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Phonon linewidth in I11-V semiconductors from density-functional perturbation theory
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In this work we present amab initio calculation of the Raman linewidth of transverse and longitudinal
phonon in zinc-blende semiconductors GaAs, AlAs, GaP, and InP. We propose a simple approximation that
permits us to calculate the longitudinal linewidths with the same computational effort as the transverse ones.
The microscopic mechanisms responsible for the decay are analyzed and discussed. The temperature depen-
dence of the linewidths is computed. Our results are in good agreement with available experimental data up to
room temperature for both transverse and longitudinal optical modes and give reliable predictions in materials
difficult to study experimentally.S0163-182608)00420-2

[. INTRODUCTION theory of anharmonic broadening of Raman lines can be
found in several review articlgsee, for example, Refs. 4, 6,

One of the most spectacular achievements of solid statend references thergin
physics in this century is the microscopic understanding of We indicate the ionic positions at equilibrium as
the vibrational properties of crystals. The phonon spectra of |
different materials have been extensively investigated in re- Ry=R'+ g,
cent decadésboth theoretically and experimentally.

In a perfect harmonic crystal, phonons do not interac
with each other, so that a nonequilibrium phonon populatio
would persist in timé&. However, one experimentally ob-
serves that the phonon population decays towards equili
rium on a time scale of a few picoseconds. The anharmonin
decay of phonons into vibrations of lower frequency is a
fundamental mechanism for energy relaxation in semicon- I\ (0 27 3) /7
ductors, as it controls the formation and time evolution of the Eiol{ush) =il + Eigl({ugh + B/ {ush + -+ (2.1
nonequilibrium phonon populations that are emitted by high-The second order term is the harmonic contribution to the
density excited carriers when they decay towards theitotal energy, from which one can obtain the dynamical ma-
ground staté. trix and compute the phonon frequencies.

Experimentally, anharmonic lifetimes of individual zone-  The third order term of a Taylor expansion of the total
center phonons can be extracted from their measured Ramanergy around the equilibrium positions in terms of the dis-
linewidths if,inhomogeneous broadening effects can be neplacements reads
glected. Menedez and Cardona have obtained the full tem-

wherel is a cell index and (s=1,...n) is a basis index in

he unit cell ofn atoms. We introduce the displacemehts

of the ions from their equilibrium positions; Greek subscripts
l:;/_vill be used to indicate Cartesian components.

The Taylor expansion of the total energy around the equi-
rium positions in terms of the displacements reads

perature dependence for elemental semiconductors more | 1 P Eqot Lo
than a decade adoThis task, however, is much more diffi- E{o ({Us}) = 5 T Usalg gUsr
cult in systems, such as heterostructures, where composition 1"1",s8's" apy dUs 4Ugs gdUgy

and/or strain inhomogeneities add to the usuelg., 2.2

isotopic) elastic broadening factors. Experiments in the time]-he displacements of the atoms from equilibrium are related

doma_in by ultrafast spectrosco_pies have ?*'30 bec_ome avagé the phonon creation and annihilation operata]*s(,q) and
able in recent years and provide useful information, espe;

cially for long lifetime phonons. In fact, such phonons dis- 3j(q), through the usual second quantization formula,

play extremely narrow Raman linewidths, and to obtain the 1/2 o
measure of the phonon lifetime with Raman spectroscopy U's,a=2 m) €s.o(0,j)e TR
one must deconvolute the measured Raman line to take into a. iLDMs
t th tribution to the R li idth due to th
account the contribution to the Raman linewi ue to the X[af(—qHaj(q)], 2.3

spectrometer resolution, which, in this case, has approxi-
mately the same size as the contribution to the linewidth dugvhereM is the mass of theth atom in the unit cellN is the
to anharmonic decay. number of unit cells in the crystaly; are the phonon fre-
quencies, thg¢'s label the phonon brancheg=1—6 in bulk
compound semiconductgrsande(q,j) is the amplitude of
the jth phonon mode at wave vectqrin the first Brillouin

In the following we summarize the procedure that has tazone. Inserting Eq(2.3) in Eg. (2.2), we obtain the third
be implemented to compute the phonon lifetime and intro-order correction to the total energy written in second quan-
duce the notation used throughout this work. The detailedization (terms of destruction and creation phonon operators
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The harmonic Hamiltonian does not induce transitions bet TO phonon decays into a pair of phonons with opposite
tween states with different phonon populations. To studywave vectors,*+q, whose frequencies sum up to the fre-
phonon decay times, we considéﬁ) as a perturbation and quency of the decaying mode. This is the only mechanism
use Fermi's golden rule. We thus obtain one must consider for the decay of a LO phonon. When we
consider the decay of a TO phonon at the Brillouin zone
center, one has to take into account the decay process in
which the TO phonon is destroyed together with a phonon at
] o ] g, to create another phonon with a frequency that is the sum
where|i) and |f) label the initial and final states, respec- of the frequencies of the destroyed phonons and wave vector
tively, E; andE; the corresponding energies, and #hienc-

tion ensures energy conservation. At thermal equilibrium the' The inverse lifetime of the LTO mode at zone center
phonon population is described by the Bose-Einstein distrirgads

