
PHYSICAL REVIEW B 15 MAY 1998-IIVOLUME 57, NUMBER 20
Multiband energy spectra of spin-12 electrons with two-dimensional magnetic modulations
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The energy spectra of spin-1
2 electrons under two-dimensional magnetic field modulations are calculated

beyond the one-band approximation. Our formulation is generally applicable to a modulation field with a
rectangular lattice symmetry. The field distribution within a plaquette is otherwise arbitrary. The spectra being
obtained are qualitatively different from their electric-modulated counterparts. Peculiar features of the spectra
are that, for an electron with ag factor precisely equal to 2, no matter how strong the modulation is, the
zero-energy level seems to be unaffected by the modulation and is separated from higher energy levels with a
nonzero energy gap. Moreover, there is a twofold degenerancy for all states with positive energies with respect
to spin flip. These features agree with earlier analytical studies of the periodically magnetic-modulated sys-
tems.@S0163-1829~98!03220-2#
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I. INTRODUCTION

Due to the progress of submicrometer technology, o
begins to observe quantum behaviors in the transport m
surements of the field-modulated two-dimensional elect
gas ~2DEG!. Much effort has been devoted to the study
the spectral and the transport properties of a 2DEG in a
riodic magneticfield with a nonzero uniform backgroundB0.
These studies can be divided into two classes, dependin
whether the field modulation is one dimensional1–9 or two
dimensional.10–15

For a one-dimensional magnetic-modulated~1DMM! sys-
tem, there are two characteristic length scales: the cyclo
radius associated with the uniform backgroundB0 and the
period of modulation. By varying the ratio of the two leng
scales, the electron mobility and the magnetoresistance o
late between extrema.1 The oscillating behavior of the latte
is similar to the Weiss oscillation in a one-dimension
electric-modulated ~1DEM! 2DEG.16 These oscillations
manifest the variation of the bandwidths: the~longitudinal!
conductivity is proportional to the width of the Landau-lev
~LL ! broadening, which is an oscillating function of bo
l/a and LL indices due to the field modulation. Under sp
cial conditions~the so-called flat band conditions!, the band-
width can be zero and electrons become immobile. Bes
the transport property, other aspects of the 1DMM syst
have also been studied, such as collective excitations,2 in-
elastic light scatterings,3 surface states,4 effect of electron-
electron interactions,5 and the effect due to an addition
two-dimensional electric modulation.6 The 1DMM systems
may also be used as spin polarizers for magnetic dipol7

Recently, 1DMM systems have been realized experiment
by covering a regular array of superconductors8 or
micromagnets9 on the top of a 2DEG, in which the observe
magnetoresistance oscillation agrees very well with the
oretical prediction.

For the two-dimensional magnetic-modulated~2DMM!
systems, the Landau levels are not only broadened but
split to several subbands with an intricate frac
570163-1829/98/57~20!/13002~8!/$15.00
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structure.10,11This is similar to the Hofstadter spectra for th
two-dimensional electric-modulated~2DEM! systems.17 In
fact, within the one-band approximation, both spectra
exactly the same to linear order in modulation fields.11,12For
a square lattice in the one-band approximation, a Lan
band is split intop subbands when there arep/q (p and q
are relative prime integers! flux quanta per plaquette. Prev
ous calculations of the 2DMM systems are either restric
to the one-band approximation11 or to the multiband calcu-
lation but with a specific magnetic field such that the fl
quantum per plaquette is one~or one-half!.12,13Other aspects
of the 2DMM systems have been studied, such as the co
tive excitations10 and the degeneracy of the groun
states.14,15 There are some recent attempts to observe
peculiar transport properties due to the fractal band struct
However, as far as we know, this goal has not been achie
for the 2DMM systems.18

