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Phonon linewidth in III-V semiconductors from density-functional perturbation theory

Alberto Debernardi
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany

~Received 19 December 1997!

In this work we present anab initio calculation of the Raman linewidth of transverse and longitudinal
phonon in zinc-blende semiconductors GaAs, AlAs, GaP, and InP. We propose a simple approximation that
permits us to calculate the longitudinal linewidths with the same computational effort as the transverse ones.
The microscopic mechanisms responsible for the decay are analyzed and discussed. The temperature depen-
dence of the linewidths is computed. Our results are in good agreement with available experimental data up to
room temperature for both transverse and longitudinal optical modes and give reliable predictions in materials
difficult to study experimentally.@S0163-1829~98!00420-2#
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I. INTRODUCTION

One of the most spectacular achievements of solid s
physics in this century is the microscopic understanding
the vibrational properties of crystals. The phonon spectra
different materials have been extensively investigated in
cent decades1 both theoretically and experimentally.

In a perfect harmonic crystal, phonons do not inter
with each other, so that a nonequilibrium phonon populat
would persist in time.2 However, one experimentally ob
serves that the phonon population decays towards equ
rium on a time scale of a few picoseconds. The anharmo
decay of phonons into vibrations of lower frequency is
fundamental mechanism for energy relaxation in semic
ductors, as it controls the formation and time evolution of
nonequilibrium phonon populations that are emitted by hi
density excited carriers when they decay towards th
ground state.3

Experimentally, anharmonic lifetimes of individual zon
center phonons can be extracted from their measured Ra
linewidths if inhomogeneous broadening effects can be
glected. Mene´ndez and Cardona have obtained the full te
perature dependence for elemental semiconductors m
than a decade ago.4 This task, however, is much more diffi
cult in systems, such as heterostructures, where compos
and/or strain inhomogeneities add to the usual~e.g.,
isotopic5! elastic broadening factors. Experiments in the tim
domain by ultrafast spectroscopies have also become a
able in recent years and provide useful information, es
cially for long lifetime phonons. In fact, such phonons d
play extremely narrow Raman linewidths, and to obtain
measure of the phonon lifetime with Raman spectrosc
one must deconvolute the measured Raman line to take
account the contribution to the Raman linewidth due to
spectrometer resolution, which, in this case, has appr
mately the same size as the contribution to the linewidth
to anharmonic decay.

II. THEORY OF PHONON LIFETIME

In the following we summarize the procedure that has
be implemented to compute the phonon lifetime and int
duce the notation used throughout this work. The deta
570163-1829/98/57~20!/12847~12!/$15.00
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theory of anharmonic broadening of Raman lines can
found in several review articles~see, for example, Refs. 4, 6
and references therein!.

We indicate the ionic positions at equilibrium as

Rs
l 5Rl1ts ,

wherel is a cell index ands (s51,...,n) is a basis index in
the unit cell ofn atoms. We introduce the displacements$us

l %
of the ions from their equilibrium positions; Greek subscrip
will be used to indicate Cartesian components.

The Taylor expansion of the total energy around the eq
librium positions in terms of the displacements reads

Etot~$us
l %!5Etot

~0!1Etot
~2!~$us

l %!1Etot
~3!~$us

l %!1•••. ~2.1!

The second order term is the harmonic contribution to
total energy, from which one can obtain the dynamical m
trix and compute the phonon frequencies.

The third order term of a Taylor expansion of the to
energy around the equilibrium positions in terms of the d
placements reads

Etot
~3!~$us

l %!5
1

6 (
l l 8 l 9,ss8s9,abg

]3Etot

]us,a
l ]us8,b

l 8 ]us9,g
l 9

us,a
l us8,b

l 8 us9,g
l 9 .

~2.2!

The displacements of the atoms from equilibrium are rela
to the phonon creation and annihilation operators,aj

1(q) and
aj (q), through the usual second quantization formula,

us,a
l 5(

q, j
S \

2v j~q!MsN
D 1/2

es,a~q, j !eiq•Rl

3@aj
1~2q!1aj~q!#, ~2.3!

whereMs is the mass of thesth atom in the unit cell,N is the
number of unit cells in the crystal,v j are the phonon fre-
quencies, thej ’s label the phonon branches (j 5126 in bulk
compound semiconductors!, ande(q, j ) is the amplitude of
the j th phonon mode at wave vectorq in the first Brillouin
zone. Inserting Eq.~2.3! in Eq. ~2.2!, we obtain the third
order correction to the total energy written in second qu
tization~terms of destruction and creation phonon operato!.
12 847 © 1998 The American Physical Society
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The harmonic Hamiltonian does not induce transitions
tween states with different phonon populations. To stu
phonon decay times, we considerEtot

(3) as a perturbation and
use Fermi’s golden rule. We thus obtain

G5
2p

\ (
f

z^ i uEtot
~3!u f & z2d~Ei2Ef !, ~2.4!

where u i & and u f & label the initial and final states, respe
tively, Ei andEf the corresponding energies, and thed func-
tion ensures energy conservation. At thermal equilibrium
phonon population is described by the Bose-Einstein dis
bution

nj~q!5
1

e\v j ~q!/kT21
.

