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Multiband energy spectra of spin- electrons with two-dimensional magnetic modulations
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The energy spectra of spihelectrons under two-dimensional magnetic field modulations are calculated
beyond the one-band approximation. Our formulation is generally applicable to a modulation field with a
rectangular lattice symmetry. The field distribution within a plaquette is otherwise arbitrary. The spectra being
obtained are qualitatively different from their electric-modulated counterparts. Peculiar features of the spectra
are that, for an electron with g factor precisely equal to 2, no matter how strong the modulation is, the
zero-energy level seems to be unaffected by the modulation and is separated from higher energy levels with a
nonzero energy gap. Moreover, there is a twofold degenerancy for all states with positive energies with respect
to spin flip. These features agree with earlier analytical studies of the periodically magnetic-modulated sys-
tems.[S0163-182@8)03220-3

. INTRODUCTION structuret®* This is similar to the Hofstadter spectra for the
two-dimensional electric-modulate@®DEM) systems.’ In

Due to the progress of submicrometer technology, ondact, within the one-band approximation, both spectra are
begins to observe quantum behaviors in the transport me&xactly the same to linear order in modulation ﬁe]iljéz,For

surements of the field-modulated two-dimensional electroi Square lattice in the one-band approximation, a Landau
gas(2DEG). Much effort has been devoted to the study ofband is split intop subbands when there apéq (p andq

the spectral and the transport properties of a 2DEG in a pea—1re relative prime integerslux quanta per plaquette. Previ-

o o . ; ous calculations of the 2DMM systems are either restricted
riodic magnetidield with a nonzero uniform backgrourg}. y

Th di be divided i | d i to the one-band approximatibinor to the multiband calcu-
ese studies can be divided into two classes, depending Q@i put with a specific magnetic field such that the flux
whether the field modulation is one dimensidndlor two

: rne e quantum per plaquette is ofier one-half.}>3Other aspects
dimensional®-

_ _ _ of the 2DMM systems have been studied, such as the collec-
For a one-dimensional magnetic-modulat@®MM) sys-  tiye excitation® and the degeneracy of the ground

tem, there are two characteristic length scales: the cyclotrogiatest5 There are some recent attempts to observe the
radius associated with the uniform backgroubgl and the  peculiar transport properties due to the fractal band structure.
period of modulation. By varying the ratio of the two length However, as far as we know, this goal has not been achieved
scales, the electron mobility and the magnetoresistance oscter the 2DMM systems?®
late between extremaThe oscillating behavior of the latter In the present work, the energy spectra of a SpRBEG
is similar to the Weiss oscillation in a one-dimensionalunder two-dimensional magnetic field modulations are calcu-
electric-modulated (IDEM) 2DEG!® These oscillations latedbeyond the one-band approximatjon which the Zee-
manifest the variation of the bandwidths: tlengitudina) man term is also included. In most of the earlier studies, the
conductivity is proportional to the width of the Landau-level Zeeman effect is not included. For the electric-modulated
(LL) broadening, which is an oscillating function of both systems, neglect of the Zeeman term is justified, because the
M a and LL indices due to the field modulation. Under spe-periodic electric field does not couple to electron spin and
cial conditions(the so-called flat band conditionshe band- this term only contributes to a constant energy shift
width can be zero and electrons become immobile. Besidelg.e%/4m)Byo,, whereg, is the electrorg factor ando, is
the transport property, other aspects of the 1DMM system+1 (—1) for spin-up(spin-down electrons. However, this
have also been studied, such as collective excitafidns, is not the case for the magnetic-modulated systems. After
elastic light scattering$ surface statedeffect of electron-  deriving the multiband Harper equation, which is generally
electron interactions,and the effect due to an additional applicable to magnetic modulations wittbitrary strength
two-dimensional electric modulatiéhThe 1DMM systems and shape, as long as the field has a rectangular lattice sym-
may also be used as spin polarizers for magnetic digolesmetry, we show that the inclusion of the Zeeman term leads
Recently, 1DMM systems have been realized experimentallyo qualitative changes in the energy spectra. Particularly,
by covering a regular array of superconductorsr wheng,=2, the most disparate result occurs for the lowest
micromagneton the top of a 2DEG, in which the observed energy level — it isnot broadened by the field modulation,
magnetoresistance oscillation agrees very well with the theand is separated from higher energy bands by a finite gap.
oretical prediction. Moreover, there exists a twofold degenerancy for all states
For the two-dimensional magnetic-modulat€2DMM)  with positive energies with respect to spin flip. These results
systems, the Landau levels are not only broadened but alsggree with an earlier mathematical analysis of the 2DMM
split to several subbands with an intricate fractalsystems*1®
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The paper is organized as follows: the multiband formal-HamiltonianH,, of course. Thus we can construct the ex-
ism is presented in Sec. Il, the band structure is presented piicit form of the magnetic Bloch states fét,, which are the