2
F:%Z KGES)|F)PS(Ei—Ey), 2.4

bution
2
™ qa —q
nq)= ———. I'ro=— Y o n;
i elio(@/KT_ q LTO™ 542 qvjzlij (LTO i s ) {[n;,(@)
It is easy to verify that the third order interaction produces +n; (—=9)+ 118 0 10(0) — wj (q) — ) (—q)]
no change in such a population, i.e., a thermal phonon 2 ! 2
population is stable, as it was obvioaspriori. We assume +2[nj1(q)—njz(q)]é[w,_To(O)+wjl(q)—wjz(q)]}.
that atq=0 there is a nonequilibrium phonon population,
while in all the otherg points of the Brillouin zone the pho- 259

non population is given by the thermal occupation numbers. ) ) ) )

This is the so-called single-mode relaxation timeSince the LO is the higher phonon frequency in the material,
approxima[ior{ In our case, on|y the terms proportiona] to the second term in Cu_rly brackets is _nonvanishing only for
aLTO(O)aj-;(_q)ajZ(q) andaTo(O)ajl(q)arz(q) give anon- the TO phonon. This term describe the phonon up-

vanishing contributiofLTO labels the longitudinal or trans- ng\r/]irns['g? f\rléhifn::he T? )F])hi?]tn(;)r; |shs(,)cna§:1ez)efdhib);1:r tfr; gfmal
verse optical modes p q yo;, (q p g

If only three-phonon processes are considered, energy af¥€ncy[wj,(a)]. The matrix elements that determine the
crystal momentum conservation dictates that the zone-centaidth I' are given by

r M

V( 0 q _q)_ 53 1/2
LTO a2 8M My My wro(0)wy,(@)w;,(~q)

ss's’,aBy
1 PEot R | _

X| =2 €T TR e (0LTO)ey p(Afn)ey(— Q2. (2
\/E I"1” dUg 4Ugs gIUg

The ingredients of the above formula are the harmonic frefation of this theorem in a density-functional framework is
quencies and displacements and the third order derivative afue to Gonze and Vignerdn,which gives an explicit for-
the total energy. All these ingredients can be computed, in &ula for the third order derivative. This expression was sub-

density-functional framework, using density-functional per-sequently reformulated by Debernardi and Baroni in an effi-
turbation theory. cient way for numerical calculatiortd. This method was

successfully r:i\igplied to compute the anharmonic phonon cou-

pling constant” and to study the phonon linewidth of el-
Ill. THIRD ORDER DERIVATIVE emental semiconductdrs'* giving very good results com-
BY DENSITY-FUNCTIONAL PERTURBATION THEORY pared to experimental dat&!®

It is convenient to switch to reciprocal space and to intro-

The harmonic frequencies and atomic displacements COuce the reciprocal-space anharmonic force constant defined

responding to a phonon in semiconductors can be easily Ol?is
tained using density-functional perturbation théoryby
computing the linear response to a perturbation that, in oUCsy ¢ ,5,(01,02,03)

case, is a displacement of the atom from the equilibrium

position. The linear response to a small perturbation is also 1 =
sufficient to compute the third order derivative to the total o \/ml oo ol au
energy with respect to the same perturbation. This is a par- o SamTslpTES Y

ticular case of the so-called ‘t2+ 1" theorem?® The formu- (3.2

eiq14R'eiq2-R"eiq3-R'"
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where theg’s are in the first Brillouin zone. We recall that parametei\ [Egs. (9) and (10) of Ref. 12, which, in our
the translational invariance of the system gives the conditiomase, will represent the phonon displacements)).
From Eq.(9) of Ref. 12, the expression for the anhar-
01t 02+ 03=G, (32 monic force constants reads

whereG is a reciprocal-lattice vector. We can easily recog-

nize thatCsg s 4p,(0,0,—q) is the anharmonic term that C, /(01,02,05) = Epprpr(ds,G2,G3) + Eprppr(G2,01,03)
appears in parentheses in the last line of Eg6). The _ _

atomic displacement in reciprocal space is defined as +Epprp(d1,03,02) + Eprppr (d3,01,02)

+Ep’p”p(q2 03 aql)

1 :
us(q):\/_NEl Useilq.Rl_ ~
+Ep”p’p(q31q2!QI)- (34)
In the following we replace, for simplicity, the double index
(s,a) by p (p=1,...,3). Using the formula for the deriva-  In our caseE is the sum of an electronic pa' plus an
tive of many variable functions, we rewrite the anharmonicignic contributionE", which is essentially the third deriva-
tensor in term of derivatives with respectugq): tive of an Ewald sum whose expression is given in Appendix

A:
=T

Cpp pr(01,02,03) = P P P : - ~el ~ion
Up(a) dUp: (02) Upr(Gs) 3y  Eoere(01:02:09) = Boppr(0r,0,8a) + Epprp(a, G2, Ga).