In the present work, the energy spectra of a spin-1
2 2DEG

under two-dimensional magnetic field modulations are cal
latedbeyond the one-band approximation, in which the Zee-
man term is also included. In most of the earlier studies,
Zeeman effect is not included. For the electric-modula
systems, neglect of the Zeeman term is justified, because
periodic electric field does not couple to electron spin a
this term only contributes to a constant energy sh
(gee\/4m)B0sz , wherege is the electrong factor andsz is
11 (21) for spin-up~spin-down! electrons. However, this
is not the case for the magnetic-modulated systems. A
deriving the multiband Harper equation, which is genera
applicable to magnetic modulations witharbitrary strength
and shape, as long as the field has a rectangular lattice s
metry, we show that the inclusion of the Zeeman term le
to qualitative changes in the energy spectra. Particula
whenge52, the most disparate result occurs for the low
energy level — it isnot broadened by the field modulation
and is separated from higher energy bands by a finite g
Moreover, there exists a twofold degenerancy for all sta
with positive energies with respect to spin flip. These resu
agree with an earlier mathematical analysis of the 2DM
systems.14,19
13 002 © 1998 The American Physical Society
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57 13 003MULTIBAND ENERGY SPECTRA OF SPIN-1/2 . . .
The paper is organized as follows: the multiband form
ism is presented in Sec. II, the band structure is presente
Sec. III, and Sec. IV is devoted to a summary and discuss

II. MULTIBAND FORMALISM

A. Magnetic translation symmetry

We consider a 2DEG under the influence of a magn
modulation with a rectangular symmetry. The Hamiltonian

H5
1

2S 2 i
]

]r
1A0~r !1a~r ! D 2

1
ge

4
B~r !sz , ~1!

whereA0(r ) and a(r ) are the vector potentials for the un
form background fieldB0 and the modulation fieldb(r )
5B(r )2B0, respectively. In this paper, unless specified e
plicitly, we choose the magnetic lengthA\/eB0 as the unit
of length, \vc as the unit of energy (vc5eB0 /m is the
cyclotron frequency!, andB0 as the unit of magnetic field. In
the absence of modulation, the HamiltonianH0 can be
solved exactly with eigenvaluesEn

(0)5n11/21gesz/4.20 H
can be expanded asH01H11H21Hs , whereH1 and H2
are the terms linear and quadratic in the vector poten
a(r ), respectively, andHs5(ge/4)b(r )sz is the modulated
Zeeman term. The vector potentiala(r ) can be Fourier de-
composed asa(r )5(gÞ0age

ig•r, whereg are the reciproca
lattice vectors of the rectangular lattice. By choosing
Coulomb gauge, the Fourier componentsag are equivalent to
ibgg3 ẑ/g2, where bg are the Fourier components ofb(r )
andg5ugu ~not to be confused with the electrong factorge).
It is convenient to rewrite the exponentialeig•r aseig•jeig•R,
where the electron coordinater is decomposed into a fas
moving cyclotron coordinatej and a slow-moving guiding-
center coordinateR5r2j. ~See the Appendix.! Then it can
be shown that

H152(
gÞ0

bg

g2

]eig•jl

]l U
l51

eig•R. ~2!

Similarly,

H252
1

2 (
gÞ0

(
g8Þ0

g•g8
bg

g2

bg8

g82
ei ~g1g8!•jei ~g1g8!•R ~3!

and

Hs5
gesz

4 (
gÞ0

bge
ig•jeig•R. ~4!

Due to the underlying magnetic translation symmetry21 of
the Hamiltonian, it is convenient to diagonalize the Ham
tonian on a basis which respects this symmetry. The un
turbed basis can be constructed as follows. By choosin
Landau gauge withA0(r )5(2y,0), the magnetic translatio
operators are

T15ea1]/]x, T25ea2~]/]y2 ix !, ~5!

wherea1 anda2 are the lattice constants for the rectangu
lattice. It is not difficult to show that, if there arep/q flux
quanta per plaquette with an areaa1a2, thenT1, T2

q , andH
mutually commute. This is also true for the unmodulat
-
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HamiltonianH0, of course. Thus we can construct the e
plicit form of the magnetic Bloch states forH0, which are the
common eigenstates ofH0, T1, andT2

q :13

un,k&5 (
l 52`

`

d̄le
2 i ~q/p!k2a2lUn,k12

2p

a1
l L , ~6!

wheren is the LL index,k5(k1 ,k2) is the magnetic Bloch
momentum,d̄l are complex coefficients that are periodic inl

with period p ~i.e., d̄l 1p5d̄l), and un,k1& are the common
eigenstates ofH0 andT1.