It is easy to verify that the third order interaction produc
no change in such a population, i.e., a thermal pho
population is stable, as it was obviousa priori. We assume
that at q50 there is a nonequilibrium phonon populatio
while in all the otherq points of the Brillouin zone the pho
non population is given by the thermal occupation numbe
This is the so-called single-mode relaxation tim
approximation.7 In our case, only the terms proportional
aLTO(0)aj 1

1(2q)aj 2

1(q) andaTO(0)aj 1
(q)aj 2

1(q) give a non-

vanishing contribution~LTO labels the longitudinal or trans
verse optical modes!.

If only three-phonon processes are considered, energy
crystal momentum conservation dictates that the zone-ce
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LTO phonon decays into a pair of phonons with oppos
wave vectors,6q, whose frequencies sum up to the fr
quency of the decaying mode. This is the only mechan
one must consider for the decay of a LO phonon. When
consider the decay of a TO phonon at the Brillouin zo
center, one has to take into account the decay proces
which the TO phonon is destroyed together with a phonon
q, to create another phonon with a frequency that is the s
of the frequencies of the destroyed phonons and wave ve
q.

The inverse lifetime of the LTO mode at zone cen
reads

GLTO5
p

2\2 (
q, j 1 , j 2

UVS 0 q 2q

LTO j 1 j 2
D U2

$@nj 1
~q!

1nj 2
~2q!11#d@vLTO~0!2v j 1

~q!2v j 2
~2q!#

12@nj 1
~q!2nj 2

~q!#d@vLTO~0!1v j 1
~q!2v j 2

~q!#%.

~2.5!

Since the LO is the higher phonon frequency in the mater
the second term in curly brackets is nonvanishing only
the TO phonon. This term describe the phonon u
conversion where the TO phonon is scattered by a ther
phonon@of frequencyv j 1

(q)] into a phonon of higher fre-

quency @v j 2
(q)#. The matrix elements that determine th

width G are given by
VS 0 q 2q

LTO j 1 j 2
D 5 (

ss8s9,abg
S \3

8MsMs8Ms9vLTO~0!v j 1
~q!v j 2

~2q!
D 1/2

3S 1

An
(
l 8,l 9

]3Etot

]us,a
l ]us8,b

l 8 ]us9,g
l 9

eiq•~Rl 82Rl 9!D es,a~0,LTO!es8,b~q, j 1!es9,g~2q, j 2!. ~2.6!
is

ub-
ffi-

ou-
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-
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The ingredients of the above formula are the harmonic
quencies and displacements and the third order derivativ
the total energy. All these ingredients can be computed,
density-functional framework, using density-functional pe
turbation theory.

III. THIRD ORDER DERIVATIVE
BY DENSITY-FUNCTIONAL PERTURBATION THEORY

The harmonic frequencies and atomic displacements
responding to a phonon in semiconductors can be easily
tained using density-functional perturbation theory8,9 by
computing the linear response to a perturbation that, in
case, is a displacement of the atom from the equilibri
position. The linear response to a small perturbation is a
sufficient to compute the third order derivative to the to
energy with respect to the same perturbation. This is a
ticular case of the so-called ‘‘2n11’’ theorem.10 The formu-
-
of
a

-

r-
b-

ur

o
l
r-

lation of this theorem in a density-functional framework
due to Gonze and Vigneron,11 which gives an explicit for-
mula for the third order derivative. This expression was s
sequently reformulated by Debernardi and Baroni in an e
cient way for numerical calculations.12 This method was
successfully applied to compute the anharmonic phonon c
pling constant12 and to study the phonon linewidth of e
emental semiconductors13,14 giving very good results com
pared to experimental data.13,16

It is convenient to switch to reciprocal space and to int
duce the reciprocal-space anharmonic force constant defi
as

Css8s9,abg~q1 ,q2 ,q3!

5
1

AN3 (
l ,l 8,l 9

]3Etot

]us,a
l ]us8,b

l 8 ]us9,g
l 9

eiq1–R
l
eiq2–R

l 8
eiq3–R

l 9
,

~3.1!
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where theq’s are in the first Brillouin zone. We recall tha
the translational invariance of the system gives the condi

q11q21q35G, ~3.2!

whereG is a reciprocal-lattice vector. We can easily reco
nize that Css8s9,abg(0,q,2q) is the anharmonic term tha
appears in parentheses in the last line of Eq.~2.6!. The
atomic displacement in reciprocal space is defined as

us~q!5
1

AN
(

l
us

l e2 iq•Rl
.

In the following we replace, for simplicity, the double inde
(s,a) by p (p51,...,3n). Using the formula for the deriva
tive of many variable functions, we rewrite the anharmo
tensor in term of derivatives with respect tou(q):

Cp,p8,p9~q1 ,q2 ,q3!5
]3Etot

]up~q1!]up8~q2!]up9~q3!
.

~3.3!

To calculate this term we evaluate the general expression
the third order derivatives with respect to a specific sm
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parameterl @Eqs. ~9! and ~10! of Ref. 12#, which, in our
case, will represent the phonon displacementsup(q).

From Eq. ~9! of Ref. 12, the expression for the anha
monic force constants reads

Cpp8p9~q1 ,q2 ,q3!5Ẽpp8p9~q1 ,q2 ,q3!1Ẽp8pp9~q2 ,q1 ,q3!

1Ẽpp9p8~q1 ,q3 ,q2!1Ẽp9pp8~q3 ,q1 ,q2!

1Ẽp8p9p~q2 ,q3 ,q1!

1Ẽp9p8p~q3 ,q2 ,q1!. ~3.4!