To calculate this term we evaluate the general expression fdNith the help of Eq.(10) of Ref. 12, we find for the elec-
the third order derivatives with respect to a specific smalftronic contribution

- g, \ IH g, P, \ Y, dH
E° 00 (01,02, 03) = < Pe Pe - < Pe or| ———|
PP°P (ql b2 q3) 2 é’up(ql)| ﬁup/(qz) aup//(Q3)> UEU’ &up(ql)‘ &up/(q2)> < l// &up//(q3) lﬁ >
1 (92Vion(l’) ﬁn(r) 1 ’93Vion(r)
+ 5 r+— n(r)dr
ZJ’ dUp(dz) dUpr(dz) JUp(Q) GI dUp(d1)dup:(dz) dUyn(ds)
68 ’ ”
+£J' E.Jdn] on(r) on(r’) an(r”) drdr'dr”. 35
6J sn(rysn(rysn(r”) dUp(dy) dup(dy) Uy (gs)

whereH and |¢,) are, respectively, the unperturbed self- modifying the phonon frequencies. This determines the split-
consistent Hamiltonian and the corresponding wave functing of transverse and longitudinal optical modes near the
tions, andVi,(r) is thebare (pseudgpotential acting on the zone centet! as observed in the phonon spectra of polar

electrons: semiconductors?
The splitting of LO and TO frequencies can be predicted
Vion(f)=2 v(r—R—1m), by the so called phenom_enploglcal theory due to Hudng.
Rs The presence of an electric field produced by the LO phonon

determines a nonanalytic contribution to the dynamical ma-

trix at the center of the Brillouin zone. This contribution was

h gomputed by Cochran and Cowf8yfor an ionic crystal of
arbitrary symmetry and rederived by Pick, Cohen, and
Martin,?* using a microscopic formulation.

In zinc-blende semiconductors, the macroscopic electric
field associated to the phonon displacement does not affect
the frequencies of transverse phonons but only those of lon-

Compound semiconductors differ from the elemental onegitudinal ones; similarly, up to third order n the calcula-
in that they have two different atoms in the unit cell. Thetion of transverse phonon lifetimes involves no nonanalytic
displacement of the atoms due to a longitudinal optical pho€ontribution in the anharmonic dynamical tensor, while the
non in the long wavelength limitg— 0) may induce an elec- calculation of the LO lifetimes requires including the effects
tric field with the same wave vector of the phonon; in semi-of macroscopic electric field.
conductors this electric field is not completely screened by The difference in the electron density response between a
electrons and adds to the restoring force acting on ions, thusngitudinal and an optical phonon in the long wavelength

vs being the bardpseudgpotential centered at the atomic
site R+ 7.

In this manner all ingredients necessary to compute t
phonon coupling constants are obtained.

IV. RAMAN LINEWIDTHS FOR ZINC-BLENDE
SEMICONDUCTORS
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— > TABLE 1. Equilibrium lattice parametea (a.u) obtained in the
present calculation and the bulk moduBig (Kbar). The parenthe-
ses contain the experimental values.

/“ a By € z*
PN GaP 10.23 869 10.2 211
(10.302 (112793 (9.092 (2.04"
InP 10.94 757 10.4 2.45
(11.092 (9.61)2 (2.595"

8 rom Ref. 30.

b
From Ref. 31.
FIG. 1. Sketch of the Brillouin zone.

limit was discussed by Regtafor cubic materials with two ~which ensures a very accurate convergence in the third-order
atoms per unit cell. He showed that the first order correctiorforce constants. The Brillouin-zone integration over elec-
to the density produced by a LO phonon can be written astronic states is performed using the special point techniue.
We have used the (8,8,8) Monkhorst-Pdckntegration
w_ . AmeZ" mesh, which reduces to the 10-point Chadi-CoheR®sat
Ng=Nyg— —~—Ng’, (4.2 : : : - :
Qe the irreducible wedge. The reciprocal space integration over
) ] o phonon statefthe q points appearing in Eq2.5)] was per-
wheren{d is the change in the charge density induced by &rmed usin i
g the tetrahedron method, introduced by Jepsen
TO mode,n{”) is the linear density response to a uniform and Anderseff and independently by Lehmann and T&t.
electric field,Z* the Born effective chargeg the electron  with this method we have carried out the sum over the
charge,() the unit cell volume, and., the high-frequency points appearing in Eq(2.5 using approximately 1500
(electronig dielectric tensor. The last term in the right-hand points in the irreducible wedge of the Brillouin zone, so as to
side of Eq.(4.1) represents the contribution due to the cou-ensure a very accurate integration over the constant-energy
pling of the LO phonon with the associated electric field andsurface given by the Dirac delta of E@.5). The integrand is
includes all nonanalytic terms. In this work the LO phononcalculated on a much coarser uniform mesh and then Fourier
lifetimes are computed neglecting the contribution due tdnterpolated on the finer grid, much in the same way as pho-
n&) (and the corresponding nonanalytical contribution to thenon dispersions are obtained from selected calculations on a
wave-function respongen the anharmonic dynamical ten- relatively coarse grid, passing through interatomic force
sor. We will refer to this as theero field anharmonic ap- constants.
proximation because in this approximation one sets the mac- To evaluate the expression for the phonon linew[dhs.
roscopic electric field associated with the longitudinal(2.5 and(2.6)] we need to compute the phonon frequencies
phonon equal to zero; we propose this approximation as and the corresponding eigenvectors. This was achieved using
suitable method to compute, without any further complica-density-functional perturbation theory in the same way as
tion, the longitudinal linewidths in zinc-blende semiconduc-Ref. 9; our phonon branches of GaAs and AlAs reproduce
tors. those presented in that work. We are not aware of first prin-
ciples calculation of phonon dispersion in GaP and InP using
V. COMPUTATIONAL INGREDIENTS density-functional perturbation theory. To show the reliabil-
ity of our calculation in Tables | and 1l we report some of our

