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Electronic-transport properties of tight-binding multiring systems
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Systems consisting of open mesoscopic rings threaded by a magnetic fluxF and connected in parallel and
in series are studied within the tight-binding model. A recursion method, which allows one to deal with
systems consisting of a large number of rings, is found for the calculation of transmission amplitutes. The
numerical results show that for systems with rings connected in series and in parallel, the quantum coherence
effect plays quite different roles. We found that as the number of rings increases, the magnetic fluxF will
progressively block the transmission through the system for parallel multiring systems~PRS!, but not for the
serial multiring systems~SRS!. In the absence of magnetic flux, the transmission coefficientT in PRS de-
creases only slightly when the ring numberN increases, whileT in SRS decreases rapidly with an increasing
number of rings.@S0163-1829~98!05120-0#
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I. INTRODUCTION

In the last decade, rapid progress has been made in ar
mesoscopic physics. Quantum transport in mesoscopic
tems has been extensively studied both experimentally
theoretically.1–22 For mesoscopic systems at very low tem
peratures the scattering due to phonons, which is a depha
scattering, is significantly suppressed and the pha
coherence length of electrons becomes large compared t
system dimension. The scattering in the systems can the
modeled as phase coherent elastic scatterings. Furtherm
if we consider the electron as a free particle, an ideali
sample becomes an electron waveguide, which assumes
the electron transport through the system is perfectly ba
tic. In recent years, there are many works devoted to
study of the electronic properties of mesoscopic syste
within the framework of the waveguide theory.10,13–19Along
this line, the theoretical work to date has largely focused
the problems related to an isolated ring, and to open ri
connected via leads to electronic reservoirs together wi
magnetic fluxF through the rings. For an isolated ring, th
persistent current has been the focus of attention. The ide
based on the possibility that the electron wave function m
extend coherently over the whole circumference of the ri
and elastic scatterings, finite temperature, and weak inela
scatterings do not destroy the coherence. As for the open
systems, the important problem is to study the relations
between the transmission coefficientT and incident electron
energy and its wave vector. The electron reservoirs in
open-ring systems act as the source of energy dissipatio
irreversibility, and all scattering processes in the leads
rings are assumed to be elastic. Based on the wave-g
theory, Xia14 has studied the Aharonov-Bohm~AB! effect in
an open single ring by calculating the transmission and
flection amplitudes as functions of the magnetic flux, the a
length, and the wave vector. Singha Deo and Jayannava16,17

have studied the quantum transport properties of serial
570163-1829/98/57~20!/12994~8!/$15.00
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or loop structures and the band formation in these geome
as well as the persistent current of an open ring. Takai
Ohta19 have published a series of papers investigating sim
problems in the presence of both an electrostatic poten
and magnetic flux. Cahay, Bandyopadyay, and Grubin10 have
also studied the AB-type conductance oscillations in
presence of either a magnetic flux or an electrostatic po
tial. On the other hand, Wu and Mahler13 have developed the
quantum-network theory of transport, by which the transm
sion probability for an open AB-type ring with an arbitrar
form factor has been studied in detail. All of the work stat
above are based on the wave-guide theory, and they h
presented a clear physical picture for the problems stud
On the other hand, it is well known that the tight-bindin
model is more flexible in theoretical treatments than
wave-guide theory as disorderness can be introduced rea
and the band-structure effects are included.23,24 However,
work in the literature along this line is relatively few up t
now. One of the reasons may be that the tight-bind
method is slightly more complicated to deal with. Enti
Wohlman, Hartzstein, and Imry9 and Kowal et al.12 have
studied the electronic transport properties of an open sin
ring. Aldea, Gartner, and Corcotoi15 studied the same prob
lems using the Green’s function method. Liu and co-work
have investigated the persistent current of an isolated di
dered ring,20 the effects of spin interaction on the persiste
current,21 as well as the electronic transport properties
parallel double-ring system22 in which the two rings are
threaded by different magnetic fluxes.

