the electron mean free pattuith appropriate electromagnetic boundary conditions. The
The doping superlattices consist of alternatmgandp-type  present work embarks on an investigation of the response of
layers of a single semiconductor. Electric fields generated bthe heterointerfaces in these systems, using a Green-function
the charged dopants modulate the electronic potential. Th@r response functigrtheory in a compact form. In a way it
keystone to the designed electronic and/or optical propertieis the generalization of Dobrzynski’'s interface response
in the superlattice systems is the band-gap discontinuity ofheory* (IRT) to the 2D systems. The Green functions or
the consecutive layers in the unit cell of the superstructuresesponse functions in the IRT are calculated as functions of
In this paper, we will confine ourselves to the composi-bulk response functions of each subsystem and ofirites-
tional superlattices that have seen relatively wide interesfaceresponse operators. These operators are shown to be the
both theoretical and experimental, in the recent past. Thedsear superposition of the responses to a cleavage operator
are known as type-l and type-Il superlattices. Type-| superef the corresponding ideal free surfaces of all subsystems
lattices are typified by a GaAs-f&ba, _,As system, in which and of the responses to the coupling operator of all inter-
the band gap of GaAs is smaller than, and lies within, that ofaces. The resultant response functions can then be made use
Al,Ga _,As, giving rise to the band-gap discontinuities in of to derive, literally speaking, any physical property of the
both the valence and conduction bands of the resultant sisystem at hand. They play a crucial role in the theories of
perstructure. The simplest model of the type-1 superlatticdight scattering(both Raman and Brillouln as well as in
that we will be concerned with is the low-temperature peri-various other physical phenomehalhe elegance of the
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present theory lies particularly in its simplicity. It is impor- Here d,=d/d,. Since we are interested in the TM
tant to note that our accomplishment lies in presenting anaip-polarized modes Eqg. (2.2) essentially takes the form
lytical solutions and thus physical insight into a rather com- 5 2 i
plex problem. The illustrative analytical diagnoses have been doe+d;  —1qd;
made at all stages to reproduce the well established results —iqd, qée—q2
and hence to embolden our confidence in the adequacy of the N o .
theoretical development. The computation is deferred to dhe condition of nontrivial solutions of such a set of the
future work. linear equations yields

This paper is organized as follows. In Sec. Il we derive M2 22 2
the bulk response function for an infinite semiconductor. In A;=a"=0"~dpe(w), 24
Sec. lll we analyze the infinite medium limited by a “black- wheree(w)=¢ (1— wglwz) is the local dielectric function;
box surface” and thus calculate the surface response funcca
tion. Section IV is devoted to the calculation of the response,
functions for a black-box slafi.e., an infinite semiconductor
limited by two black-box surfacésn the limit that the thick-
ness of the slab approaches zero. This applies to the case
a 2DEG bounded by two identical or nonidentical dielectric
media. In Sec. V we study the case of double inversion lay- qae+d>  —iqd, -
ers, which could be considered a buiding block of the type-II iqa 2 _2lle. o F o(z=2')1, (2.9
superlattice. Section VI deals with an infinite type-Il super- - 197z doe™d zy Tz
lattice. The case of a truncatésemi-infinite type-Il super- where | is 2x2 unit matrix andG;;(z,z')_refers to the

lattice is worked out in Sec. VII. All the results in Secs. VI (i,j)th element of the bulk response functiGifz,z'). Solv-
and VIl are shown, with a formal trick, to be reducible to in,g Eq.(2.5) yields '

those valid for the type-I superlattice. Finally, we comment,
in Sec. VI, on how the IRT in its compact form has been a

. Gy (z2,2')= e 27 (2.6a
able to reproduce exactly the previously reported well- yyL\é ZqSe ' '
established results and discuss briefly the implications of the
response functions derived in the framework of IRT for the L I
systems considered in the present work. Gay(z,2') =i 202 sgnz—z')e , (2.6b

0
ol

Byl_

E,|~ 2.3

o= (4mnee’/m* € )*? is the screened plasma frequency
nd ¢, the background dielectric constant. Heraefers to

the decay constant in the medium concerned. Employing the
appropriate Green functiofor response functionG(z,z’),

. (2.3) may be written as

ny GyZ

II. AN INFINITE SEMICONDUCTING MEDIUM . qq ot
GyAz,2))=i 5 sgnz—z)e = 7|, (2.60

First we describe the geometry at hand. We consider the 200€
electromagnetic waves propagating along\trexis with an- 1
gular frequency» and wave vectog=gq, . TheX component G,(2.2')==—>5—[2a8(z—2")— q’e” alz—Z'\]_
of the wave vector may be taken to be zero without loss of 2qpae
generality. The plasma waves, here as well as in the latter (2.60

part of the work, will be assumed to observe the spatial o1y Egs, (2.5) and (2.6) 5(z—2') is the Dirac delta function

plane is the sagittal plane. _ which will be made use of in the following sections.
After eliminating the magnetic field variabR from the

Maxwell’'s curl-field equations, we obtain the wave-field

T . " Ill. AN INTERFACE BETWEEN TWO MEDIA
equation in terms of the macroscopic electric field ve&opr

We now consider a semiconducting medium limited by a
black-box surfacdBBS) at z=0. By BBS we mean an en-