Compound semiconductors such as gallium arsenide angsyits for lattice dynamical properties in GaP and InP com-
aluminum arsenide crystallize in the zinc-blende structurepared with experimental data.

the Bravais lattice is face-centered cubic with the two atoms
per unit cell placed at;=0 andr,=a/4(1,1,1), whera is
the edge_ of .the cube. The corres.pondi.ng Brillouin zone is VI. COMPUTATIONAL RESULTS
reported in Fig. 1. For a given configuration of the nuclei, we
have assumed that the electrons are in the corresponding In the following we present the results we have obtained
ground statdadiabatic approximation for some 1lI-V semiconductors. The LO and TO decay pro-
Calculations were performed within density-functional cesses arkinematically differentas discussed previously in
theory in the local-density approximatiofi.DA) for ex-  a polar semiconductor, the LO and TO branches are nonde-
change and correlation energy. The input data for this apgenerate at| near zero, so energy conservation allows dif-
proximation are the homogeneous electron gas exchangérent decay processes with the creation of phonons in dif-
correlation energy calculated with Monte Carlo techniquederent regions of the Brillouin zone. As it was previously
by Ceperley and Alde?® and interpolated by Perdew and pointed out, the LO and TO decay processes are @yso
Zunger®* We have used the same norm-conserving pseudaaamically different due to the coupling with the electric
potentials as in Ref. 9, which were generated using a schenfeld, an LO phonon induces a different density response
proposed by von Barth and C&rOur plane-wave basis sets than a transverse one. As a consequence, the dynamical ten-
are truncated to a kinetic-energy cutoff of 22 Ry for GaAs,sors corresponding to LO and TO phonons are different.
AlAs, and GaP and to a cutoff of 20 Ry for InP, i.e:500 Our results should therefore be considered exact within
plane waves for all semiconductors we have investigatedhe LDA for TO phonons, while we have used the zero field
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TABLE II. Phonon frequencies computed at high-symmetry pdihtX, andL (in units of cm™1). The
parentheses contain experimental ddtam Ref. 30.

r LO IﬂTO XTA XTO XLA XLO I-TA L LA I-TO L LO
GaP 395 362 105 358 252 367 82 234 359 369

(403 (365 (107 (3549 (2500 (366) (85 (213 (3589 (379
InP 354 318 71 329 187 337 56 172 322 342

(350 (308 (68) (329 (193 (331 (55 (167) (317 (340

anharmonic approximation for the anharmonic behavior of In order to get a deeper insight into the microscopic

the LO phonons. mechanisms that determine the decay process, we plot in Fig.
2 the wave-vector-resolved final state spectiune., the
A. Lifetime of TO phonons g-dependent function that appears in E&.5 under the

. ] summation. Due to energy conservation, as expressed by the
In Table Ill we report our results for the linewidths of 5 fynction, this quantity is nonzero only on a three-

transverse optical phonons at zero temperature. To the begimensional surface of which we display the intersection
of our knowl_edge, the only few experimental data are availyith some high-symmetry planes in the Brillouin zofsze
able in the literature at low temperature; for GaP they wergyiso Fig. 3. The magnitude of the function on that surface
obtained two decades ago by Bairamov, Kitaev, Negoduikog e the magnitude of the matrix element responsible for the

and Khas4hkhozhe'°v°’. In a recent work, Irmer, Wenzel, and yhonon decalis represented by a rainbow color scale going
Monecké* measured the linewidth of GaAs and InP. Thef_rom red to violet in order of increasing magnitude.

agreement between the experimental data and our results is ; js easy to identify the contribution of Klemens pro-
good. In GaAs the discrepancy between our results and thessses in the closed contour falling approximately midway
experimental data of the TO linewidth can be attributed, apetween the Brillouin zone center and editfes is where the
least in part, to the isotopic disorder of an experimental p phonon dispersionw (q) reaches the valuew,a
sample, which increased the Raman linewitith. =wo/2]. This is the only contribution allowed by energy
To identify the relevant processes contributing to thesg,gnseryation in AlAs and InP. In GaAs and GaP, the relevant
results, in Table Ill we also report the relative weights of theqniripution to the linewidth of TO phonons is due to the
individual decay channels, as obtained by restricting thgjecay into a longitudinal and a transverse acoustic phonon.
sums over thg's in Eq. (2.5) to selected final states: “TA"  1hs contribution comes from wave vectors close to the Bril-
(1=1,2), "LA” ( ]=3), and “TO" (j=4,5). The decay of |qyin zone edge. In GaAs the latter decay mechanism is
a transverse phonon into one optical and one acoustic Ph@gesent in all the directions frofi to the zone boundary.
non is kinematically forb|dden in all the present cases. ligap shows a large value of the linewidth compared to the
turns out that the dominant decay mechanisms are not thg, | es obtained for the other materials. In particular, the
same in the four semiconductors. In GaAs and GaP, the Pranain contribution corresponds to the decay of FOA
cess with maximum prpbablhty:é%%) involves one LA | T phonons around th& point (see Fig. 2 The same
and one TA mode as final states, and Klemens channel  jecay mechanism is allowed by energy conservation also in
.., the decay of the LTO mode into two acoustic phonongpe region arountl andW points; in the other regions of the