Sec. lll, and Sec. IV is devoted to a summary and discussiorcommon eigenstates f,, T,, andT$:12

Il. MULTIBAND FORMALISM

A. Magnetic translation symmetry

©
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We consider a 2DEG under the influence of a magnetigyheren is the LL index,k=(k; ,k,) is the magnetic Bloch

modulation with a rectangular symmetry. The Hamiltonian is

2

H ii+A (r)y+a(r) +%B(r)
ar 0 g -\

. ®

whereAqy(r) anda(r) are the vector potentials for the uni-
form background fieldB, and the modulation field(r)

momentumgd, are complex coefficients that are periodid in
with periodp (i.e., d;,,=d)), and|n,k,) are the common
eigenstates ofly andT;.

Since bothH andH, are diagonal with respect tq it is
clear that for the modulation patl’=H-H,, we have
(n,k|H'|n",k"y=(n,k|H'|n" k) S x. Therefore, theath

=B(r) — By, respectively. In this paper, unless specified ex-eigenstate oH can be written as

plicitly, we choose the magnetic lengtffi/eB, as the unit
of length, Aw. as the unit of energy g.=eBy/m is the
cyclotron frequency andB, as the unit of magnetic field. In
the absence of modulation, the Hamiltoni&fy, can be
solved exactly with eigenvaluds®)=n+ 1/2+ ge0,/42° H
can be expanded &3,+H;+H,+H,, whereH; andH,
are the terms linear and quadratic in the vector potenti
a(r), respectively, andH = (g./4)b(r) o, is the modulated
Zeeman term. The vector potent&(r) can be Fourier de-
composed as(r)=2.03,€'?", whereg are the reciprocal

lattice vectors of the rectangular lattice. By choosing the_

Coulomb gauge, the Fourier componeajsre equivalent to

ibygx E/gz, where by are the Fourier components b{r)
andg=|g| (not to be confused with the electrarfactorg,).

It is convenient to rewrite the exponentif " ase'9 %e'9'R,
where the electron coordinateis decomposed into a fast-
moving cyclotron coordinat& and a slow-moving guiding-
center coordinat®=r — &. (See the Appendix.Then it can
be shown that

by e'¢ & .
Hi=—2> — - eloR. (2)
gFog* A |,
Similarly,
HZZ_EE g.gfb_Eei(g+g’>-§ei(g+g’)-R 3
2§70420  ¢°g
and
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Due to the underlying magnetic translation symm@tnyf

the Hamiltonian, it is convenient to diagonalize the Hamil-
tonian on a basis which respects this symmetry. The unper-

turbed basis can be constructed as follows. By choosing
Landau gauge witiy(r)=(—y,0), the magnetic translation
operators are

le eala/&x, -|—2: eaz(a/ayfix),

(5
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where the unknown coefficientt{ , asd, above, are peri-
dic in | with period p. Basically, the strategy below is to
iagonalize the Hamiltonian matrix on an unperturbed basis
and to solve for its eigenvalues.