In our case,Ẽ is the sum of an electronic partẼel plus an
ionic contributionẼion, which is essentially the third deriva
tive of an Ewald sum whose expression is given in Appen
A:

Ẽpp8p9~q1 ,q2 ,q3!5Ẽpp8p9
el

~q1 ,q2 ,q3!1Ẽpp8p9
ion

~q1 ,q2 ,q3!.

With the help of Eq.~10! of Ref. 12, we find for the elec-
tronic contribution
Ẽpp8p9
el

~q1 ,q2 ,q3!5(
v

K ]cv

]up~q1!
UPc

]H

]up8~q2!
PcU ]cv

]up9~q3!
L 2(

vv8
K ]cv

]up~q1!
UPcU ]cv8

]up8~q2!
L K cv8U ]H

]up9~q3!
UcvL

1
1

2E ]2Vion~r !

]up8~q2!]up9~q3!

]n~r !

]up~q1!
dr1

1

6E ]3Vion~r !

]up~q1!]up8~q2!]up9~q3!
n~r !dr

1
1

6E d3Exc@n#

dn~r !dn~r 8!dn~r 9!

]n~r !

]up~q1!

]n~r 8!

]up8~q2!

]n~r 9!

]up9~q3!
drdr 8dr 9, ~3.5!
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where H and ucv& are, respectively, the unperturbed se
consistent Hamiltonian and the corresponding wave fu
tions, andVion(r ) is thebare ~pseudo!potential acting on the
electrons:

Vion~r !5(
R,s

vs~r2R2ts!,

vs being the bare~pseudo!potential centered at the atom
site R1t.

In this manner all ingredients necessary to compute
phonon coupling constants are obtained.

IV. RAMAN LINEWIDTHS FOR ZINC-BLENDE
SEMICONDUCTORS

Compound semiconductors differ from the elemental o
in that they have two different atoms in the unit cell. T
displacement of the atoms due to a longitudinal optical p
non in the long wavelength limit (q→0) may induce an elec
tric field with the same wave vector of the phonon; in sem
conductors this electric field is not completely screened
electrons and adds to the restoring force acting on ions,
-

e

s

-

-
y
us

modifying the phonon frequencies. This determines the sp
ting of transverse and longitudinal optical modes near
zone center,17 as observed in the phonon spectra of po
semiconductors.18

The splitting of LO and TO frequencies can be predict
by the so called phenomenological theory due to Huan19

The presence of an electric field produced by the LO pho
determines a nonanalytic contribution to the dynamical m
trix at the center of the Brillouin zone. This contribution wa
computed by Cochran and Cowley20 for an ionic crystal of
arbitrary symmetry and rederived by Pick, Cohen, a
Martin,21 using a microscopic formulation.

In zinc-blende semiconductors, the macroscopic elec
field associated to the phonon displacement does not a
the frequencies of transverse phonons but only those of
gitudinal ones; similarly, up to third order inu the calcula-
tion of transverse phonon lifetimes involves no nonanaly
contribution in the anharmonic dynamical tensor, while t
calculation of the LO lifetimes requires including the effec
of macroscopic electric field.

The difference in the electron density response betwee
longitudinal and an optical phonon in the long waveleng
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limit was discussed by Resta22 for cubic materials with two
atoms per unit cell. He showed that the first order correct
to the density produced by a LO phonon can be written

nLO
~1!5nTO

~1!2
4peZ*

Ve`
nE

~1! , ~4.1!

wherenTO
(1) is the change in the charge density induced b

TO mode,nE
(1) is the linear density response to a unifor

electric field,Z* the Born effective charges,e the electron
charge,V the unit cell volume, ande` the high-frequency
~electronic! dielectric tensor. The last term in the right-han
side of Eq.~4.1! represents the contribution due to the co
pling of the LO phonon with the associated electric field a
includes all nonanalytic terms. In this work the LO phon
lifetimes are computed neglecting the contribution due
nE

(1) ~and the corresponding nonanalytical contribution to
wave-function response! in the anharmonic dynamical ten
sor. We will refer to this as thezero field anharmonic ap
proximation, because in this approximation one sets the m
roscopic electric field associated with the longitudin
phonon equal to zero; we propose this approximation a
suitable method to compute, without any further complic
tion, the longitudinal linewidths in zinc-blende semicondu
tors.

V. COMPUTATIONAL INGREDIENTS

Compound semiconductors such as gallium arsenide
aluminum arsenide crystallize in the zinc-blende structu
the Bravais lattice is face-centered cubic with the two ato
per unit cell placed att150 andt25a/4 (1,1,1), wherea is
the edge of the cube. The corresponding Brillouin zone
reported in Fig. 1. For a given configuration of the nuclei,
have assumed that the electrons are in the correspon
ground state~adiabatic approximation!.