Here the dielectric functiomr is a scalar, since the system we tirely opaque surface through which electromagnetic fields

are concerned with is not subjected to any external magn cannot propagate. Conceptually this is achieved by stressing

tostatic field and the physical system is assumed to be is%atc (the vacuum speed of lighand e {the dielectric func-

tropic. Also, note that we are interested in the nonmagneti :glrg \e/aEgt?o]:)srijrot.hAeSsZL:T?iT:,ovr\mlguvgtriI;e tgig?sxg)l S"r(;]lfrl'
materials, so thaB=H in the Maxwell's curl-field equa- 9 9

tions. In EQ.(2.1) go=w/c is the vacuum wave vector, ited by a black-box surface as

VX (VXV)—qieE=0. (2.1

being the velocity of light in vacuum. We will take the spa- 0(2)[cV X E]+ B=O, (3.1)
tial and temporal dependence of the fields of the form of
'@~ |n the present situation, E¢R.1) can thus be cast 6(2)[cV X B—D]=4mJ. (3.2)
in the form
The overdot orB andD refers to the time derivative of the
a3e—q?— a2 0 0 E 0 respective quantities an{z) is the step function. Eliminat-
0 2,02 _iqo EX _lo ing B from Eqgs.(3.1) and(3.2) and performing all differen-
Qo€ 72 a7 YT : tiations provides us with
0 ~iqd, qfe—q?|LEl 1O

2.2 0(2)[V X (VXE)—2€E]+ 8(z)V(NE=0, (3.3
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where the so-called black-box cleavage operstdr) is de- z
fined as a X 3 matrix? It is noteworthy thatV (r) has to
have the opposite sign if one considers the complementary
(in the infinite spacemedium.V (r) in the present configu-
ration takes the form

5, 0 0
V=0 4, —iq]. 3.4
00 o0

FIG. 1. The schematics of the semiconducting fishaded re-
M gion) limited by two black-box surfaces(h<z=< +h) before tak-

As such, the part of Eq(3.3) concerned with the T ri]ng the limit d( = 2h) 0.

waves is written in terms of the surface response functio

9(z.z') as In Egs.(3.11) and (3.13 g4(z,z") are the corresponding
Qoe+ a2 —iqd, Oyy Oyz 9, —iq complete response functions. Assuming now that the nega-
(2)| . P 2 o + 8(2) 0o o tive and positive half spaces are filled, respectively, by ma-
109z Qo€ a"J19zy Oz terials 1 and 2, we calculate
9yy 9yz < g %(0,0=9,1(0,0+g.2(0,00= — (;C1 + a,C»).
X =8(z—2)I. (3.5 AT TS T 9s2 1 that 22
92y Oz (3.1
This, after some algebra, yields Hereg, %(0,0) is the inverse of the response function in the
iq interflace space. All other elements gfcan be obtained
gyz(z,z’): - m az/gyy(z,z’), (3.63 from
O_ 91(2.2')=G(2,2')—-G(2,0G~*0,0G(02")
! Iq ’ —_ — 12
U,(2.2)= e d,9y,(2,2"), (3.6b +G(z,0G%0,09,(0,0G %0,0G(0z2").
0
. (3.15
iq 8(z-7") _ : _
0:A2,2' )= 5= 0yl2,2' )+ 7—>. (3.60 Equation(3.15 allows us to study the four different situa-
Yo~ 4 Yoe~ 4 tions, i.e.,z,z’ >0; z,z' <0; z>0; 2’ <0, andz<0; z' >0.
Then one obtains, from E¢3.5), The interface plasmons are describable via the dispersion

Cl A2 (P — a) ot 8(2)d —sz—2"), (3. relation obtained through dgf “(0,0)| =0 that yields a well-
[0(2)(72= a)Gyy+ A(2)9:8y,1=o(2=2), (37 established reslspecified by
whereC= —qSE/aZ. It should be pointed out that we will .
1

henceforth consider only thg-y component of the Green RS 2:0_ (3.16
function. Now the response operator at the surfdze @ ap
> 0= positive half spaceof a black-box crystal is written as

AL0Z)=V(2)G(z,2)],~o= 3| (38
and define We now consider a semiconducting film limited by two
L parallel black-box surfacesee Fig. 1, such that—h=<z=<
A0,0=1+A40,0=5. (3.9 +h. The basic formalism for this black-box slab can easily
The inverse of the surface response function is given by bhe gene_ralifz_e_d bt))ll mal;lkki)ng usef of the CC;]”CEDtS %§V9|0ped for
_ the semi-infinite black-box surfaces in the preceding section.
95 '(0.0=4400G *(0.0=~aC (310 However, this is not our end point. We will i%tend to%ake the
and the complete surface response function limit d(=2h, the thickness of the film}- 0, which implies a
" N -1 p 2DEG virtually limited by two unidentical semiconductors or
9s(2,2')=G(2,2') ~ G(2,04s "(0.0A02) dielectrics. We will specify that situation by assumidg-0
1 , , ande—o but ed— finite in medium Il of Fig. 1. This then
=" %aC [e ez ?l+ee@2)] (311  |eads us to define the following physical approximations to
_ _ _ be imposed®— —x, a?d’—0, ale—0, a?/e— —q3 and
Let us now write EQ.(3.5 in the negative half space pence
(z<0) by changing the sign of the cleavage operatoiVe ) )
get, corresponding to Eq3.7), ed—4mye=a“d— —4mqgxe, (4.1

CL6(2)(92— a®)gyy— 8(2)d,9,y]=8(z—2'). (312  Wherex.=—(ne’/m* w?) is the 2D polarizability function,
which is related to the conductivitfo) such that o
=—liwye, With ng=nyd being the surface carrier concentra-
tion in the resulting 2D sheet. Equati¢h 1) will play a very