In deriving the matrix elements of the Hamiltonians in
Eqgs.(2)—(4) on the unperturbed basis, the expressiork,
27lla,|e'9%'9R|n’ k,—27l'/a;) will be encountered
frequently; thus we focus on its derivation below. First, we
rewrite the exponential in a slightly different fore"d ¢e'9°R
to connect with the magnetic translation symmetry, where

g=gxz andR=RXz. Since the two dynamical variablés
andR decouple and operate on different parts of the Hilbert

space(see the Appendix the matrix elements ofio bgi0R
can be evaluated with the help of E¢Al). The result is

27 | L, == 2
nk,— —1|€'9%'9Rin" ky— —1I’
a; a;
=011 - 1Pk (D Unnr (9), ®
where  g=(91,0,)=(2ml/a;,2mm/ay), Py,i(9)

:e—wimq/pezwiklE/aZe—27rim|q/p, andUnnr(g):<n|ei9'§|n’).
The magnetic flux conditiom,a,=2m7p/q has been used.

B. Multiband Harper equation

When the energy eigenstdie, k) is expanded on the ba-
sis of|n,k,—2l/a,) using Eq.(7), the eigenvalue equation
H|a,k)=E,(k)|a,k) takes the following form:

2
n,k;— —H'’
a

1

a Ego)dgc‘vs)_l_ E ei(q/p)kzaz(l’l)< n’,kl

n' I’

2!’
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wherea; anda, are the lattice constants for the rectangularwherel=pr+s and!|’'=pr'+s’. (r, s, r’, ands’ are all

lattice. It is not difficult to show that, if there an@/q flux
quanta per plaguette with an araga,, thenT,, T§, andH

integers such that€s, s’<p.) First, we need to calculate
the matrix elements dfi’. With the help of Eqs(2)—(4) and

mutually commute. This is also true for the unmodulated(8), we have
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Combining Eqs(9) and(10), we finally obtain
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where

Po(g)=e2"k22p, (g)

— eik-(g>< i)e—iglgzlze—igz(zws/al)_

It is a multiband generalization of the Harper equatidsee
Eq. (13)]; thus Eq.(11) is called as the multiband Harper
equatior?? It has to be solved in conjunction with the fol-
lowing identities concerning inter-LL transition§for n

=n’):
n’l
Unn’(g): n_|

(?Unn’(g)\)
2N

’

g n—n
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whereg_=g,—ig, and L:,_“’ (L" ,=0) are the associated
Laguerre polymials with the argumegt/2.
Until now, no approximation has been used. This multi-
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netic field distribution with a rectangular lattice symmetry.
To simplify the calculation, from now on, we assume that the
spatial field modulation is b(r)=2b;{ cos (2mx/a)
+cos (2ry/a)] with a square lattice symmetry.e., a;=a,
=a). In numerical calculations, the eigenvalues are obtained
by diagonalizing a (* n¢,) pX (1+ ng,)p matrix, where the
cutoff ny,; has to be large enough to ensure that the eigen-
values being obtained converge to the correct result. The
precise spectra that include the effect of inter-LL transitions
are shown in the next section.

Before closing this subsection, we show that, under the
so-called one-band approximation, E41) can indeed be
reduced to the usual Harper equation. When the inter-LL
transitions and the terms quadraucbg are neglected;i(“)

Hd ép (due to the per|0d|C|tyd|+p d|, there are onlyp

independent coefficients, i.edg, .. p,1) and then Eg.
(11) is reduced to the one-band equation

—2miky/a

M n( %) [Es, Mg, e

o

where M (q/p) = (b1g2)[Li+LE |+ (geo/2)L]e 91 is
an overall factor that scales the energy, zg‘fgz(Za-r/a)2
=2mq/p. Apart from the factorM ,(q/p) where the spin-
related term is included, E@13) is precisely the same as the
Harper equation for a 2DEM systeth.The spectrum for
E.(a/p)/M,(a/p) within the one-band approximation is
thus trivial*"*?irrespective of the LL index, it is the usual
Hofstadter spectrum calculated for a 2DEM system. There is
one exception, however. Whan=0, g.=2, ando,=—1,
Mo(q/p) is equal to zero, and they(q/p)=E{Y, as if the
field modulation exerts no influence at all. Actually, the
equality Eq(q/p)=E{ is valid even beyond the one-band
approximation. This is discussed in more detail in Sec. Ill.