Calculations were performed within density-function
theory in the local-density approximation~LDA ! for ex-
change and correlation energy. The input data for this
proximation are the homogeneous electron gas excha
correlation energy calculated with Monte Carlo techniqu
by Ceperley and Alder,23 and interpolated by Perdew an
Zunger.24 We have used the same norm-conserving pseu
potentials as in Ref. 9, which were generated using a sch
proposed by von Barth and Car.25 Our plane-wave basis se
are truncated to a kinetic-energy cutoff of 22 Ry for GaA
AlAs, and GaP and to a cutoff of 20 Ry for InP, i.e.,;500
plane waves for all semiconductors we have investiga

FIG. 1. Sketch of the Brillouin zone.
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which ensures a very accurate convergence in the third-o
force constants. The Brillouin-zone integration over ele
tronic states is performed using the special point techniqu26

We have used the (8,8,8) Monkhorst-Pack27 integration
mesh, which reduces to the 10-point Chadi-Cohen set26 in
the irreducible wedge. The reciprocal space integration o
phonon states@the q points appearing in Eq.~2.5!# was per-
formed using the tetrahedron method, introduced by Jep
and Andersen28 and independently by Lehmann and Taut29

With this method we have carried out the sum over theq
points appearing in Eq.~2.5! using approximately 1500
points in the irreducible wedge of the Brillouin zone, so as
ensure a very accurate integration over the constant-en
surface given by the Dirac delta of Eq.~2.5!. The integrand is
calculated on a much coarser uniform mesh and then Fou
interpolated on the finer grid, much in the same way as p
non dispersions are obtained from selected calculations
relatively coarse grid, passing through interatomic for
constants.9

To evaluate the expression for the phonon linewidth@Eqs.
~2.5! and~2.6!# we need to compute the phonon frequenc
and the corresponding eigenvectors. This was achieved u
density-functional perturbation theory in the same way
Ref. 9; our phonon branches of GaAs and AlAs reprodu
those presented in that work. We are not aware of first p
ciples calculation of phonon dispersion in GaP and InP us
density-functional perturbation theory. To show the reliab
ity of our calculation in Tables I and II we report some of o
results for lattice dynamical properties in GaP and InP co
pared with experimental data.

VI. COMPUTATIONAL RESULTS

In the following we present the results we have obtain
for some III-V semiconductors. The LO and TO decay pr
cesses arekinematically different: as discussed previously i
a polar semiconductor, the LO and TO branches are non
generate atq near zero, so energy conservation allows d
ferent decay processes with the creation of phonons in
ferent regions of the Brillouin zone. As it was previous
pointed out, the LO and TO decay processes are alsody-
namically different: due to the coupling with the electri
field, an LO phonon induces a different density respon
than a transverse one. As a consequence, the dynamica
sors corresponding to LO and TO phonons are different.

Our results should therefore be considered exact wit
the LDA for TO phonons, while we have used the zero fie

TABLE I. Equilibrium lattice parametera ~a.u.! obtained in the
present calculation and the bulk modulusB0 ~Kbar!. The parenthe-
ses contain the experimental values.

a B0 e` Z*

GaP 10.23 869 10.2 2.11
~10.30!a ~1127!a ~9.08!a ~2.04!b

InP 10.94 757 10.4 2.45
~11.09!a ~9.61!a ~2.55!b

aFrom Ref. 30.
bFrom Ref. 31.
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TABLE II. Phonon frequencies computed at high-symmetry pointsG, X, andL ~in units of cm21). The
parentheses contain experimental data~from Ref. 30!.

GLO GTO XTA XTO XLA XLO LTA LLA LTO LLO

GaP 395 362 105 358 252 367 82 234 359 369
~403! ~365! ~107! ~354! ~250! ~366! ~85! ~213! ~358! ~374!

InP 354 318 71 329 187 337 56 172 322 342
~350! ~308! ~68! ~324! ~193! ~331! ~55! ~167! ~317! ~340!
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anharmonic approximation for the anharmonic behavior
the LO phonons.

A. Lifetime of TO phonons

In Table III we report our results for the linewidths o
transverse optical phonons at zero temperature. To the
of our knowledge, the only few experimental data are av
able in the literature at low temperature; for GaP they w
obtained two decades ago by Bairamov, Kitaev, Negodu
and Khashkhozhev.33 In a recent work, Irmer, Wenzel, an
Monecke34 measured the linewidth of GaAs and InP. T
agreement between the experimental data and our resu
good. In GaAs the discrepancy between our results and
experimental data of the TO linewidth can be attributed
least in part, to the isotopic disorder of an experimen
sample, which increased the Raman linewidth.32

To identify the relevant processes contributing to the
results, in Table III we also report the relative weights of t
individual decay channels, as obtained by restricting
sums over thej ’s in Eq. ~2.5! to selected final states: ‘‘TA’’
( j 51,2), ‘‘LA’’ ( j 53), and ‘‘TO’’ ( j 54,5). The decay of
a transverse phonon into one optical and one acoustic
non is kinematically forbidden in all the present cases
turns out that the dominant decay mechanisms are not
same in the four semiconductors. In GaAs and GaP, the
cess with maximum probability (.96%) involves one LA
and one TA mode as final states, and theKlemens channel,
i.e., the decay of the LTO mode into two acoustic phono
belonging to the same branch and with opposite wave v
tors, turns out to give a very small contribution. A simil
situation was found for the decay of optical phonons at
Brillouin zone center for Si and Ge.13 In AlAs and InP, in-
stead, the Klemens channels LA1LA is the only kinemati-
cally allowed case by energy conservation.

TABLE III. Calculated full widths at half maximum (2GTO) of
zone-center transverse optical phonons at zero temperature.
corresponding experimental values are shown for comparison.
last columns indicate the relative contributions to the linewidth
the individual decay channels~see text!.

2GTO

~cm21)
2GTO ~expt.!

(cm21)
LA1LA

~%!
LA1TA

~%!