IV. A FILM BOUNDED BY TWO MEDIA

Then following a procedure analogous to E¢%8)—(3.11)
leaves us with

gs(z,z’)zG(z,z’)—G(z,O)Agl(O,O)AS(O,z’) important role in the obtention of the desired results in the
1 remaining part of this paper.
__ —alz-7'| 4 gta(z+?) The response operator is written, with the aid of Egs.
2aC L€ € I B3 311 and3.13, as
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1 - 1 1 e—ad
_ " a—ath+2 =—h _
e , Z - _
2 CMM)==Clgad 4 (4.9
As(z,2)= (4.2
_Eefa(hfn, z=+h. Then
<_1 _ g ‘—*71
Therefore gs (M,M)=A¢(M,M)G™(M,M)
1 aC cosh ad) -1
— _ ~ a—ad = .
- - - 2 e sinh(ad) | —1 cosh ad)
AM,M)=T+A(M,M)= IR R 4.5
—Ze -
2 4.3 Now, if we consider a real film bounded by two uniden-

tical media, say 1 and 2, respectively, in the negative and
where d=2h is the film thickness, and the bulk responsepositive half spaces, the inverse of the total response func-
function tion in the interface spaceV{,M) is given by

- alcl— a’C COtI”( 0)
aC csch 6)

aC csch( 6)

gr (M, M)=G"(M,M) +G5 *(M,M) +G;"(M,M)= — 4,CpaC Cotw)}, (4.6

where = ad, C;= —qoe,/a andi=1, 2 is the suffix as-
signed to the quantities in the media | and Il of Fig. 1. Thedet| O Y(M, M)l QO 2d
complete response functions in the whole space are obtained

€1
+—+4
a, WXJ

(4.10

from®*

§:(D,D)=G(D,D)—G(D,M)G"{(M,M)G~}M,D)
+G(D,M)G"X(M,M)G:(M,M)G1

X (M,M)G(M,D), (4.7)

whereg;(M,M) is the inverse ofg; *(M,M). Remember,
we are finally interested in this section in calculating
0:(D,D) when the pointg,z’ belong to either medium | or
medium II, but not to medium Ill. This is because we ulti-
mately intend to eliminate the medium Il by taking the limit
In view of this, it is necessary that we
write B{l(M,M) and hencej;(M,M) within the said limits.

d—0 (=2DEG):

Making use of the series expansion

t 6—1+0 03+
cotmO)=5+3 25"

0 763 48
csch )= 7 6+360 , (4.8

we write g; *(M,M), Eq. (4.6), to the first ordelin correc-
tion) as

€ €, ed € ed
. | @7’ a—ﬁ?) "2 e
g (M,M)=do e e € e, ed
e Zd e 3

(4.9

In view of the limits imposed, the first term in each of the

four elements predominates. As such,

Then to first orde(in correction the inverse ofg; (M, M)

is found to be
1 1 1
€r ) 1 1 |

2 ﬂ-f——-|-477'
Jo a; | ay Xe

G '(M,M)= (4.12)

This implies that the determinant @§(M,M)=0. This is,
however, least troublesome for any part of the calculations.
What is important is to make use of the proper series expan-
sion ing; *(M,M) in order to have dé; *(M,M)|#0. The
plasmon dispersion relation specified by [get(M,M)]

=0 is given, from Eq(4.10),

61 6
—+ —+4mx.=0.
a; ap

(4.12

This represents the plasma modes of a single 2DEG layer
sandwiched between two semiconductors or dielectrics char-
acterized by the dielectric constartsande,, and is a stan-
dard resulfsee, for example, Eq8) of Kushwah].

It is important to note that the meaning of the above ap-
proximation, literally speaking, is that for a single film ap-
proaching the limit of a 2DEGor 2DHG), one can approxi-
mate,

€ €
—cothl§) — —cscho)
-1 P (44 o
G =agl . :
-3 csch 6) - coth( 6)

(4.13

in Eq. (4.5, by
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€ 62 € 02
g2 w6 1*?) _E(l_E)
S 1 0 02 € 02 ’
‘w(l‘ﬁ) w(“?)
4.14

where the correction term isnportant and necessamt the
stage of calculating the determinant@}'fl(M,M). The con-

cept and consequence of this statement will be encountered

at many places in the following sections.
Now, the Green functions for media | and Il virtually

M. S. KUSHWAHA AND B. DJAFARI-ROUHANI

separated by a 2DEG can be easily written down from Eq. FIG. 2. The schematics of a double-inversion-layer system—a

(4.7). The result is as follows:
(i) 2,2’ e medium I:

ay

—a|z—7'|
5 e
2qp€1

91(z,2")=

ela—exlar—4mye ra(z+2')

; (4.15

e lajtelar+4mye

(ii) z,z' e medium I

e_“2|Z_Z"

gf(zlz ): 2q%62

e lay—erla;—4mye

efa2(2+z’72d)
61/a1+ 62/&2"’477)(6

(4.19

(iii) ze medium | andz’ e medium 1I:

1
€lait elar, +4my,

e¥Za~ 012(2' —d).

(4.17

(z,2") !
2,7')=—
I a5

—a;Cy
— a.C, coth(6,)
a.C, csch 6,)

Gy 1(M,M)=q3

— aC, coth(6,)
- C!2C2 COt}'( 92)

2DEG (shaded regionand a 2DHG(blank region separated by
medium Il of thicknessd,. The symbolsd, and dy, refer to the
thickness of 2DEG and 2DHG layers, respectively.