Since bothH andH0 are diagonal with respect tok, it is
clear that for the modulation partH85H2H0, we have
^n,kuH8un8,k8&5^n,kuH8un8,k&dk,k8. Therefore, theath
eigenstate ofH can be written as

ua,k&5 (
n50

`

(
l 52`

`

dn,l
~a!e2 i ~q/p!k2a2lUn,k12

2p

a1
l L , ~7!

where the unknown coefficientsdn,l
(a) , as d̄l above, are peri-

odic in l with period p. Basically, the strategy below is t
diagonalize the Hamiltonian matrix on an unperturbed ba
and to solve for its eigenvalues.

In deriving the matrix elements of the Hamiltonians
Eqs. ~2!–~4! on the unperturbed basis, the expression^n,k1
22p l /a1ueig•jeig•Run8,k122p l 8/a1& will be encountered
frequently; thus we focus on its derivation below. First, w
rewrite the exponential in a slightly different formeig•jei g̃•R̃

to connect with the magnetic translation symmetry, wh
g̃5g3 ẑ and R̃5R3 ẑ. Since the two dynamical variablesj

andR̃ decouple and operate on different parts of the Hilb
space~see the Appendix!, the matrix elements ofeig•jei g̃•R̃

can be evaluated with the help of Eqs.~A1!. The result is

K n,k12
2p

a1
lUeig•jei g̃•R̃Un8,k12

2p

a1
l 8L

5d l ,l 82 l̄ Pk1l~g!Unn8~g!, ~8!

where g5(g1 ,g2)5(2p l̄ /a1,2pm̄/a2), Pk1l(g)

5e2p i l̄ m̄q/pe2p ik1m̄/a2e22p im̄lq/p, andUnn8(g)5^nueig•jun8&.
The magnetic flux conditiona1a252pp/q has been used.

B. Multiband Harper equation

When the energy eigenstateua,k& is expanded on the ba
sis of un,k122p l /a1& using Eq.~7!, the eigenvalue equation
Hua,k&5Ea(k)ua,k& takes the following form:

En
~0!dn,s

~a!1 (
n8,l 8

e2 i ~q/p!k2a2~ l 82 l !K n,k12
2p l

a1
UH8Un8,k1

2
2p l 8

a1
L dn8,s8

~a!
5Eadn,s

~a! , ~9!

where l 5pr1s and l 85pr81s8. (r , s, r 8, and s8 are all
integers such that 0<s, s8,p.! First, we need to calculate
the matrix elements ofH8. With the help of Eqs.~2!–~4! and
~8!, we have
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K n,k12
2p l

a1
UH1Un8,k12

2p l 8

a1
L

52d l ,l 82 l̄ (
gÞ0

bg

g2
Pk1s~g!

]Unn8~gl!

]l U
l51

,

K n,k12
2p l

a1
UH2Un8,k12

2p l 8

a1
L

52
1

2
d l ,l 82 l̄ 2 l̄ 8(gÞ0

(
g8Þ0

g•g8
bg

g2

bg8

g82
Pk1s~g1g8!

3Unn8~g1g8!,

K n,k12
2p l

a1
UHsUn8,k12

2p l 8

a1
L

5
gesz

4
d l ,l 82 l̄ (

gÞ0
bgPk1s~g!Unn8~g!. ~10!

Combining Eqs.~9! and ~10!, we finally obtain

En
~0!dn,s

~a!1(
n8

(
gÞ0

bgPks~g!F2
1

g2

]Unn8~gl!