GaAs 0.44 0.60a 4.5 95.5
GaP 2.97 3.06b 2.3 97.1
AlAs 0.13 100.0
InP 0.49 0.50a 100.0

aFrom Ref. 34.
bFrom Ref. 33.
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In order to get a deeper insight into the microscop
mechanisms that determine the decay process, we plot in
2 the wave-vector-resolved final state spectrum, i.e., the
q-dependent function that appears in Eq.~2.5! under the
summation. Due to energy conservation, as expressed by
d function, this quantity is nonzero only on a thre
dimensional surface of which we display the intersect
with some high-symmetry planes in the Brillouin zone~see
also Fig. 1!. The magnitude of the function on that surfa
~i.e., the magnitude of the matrix element responsible for
phonon decay! is represented by a rainbow color scale goi
from red to violet in order of increasing magnitude.

It is easy to identify the contribution of Klemens pro
cesses in the closed contour falling approximately midw
between the Brillouin zone center and edge@this is where the
LA phonon dispersionvLA(q) reaches the valuevLA
5vTO/2]. This is the only contribution allowed by energ
conservation in AlAs and InP. In GaAs and GaP, the relev
contribution to the linewidth of TO phonons is due to th
decay into a longitudinal and a transverse acoustic phon
This contribution comes from wave vectors close to the B
louin zone edge. In GaAs the latter decay mechanism
present in all the directions fromG to the zone boundary
GaP shows a large value of the linewidth compared to
values obtained for the other materials. In particular,
main contribution corresponds to the decay of TO→LA
1TA phonons around theK point ~see Fig. 2!. The same
decay mechanism is allowed by energy conservation als
the region aroundU andW points; in the other regions of th
Brillouin zone the frequency of the TA branch is so low th
no matching LA frequency exists yieldingvTA(q)
1vLA(2q)5vTO.

B. Lifetime of LO phonons

Our results for LO phonons are shown in Table IV.
GaAs we compute 2GLO50.66 cm21; this value must be
compared with the experimental onet59.260.6 ps at 6 K,
which corresponds to 2GLO50.58 cm21, as was obtained by
Vallée and Bogani35 using an infrared time-resolved cohe
ent anti-Stokes Raman scattering~CARS!. In the same ma-
terial, Irmeret al.34 measured 2GLO50.67 cm21, using Ra-
man spectroscopy, while Kernohanet al.36 obtained 2GLO
50.35 cm21 with the same technique.

In GaP we have computed an LO-phonon linewid
2GLO50.18 cm21. The lifetime was measured by Bron
Kuhl, and Rhee;38,39 using CARS technique, they foundt
526.062.5 ps~at 5 K!, which corresponds to 2GLO50.20
60.02 cm21. They also measured the linewidth by spon
neous ~incoherent! Raman scattering and found 2GLO
50.23 cm21. A previous investigation performed by Baira

he
he
f
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FIG. 2. ~Color! Wave-vector-resolved final-state spectra of compound semiconductors at zero temperature. The color scale goes
to violet in order of increasing magnitude. In each material, violet corresponds to the maximum contribution on the constant energy
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mov et al.33 yielded 2GLO50.3660.02 cm21 at 15 K.41 In a
subsequent work, Bairamov, Parshin, Toporov, a
Ubaidullaev40 measured 2GLO50.25 cm21.

Our computation for the LO linewidths in InP give
2GLO50.038 cm21. Vallée measured the LO-phonon life
time by CARS;37 he obtained 2GLO50.026 cm21. Using
Raman spectroscopy, Irmeret al.34 determined a phonon
linewidth 2GLO50.15 cm21. Kernohanet al.36 measured
d
2GLO50.22 cm21. This experimental value ‘‘is consisten
with recent results on time-resolved coherent anti-Stokes
man scattering37,42 when the effects of plasma-induced ph
non dephasing are included.’’36 Our computed linewidth is in
good agreement with the experimental value obtained
Vallée with time-resolved measurements; as discussed in
Introduction, we believe the technique used in this expe
ment is, in principle, more suitable than standard Ram
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spectroscopy to determine the lifetime of phonons that
play extremely narrow linewidths, such as the LO Ram
line in InP. On the other hand, Raman spectroscopy will
more appropriate for measuring large linewidths~such as
those displayed by GaAs at room temperature!.

With the help of Table IV and Fig. 2, we can pinpoint th
relevant LO decay processes. The decay of the LO phono
GaAs shows mechanisms similar to those found in Si
Ge.13 The most important decay mechanism involves t
different branches: LA1TA. These processes correspond
the colored lines near the boundaries of the Brillouin zone
Fig. 2. In GaP and AlAs the relevant mechanism is the de
into the same longitudinal acoustic branch, as it is shown
the figure by the blue line around theL point.

The red lines around theG point refer to the decay chan
nels LO→TO1LA and LO→TO1TA, which give a negli-
gible contribution to the linewidth according to the fact th
for this decay process the linewidths must vanish linea
with uqu, whenq approaches the Brillouin zone center~it is
zero in GaAs where the allowed decay processes involvq
points closer to theG point, a few percent in AlAs and GaP!.
We give the proof of this analytical behavior in Appendix
The decay process of the LO phonon in InP is of particu
interest. The linewidth is considerably smaller than those
played by other material. We can easily understand the
son by looking at Fig. 2: the decay channel LO→ LA 1 LA
is allowed by energy conservation only in the region arou

FIG. 3. Calculated phonon density of states,n(v) ~dashed line,
arbitrary units!, and frequency-resolved final state spectra,g(v)
~solid line!, at zero temperature in GaAs. Vertical scale refers
g(v) ~dimensionless!.