(iv) ze medium Il andz’ e medium I:

1 1 )
— ealz e az(zfd).
qO 61/a1+ 62/a2+4’7T)(e

(4.18

Within the framework of IRT, one can build up two new
systems depicting semi-infinite and finite systems. These
systems can further serve the purpose of our building blocks
to construct a double inversion layer and a unit cell of type-II
superlattice systems.

gf(ziz,):

V. DOUBLE INVERSION LAYERS

To be precise, we start with a system, as depicted in Fig.
2, with four interfaces delinking the five media. Ultimately,
we will go to the limitd.,d,—0, which implies a double
inversion layer system. The inverse of the response function
of such a system, prior to taking the above-mentioned limits,
can be written by addinﬁs_il(M,M) of the different layers
and the semi-infinite media. The result is

a.C, csch( 6,) 0 0

0(2C2 CSCK 02) 0

(5.

0 a,C, cschf,)  —a,C, coth(8,)  anCy csché,) |’
—ahCh COtH Gh)
0 0 ahCh CSCK Hh) - ahCh Cotf( 0h)
—a3Cs
|
where Ci=—djei/a?, i=1gh,23, and 6=o;d;;  of G;%(M,M). A careful analytical diagnosis, however,

j=e/h,2. It is straightforward and simple algebra to proves that the two alternatives turn out to be exactly

calculate the inverse and the determinantﬁgfl(M,M).

identical.

The pertinent question at this stage is whether to take Let us first take the limitd.,d,—0 and consequently
the limits d.,d,—0 before or after calculating the inverse write Eq. (5.1) to the first order in corrections. Then we
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limits imposed, the most S|gn|f|cant and predominant terms

calculate the d@gl(M M)| to the first order. In view of the ( €
are those proportional te, /a d;(i=e,h). As such, we ob-

€ €3 €2
+—= coth(6,) +4mxe || — + — coth(6,) +4mxp,
as a3z

tain € 2
—(— cscr(az)) =0. (5.3
deddy (M, M)| =8 —o || 2+ th 9 o
e M) |= — —co
gq ( ) %;ﬁa;hdz—h . h(65)
e € This is exactly the same as E¢7) of Kushwahd, and
+47r)(e} =42 coth( 62)+477Xh} thus represents the plasmon dispersion relation in the double-
@3 @2 inversion-layer system. Equatiof6.3) subjected to the
€ 2 limit d,—o~ reproduces two independent plasmon
— —cschez)} ] (5.2 modes supported by 2DEG and 2DHGee Egs.(8) in
@2 Kushwahd].
The dispersion relation defined by @’g‘tl(M,M)|=0 is Now we calculate the inverse @’gl(M,M). The result
given by is
|
. n
E+2ctnh(¢9 ) —+—ctnh(0 ) zcscr(a ) 2cscr(e )
az Q) 2 a3 ay 2 A 2 ay 2
+4mxy +4my,
€3 € €3 € €2 €2
o azctnh(ez) @ azctnh( 0,) azcscrwz) azcscrwz)
+4xn +4m7x,
Go(MM) = (5.4
%o Ecscl‘(a ) Ecscr(e ) —+—ctnh(0 ) S+2ctnh(¢9 )
ar 2 ar 2 ag 2 a; ap 2
+4m7x, +47xe
€ € € € € €
—zcscI”(BZ) —chcr(az) —1+—thnh(02) —1+—2ctnh(02)
a3 a3 a; ap a; ap
L +4myx, +4m7xe
|
where Similarly, one can write down the complete response func-
tions in other situations. We do not expand on this simple
_ €3 € writing and leap ahead to the case of an infinite, periodic
A= a—l + a— coth 6,) + 477)(9) a_3 + a_2 coth(,) superstructure.
€ 2
+4mxn | — P csch(o,) | . (5.5 VI. AN INFINITE TYPE-Il SUPERLATTICE
2

We consider a four-layer superlatticgee Fig. 3. Out of
The complete response function in the whole space is nowhese four layers in the unit cell, we will finally take the limit
obtained from Eq. (4.7 with G(M,M) replaced by d_ d,—0, and medium %Il. The resulting superstructure
Ga(M,M), which allows us to study many situations, suchill then represent a type-Il superlattice in which the alter-

as, for example,z,z'el; zz'ell; zz'elll; z(z')el,  nating 2DEG and 2DHG are embedded in a dielectric me-
() ell; z(z') el z’(z)eIII; z(z’)el, z’(z)elll, etc.  dium I=Il.
For instance, foz,z’ e 1, we obtain To start with, each layer of widtld;, is labeled by the
1 indexi(=1,2g,h) within the unit cell designated by an in-
s T P €1 € dexn. All the interfaces are taken to be parallel to the
" — aglz=2'| f ) = 22 ~ b
9a(2.2") 205€; © (al a; coth(62) plane. This means that tlzeaxis is the superlattice axis that

observes the periodicity with a perio®=d,+d;+d,
+d,. We replace th& coordinate by two variablesni,z)
such thatm=n,i; —e<n<+~, The equivalent notations
arem=(n,i)=i+Nn; N being the number of slabs within

(5.6) the unit cell. Also, there are two different ways to label one
and the same interface:

S+ 2 coth( )+ 4
ay T a, OO+ AT

2
] ay z+z)

_47TXe)

+|— cscr( 05)
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— [ (n,i,)=(n,i—1,) if i#1 Bloch theorem, we can use the spaéé,k=q,) instead of

(m1)= (N1D=(n—1N1) if i=1. the infinite space N1). The space 1) contains onlyfour