]l U
l51

1
gesz

4
Unn8~g!Gdn8,s1 s̄

~a!

2
1

2 (
n8

(
gÞ0

(
g8Þ0

g•g8
bg

g2

bg8

g82
Pks~g1g8!

3Unn8~g1g8!dn8,s1 s̄1 s̄8
~a!

5Eadn,s
~a! , ~11!

where

Pks~g!5e22p ik2 l̄ /a1Pk1s~g!

5eik•~g3 ẑ!e2 ig1g2/2e2 ig2~2ps/a1!.
.

It is a multiband generalization of the Harper equation17 @see
Eq. ~13!#; thus Eq.~11! is called as the multiband Harpe
equation.22 It has to be solved in conjunction with the fo
lowing identities concerning inter-LL transitions~for n
>n8):

Unn8~g!5An8!

n! S g2

A2
D n2n8

e2g2/4Ln8
n2n8,

]Unn8~gl!

]l U
l51

5An8!

n! S g2

A2
D n2n8

e2g2/4@~n2n8

2g2/2!Ln8
n2n82g2Ln821

n2n811
#, ~12!

whereg25g12 ig2 andLn8
n2n8 (L21

n [0) are the associate
Laguerre polymials with the argumentg2/2.

Until now, no approximation has been used. This mu
band Harper equation applies to the general shape of a m
-
g-

netic field distribution with a rectangular lattice symmetr
To simplify the calculation, from now on, we assume that t
spatial field modulation is b(r )52b10@cos (2px/a)
1cos (2py/a)# with a square lattice symmetry~i.e., a15a2
5a). In numerical calculations, the eigenvalues are obtai
by diagonalizing a (11ncut)p3(11ncut)p matrix, where the
cutoff ncut has to be large enough to ensure that the eig
values being obtained converge to the correct result.
precise spectra that include the effect of inter-LL transitio
are shown in the next section.

Before closing this subsection, we show that, under
so-called one-band approximation, Eq.~11! can indeed be
reduced to the usual Harper equation. When the inter
transitions and the terms quadratic inbg are neglected,dn,l

(a)

→d̄ldn
a ~due to the periodicity,d̄l 1p5d̄l , there are onlyp

independent coefficients, i.e.,d̄0 , . . . ,d̄p21), and then Eq.
~11! is reduced to the one-band equation

MnS q

pD H d̄s21e2p ik2 /a1d̄s11e22p ik2 /a

12d̄s cos F2pS k1

a
2s

q

pD G J 5FEnS q

pD2En
~0!G d̄s , ~13!

where Mn(q/p)5(b10/2)@Ln
11Ln21

1 1(gesz/2)Ln#e2g10
2 /4 is

an overall factor that scales the energy, andg10
2 5(2p/a)2

52pq/p. Apart from the factorMn(q/p) where the spin-
related term is included, Eq.~13! is precisely the same as th
Harper equation for a 2DEM system.17 The spectrum for
En(q/p)/Mn(q/p) within the one-band approximation i
thus trivial:11,12 irrespective of the LL indexn, it is the usual
Hofstadter spectrum calculated for a 2DEM system. Ther
one exception, however. Whenn50, ge52, andsz521,
M0(q/p) is equal to zero, and thenE0(q/p)5E0

(0) , as if the
field modulation exerts no influence at all. Actually, th
equality E0(q/p)5E0

(0) is valid even beyond the one-ban
approximation. This is discussed in more detail in Sec. II

III. FRACTAL BAND STRUCTURE

In this section we show the band structures for both we
and strong modulations. The influence of the Zeeman term
particularly emphasized. For an unmodulated 2DEG with
Zeeman effect, the energy spectrum consists of discrete,
persionless LL’s.20 These LL’s are highly degenerate b
cause of both the continuous translation symmetry, wh
gives an infinite degenerancy, and the spin-flip symme
which gives a twofold degenerancy. When a periodic mo
lation is introduced, we expect that the translation degen
ancy for each LL will be lifted. Indeed, in the one-ban
approximation, one finds that each LL is broadened and s
to several intricate energy subbands. The way these subb
split is the same for every LL in the one-band approximat
~see the discussion at the end of the preceding section!. How-
ever, when the inter-LL transitions are included, the ex
results shown below reveal that the subband structures
actually different for different LL’s and thus lead to muc
more complicated structures.