TABLE IV. Calculated full widths at half maximum (2GLO) of
zone-center longitudinal optical phonons at zero temperature
pressure. The corresponding experimental values are shown
comparison. The last columns indicate the relative contribution
the linewidth of the individual decay channels~see text!.

2GLO

(cm21)
2GLO ~expt.!

(cm21)
LA1LA

~%!
LA1TA

~%!
TO1LTA

~%!

GaAs 0.66 0.5860.04a 4.0 96.0
GaP 0.18 0.2060.02b 96.0 4.0
AlAs 0.42 94.8 5.2
InP 0.038 0.026c 1.0 99.0

aFrom Ref. 35.
bFrom Ref. 39.
cFrom Ref. 37.
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the X point where the anharmonic matrix element whi
determine the width@given by Eq.~2.6!# gives only negli-
gible contributions~red line in Fig. 2!. The relevant decay
mechanisms are LO→TO1LA and LO→TO1 TA ~the red
and yellow lines around the Brillouin zone center!. In the
long wavelength limit~i.e., whenq goes to zero! this contri-
bution to the linewidths must vanish. Since this is the on
important decay process this explains why the LO-linewid
in InP is an order of magnitude smaller than in the oth
semiconductor considered in this work.

C. Frequency resolved analysis

To improve further our analysis, we define thefrequency-
resolved final state spectrum, g(v), i.e., the probability per
unit time that the LTO phonon decays into one mode
given frequencyv and one of frequencyvLTO2v. In prac-
tice,g(v) is obtained by restricting the sum overj 1 andq in
Eq. ~2.5! to those values for whichv j 1

(q)5v by inserting

d@v2v j 1
(q)# under the sign of sum. According to this defi

nition, g(v) is symmetric aroundvLTO/2 and the integral of
g(v) over the whole range of frequencies is equal to 2GLTO .
The frequency-resolved final state spectra,for TO and LO
phonons in GaAs, GaP, AlAs, and InP, are displayed in F
3, 4, 5, and 6, respectively.48 The peak atvLTO/2 corre-
sponds to the Klemens decay mechanism. As anticipate

o

FIG. 4. Calculated phonon density of states,n(v) ~dashed line,
arbitrary units!, and frequency-resolved final state spectra,g(v)
~solid line!, at zero temperature in GaP. The vertical scale refer
g(v) ~dimensionless!.

FIG. 5. Calculated phonon density of states,n(v) ~dashed line,
arbitrary units!, and frequency-resolved final state spectra,g(v)
~solid line!, at zero temperature in AlAs. The vertical scale refers
g(v) ~dimensionless!.
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the preceding sections, this peak is dominant in AlAs, wh
in GaAs the main contribution arises from the lateral pea
symmetric with respect tovLTO/2. By comparison with the
one-phonon density of state~DOS!—displayed in the figures
as a dashed line—we notice that usually the main pea
g(v) is superimposed~or extremely close! to the Van Hove
singularity of DOS, which corresponds to the longitudin
acoustic phonon at the zone border. For example, the
phonon in AlAs or the TO phonon in InP presents a Kleme
peak at the frequency of this Van Hove singularity, while
GaAs the same singularity in the DOS has the same

FIG. 7. Temperature dependence of the full width at half ma
mum, 2G, of the TO and LO phonons in GaAs. The solid lin
represent the result of the present calculation; crosses denot
perimental data from Ref. 34~IWM !; diamonds from Ref. 37~V!;
and full circles from Ref. 35~VB!.

FIG. 6. Calculated phonon density of states,n(v) ~dashed line,
arbitrary units!, and frequency-resolved final state spectra,g(v)
~solid line!, at zero temperature in InP. The two vertical scales re
to g(v) ~dimensionless!.
e
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of
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quency of one of the two lateral peaks. In the next section
will show how this kind of analysis can be useful to fit th
temperature dependence of experimental linewidths.

D. Temperature dependence

We have computed the temperature dependence of
linewidth for transverse and longitudinal optical phonons
serting the appropriate thermal occupation number in
~2.5!. Our results are shown in Figs. 7, 8, 9, and 10 for Ga
GaP, AlAs, and InP, respectively; the continuous lines r
resent our theoretical results, the experimental data are
noted by symbols. As anticipated in Sec. II, the linewidth
the TO phonon is composed of two contributions given
the first and the second term of Eq.~2.5!. The second term
~corresponding to phonon up-conversion! vanishes at zero
temperature, and, according to our calculation, is negligi
in GaAs and GaP over the range of temperature we h
considered, while it is small in AlAs and InP. The dash
line is the theoretical contribution arising from the first ter
in curly brackets of Eq.~2.5!; with this scale the dashed lin
is superimposed on the continuous one in GaAs and GaP
difference between the continuous and dashed lines is
phonon up-conversion contribution. By energy conservat
the phonon up-conversion mechanism involves only phon
near the Brillouin zone center; from our analytic results

-

ex-

FIG. 8. Temperature dependence of the full width at half ma
mum, 2G, of the TO and LO phonons in GaP. The solid lin
represent the result of the present calculation; diamonds denote
perimental data from Ref. 37~V!; down and up triangles denot
experimental data obtained by CARS and Raman width, resp
tively, from Ref. 38~KB!; stars represent experimental data fro
Ref. 40; squares represent experimental data from Ref. 33~BKNK !.
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Appendix B we can easily understand why the phonon
conversion contribution is in general small compared to
other decay mechanisms.