" Y stateg(i.e., four interfacekin the unit cell. In Fig. 3, the four
The response functiogi (M, M) for an infinite superlat-  states are labeled by the encircled numbers 1, 2, 3, and 4. As

tice is an infinite “tridiagonal” matrix. With the aid of the such, we write

€h €h 0 €2 “ig
— coth(6,) — — csch 6p) ——csch6,)e
ah h )

€2
+ — coth(6,)
a3
€h €h €1
— — csch6y) — coth(§,) — — csch{6,) 0
ahp p ag

€1

+ a— coth( 61)
1

g (M,M;k)=q3 (6.1)
€1 €1 €e

0 — —cschg,) — coth(6,) — — csch6,)
aq (49

ag

€e
+ — coth( 6,)
Qe

€ i €e €e
— —csch 6,)¢€ 0 — — csch6,) — ctnh(6,)
ap Qe Qe

€2
+ — coth(6,)
ap

with ¢=kD. We now impose the limitsl,d,—0 to calcu-  type-Il superlattice is given bjAg; =0, which implies that
late the inverse Oféfl(l\/l,l\/l;k), which is, in principle, the middle bracketed terms, in E(6.3), equated to zero
needed to write the complete response functions. We firstields the desired dispersion relation.

determine the determinant gf X(M,M:k) to the first order Let us now consider the special case when the material
in correction. In view of the limits imposed, the most signifi- layers I and Il are identical. That means trat=€,=¢, a;

cant terms are the those proportionakféa’d; (i=e,h). As ==, 01=dy=d; 6,=6,=6=5,=5,=S, C,=C;
such, we write =C, and$p=kD=2kd. As such, Eq(6.3 simplifies to

€ 2 o
~ o~ € € =—92| — — — Si
dqufl(M,M;k”:qg 2e h As,, 6.2 AgL 2(a> = [cos{de) cosh26)+ p sinh(20)

@ede a’ﬁdh
o 2
where X(2mxet2mxn) +2 sinr?(a)(;) 277)(9277)(h“.
€1 € l 1 64
ASL:—Z——E[COS{¢)_[C1C2+§(47TX6 . ( )
¥y X2 91 The middle bracketed terms equated to zero yields, after

some algebraic manipulation,
TA ) (27Ta

a ag
+47TXh)<_ C152+—C251) 2

€2 € 2T« 2 )
1+TXeSe l+?XhSe e XeXhSh=0,

1 aa; €, ay € ay
+§3152< v, 477)(.:347'f)(h+a—16—24‘0[—26—1 , (6.5
6.3 where the structure facto, andS;, are defined as follows:
where the symbol€; andS, stand forC;=cosh@) and S; _ sinh(2ad) _ 2 sini{ad)cog kd)
=sinh(@). In the general situation considered hitherto, the™ cosi2ad)—cog2kd)’ coshi2ad)—cog2kd) -

dispersion relation for the collectiéulk) excitations in the (6.6
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Equation(6.5) is exactly identical to Eq(11) of Kushwahd sinh(ad’)

which was derived there by making use of the transfer matrix Se= cost{ad ) —cogkd) " (6.9

method employing messy boundary conditions. The apparent

difference of sign in Eq(6.5 and Eq.(11) of Kushwaha

owes to the definitions ofe andp. . Equation(6.7) is the desired dispersion relation for the type-I
A formal trick to derive the dispersion relation for the superlattice, and is exactly the same as EB6) of

collective (bulk) modes for the type-I superlattice is to sub- k,shwaha Note that the period of the type-l superlattice is

stituted’ =2d and y,,=0 in Eq.(6.5. The result is d’
2ra Next, we calculate the inverse GFl(M,M,k). Taking
1+ — xS.=0 (6.7)  the adjoint of the matrix of cofactors and dividing the result-
€ ing matrix by the determinant aj*(M,M,k), Eq. (6.2,
where the structure fact@®, is now defined as leaves us with
g(M,M k)= !
ST alcos(@)— 7]
€15,  GoS, Ci152 , G35,y S2 S1 _i4 S2 S1 i
T T To—e - T €
F, F, F, F, F, F, F, F,
515, 515,
+4 I~ 2
77')(erFle +477Xequ1F
CiS; C,S, CiS; C)S, S2 51 i Sy Si s
T -+ Lot 4 —T e
F, F, F, F, F, F, F, F,
$152 S18,
+aAmx.gi—— |+ I—
erqOFlFZ 47TX€q0F1F2 (6 9)
S, S, . S, s, . C\S, C,5, CiS, C,S, '
— +—¢'? —+—¢? + +
F, F, F, F, F, ' F, F, F,
515, S$15,
+ — |+ I_—=
47Xnq0 F.F, 47 Xnq0 F.F,
5.5 | 52,5, |05, G5 |8, G
F2 Fl F2 Fl F2 Fl FZ Fl
S152 S152
2174 274
+477th0FlF2 +47Tth0F1F2
|
whereF;=q3e;/e; and 1 QiNKD - N+
—fdk ==, (6.11
2 cogkD)—n D t—1
1 C;S, G5 where
7=C1Cot 5 (477)(qu+477th§)(|:—2+ F,
n—n"—1, n>1
1 1 Fi F ={ pxiJ1—7% —1<y<1
t3 $1S; ﬁ4ﬂ'xqu4ﬂ'xhqg+ ETE =\ 7=l . 7 Y (6.12
1F2 2 1 n+vnp—1, n<l,
(6.10 we write
In the present form Eq6.9) will help draw a direct parallel (n,] TN | 5: _ C1S, 4 C2S,
between the following results and some earlier publisheéJ ey Fs Fq
ones.
After Fourier analyzin@’(l\~/l,lr/l,k) and making use of the + 47y’ S1S; i (6.133
identity CIOFF,| t°—1 '
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1o’ SZ [n—n’|+1 S [n=n’—1]+1 1 . Clsz C251
g(n,1,n",1,1)=— [F t +Flt z-p  9nLLn L )=- SRR
(6.130 P —
gl din’ 1 D)= —| 22 =iy S gnenteagen| L Hamndo £ } -1 (6.139
1 1 1 1 L F2 Fl t_2__1’