In the present work, we study the electronic-transp
properties within the tight-binding approach of the two ba
structures in open multiring systems, i.e., the parallel mu
ring system~PRS! and serial multiring system~SRS!. The
structures are assumed to consist of identical rings threa
by a magnetic flux connected either in parallel or in seri
Furthermore, we assume that each ring contains four s
12 994 © 1998 The American Physical Society



s
n

s
p

te
b
e
vi
-

th
g
m
R
th
t
-

or
n

f t

b
e

a

th
e
ns
f
s
is

u
w

etic
g

the
re-
ese
ing
A

rger

wo
and

with
-

s.
,

re

57 12 995ELECTRONIC-TRANSPORT PROPERTIES OF TIGHT- . . .
that symmetrically distribute in the upper and lower arm
The main purpose is to investigate the behavior of the tra
mission coefficientT as the incident electron energyE and
the magnetic fluxF, which penetrates the mesoscopic ring
are varied. It is well known that the electronic transport pro
erties of mesoscopic systems have a ‘‘fingerprint’’ charac
For a tiny change of the system structure the transport
havior will largely change. Therefore, if the upper and low
arms of the rings are unsymmetrical, the transport beha
will be totally different.13 Detailed results are given in three
dimensional plots ofT againstE andF. It is found that due
to the coherence effect, the transmission coefficientT van-
ishes in both the PRS and SRS geometries when the fluxF is
closed to the valueF0/2, whereF05hc/e is the fundamen-
tal flux quantum, regardless of the number of rings in
system. For the PRS geometry, the region correspondin
T50 in theE-F space progressively increases as the nu
ber of rings increases, while it is not the case for the S
geometry. Numerical results show that for the PRS,
transmission coefficientT drops to nearly zero for almos
any value of the fluxF when the number of rings is in
creased to such large number asN54096. It means that the
magnetic flux completely blocks out the electronic transp
This is an interesting quantum phenomenon. In the abse
of magnetic flux, we have investigated the dependence o
transmission coefficient on the incident electron energyE for
both the PRS and SRS. Our results show that as the num
of rings increases in the SRS,T decreases rapidly. For th
PRS, the transmission coefficientT decreases only slightly
even for N increases to the value 1024. These results
discussed within a reasonable physical picture.

The paper is organized as follows. In Sec. II, we give
formalism for calculating the transmission coefficient of m
soscopic multiring systems. Numerical results for the tra
mission coefficient are presented in Sec. III. The effects o
magnetic fluxF through the rings are studied and the sen
tivity of the transmission coefficient to the number of rings
investigated. A summary is given in Sec. IV.

II. TRANSMISSION COEFFICIENT OF MESOSCOPIC
MULTIRING SYSTEMS

We consider two basic configurations of mesoscopic m
tiring systems as shown in Figs. 1 and 2. The former sho
a multiring system connected in series~SRS!, and the latter a

FIG. 1. ~a! A single ring coupled to two reservoirs via two lead
~b! Multirings threaded by magnetic fluxF, connected in series
and coupled to two reservoirs via ideal leads.
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multiring system connected in parallel~PRS!. In both cases,
we assume that only the rings are threaded by a magn
flux F. These two configurations form the basis of formin
more complicated systems. In the following, we present
explicit expressions for calculating the transmission and
flection amplitudes of an open-single ring. Based on th
expressions, the formulas for calculating the correspond
quantities in the two multiring configurations are derived.
recursive scheme is then proposed for systems with la
number of rings.

For an open single ring, i.e., a ring connected via t
leads to two electron reservoirs, we assume that the leads
rings are composed of one-dimensional ordered chains
on-site energies«n and transfer integralJ between nearest
neighboring sites. Denoting the electron energy byE, and
the projection of the wave function on thenth site bycn , the
tight-binding equation can be written as

~«n2E!cn5(
n8

Jn,n8cn1n8 , ~1!

where the sum runs over the nearest neighbors of siten. For
a single ring threaded by a magnetic fluxF and connected
via two leads to electron reservoirs@Fig. 1~a!#, the reflection
amplitude r and the transmission amplitudet are given
by12,22

r 5e2iqNc2
2K

d
@b cosf1a2eic~b22a2!~b2a!#,

~2!

and

t52K
cos~f/2!

d
@~b2a!22e2 ic#, ~3!

where

FIG. 2. Parallel multiring system in which only the rings a
assumed to be threaded by a magnetic fluxF. All of the rings are
assumed to be identical.
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f52p
F

F0
,

c52q~L2N!5qS,

a5e22iqNF2iJ sin q

D
21G ,

b5e22iqN
2iJ sin q

D
,

c5e2iqNF2iJ sin q

D
21G ,

AK5
2iJ sin q

D
,

D5E2«n13Jeiq,

q5arccosS 2E1«n

2J D ,

d52b2cosf2e2 ic2~b22a2!2eic12a2.