tboerlsntgulpngs tgutth?osgaiyeeabr\ianr(;/hs:rir?;jllvggrr]\t(r)igstciﬁﬁe X\VZ‘i’r‘;“‘;echrillouin zone the frequency of the TA branch is so low that
situation was found for the decay of optical phonons at thellow r?aﬁ[%?z%) LA frequency - exists - yieldingora(a)
Brillouin zone center for Si and G€.In AlAs and InP, in- LA To-
stead, the Klemens channels £AA is the only kinemati- .
cally allowed case by energy conservation. B. Lifetime of LO phonons
Our results for LO phonons are shown in Table IV. In
TABLE lIl. Calculated full widths at half maximum (7o) of ~ GaAs we compute P, o=0.66 cm %; this value must be
zone-center transverse optical phonons at zero temperature. Tio@mpared with the experimental ome-9.2+0.6 ps at 6 K,
corresponding experimental values are shown for comparison. Th&shich corresponds tol2, 5=0.58 cnt 1, as was obtained by
last columns indicate the relative contributions to the linewidth of\/g|lée and Bogaﬁf’ using an infrared time-resolved coher-
the individual decay channe(see text ent anti-Stokes Raman scatterif@ARS). In the same ma-
terial, Irmeret al3* measured P, ,=0.67 cm %, using Ra-
man spectroscopy, while Kernohaat al®® obtained ', o

2lo 2T (expt)  LA+LA  LA+TA

(cm ™) (cm™ (%) (%) =0.35 cm ! with the same technique.
GaAs 0.44 0.60 45 95.5 In GaP we have computed an LO-phonon linewidth
GaP 297 306 23 97.1 2l' 0=0.18 cm'. The lifetime was measured by Bron,
AlAS 013 100.0 Kuhl, and Rhe€®% using CARS technique, they found
InP 0.49 0.56 100.0 =26.0+2.5 ps(at 5 K), which corresponds toI2 5=0.20
+0.02 cmi %. They also measured the linewidth by sponta-
8 rom Ref. 34. neous (incoherent Raman scattering and foundI'2g

bFrom Ref. 33. =0.23 cm L. A previous investigation performed by Baira-
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GaAs K W
2T,,=0.7cm’ X
L U
W
r L
GaP kK __W
2T, =02cm’

W
r L
AlAs K w AlAs K w
2T=0.1cm?! X 2T =04cm’

L U U
W w
r L r L
InP K_W
2T, = 0.04cmr”! %
L U
w
r L r L

FIG. 2. (Color) Wave-vector-resolved final-state spectra of compound semiconductors at zero temperature. The color scale goes from red
to violet in order of increasing magnitude. In each material, violet corresponds to the maximum contribution on the constant energy surface.

mov et al* yielded 2" ,=0.36x0.02 cm * at 15 K* In a 2I' o=0.22 cm 1. This experimental value “is consistent
subsequent work, Bairamov, Parshin, Toporov, andwith recent results on time-resolved coherent anti-Stokes Ra-
Ubaidullae?® measured B, o=0.25 cm . man scattering**>when the effects of plasma-induced pho-
Our computation for the LO linewidths in InP gives non dephasing are included®Our computed linewidth is in
2I' 5=0.038 cnm L. Vallée measured the LO-phonon life- good agreement with the experimental value obtained by
time by CARS?’ he obtained P,,=0.026 cm !. Using  Vallée with time-resolved measurements; as discussed in the
Raman spectroscopy, Irmast al3* determined a phonon Introduction, we believe the technique used in this experi-
linewidth 2I' 5=0.15 cm *. Kernohanet al®® measured ment is, in principle, more suitable than standard Raman
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TABLE IV. Calculated full widths at half maximum (2, o) of TO-phonon LO-phonon
zone-center longitudinal optical phonons at zero temperature and?-050 ' ‘ ' ‘ )
pressure. The corresponding experimental values are shown for — Y(®) i
comparison. The last columns indicate the relative contributions to 0.040 1 T T () z |
the linewidth of the individual decay channdiee text 0.030 | 1 | |

: )
!
2T' o 2T (expt) LA+LA LA+TA TO+LTA 0.020 - il .
(em™)  (cm™ (%) (%) (%) H !
0.010 + ! .
GaAs 066 058004 40 96.0 R ;J'M“\
GaP  0.18 02800  96.0 4.0 0.000 ESET W AN SR A
AlAs  0.42 94.8 5.2 0 1(|):0 200 305)1 400 0 1(')=0 200 305)1 400
NP 0038 0026 1.0 99.0 requency (em™) requency (cm~)
FIG. 4. Calculated phonon density of state dashed line,
8 rom Ref. 35. ; P o &) ( !