(6.130 or, in matrix form,

CiS; G5 S152) jnen| S2 nn| L St nen—1)
- N (F2+ F, 477XequF t 2t +F1t o
I(Mm Mm) == 77 S, S ., CiS, GC,S; Y 619
t|n n’| _t|n n’+1| + + 47 th t|n n’|
2 ) Fo o Fy °FiF2
|
Here m=n,l; and m’ The other elements for ex- We now have everything at hand to write the complete
ample, g(M ;M ), g(Mn,,M ), andg(Mp, 1sMpr ), response function in the whole space of eventually

can be obtained by noticing the “periodic transformation N(=2)-layer superlatticg(m,z;m’,z’) to be defined b
rules(PTR”: ( n,Il,1)=(n,l,1) and (,Il,1)=(n+1,1,1).
Now it is necessary to conform the bulk response func- —

tion, Eq.(2.6a, according to the geometrical configuration g(va;m/aZ/):5mm’{Gm(Z-2/)_[Gm(za 1),Gn(z,D)]

used in the superlattice system. This requires replaciagd o

Z' by zd/2 andz’d;/2, respectively; whence one can calcu- < Gn(12)

late G;(M,M), G.(M,M), and henceG;(z.1), Gi(z1), XGn Mm M) g 157
+[Gm(2,1),Gm(z.1)1Cn (Mm,Mm)§

G(1,2"), andG,(1,z"), which have to be used later.

Z ©
X (Mp,Mp)GH(Mpy M)

Gm(1,2')
N E 6.1
1 Y G(12) (619
which, after a few algebraic steps, leads us to write
I 1 1
A m! 7'\ — ’ (0m/2)|z—2"| _
q g(m,zzm’,z2")=6m [ZFm e F. S
| . Om
X e*(ﬁm/Z)(lJrZ)Sln ? (1_27)
d2 Il +e (fm2(1-2) sinh[% (1+2') ]
I s s h{am (1 )}
sinh— (1-2) ¢,
d1 SnSiy 2
dp | _
L 0 !
. sinh{—m(l—z’)]
. | Om - 2
) smh[;(lﬂ)} I(Mm,My") :
) o ) sinhf — (1+2')
FIG. 3. The schematics of an infinite type-Il superlattice sys- 2
tem. The symbold; (i=1,2g,h; with 1,2¢,h referring to the I, (6.16

I, shaded, and blank laygrstands for the thickness of the respec- -

tive layer. Encircled numbers refer to the four states., four ~ Where the X2 matrixg(M,,Mp,/) can be easily obtained
interface$ in the unit cell belonging to the reduced spakke  through a careful diagnoses of Ed$.14), using PTR. It

D=d,+d;+d.+d, is the period of the superstructure. The letter Should be pointed out that the formal analdgynsidered

7 refers to the superlattice axis angl to the direction of between Eqgs(6.5 and(6.8)] leading to Eq(6.7) can easily

propagation. convert the results following Eq(6.9) corresponding to
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P4
—>
Y

d

o, P2 Fa

- — — s, S
V(M,M)= . (13

I

S, ’s, 0 °

Here M is the set of the interfacén=1, Il, =1). We are
interested in the response operator whose elements are
A(L,Il, =1;M ), whereM,, is any of the interfaces of the
truncated superlattice. The response operator is given by

! A(LILLM ) =Ve(4, 11,431, 1) (L1, 1M )

FV(L,1,1;2,11,1)g(L, 1,1 M ).
(7.4

With the aid of PTR, Eq(7.4) assumes the form

AO,LLN,i",)=V(L,I,1;1,1,1)g(L,1,1;n",i", 1)

+Ve(1,11,4;1,1,1)g(0,, Ln’,i’, 1)

(7.53
and
FIG. 4. The schematics of a truncatéat the surfacez=0) AN N A A A A A A s
type-1l superlattice system. The truncation of an infinite superlattice A(LLN" 17D = V(L ILL LI D2, LLin"i". 1)
(I_:lg. 3 results |_ntq a ser_nl-lnflnlte_ superstructure in Whlc_h the re- +Vo(L,1,1;1,1,1)g(0,1, Ln’,i",1).
gion —<z=0 is filled with a medium Ill. The surface=0 in the
framework of IRT is defined byr(,i,z)=(0,l,)=(111,1). (7.5b