Kk

1 q
— -5
a

;

q

+2d, cos
p

p

277( ) E<°>}ds, (13

Ill. FRACTAL BAND STRUCTURE

In this section we show the band structures for both weak
and strong modulations. The influence of the Zeeman term is
particularly emphasized. For an unmodulated 2DEG without
Zeeman effect, the energy spectrum consists of discrete, dis-
persionless LL'$° These LL's are highly degenerate be-
cause of both the continuous translation symmetry, which
gives an infinite degenerancy, and the spin-flip symmetry,
which gives a twofold degenerancy. When a periodic modu-
lation is introduced, we expect that the translation degener-
ancy for each LL will be lifted. Indeed, in the one-band
approximation, one finds that each LL is broadened and split
to several intricate energy subbands. The way these subbands
split is the same for every LL in the one-band approximation
(see the discussion at the end of the preceding sectitmw-
ever, when the inter-LL transitions are included, the exact
results shown below reveal that the subband structures are
actually different for different LL's and thus lead to much
more complicated structures.

In Fig. 1, the spectrum of electrons with,=0 under a

band Harper equation applies to the general shape of a magreak square modulation field with;;a?=0.2¢, (in the
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5 — T T T T T T T T due to the background field, the spectra show qualitative dif-
ferences from Fig. 1. For example, the structures for the
second lowest energy bands ngéap=0.9 in Figs. Za) and
2(b) are visibly different from that in Fig. 1, and are different
from each other.

The spectrum in Fig. @ [Fig. 3(b)] is for a spin-down
[spin-ug electron with ag factor equal to 2. For this particu-
lar g factor, two significant features are observed. The first is
that the lowest energy level for a spin-down electron is flat
and equals zero to very high precision. The second is that the
positive-energy spectrum is degenerate with respect to spin
flip, whereas the flat band in Fig(8 has no counterpart in
Fig. 3(b). Both features persist for stronger modulations.

The twofold degenerancy for the positive-energy states in
the case ofj.=2 indicates that there must be an additional
symmetry even in the presence of the Zeeman term. It was
pointed out by Aharonov and Cashgthat this degenerancy
results from a symmetry transformation whidimulta-
neouslychanges the direction of the electron spin and the
spatial dependence of the wave function. This symmetry can
be related to the supersymmeéthor to the chiral ) in-
variance by connecting our problem to the
(1+1)-dimensional theory of Dirac fermioris.

Moreover, based on an abstract mathematical analysis,
0 (I R N TR TR S R Dubrovin and Novikov showed that, for a spin-down elec-

0 0.1020.304050.6070809 1 tron with g.=2, there always exist zero-energy states in the
2DMM systems, no matter how strong the modulatioh’is.
Furthermore, by using topological arguements, they proved

FIG. 1. The lowest five energy bands for spin-down electronsthat, although the continuous translation symmetry is broken
with g,=0 under a weak square modulation field. The modulationin the 2DMM system, the degenerancy of these zero-energy
strength is fixed ab;ga?=0.2¢, while the total flux per plaquette, states is thesameas that for the unmodulated system. One
Boa?, varies. The energy is in units éfw, and the inverse flux per may wonder whether this unexpected degeneracy is symme-
plaquette is in units ofp, *. try related and, if it is, what is the nature of this symmetry. In