The experimental data for 2GLO in GaAs are due to
Vallée and Bogani.35 For completeness, we mention the ea
lier experimental data obtained by von der Lindeet al.43 at
77 K for the phonon lifetime of the LO Raman mode
GaAs. The same authors measured the time evolution
nonequilibrium incoherent optical phonons, finding 2GLO
50.76 cm21. At the same temperature they also measu
the LO-phonon Raman linewidth 2GLO50.8560.1 cm21.
At 77 K, Vallée et al. obtain 2GLO50.8360.05 cm21, in
good agreement with our result of 2GLO50.81 cm21.

In GaP our result for 2GTO shows a strong temperatur
dependence. Our results are in good agreement with ex
mental data of Ref. 33 only at low temperature. In our op
ion the discrepancies between theory and experiment ma
explained, at least in part, by the observation that the
evant contribution in the computation of 2GTO comes from
decay processes in a small surface around theK point. The
contribution to the linewidth due to this particular dec
mechanism can be significantly modified, also at low te
perature, by the high order contribution neglected in o
computation. However, the Raman spectra measured at r
temperature by Weinstein44 and by Weinstein and
Piermarini45 displays a large TO linewidth in agreement wi
our result. We notice further that our results for the linewid
of the Raman modes of GaP at high temperature dev

FIG. 9. Temperature dependence of the full width at half ma
mum, 2G, of the TO and LO phonons in AlAs. The solid line
represent the result of the present calculation; the difference
tween the solid and dashed lines denotes the contribution to the
linewidth due to the phonon up-conversion~see text!.
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from the experimental data of Ref. 33 for both TO and L
modes. The temperature dependence of 2GLO in GaP is re-
ported in Fig. 8. Our calculation agrees well with the expe
mental data of Bron, Kuhl, and Rhee38 up to room tempera-
ture when the higher order corrections are expected
become important. The same agreement is found with
experimental data of Valle´e37 and with those of Bairamov
Parshin, Toporov, and Ubaidullaev.40

In Fig. 10 we show the temperature dependence of 2G in
InP. Our computed 2GTO is in good agreement with the ex
perimental data of Irmeret al.34 The temperature dependenc
of 2GLO was measured by Valle´e37 using CARS and by
Irmer et al. using conventional Raman spectroscopy.34 Our
computational results reproduce well Valle´e’s data, however
because of the discrepancies between the two sets of ex
mental data, we believe that more experimental data are
quired in order to ascertain whether the discrepancy betw
theory and experiment is real, before embarking on an an
sis to find its microscopic origin.

Finally, we mention how the frequency resolved analy
we have performed in Sec. VI C can be useful also in
analysis of experimental data. Up to room temperature,
temperature dependence of 2G is mainly determined by the
zero temperature value of the linewidth multiplied by t
appropriate thermal occupation number shown in Eq.~2.5!.
Using the frequency that corresponds to the main peak of
frequency-resolved final state spectrum, g(v) one can obtain

FIG. 10. Temperature dependence of the full width at half ma
mum, 2G, of the TO and LO phonons in InP. The solid lines re
resent the result of the present calculation; crosses denote ex
mental data from Ref. 34~IWM !; diamonds denote experimenta
data from Ref. 37~V!. The difference between the solid and dash
lines denotes the contribution to the TO linewidth due to the p
non up-conversion~see text!.
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the linewidth at zero temperature by fitting the experimen
data over a broad temperature range.

VII. CONCLUSIONS

In this work we have computed the phonon linewidths
the zone center optical phonon in compound semiconduc
Our results are in good agreement with available experim
tal data and give reliable predictions where the data are la
ing. The zero field anharmonic approximation is shown to
a suitable method to compute the linewidths of longitudi
phonons. The mechanisms responsible for various decay
cesses are identified and discussed. In particular, we are
to explain why InP presents a LO linewidth that is an ord
of magnitude smaller than those of the other materials
have considered.
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APPENDIX A: IONIC TERM

The ionic term in the anharmonic force constants ari
from the ion-ion Ewald contribution:46

EEwald5
4pN

V

e2

2 F (
~GÞ0!

e2G2/4h

G2 U(
l

Zle
iG•tlU

2
1

4hS (
l

Zl D 2G1
Ne2

2 (
l ,m

(
R

ZlZm

utl2tm2Ru

3@12erf~Ahutl2tm2Ru!#2Ne2Fh

p G1/2

(
l

Zl
2,

whereZi indicates the bare ionic~pseudo!charge for thei th
atom,V is the volume of the unit cell, andh is an arbitrary
parameter, which may be chosen so large as to allow u
neglect the real-space term. After some straightforward a
bra we find for the ionic contribution to the third order a
harmonic constant
Ẽss8s9,abg
ion

~q1 ,q2 ,q3!52
2pe2N

3V (
~GÞ0!

e2G2/4h

G2
GaGbGgZsF(

s̃

Zs̃sin G•~t s̃2ts!Gds,s8ds8,s9

1
2pe2
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~GÞ0!

e2~q21q31G!2/4h

G2
~q2,a1q3,a1Ga!~q2,b1q3,b1Gb!~q2,g1q3,g1Gg!