F Egs.(6.13, (7.3, and(7.5), it ith n,n">0
those for the type-l superlattice. In what follows, we will rom Egs.(6.13, (7.3, and(7.5), we write (with n,n )

concentrate on the practically realistic situation of truncated o _ 'l
(semi-infinite superlattices. AO,,Ln",1,1)= 7= Y, (7.6
VII. A TRUNCATED TYPE-Il SUPERLATTICE where
We consider an infinite type-Il superlattice truncated at an F, C,S; )
interfacez= 0, such that we have a semi-infinite superlattice V1=~ CiCot == S5+ = 4mxedo
with a different mediun{Ill) in the region—<z=<0 (Fig. 2 1
4). Let us assign a subscript 3 to the quantities in this me- C;S, C,S; S,S,
: Ol =(01 T=(1 i —Fg + +aAmx 95 ——|. (7.7
dium. The surface=0[=(0,l,)=(1,11,1)] perturbs an oth F, = °F,F,
erwise periodic superstructure. This perturbation in the
framework of IRT is accounted for by a cleavage operatoSimilarly,
that removes the layan[=(n,i)=(1,11)] and a filling op- n1
erator that fills in the negative half space ¢ <z=<0) with A0 I 1n’ | 1)= Y, 7.9
a medium Ill. The cleavage operator for the existing situa- I e B
tion is defined as follows: where
-1/1 1\ -1/
NIIVEVINRY Os2 (1,1 Os2 (1,1 St S, Sit
V(M M)=V;—| "7 — = —C._C.t_1 _ 1
ol )=Vi 0-(1,) g5t (1,1) Yo=Cp—Cyt F_1477thg Fs 5T (7.9
eC el Combining Eqs(7.6) and(7.8) yields
< o @2 S, ay S "1
=Vi—qp 1 c. | (7.9 — ., =t ,
A AO,I,Ln’,i ,1)=in/; i'=12. (7.10
a2 SZ az SZ . . . .
where the filling operator In particular, the_z response operator in the truncating interface
space M,My) is given by
v =q2[0 ° (7.2 T T t t
7700 e3/ag) ' AOLLOLD=AMs Mg)= 77 Y1= 7 (X-1),

Equation(7.1) together with Eq(7.2) can be cast in the form (7.1
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where the symboX is defined byX=Y;+t [see Eq(7.7)].
Then

1
—W, (7.12

A(MSiMs):l_’_A(MS!MS):ﬁYl

where

W=X?—279X+1. (7.13

A rigorous but straightforward algebra leads us to obtain an

explicit expression otW. The result is

W= — Cézsz + Céfl +47TXqu %) ( C,S,F,+C,S,F,
FCCoamH AT+ " S1S,Amxnd;
CiS 2'477th3_|:§< C;Sz+ Césl
2 1
+amxedy Fl? E Slsz( Fi Ei)
" ( Céfl‘ %)477)@(:](2)
_ ( Cézsz n Cé?l +4mx.03 %)477)@(]4 ] (7.14
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Note that this is exactly the same as E2p) of Kushwahd
provided that wei) interchangey. andx,, and(ii) replacey;
by —xi(i=e,h). The point(ii) has the same origin as ex-
plained with reference to E(q6.5, whereas the poini)
refers to the difference that our superlattice in the present
work terminates at the 2DHG layer instead of at the 2DEG
layer as was the case in Ref. 8.

Substitutingy.=0 in Eq.(7.16 and then replacing, by
Xe (see the remarks made in the preceding paragrgplds

Ao

€az €

Xe]l-
(7.19

This is exactly the same as E(1) of Kushwahi (with
Xe— — Xe) @nd represents the dispersion relation of plasmon
polaritons in the truncated type-l superlattice to include the
effect of retardation. Her@d' = ad’=2ad; with d’ as the
period of infinite type-1 superlattice.

Next, we calculate the basic elements of the Green func-
tion d(My,,My,), which would eventually lead one to cal-
culate the complete response functa{D,D) in the whole
space. The interface response thégmovides us with

14 axes t 0’ €3y €y
€ Xe COth(6")= cas

d(Mp,Mp)=g(Mp,Mp)
~ (M, M)A (Mg, MA(Mg,Mp).
(7.18

This together with Eq96.13), (7.10, and(7.12 gives us all
the interface elements of the basic response fundiofthe

Since the first factor is independent of the surface, the secongbmi-infinite superlattice at hand. The results, fign’ >0,
factor (inside the middle brackgequated to zero yields the zre
general dispersion relation for the plasmon polaritons in the
truncated type-Il superlattice.

In the limit of y.=0= x;,, EQ.(7.14 reduces to the form

2
t :
d(n,1,1;n’,1,1)= le{tln—”——l

tn+n’

" . <0152+ CZSI)[ (Fl Fé ) (7.19a
=—F2 - || Lo\ =~ _
F2 F]_ F2 F]_FZ d(n,l,l,n,,l,l): 1 H:EZ [n—n ‘+I§ [n—n —1|:|
3 2 1
F2\ Fs(F1 Fs
tCiS| 1=z - | ) SS2| (719 Y. L,
Fs5 2\F2 3 -7, W tntnt (7.19H
This is exactly the same as E@L04) of Kushwaha and
Djafari-Rouhant’ _ t S, Y ,
Let us now look for the limit when medium | and medium ~ d(n,1.Lin", 1, 1)= = 5— [F— th=n'l4 = tin—n’+1]
Il are identical[see the paragraph preceding E§4)]. As a 2 !
consequence of this limit the general dispersion relation for S, Sit 1
plasmon polaritongi.e., the middle bracket in Eq.7.14) (F + = ) W Ny (7.199
equated to zefoassumes the following form: CEE
t S, Sit
da 27a -n' — [n—n'| _
(1+—6 Xh coth(8") 1+—6 Xe cotf(fD) dn,1.Ln" 10 -1 rzzt (F Fl)
Y.Y
27a\? —1 2 nen’
—( ) XX, CSCH( ) X W t ] (7.199
whereZ; stands for
_[as (a_€s+ dma )
\eas)\ eas C1S; G5 $1S;
2 1 12