In Fig. 1, the spectrum of electrons withge50 under a
weak square modulation field withb10a

250.2f0 ~in the
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usual units, wheref05h/e is the flux quantum! is shown.
Because there is no Zeeman splitting, there is no nee
distinguish the spin-up electrons from the spin-down el
trons and the spectrum for only one spin direction is sho
The calculation is done with a cutoffncut59. The result with
a larger cutoff atncut514 shows no visible difference from
Fig. 1. Notice that the abscissa is the inverse of the magn
flux, q/p. In this and the following figures, it is assumed th
while changing the magnetic flux by varyingB0, the modu-
lation amplitudeb10 is fixed. For the weak-modulation cas
the envelope for each energy band is largely determined
the scaling factorMn(q/p). Obviously, some features spe
cific to the one-band approximation no longer exist. For
ample, the interband couplings remove the symmetry of
butterfly diagram. A similar effect of symmetry breaking
also observed in the multiband calculation for the 2DE
systems.22

The twofold degenerancy for electron spin is lifted wh
geÞ0. In our 2DMM systems, the Zeeman effect does
only give an energy shift, but also induces inter-LL tran
tions @see Eq.~10! for Hs#. Thus, the interplay between th
orbital effect (H11H2) and the Zeeman effect (Hs) leads to
different spectral structures between the spin-up and
spin-down electrons, which are shown in Fig. 2. The sp
trum in Fig. 2~a! @Fig. 2~b!# is for a spin-down@spin-up#
electron with ag factor equal to 1. It can be seen that,
addition to the overall constant Zeeman energy shiftgesz/4

FIG. 1. The lowest five energy bands for spin-down electro
with ge50 under a weak square modulation field. The modulat
strength is fixed atb10a

250.2f0 while the total flux per plaquette
B0a2, varies. The energy is in units of\vc and the inverse flux pe
plaquette is in units off0

21.
to
-
.
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,
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-
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t
-

e
-

due to the background field, the spectra show qualitative
ferences from Fig. 1. For example, the structures for
second lowest energy bands nearq/p50.9 in Figs. 2~a! and
2~b! are visibly different from that in Fig. 1, and are differe
from each other.

The spectrum in Fig. 3~a! @Fig. 3~b!# is for a spin-down
@spin-up# electron with ag factor equal to 2. For this particu
lar g factor, two significant features are observed. The firs
that the lowest energy level for a spin-down electron is
and equals zero to very high precision. The second is tha
positive-energy spectrum is degenerate with respect to
flip, whereas the flat band in Fig. 3~a! has no counterpart in
Fig. 3~b!. Both features persist for stronger modulations.

The twofold degenerancy for the positive-energy states
the case ofge52 indicates that there must be an addition
symmetry even in the presence of the Zeeman term. It
pointed out by Aharonov and Casher23 that this degenerancy
results from a symmetry transformation whichsimulta-
neouslychanges the direction of the electron spin and
spatial dependence of the wave function. This symmetry
be related to the supersymmetry24 or to the chiral (g5) in-
variance by connecting our problem to th
(111)-dimensional theory of Dirac fermions.23

Moreover, based on an abstract mathematical analy
Dubrovin and Novikov showed that, for a spin-down ele
tron with ge52, there always exist zero-energy states in
2DMM systems, no matter how strong the modulation is14

Furthermore, by using topological arguements, they pro
that, although the continuous translation symmetry is bro
in the 2DMM system, the degenerancy of these zero-ene
states is thesameas that for the unmodulated system. O
may wonder whether this unexpected degeneracy is sym
try related and, if it is, what is the nature of this symmetry.
fact, it was shown by Gendenshtein that, because the Ha
tonian in Eq.~1! with ge52 can be factorized into a produc
of two conjugate first-order differential operators,23 such a
symmetry is indeed present for the zero-energy state24

However, this isnot a symmetry of the original Hamiltonian
but rather of one of the two first-order differential operato
~For more details, see Ref. 24.!