arbitrary unit$, and frequency-resolved final state spectyéw)
(solid line), at zero temperature in GaP. The vertical scale refers to
y(w) (dimensionless

bFrom Ref. 39.
°From Ref. 37.

spectroscopy to determine the lifetime of phonons that dis;

play extremely narrow linewidths, such as the LO Ramanthe X point where the anharmonic matrix element which

line in InP. On the other hand, Raman spectroscopy will bed_etermme _the_mdtt[gwe;n by Eq.(2.6)] gives only negli-
more appropriate for measuring large linewidtissich as gible contributions(red line in Fig. 2. The relevant decay
those displayed by GaAs at room temperature mechanisms are LOTO+LA and LO—TO+ TA (the red
With the help of Table IV and Fig. 2, we can pinpoint the and yellow lines ."’“F"%”d the Brillouin zone cer_)telm th?
relevant LO decay processes. The decay of the LO phonon iI ng waveleng_th I'm't("e" whenq goes to zer))thls_ contri-
GaAs shows mechanisms similar to those found in Si an ution to the linewidths must vams_h. Since this is Fhe qnly
Ge®® The most important decay mechanism involves two'POrtant decay process this explains why the LO-linewidth
different branches: LATA. These processes correspond o' InP is an order qf magmtudg smaller than in the other
the colored lines near the boundaries of the Brillouin zone insemlconductor considered in this work.
Fig. 2. In GaP and AlAs the relevant mechanism is the decay

into the same longitudinal acoustic branch, as it is shown in C. Frequency resolved analysis

the figure by the blue line around thepoint. To improve further our analysis, we define tihequency-
The red lines around the point refer to the decay chan- (egolved final state spectryny(w), i.e., the probability per

nels LO—~TO+LA and LO—TO+TA, which give a negli-  njt time that the LTO phonon decays into one mode of

gible contribution to the linewidth according to the fact thatgiven frequencyw and one of frequency, 10— w. In prac-

for this decay process the linewidths must vanish linearlyjce y(w) is obtained by restricting the sum ovigrandg in

with |g|, whenq approaches the Brillouin zone centéris Eq. (2.5 to those values for whick; (q)=w by inserting

zero in GaAs where the allowed decay processes invglve _ . : . .
points closer to thé' point, a few percent in AlAs and GaP o wil(q)] under the sign of sum. According to this defi-

We give the proof of this analytical behavior in Appendix B. Nition, y(w) is symmetric arouna, ro/2 and the integral of
The decay process of the LO phonon in InP is of particularY(®) over the whole range of frequencies is equal Ig % .
interest. The linewidth is considerably smaller than those disThe frequency-resolved final state spectfay TO and LO
played by other material. We can easily understand the rehonons in GaAs, GaP, AlAs, and InP, are displayed in Figs.
son by looking at Fig. 2: the decay channel LOLA + LA 3, 4, 5, and 6, respectivef{. The peak atw 1o/2 corre-
is allowed by energy conservation only in the region aroundsPonds to the Klemens decay mechanism. As anticipated in

TO-phonon LO-phonon TO-phonon LO-phonon
0.015 ; ‘ . . : 0.020 . : . . . . .
— Yw) — Yw)
L 0015 - — n® ‘ + 1
0.010 | ! + ' . |
! ] i i ’A
i ! 0.010 | it ! i
l il I |
|w] |\| | | I |
0.005 |- : | + { | . & : | | ’l |
L A T A | } 1
| l\ ’ || 0.005 A lll [ »\\ A }1\ } \\
N N Y | v
0.000 N l\' e > I\* 0.000 - \L A I I ; L
o 100 200 300 0 100 200 300 770 100 200 300 4000 100 200 300 400
Frequency (cm™") Frequency (cm™) Frequency (cm™) Frequency (cm™")
FIG. 3. Calculated phonon density of stateép) (dashed line, FIG. 5. Calculated phonon density of stateéw) (dashed line,

arbitrary unit$, and frequency-resolved final state spectyéyw) arbitrary unit3, and frequency-resolved final state spectyép)
(solid line), at zero temperature in GaAs. Vertical scale refers to(solid line), at zero temperature in AlAs. The vertical scale refers to
v(w) (dimensionless v(w) (dimensionless



12 854 ALBERTO DEBERNARDI 57

25 . =
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i = 15| { *BPTU
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FIG. 6. Calculated phonon density of stateép) (dashed line, 100

arbitrary unit$, and frequency-resolved final state spectyéyw)
(solid line), at zero temperature in InP. The two vertical scales refer
to y(w) (dimensionless

the preceding sections, this peak is dominant in AlAs, While—‘g
in GaAs the main contribution arises from the lateral peaks
symmetric with respect t@, 1o/2. By comparison with the f
one-phonon density of stat®OS)—displayed in the figures

as a dashed line—we notice that usually the main peak o or i
v(w) is superimposedor extremely closgto the Van Hove

singularity of DOS, which corresponds to the longitudinal %% 100 200 300
acoustic phonon at the zone border. For example, the L( TEMPERATURE (K)

phonon in AlAs or the TO phonon in InP presents a Klemens . )
FIG. 8. Temperature dependence of the full width at half maxi-

peak at the frequency of this Van Hove singularity, while in . -
mum, 2", of the TO and LO phonons in GaP. The solid lines

GaAs the same singularity in the DOS has the same fre- . ,
represent the result of the present calculation; diamonds denote ex-

perimental data from Ref. 3i¥/); down and up triangles denote

3.0 : T T

. experimental data obtained by CARS and Raman width, respec-
X WM tively, from Ref. 38(KB); stars represent experimental data from
oV Ref. 40; squares represent experimental data from R¢BRBIK).

e VB

quency of one of the two lateral peaks. In the next section we
will show how this kind of analysis can be useful to fit the
temperature dependence of experimental linewidths.