(7.1

2w
x| 1t e Xe tank(&)). In a compact form, Eqg7.19 can be cast in the form
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- d(n,l,T;n’,l,T) d(n,I,T;n’,I,l) superlattice and other in the homogeneous medium. In such
dMy,Mp)= d(n.1.1:n’ |T) d(n, 1,10’ 1,1) | cases, Eq(7.23 assumes essentially different forms depend-
o e (7.21) ing upon the bulk response functions conformed to the re-

' spective situations. The reader is reminded of the fact that

Here m=n,l and m’=n’,l. The other elements, for ex- the above response functiahis only they-y element. The

ample, E(Mn,,, Mo ), a(Mn,l Mo ), and Otherthreeelements can be easily obtained by making use of

d(My. ;M 1), can be written with the aid of the PTR as the constitutive relationgsee, for example, Eqs(3.6)],

stated before. With these results in hand, the application o\f/hiCh are interweaved in E¢3.5). This remark is also valid

the following general equation, analogous to E8j15), or g in Sec. VI as well as for other response functions in

Secs. llI-V. Finally, we should point out that the same anal-

ogy as used to obtain E¢7.17) can easily lead one to reduce
a(m,z;m’,z’)= amm’[Gm(Z’Z,)_[Gm(Zi 1),G(z,D] the results following Eq(7.18 corresponding to those for
truncated type-l superstructure.

- Gmn(1,2")

X G (Mm,Mm) G (12" ] VIIl. CONCLUDING REMARKS

+[Gm(2,_),Gm(Z,1)]6;11(Mm,Mm)a In this section, as stated earlier, we comment on the ana-
Iytical formulation of IRT generalized to several 2D semi-

x(Mm,Mm,)ég]}(Mm, M) conductor structures. One of the notable features of IRT is
_ that its framework, for any composite layered structure, does
G (1,2") not require the messy electromagnetic boundary conditions
Gn(12) | (7.22 and it represents the required results in an elegantly compact

form. We particularly refer to analytical results obtained in
provides us with the expression of the complete responskgs.(3.16), (4.12, (5.3, (6.9), (6.7), (7.16, and(7.17). The
function for the semi-infinite type-Il superlattice systems. Inobtainment of these previously well-established results for

Eq.(7.22, just as in Eq(6.15, G,,}(My,,M ) is the matrix the respective geometries not only emboldens our confidence
inverse of the bulk response functic® (M,,M,). The in the framework of IRT but also demonstrates how readily
m m? m/-

elements of the rectangular matrices are calculated similar t[pey can be arrlvgd at. Itis worth menUonmg that most of the
those in Eq(6.16. As such, the complete response functionanalyt'cal results in the present work are independent of any

for the truncated type-Il superlattice can be written as par'gic_ular modeI: For instanc_e, one can always incl_ude the
collisional damping and spatial dispersion by allowing the

1 1 imaginary parts in t.he dielectric functiqn and by making use
dmzm’,z')= 5"”“'[_ e~ (bmf2lz-2'| _ of the hydrodynamical model, respectively. One can also in-
2Fn 2F mSh corporate the frequency dependence of the background di-

0 electric constants, which allows the coupling of plasmons to
e_(am/z)(l"'z)sinh{_m (1—z’)] optical phonons. It is worthwhile to do numerical computa-
2 tion by treating the frequency or propagation vector as a

] complex variable. Doing so will help one investigate the life-

X

+e_(0m/2)(1_z)sinh{ﬁ (1+2) time and propagation length of the plasmons in a given sys-
2 tem. The calculation of the inverse penetration dépjimay
0, lead one to determine the limitations of certain experimental
sinh[— (1-2) techniques; for example, low-energy electron spectroscopy,
2 which may not serve a useful purpose\iis very small.
Besides studying the numerous propagation characteris-
™ , tics of the plasmons in superlattice systems, we are basically
S'”“{T (1-z )] motivated in the framework of IRT to study the local and/or
. . total density of stateDOS9) of these modes. The DOS of the
sinh[— (1+2") concerned modes in a given system can be obtained directly
2 from the imaginary part of the respective response functions.
(7.23 Let us focus on the plasmon polaritons in the truncated su-
) ) _ perlattice systems. In these systems the accumulation of in-
~ Since we already know the bulk response function, itSerfaces gives rise to peculiar electromagnetic modes distrib-
inverse, and other specific forms, the problem that remains igted as continuous frequendyulk) bands. The truncation of
the determination ofi(M,,M) in order to calculate the the superlattice system at the surface modifies the DOS of
complete response functiah This is albeit a rigorous but these modes, as compared to the mode density of an other-
not a very complicated problem once M ,,M) of an  wise truly periodic system. In particular, one finds the iso-
infinite superlattice are known. Equatign.23 as such cor- lated branches appearing above, below, and between the bulk
responds to the situation when both of the poirgg/() lie bands. The specific spatial location of these plasmon-
inside the superstructure. There are, however, other situgolariton modes in thev-gq space greatly depends on the
tions, for example, where both points lie in the homogeneousatio of the background dielectric constants of the truncating
medium (—o=<z=<0), and where one point is inside the medium and the first inner layer in the system. The knowl-

+

1
SimSm-

<—>

d(MmaMm')

| Om
sin > (1+2)
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edge of the DOS provides complete information on the alexamples of the present work are deferred to a future publi-
lowed plasmon excitations as a function of frequency orcation.
propagation vector at any depth in the superlattice systems.
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