In comparison with thegeÞ2 cases, there is one mor
unique feature for thege52 case, which becomes obviou
when the modulation is quite strong. Figures 4~a! and 4~b!
show the strongly modulated band structures ofspin-down
electrons withge51 and 2, respectively. The modulatio
strength isb10a

250.8f0. For the case ofge52, besides the
fact that the lowest energy level remains flat despite
strong mixing between the unperturbed LL’s, it is appare
that the zero-energy level is isolated from the interming
fractal structure with a finite energy gap. This is true for ev
stronger modulations. On the contrary, such a behavior d
not appear in Fig. 4~a! for the case ofge51. A simple ex-
planation of the gap above the flat band is as follows:14 if the
gap collapses at a particular modulation, such that a s
from a higher energy band merges with the zero-energy o
then the degenerancy of the zero-energy states will incre
by 1. However, this is impossible because this degenera
in the modulated system must be the same as that in
unmodulated one, as mentioned above.14 Therefore, the flat
band has to be separated from higher bands.

Figure 5 shows the dependence of the energy bands on

s
n
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FIG. 2. The lowest five energy bands for a spin-down~a! and a
spin-up~b! electrons withge51. The modulation strength and th
units being used are the same as those in Fig. 1.
FIG. 3. The lowest five energy bands for a spin-down~a! and a
spin-up~b! electrons withge52. The modulation strength and th
units being used are the same as those in Fig. 1. It can be seen
the lowest energy level for a spin-down electron is flat. Also,
spectrum is degenerate with respect to spin flip, except for the z
energy flat band in~a!.
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FIG. 4. The lowest five energy bands for a spin-down elect
with ge51 ~a! and 2 ~b!. The modulation strength isb10a

2

50.8f0.
g factor when the total flux per plaquette isB0a251f0 and
b10a

250.2f0. In this figure, the sign of theg factor refers to
the direction of spins~1 for up, 2 for down!. ~Note that the
sign convention forge applies only to Fig. 5, but not to the
previous discussions.! It is clear that the lowest band i
broadened as soon asgeÞ22. Notice that the spectrum fo
ge52 and that forge522 are identical, except for the ab
sence of the flat band at zero energy forge52. In addition to
the zero-energy flat band, the bandwidths of other ene
bands can also shrink to zero at some particular values ofge .
For example, the width of the second lowest energy ban
zero whenge520.12. However, unlike the shrinking of th
lowest band atge522, this ‘‘pinch’’ point moves if a dif-
ferent flux value ofB0a2 is chosen.

IV. SUMMARY AND DISCUSSION

In this paper, we present an accurate multiband calc
tion of the energy spectra of the 2DMM spin-1

2 electronic
systems, in which the Zeeman effect is also taken into
count. We find that, when the Zeeman energy is not ne
gible, the spectra are changed qualitatively with respec
their electric-modulated counterparts. Moreover, in the s
cial case when the electrong factor is 2, it is found that~1!
the positive-energy eigenstates have a twofold degene
with respect to spin flip;~2! for the spin-down electrons, th
ground states seem to be unaffected by the periodic mod
tion and remain highly degenerate even in very strong mo
lations; ~3! the ground states are separated from higher
ergy states with a finite energy gap. However, these spe
properties no longer exist if theg factor is not equal to 2.

n

FIG. 5. The dependence of the bandwidths on theg factor when
the total flux per plaquetteB0a251f0 andb10a