Here,N andL are the sites on the right and left sides of t
ring at which the ring is coupled to the reservoirs via t
leads andS is the circumference of the ring. Equations~2!
and ~3! can be applied to handle the multiring systems.

First, we consider the SRS case. In order to obtain
total transmission coefficient ofN connected rings in series
we divide the system into two subsystems at a siten, which
is usually chosen to be the site in the center of a lead c
necting two neighboring rings. The subsystems are then
ferred to as the left subsystem and the right subsystem
this work t and r are used to denote the transmission a
reflection amplitudes for an incident wave from the le
while t8 and r 8 are used for the transmission and reflecti
amplitudes of an incident wave from the right. We denote
transfer matrix of the entire system byt. In general,t can be
expressed as12

t5
1

t8
S tt82rr 8

2r
r 8
1 D . ~4!

On the other hand, if we denote the transfer matrix of the
subsystem bytL , and that of the right bytR , the transfer
matrix t of the whole system is given by

t5tRtL . ~5!

Applying Eq.~4! for the left and right systems and substitu
ing the results into Eq.~5!, we obtain the total transmissio
and reflection amplitudes in terms oftR , tL , tR8 , tL8 , r R , r L ,
r R8 , and r L8 , where the subscripts label the left and rig
systems, as

t5
tRtL

12r Rr L8
, ~6!

r 5
~ tLtL82r Lr L8 !r R1r L8

12r Rr L
. ~7!
e

n-
e-
In
d
,

e

ft

t

It should be pointed out thatt, t8, r , and r 8 satisfy the
following relations:

t85t, r 85re22iq~N1L !. ~8!

For two rings connected in series forming a two-ring syste
Eqs.~6!–~8! together with Eqs.~2! and~3! can be applied to
calculate the total transmission and reflection amplitudes
the system if one ring is taken as the left subsystem and
other as the right subsystem. Similarly, if we take the abo
double-ring system as a whole to be the right subsystem,
add another single ring from the left as the left subsyste
we can obtain the total transmission and reflection am
tudes of a three-ring system by using Eqs.~6!–~8!. Iterating
the procedure and by repeatedly using Eqs.~6!–~8!, the total
transmission and reflection amplitudes of anN-ring system
can be obtained by connecting one ring to an (N21)-ring
system. The transmission coefficientT and reflection coeffi-
cientR are then obtained from the corresponding amplitud
This iterative scheme can be easily implemented num
cally.

Next, we consider the PRS. In a previous paper,22 we
presented the formulation for calculating the transmiss
coefficient T of an open double-ring system connected
parallel and threaded by magnetic fluxesF1 andF2 , respec-
tively. The main idea is that the double-ring system can
reduced to a single-ring system by representing the two ri
together with the flux through them in a double-ring syste
as scatterers. The transmission and reflection amplitude
the scatterers are assigned so as to model the effects o
rings. The double-ring system can then be treated within
formulation of a single ring.4,22 This approach can be readil
extended to the parallel multiring systems as shown in F
1~b! with a large number of rings. For example, if we repr
sent the double-ring system by an effective scatterer, the
allel four-ring system shown in Fig. 1~b! can be reduced to a
single ring with the effective scatterers in the two arms. R
peating the above procedure allows one to generate a hi
chy of parallel multiring system with progressively larg
number of rings. If we take the double-ring system as
first generation, then thei th generation of this hierarchy con
sists of Ni52i rings. Calculations in these PRS are ma
possible by the observation that there exists simple recur
relations relating the transmission and reflection amplitu
of the (i 21)th generation and thei th generation. Hence, th
calculations for a PRS simply amounts to iterating the rec
sive relations. For a parallel double-ring system threaded
the same magnetic fluxF, i.e., the first generation of PRS
we obtain the following formulas for calculating the tran
mission and reflection amplitudest and r :

t5
1

t0uAu @~P221P12!~ t0
22r 0

2eiu2r 0e22iqL!2~P111P21!