3ZsZs8sinG•~ts2ts8!ds8,s9. ~A1!
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q.
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APPENDIX B: ANALYTIC LIMIT

In this appendix we compute and discuss the analyt
behavior of the contribution to the phonon lifetime due
decay processes that involve long-wavelength phonons.
define the quantity

2G j 1→ j 21 j 3
5

p

\2UVS q q8 q9

j 1 j 2 j 3
D U2

. ~B1!

In Eq. ~2.6! we have reported the expression ofV in the case
of decay of an optical phonon at Brillouin zone center~for
the general expression, see Ref. 6!. When we multiply
2G j 1→ j 21 j 3

by the thermal occupation number and integr
on the region of the Brillouin zone where the energy cons
vation is fulfilled, we obtain the contribution to the linewidt
due to decay channelj 21 j 3. Our purpose is to study th
behavior of 2G j 1→1 j 21 j 3

in the long-wavelength limit. In
order to simplify the notation, we define the real space
harmonic force constants, which are the third derivatives
the total energy

Css8s9,abg~ l ,l 8,l 9!5
]3Etot

]us,a
l ]us8,b

l 8 ]us9,g
l 9

. ~B2!
al

e

e
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-
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It is easy to prove that as a consequence of the translati
invariance of the system, the anharmonic force constant m
satisfy15

(
l 9,s9

Css8s9,abg~ l ,l 8,l 9!50. ~B3!

Let us consider a solid with a frozen-in phonon of sm
wave vectorq, defined by the ionic displacements in E
~2.3!. We perform the usual decomposition,47

es,a~q!

AMs

5us,a~q!5ua~q!1ds,a~q!,

where the first term in the right-hand side is the displacem
of the cell as a whole and the second the relative displa
ment of the two sublattices. They are called acoustic a
optic components, respectively. In the limit of smallq,
ua(q) vanishes for optical modes whileds,a(q) vanishes for
acoustic modes. Expanding the phonon displacement w
respect to the wave vector up to first order inq, we find for
the acoustic component

ua~q!5ua1(
b

ua,bqb , ~B4!
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while the optical component becomes

ds,a~q!5da
s 1(

b
da,b

s qb , ~B5!

with the condition
us

ide

an

s

(
s

Msda
s 50. ~B6!

From Eqs.~2.6! and~B2! we have that the contribution to th
linewidth of a phonon in thej i th branch (2G j 1→ j 21 j 3

) is
proportional to the squared modulus of
(
ss8s9,abg,l 8,l 9

Css8s9,abg~ l ,l 8,l 9!us,a~q, j 1!us8,b~q8, j 2!us9,g~q9, j 3!e2 i ~q•Rl1q8•Rl 81q9•Rl 9!. ~B7!
-

nly
From the conservation of crystal momentum we haveq
1q81q95G, where G is a reciprocal-lattice vector. We
now consider the displacements corresponding to an aco
phononu(q8, j 2) in the long-wavelength limit:

us,a~q8, j 2!5ua~ j 2!1(
b

ua,b
s ~ j 2!qb8 , ~B8!
tic

where the dependence on atomic positions is only in the
term linear inq8 ~which includes a possible linear contribu
tion of the optical component!. Consider the contribution to
the linewidth due to a decay process, which involves o
one acoustic phonon (2GO→ A1O) in the long-wavelength
limit. Inserting the expansion~B8! in Eq. ~B7! and expand-
ing the exponential in powers ofq8 up to the first order, we
obtain
(
ss8s9,abg,l 8,l 9

Css8s9,abg~ l ,l 8,l 9!us,a~q, j 1!us8,b~q8, j 2!us9,g~q9, j 3!e2 i ~q•Rl1q8•Rl 81q9•Rl 9!

5 (
ss8s9,abg,l 8,l 9

@Css8s9,abg~ l ,l 8,l 9!us,a~q, j 1!ub~ j 2!us9,g~q9, j 3!

1Css8s9,abg~ l ,l 8,l 9!us,a~q, j 1!ub,b8
s8 ~ j 2!qb8

8 us9,g~q9, j 3!#e2 i ~q•R1q9•Rl 9!

3@12 iq8•Rl 81O„2 i ~q8•R8!2
…#. ~B9!
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We find that the lowest order term in the right-hand s
contains the sum

(
l 8,s8

Css8s9,abg~ l ,l 8,l 9!ub~ j 2!50, ~B10!

where we have used the sum rule Eq.~B3!. It is easy to see
that, in general, the remaining terms vanish linearly inq8.
Since in the long-wavelength limit the frequency of
acoustic phonon vanishes likevA(q8)5c(q̂8)uq8u (q̂8 indi-
cates a unit vector!, with the help of Eq.~B4! and Eq.~B5!
we obtain, after some straightforward algebra, that

2GO→A1O5a~ q̂8!uq8u, ~B11!
wherea is a constant that can depend of the direction ofq8
~we have omitted terms of higher order!. In a similar way we
can prove that

2GO→A1A5uq8ub~ q̂8,q̂9!uq9u, ~B12!

i.e., the decay process involving two acoustic phonons m
vanish quadratically in the long-wavelength limit (b is a con-
stant that can depend on the orientation of the two acou
phonons!. It is easy to generalize these formulas to dec
processes involving all possible combinations of phon
branches. Our results explain why the decay processes
involve acoustic phonons near the Brillouin zone center g
in general small contributions to the Raman linewidths
comparison to the other decay channels.
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