250.2f0. The sign
of the g factor refers to the direction of spins (1 for up, 2 for
down!. The energy bands atge522 are indicated by vertical bold
lines.
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In real systems, the electrong factor can be changed b
either varying the width of a quantum well that holds t
electrons25 or by applying a hydrostatic pressure26 to the
sample. Thus, it is possible to combine these two meth
and to design an experiment in which theg factor can be
continuously tuned around 2.26 Under such a circumstance
the peculiar and robust spectral properties of the lowest
ergy level should exhibit themselves through the transp
properties. Since the band splitting may suppress the b
conductivity,18 it is advised to keep the flux per plaquette
1 or a simple fraction in order to observe the conductiv
enhancement induced by level broadening away fromge
52 or, conversely, the conductivity reduction atge52.

However, most current experiments can achieve o
weak modulations. For example, consider the source o
periodic magnetic field, B(r )5B01(B0/2)(cos 2px/a
1cos 2py/a)>0. The field modulation felt by a 2DEG at
distance d below the source becomesBd(r )5B0
1(B0e22pd/a/2)(cos 2px/a1cos 2py/a).27 This corre-
sponds tob105e22pd/a/4 in our calculation. For typical val-
ues such asa51 mm andd510 nm,b10 is equal to 0.23.
The optimum value ofb10 is 1

4, whend50. It can be larger
than 1

4 only if the amplitude of the modulation field is large
than the background field. In this case, the total fieldB(r )
reverses direction in some regions.

In the future, to bring theoretical results much closer
real experiments, ingredients such as disorder and elec
electron interaction have to be included in the calculation
may also be necessary to include an extra two-dimensi
electric modulation, which is inevitably induced due to t
strain exerted by the ferromagnetic or the supercondu
grid at low temperatures in recent experiments.8,9,11It will be
very interesting to investigate the influence of these fac
on the energy spectra reported here.
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APPENDIX: GUIDING-CENTER COORDINATE

In semiclassical calculations of the transport properties
quantum Hall systems, in which the applied magnetic field
strong and the disorder potential is smooth,28 one usually
decomposes the electron coordinater into a fast-moving cy-
clotron coordinatej5 ẑ3(p1A0) and a slow-moving guid-
ing centerR5r2j. In the present study, although the pe
odic field variation is not required to vary smoothly, th
derivation of the multiband Harper equation can be simp
fied with the help of this decomposition.

It can be shown that (j1 ,j2) and (R1 ,R2) are indepen-
dent conjugate pairs, respectively, i.e.,@j1 ,j2#52 i ,
@R1 ,R2#5 i , and@j i ,Rj #50 for i , j 51,2. Thus the exponen
tial eig•r can be decomposed aseig•jeig•R5eig•jei g̃•R̃, where
g̃5g3 ẑ and R̃5R3 ẑ. For a Landau gauge withA0(r )
5(2y,0), we have j5(2 i ]y ,i ]x1y) and R̃5(2 i ]x ,
2 i ]y2x). Therefore, the magnetic translation operators
Eq. ~5! can be rewritten asTj5eiR̃jaj , j 51,2. Consequently,
we have the following very useful identities:

T1un,k1&5eiR̃1a1un,k1&5eik1a1un,k1&,

T2un,k1&5eiR̃2a2un,k1&5un,k12a2&. ~A1!

The second equation is a direct result of the commuta
relation betweenR̃1 andR̃2, @R̃1 ,R̃2#5 i . Therefore, the ‘‘ro-
tated’’ guiding-center coordinate is the generator of the m
netic translation. It can be verified thateiR̃1a1un,k&
5eik1a1un,k& andeiR̃2qa2un,k&5eiqk2a2un,k& using Eqs.~A1!

and the periodicity ofd̄l @see Eq.~6!#. Thus,un,k& are indeed
the common eigenstates ofH0, T1, andT2

q . Similarly, due to
the periodicity ofdn,l

(a) @see Eq.~7!#, one can prove that the
energy eigenstatesua,k& are also the eigenstates ofT1 and
T2

q .
tt.
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