2T, (cml)

D. Temperature dependence

%0y 100 200 300
TEMPERATURE(K) We have computed the temperature dependence of the
linewidth for transverse and longitudinal optical phonons in-
3.0 , , : serting the appropriate thermal occupation number in Eqg.

(2.5). Our results are shown in Figs. 7, 8, 9, and 10 for GaAs,
GaP, AlAs, and InP, respectively; the continuous lines rep-
resent our theoretical results, the experimental data are de-
noted by symbols. As anticipated in Sec. Il, the linewidth of
the TO phonon is composed of two contributions given by
the first and the second term of E@.5. The second term
(corresponding to phonon up-conversioranishes at zero
temperature, and, according to our calculation, is negligible
in GaAs and GaP over the range of temperature we have
considered, while it is small in AlAs and InP. The dashed
line is the theoretical contribution arising from the first term
in curly brackets of Eq(2.5); with this scale the dashed line
FIG. 7. Temperature dependence of the full width at half maxi-IS superimposed on the continuous one in GaAs and GaP; the
mum, 2, of the TO and LO phonons in GaAs. The solid lines difference between the continuous and dashed lines is the
represent the result of the present calculation; crosses denote grhonon up-conversion contribution. By energy conservation

perimental data from Ref. 3dWM); diamonds from Ref. 37V); the phonon up-conversion mechanism involves only phonons
and full circles from Ref. 35VB). near the Brillouin zone center; from our analytic results of

2T, (cm™)

0.0

0 100 200 300
TEMPERATURE (K)
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FIG. 9. Temperature dependence of the full width at half maxi- FIG. 10. Temperature dependence of the full width at half maxi-
mum, 2", of the TO and LO phonons in AlAs. The solid lines mum, 2", of the TO and LO phonons in InP. The solid lines rep-
represent the result of the present calculation; the difference beesent the result of the present calculation; crosses denote experi-
tween the solid and dashed lines denotes the contribution to the T@ental data from Ref. 34]WM); diamonds denote experimental
linewidth due to the phonon up-conversi(see text data from Ref. 37V). The difference between the solid and dashed

lines denotes the contribution to the TO linewidth due to the pho-

Appendix B we can easily understand why the phonon up_non up-conversiofisee text

conversion contribution is in general small compared to therom the experimental data of Ref. 33 for both TO and LO
other decay mechanisms. modes. The temperature dependence Iofin GaP is re-

The experimental data forI2, in GaAs are due to ported in Fig. 8. Our calculation agrees well with the experi-
Vallée and Bogant> For completeness, we mention the ear-mental data of Bron, Kuhl, and Rh&ap to room tempera-
lier experimental data obtained by von der Lineteal*®* at  ture when the higher order corrections are expected to
77 K for the phonon lifetime of the LO Raman mode of become important. The same agreement is found with the
GaAs. The same authors measured the time evolution afxperimental data of Val” and with those of Bairamov,
nonequilibrium incoherent optical phonons, findind' |2 Parshin, Toporov, and Ubaidullaé¥.
=0.76 cm 1. At the same temperature they also measured In Fig. 10 we show the temperature dependenceldfr2
the LO-phonon Raman linewidth12,=0.85+0.1 cm 1. InP. Our computed P+¢ is in good agreement with the ex-
At 77 K, Vallée et al. obtain X' o=0.83-0.05 cm'%, in  perimental data of Irmeet al** The temperature dependence
good agreement with our result of'20=0.81 cm 2. of 2", was measured by Va#é’ using CARS and by

In GaP our result for P1o shows a strong temperature Irmer et al. using conventional Raman spectroscébpur
dependence. Our results are in good agreement with expegomputational results reproduce well Vale data, however
mental data of Ref. 33 only at low temperature. In our opin-because of the discrepancies between the two sets of experi-
ion the discrepancies between theory and experiment may lmental data, we believe that more experimental data are re-
explained, at least in part, by the observation that the relguired in order to ascertain whether the discrepancy between
evant contribution in the computation of'25 comes from  theory and experiment is real, before embarking on an analy-
decay processes in a small surface aroundkiloint. The  sis to find its microscopic origin.
contribution to the linewidth due to this particular decay Finally, we mention how the frequency resolved analysis
mechanism can be significantly modified, also at low tem-we have performed in Sec. VI C can be useful also in the
perature, by the high order contribution neglected in ouranalysis of experimental data. Up to room temperature, the
computation. However, the Raman spectra measured at rootemperature dependence df 2s mainly determined by the
temperature by Weinstéth and by Weinstein and zero temperature value of the linewidth multiplied by the
Piermarinf® displays a large TO linewidth in agreement with appropriate thermal occupation number shown in @).
our result. We notice further that our results for the linewidthUsing the frequency that corresponds to the main peak of the
of the Raman modes of GaP at high temperature deviatkequency-resolved final state spectrupiw) one can obtain
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the linewidth at zero temperature by fitting the experimentalinewidth of Ref. 34, and to R. Resta, S. De Gironcoli, and E.
data over a broad temperature range. Molinari for stimulating discussions.