fact, it was shown by Gendenshtein that, because the Hamil-
usual units, wherepo=h/e is the flux quantumis shown. tonian in Eq.(1) with g.=2 can be factorized into a product
Because there is no Zeeman splitting, there is no need tof two conjugate first-order differential operatdfssuch a
distinguish the spin-up electrons from the spin-down elecsymmetry is indeed present for the zero-energy stétes.
trons and the spectrum for only one spin direction is shownHowever, this isnota symmetry of the original Hamiltonian,
The calculation is done with a cutafif,,=9. The result with  but rather of one of the two first-order differential operators.
a larger cutoff aih,,= 14 shows no visible difference from (For more details, see Ref. 24.
Fig. 1. Notice that the abscissa is the inverse of the magnetic In comparison with theg.#2 cases, there is one more
flux, g/p. In this and the following figures, it is assumed that, unique feature for thg.=2 case, which becomes obvious
while changing the magnetic flux by varyii}, the modu- when the modulation is quite strong. Figureg)4and 4b)
lation amplitudeb is fixed. For the weak-modulation case, show the strongly modulated band structuresspin-down
the envelope for each energy band is largely determined bglectrons withg.=1 and 2, respectively. The modulation
the scaling factoM,(g/p). Obviously, some features spe- strength isb;,a?=0.8¢,. For the case ofi,=2, besides the
cific to the one-band approximation no longer exist. For exfact that the lowest energy level remains flat despite the
ample, the interband couplings remove the symmetry of thatrong mixing between the unperturbed LL'’s, it is apparent
butterfly diagram. A similar effect of symmetry breaking is that the zero-energy level is isolated from the intermingled
also observed in the multiband calculation for the 2DEMfractal structure with a finite energy gap. This is true for even
systemg? stronger modulations. On the contrary, such a behavior does

The twofold degenerancy for electron spin is lifted whennot appear in Fig. @) for the case ofj.=1. A simple ex-
ge#0. In our 2DMM systems, the Zeeman effect does notplanation of the gap above the flat band is as folldthi§the
only give an energy shift, but also induces inter-LL transi-gap collapses at a particular modulation, such that a state
tions[see Eq(10) for H,]. Thus, the interplay between the from a higher energy band merges with the zero-energy one,
orbital effect H,+H,) and the Zeeman effecH(,) leads to  then the degenerancy of the zero-energy states will increase
different spectral structures between the spin-up and thby 1. However, this is impossible because this degenerancy
spin-down electrons, which are shown in Fig. 2. The specin the modulated system must be the same as that in the
trum in Fig. 4a) [Fig. 2(b)] is for a spin-down[spin-ug unmodulated one, as mentioned ab&v@herefore, the flat
electron with ag factor equal to 1. It can be seen that, in band has to be separated from higher bands.
addition to the overall constant Zeeman energy hiét,/4 Figure 5 shows the dependence of the energy bands on the

Energy

Inverse flux (a/p)
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v ux (a/p) FIG. 3. The lowest five energy bands for a spin-doianand a

spin-up(b) electrons withg,=2. The modulation strength and the
units being used are the same as those in Fig. 1. It can be seen that
FIG. 2. The lowest five energy bands for a spin-da@nand a  the lowest energy level for a spin-down electron is flat. Also, the
spin-up(b) electrons withge=1. The modulation strength and the spectrum is degenerate with respect to spin flip, except for the zero-
units being used are the same as those in Fig. 1. energy flat band irfa).
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FIG. 5. The dependence of the bandwidths ongHactor when
the total flux per plaquettBya®=1¢, andb;sa?=0.2¢4,. The sign
of the g factor refers to the direction of spins+( for up, — for
down). The energy bands al.= —2 are indicated by vertical bold
lines.

g factor when the total flux per plaquetteBga®=1¢, and
b,0a%2=0.2¢,. In this figure, the sign of thg factor refers to

the direction of sping+ for up, — for down). (Note that the
sign convention folg, applies only to Fig. 5, but not to the
previous discussions.t is clear that the lowest band is
broadened as soon gs# —2. Notice that the spectrum for
ge.=2 and that forgo.= —2 are identical, except for the ab-
sence of the flat band at zero energydee2. In addition to

the zero-energy flat band, the bandwidths of other energy
bands can also shrink to zero at some particular valugg .of
For example, the width of the second lowest energy band is
zero wheng,= —0.12. However, unlike the shrinking of the
lowest band ag.= — 2, this “pinch” point moves if a dif-
ferent flux value ofBya? is chosen.