3~r 0eiu1e22iqL!#, ~9!

r 5212
1

uAu ~P111P212P222P12!, ~10!

where t0 and r 0 are the transmission and reflection amp
tudes of a single ring, and can be calculated using Eqs.~2!
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and ~3!. In Eq. ~9!, uAu5P11P222P12P21 and Pi j are the
elements of the 232 matrix given by

P115
1

b
2

M11

bt0
2 ,

P125
2a

b
2

M12

bt0
2 52P21,

P225
a1b

b
2

M22

bt0
2 ,

with

M1152r 0
2e22iqL22ar0~ t0

22r 0
2eiu!

1~a1b!e2iqL~ t0
22r 0

2eiu!2,

M125r 0e22iqL1a~ t0
222r 0

2eiu!

1~a1b!e2iqL~ t0
22r 0

2eiu!r 0eiu,

M2152M12,

M225e22iqL22ar0eiu2~a1b!e2iqLr 0
2ei2u,

whereu522q(N1L). Following the iteration scheme fo
the PRS hierarchy, we have the following recursive relatio
for the transmission and reflection amplitudes between
( i 21)th and thei th generations:

t i5
1

t i 21uAu @~P22
~ i 21!1P12

~ i 21!!~ t i 21
2 2r i 21

2 eiu2r i 21e22iqL!

2~P11
~ i 21!1P21

~ i 21!!~r i 21eiu1e22iqL!# ~11!

and

r i5212
1

uAu ~P11
~ i 21!1P21

~ i 21!2P12
~ i 21!2P22

~ i 21!!, ~12!

wherePi j
( i 21) are expressed in terms of the transmission a

reflection amplitudes of the (i 21)th generation of the hier
archy.

III. NUMERICAL RESULTS AND DISCUSSION

A. Transport properties of parallel multiring systems

The formalism can be easily implemented numerica
and results for both PRS and SRS are obtained. In our
culations the on-site energies are chosen to been50 and the
transfer integralsJ521.0. Each ring is taken to consist o
four sites,12,22 one on each arm of the ring, and one on ea
of the two conjunctions to the leads. The length of the le
connecting neighboring rings is chosen to be one lattice u
The plausibility of this assumption of ‘‘one lattice unit’’ lea
comes mainly from such a fact that for the tight-bindi
model the spacing of site does not necessarily equal the s
ing of atom. It means that the length of two neighboring si
is a modelized distance, and can be a piece of atom chai
fact, in the derivation of transmission coefficient formul
used in the present paper we have considered that the
mean a finite piece of the wire longer than the screen
s
e

d
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h
d
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ac-
s
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tes
g

length as well as electron wavelength, and performed an av
eraging over a wavelength~Ref. 12!. If we assume varied
length of lead connecting ring clusters, on one hand, the
results would be definitely different from the present ones
but on the other hand, the difference only reflects the effec
of the lattice wave phase gained in the connecting leads o
the electronic-transport behavior. Therefore, this difference
is not essential. But, this varied length would bring in big
technical difficulty; we cannot use the simple recursive for-
mulas~11! and ~12! for the transmission and reflection am-
plitudes between the (i 21)th and i th generation ring sys-
tems anymore. In this case, to perform a simulation for a
system with 4096 rings will be a tedious and difficult work.
Furthermore, even though we can also choose a united lea
with finite but not varied length to connect the neighboring
rings, compared with the case of ‘‘one lattice unit’’ lead the
difference of numerical results also comes only from the ef-
fect of the lattice wave phase gained in the leads. In thes
two cases, it seems to us, there is no essential difference. F
these reasons, the assumption of ‘‘one lattice unit’’ of lead
may be crude, but may also be acceptable. To check th

FIG. 3. Transmission coefficientT as a function of magnetic
flux F and incident electron energyE for parallel multiring systems
with ~a! two rings and~b! four rings.
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12 998 57YOUYAN LIU AND P. M. HUI
accuracy of our numerical calculations, we check at eve
intermediate stage of the calculation that the criterio
utu21ur u251 for the transmission and reflection coefficient
is satisfied to a tolerance of 10214. This accuracy enables us
to examine with confidence the transport properties of th
two fundamental configurations of a multiring systems.