IV. SUMMARY AND DISCUSSION

In this paper, we present an accurate multiband calcula-
tion of the energy spectra of the 2DMM spjnelectronic
systems, in which the Zeeman effect is also taken into ac-
count. We find that, when the Zeeman energy is not negli-
gible, the spectra are changed qualitatively with respect to
their electric-modulated counterparts. Moreover, in the spe-
cial case when the electranfactor is 2, it is found thatl)
the positive-energy eigenstates have a twofold degeneracy
with respect to spin flipf2) for the spin-down electrons, the
ground states seem to be unaffected by the periodic modula-
tion and remain highly degenerate even in very strong modu-

FIG. 4. The lowest five energy bands for a spin-down electronlations; (3) the ground states are separated from higher en-
with ge=1 (a) and 2 (b). The modulation strength i$;a°

ergy states with a finite energy gap. However, these special
properties no longer exist if thg factor is not equal to 2.
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In real systems, the electranfactor can be changed by APPENDIX: GUIDING-CENTER COORDINATE

either varying the width of a quantum well that holds the
electron® or by applying a hydrostatic presstfteo the

sample. Thus, it is possible to combine these two methodStron and the disorder potential is smoGtrone usuall
and to design an experiment in which thefactor can be 9 P Y

continuously tuned around?.Under such a circumstance, decomposes the electron coordinat@to a fast-moving cy-

the peculiar and robust spectral properties of the lowest erflotron coordinat&g=zX(p+A,) and a slow-moving guid-
ergy level should exhibit themselves through the transport’d centerR=r—g. In the present study, although the peri-
properties. Since the band splitting may suppress the barfRfiC field variation is not required to vary smoothly, the
conductivity!® it is advised to keep the flux per plaguette at derivation of the multiband Harper equation can be simpli-
1 or a simple fraction in order to observe the conductivityfied with the help of this decomposition. _
enhancement induced by level broadening away frgym It can be shown that&,&;) and R;,R;) are indepen-
=2 or, conversely, the conductivity reductiongat=2. dent conjugate pairs, respectively, i.e[£1,6]=—1,

However, most current experiments can achieve onlyRi,Re]=i, and[&,R;]=0 fori,j=1,2. Thus the exponen-
weak modulations. For example, consider the source of #ial €'9" can be decomposed a¥ ¢e'9 R=¢'94e'9R where
periodic magnetic field, B(r)=Bo+(Bo/2)(cos 2rx/a g=gxz and R=Rxz For a Landau gauge witli\,(r)
+cos 2ryl/a)=0. The field modulation felt by a 2DEG at a =(-y,0), we have &=(—idy,id+y) and R=(—id,,
distance dd, below the source becomesBy(r)=Bo  _j4 ~x) Therefore, the magnetic translation operators in
+(Bge “"%'3/2)(cos 2rx/a+cos 2ry/a). This corre- . _ GRa i

N s dlara . . Eq. (5) can be rewritten a$; =¢e'"i%, j=1,2. Consequently,

sponds tdbp=e /4 in our calculation. For typical val- h he followi ] tul identities:
ues such ag=1 um andd=10 nm,b,,is equal to 0.23. we have the following very useful identities:

The optimum value oby, is 7, whend=0. It can be larger
than only if the amplitude of the modulation field is larger
than the background field. In this case, the total fiB(a)
reverses direction in some regions.

In the future, to bring theoretical results much closer to
real experiments, ingredients such as disorder and electron-
electron interaction have to be included in the calculation. It . ) .
may also be necessary to include an extra two-dimensiondi"® Sécond equation is a direct result of the commutation
electric modulation, which is inevitably induced due to therelation betweeiR; andR;, [R;,Rz]=i. Therefore, the “ro-
strain exerted by the ferromagnetic or the superconductd@ted” guiding-center coordinate is the generator of the mag-

In semiclassical calculations of the transport properties of
guantum Hall systems, in which the applied magnetic field is

Taln ke) =eR121n ky) = €121 ky),

Tzln,k1>:ei§2a2|n,k1>:|n,k1_a2>. (Al)

grid at low temperatures in recent experiméiits? It will be

very interesting to investigate the influence of these factors gikia;

on the energy spectra reported here.
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