Using the recursive relations Eqs.~11! and ~12! of the
PRS, we have studied the transport properties of syste
with number of ringsNi52i up to i 512. Typical plots of the
transmission coefficientT against the electron energyE and
magnetic fluxF are shown in Fig. 3 fori 51,2 and in Fig. 4
for i 54,12. In the absence of magnetic flux,T has a single
peak atE50. ForFÞ0, T has a double-peak structure as
function of E. It is due to the fact that the presence of a
magnetic flux destroys the time-reversal symmetry and t
paths going clockwise and counterclockwise over the rin
have different phases. Another major feature is that f
F5F0/2, the transmission coefficient vanishes for all inci
dent electron energy regardless of the number of rings in t

FIG. 4. Transmission coefficientT as a function of magnetic
flux F and incident electron energyE for parallel multiring systems
with ~a! 16 rings, and~b! 4096 rings. Note that the region in the
E-F plane corresponding to vanishing transmission increases as
number of rings increases.
y
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e
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e
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e

system. This is consistent with the result for the transmiss
amplitude given in Eq.~3! for a single ring. This is a
quantum-coherence effect and can be understood as foll
An incident electron wave in one junction, say siteN, will
separate into two traveling waves passing through the up
and lower arms of the ring into the other junctionL, where
they interference with each other. The amplitude squared
wave function atL reads1,2

ucu25ua1eil11a2eil2u2

5ua1u21ua2u212ua1* a2u cos~l12l2!, ~13!

whereai ( i 51,2) are the amplitudes andl i ( i 51,2) are the
phases for waves traveling through the upper and lo
arms. In the case of a symmetric ring with two identic
arms, the amplitudes are identical, while the phase differe
is given by (l12l2)5eF/\c52pF/F0 . It is thus evident
that if F5F0/2, ucu250. Note that the argument is indepe
dent of the incident electron energy and of the way that
rings are connected in a system. Hence, we expect this re
to hold for both the PRS and SRS.

Another interesting feature exhibited in Figs. 3 and 4
that, for givenF, the region in the parameter space wi
vanishing transmission coefficient increases with increas
number of rings in PRS. For the 12th generation of the h
archy withN1254096, for example, the transmission coef
cient T ~see Fig. 4! vanishes with almost anyFÞ0. The
magnetic flux, hence, completely blocked out the electro
transport. This result is at first sight unexpected. A plausi
physical explanation is that destructive interference beco
the dominant effect as the system size increases. Increa
number of rings leads to many different path differenc
from one end of the system to another. This in turn leads
destructive interference at nearly continuous values of m
netic flux. Our numerical calculations show that for a syst
with 4096 rings~see Fig. 4!, destructive interference occur
at nearly all finite values ofF. We have also studied th

the

FIG. 5. Transmission coefficientT for parallel multiring sys-
tems as a function of incident energy in the absence of magn
flux, i.e.,F50. The three curves from top to bottom correspond
systems with 2 rings, 16 rings, and 1024 rings, respectively.
transmission coefficient decreases only slightly as the numbe
rings increases in PRS.
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effect of increasing number of rings on the transmission
efficient for F50. Figure 5 shows the results forNi52, 4,
16, and 1024. It was found that the transmission coeffic
decreases only slightly with respect to the result of
N152 case asNi increases with the maxima of the curves
coinciding. A simple-minded picture is that the wave, af
entering the system, has equal amplitute passing thro
each ring in the PRS, and each identical ring has the s
transmission amplitude. The total transmission amplitud
thus of the order of the transmission amplitute of a sing
ring system. Therefore, for theF50 case the transmissio
coefficient is almost independent of the number of ring in
PRS. It should be pointed out that although the present P
has some similarities to fractal systems and a Cay
tree,25,26 the actual configurations of these systems are q
different.

B. Transport properties of serial multiring systems

Figures 6 and 7 show the transmission coefficient a
function of the electron energy and magnetic flux for rin
connected in series for the number of rings equals to 2, 4

FIG. 6. Transmission coefficientT as a function of magnetic
flux F and incident electron energyE for serial multiring systems
with ~a! two rings and~b! four rings.
-

t
e
l
r
gh

e
is
-

e
S
y
te

a

6,

and 8, respectively. The feature thatT50 at F5F0/2 is
common to both SRS and PRS. At other values ofF, the
transmission coefficient has four peaks on theT-E plane for
a two-ring system@see Fig. 6~a!#. This should be contraste
with the two-peak structure in a two-ring system in parall
The complexity of the structures in the transmission coe
cient can be understood as the result of coherence betw
the rings as the lead connecting the rings plays the role o
additional scatterer. It will then be expected that as the nu
ber of rings increases, the structure of the transmission c
ficient as a function of the electron energy becomes incre
ingly complicated as a result of the coherence among
large number of rings. It is in fact the case as shown in F
6~b! and 7 for systems with four, six, and eight rings, resp
tively. For showing the relationship between the electron
ergy and its transmission coefficient, we have plotted theE
vs T curves withF50.1, 0.3, 0.4F0 , respectively, for serial
six-ring system in Fig. 8, which very well complement th
three-dimensional~3D! plot shown in the Fig. 7~a!. From
Fig. 8, one can see some similarities with previous res
based on the wave-guide theory.19

FIG. 7. Transmission coefficientT as a function of magnetic
flux F and incident electron energyE for serial multiring systems
with ~a! six rings and~b! eight rings. Note the complicated struc
tures in the transmission coefficient due to the coupling among
rings.
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13 000 57YOUYAN LIU AND P. M. HUI
It is also interesting to study, as analogous to Fig. 5
the PRS, the transmission atF50 for SRS as the number o
rings is varied. Figure 9 shows the results for five differe
values of the number of rings in the system. The transm
sion coefficient is much more sensitive to the number
rings in SRS than in PRS. ForNi52, there is a broad region
in the middle of the band with an appreciable transmiss
coefficient. As the number of rings increases, the region w
large transmission shrinks. A simple-minded argumen
that the total transmission amplitute in SRS is of the orde
the product of the transmission amplitutes of each individ
ring. For energies at which the transmission amplitudet(E)

FIG. 8. Transmission coefficientT vs electron energyE for
serial six-ring systems with~a! flux F50.1F0 , ~b! F50.3F0 , and
~c! F50.4F0 . The relationship betweenT andE is clearly shown.
r

t
s-
f

n
h
is
f
l

for a single ring is not so close to unity, the product of
large number oft(E) is much smaller thant(E) and leads to
the sensitivity of the transmission to the number of rings
the system.

IV. SUMMARY

A recursive scheme is used to calculate the transmis
coefficient of systems with a large number of mesosco
rings threaded by a magnetic flux connected either in para
or in series. The transmission coefficient is studied, for d
ferent numbers of rings in the system, as a function of
incident electron energy and magnetic flux. AtF5F0/2, the
transmission vanishes for both the parallel and serial mu
ring systems. In PRS, the region of theE-F space corre-
sponding to vanishing transmission increases as the num
of rings increases. In SRS, the coupling between serial ri
leads to complicated structures in the transmission coe
cient as the number of rings increases. AtF50, the trans-
mission decreases only slightly with respect to that in a tw
ring system as the number of rings increases in PRS, w
the transmission decreases much more sensitively with
number of rings in SRS. When suitably generalized,
present calculation scheme can be extended to treat sys
with a large number of mesoscopic rings connected in m
complicated configurations.
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FIG. 9. Transmission coefficientT for serial multiring systems
as a function of incident energy in the absence of magnetic flux,
F50. The five curves from top to bottom correspond to syste
with two rings, four rings, six rings, eight rings, and ten ring
respectively. Note that the transmission coefficient depends se
tively on the number of rings in SRS.
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