VII. CONCLUSIONS APPENDIX A: IONIC TERM

In this work we have computed the phonon linewidths of The ionic term in the anharmonic force constants arises
the zone center optical phonon in compound semiconductorérom the ion-ion Ewald contributiof®
Our results are in good agreement with available experimen-
tal data and give reliable predictions where the data are lack- 47N e?
ing. The zero field anharmonic approximation is shown to be EEwald:T Pl
a suitable method to compute the linewidths of longitudinal
phonons. The mechanisms responsible for various decay pro- 1 (2 . )2

4y 4~

e~ G2/ay

Gz0) G2

Ne? ZZm
=S

I,m R |7'|_7m_R|

1/2
>z
|

whereZ; indicates the bare ionigpseudacharge for thath
atom,(} is the volume of the unit cell, ang is an arbitrary

The author is indebted to S. Baroni and M. Cardona forparameter, which may be chosen so large as to allow us to
their interest in this work, many stimulating discussions andheglect the real-space term. After some straightforward alge-
a critical reading of the manuscript. Thanks are also due tbra we find for the ionic contribution to the third order an-
M. Wenzel for providing a tabulation of the experimental harmonic constant

zl Z|eiG‘1.I

cesses are identified and discussed. In particular, we are able
to explain why InP presents a LO linewidth that is an order
of magnitude smaller than those of the other materials we
have considered.

X[1—erf(Vn| 71— 7n—R[)]—~ N€?

7
™
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APPENDIX B: ANALYTIC LIMIT It is easy to prove that as a consequence of the translational

In this aopendix we compute and discuss the anal ticai variance of the system, the anharmonic force constant must
pp p Yy atisfy®

behavior of the contribution to the phonon lifetime due to
decay processes that involve long-wavelength phonons. We
define the quantity > Cogsrapy(l,l’,1M=0. (B3)

I",S”
( aqa q q”)
V| . . .
Ji )2 I3
In Eq. (2.6) we have reported the expression\bin the case
of decay of an optical phonon at Brillouin zone centfar € (Q)

the general expression, see Ref. 8hen we multiply . =Us o(0) = U,(Q) + 65 4(),
2L} i+, by the thermal occupation number and integrate s

on the region of the Brillouin zone where the energy conserwhere the first term in the right-hand side is the displacement
vation is fulfilled, we obtain the contribution to the linewidth of the cell as a whole and the second the relative displace-
due to decay channgh+j;. Our purpose is to study the ment of the two sublattices. They are called acoustic and
behavior of 2'; ;. +j, in the long-wavelength limit. In  optic components, respectively. In the limit of smaj)
order to simplify the notation, we define the real space anl.(d) vanishes for optical modes whilg ,(q) vanishes for
harmonic force constants, which are the third derivatives ofcoustic modes. Expanding the phonon displacement with
the total energy respect to the wave vector up to first ordemjinwe find for
the acoustic component

2
77 (B1) Let us consider a solid with a frozen-in phonon of small

wave vectorq, defined by the ionic displacements in Eq.
(2.3). We perform the usual decompositith,

2r

jl"j2+j3: ﬁ

B &SEtOt
CSS’S",aﬁy(l'I ,I ): o (BZ)

s,y

U 43U, 40U ua(Q):“zﬁ% Ua, g0 (B4)



57 PHONON LINEWIDTH IN 11I-V SEMICONDUCTORS . . . 12 857

while the optical component becomes

z M55 =0. (B6)
3s,0(Q) =85+ > 5 595 (B5)  From Egs(2.6) and(B2) we have that the contribution to the
P linewidth of a phonon in thg;th branch (2’ _; .;) is
with the condition proportional to the squared modulus of
. , - . _iiq. ! 1l " pl”
E CSS’S”,aﬁy(l1|,Ylll)us,a(qvjl)us’,ﬁ(q !JZ)US”,y(q !JS)e (Q-R+a-Ro+a-R )- (87)

ss’s”,aﬂy,l’,l”

From the conservation of crystal momentum we haye where the dependence on atomic posit®is only in the
+9'+q"=G, whereG is a reciprocal-lattice vector. We term linear inq’ (which includes a possible linear contribu-
now consider the displacements corresponding to an acoustipn of the optical componentConsider the contribution to
phononu(q’,j,) in the long-wavelength limit: the linewidth due to a decay process, which involves only
one acoustic phonon {% _, A1) in the long-wavelength
limit. Inserting the expansiofB8) in Eq. (B7) and expand-

Us,a(Q’,Jz)=Ua(J'2)+z Uz,g(jz)%, (B8) ing the exponential in powers @f up to the first order, we
B obtain
. ;s "o _iiq.R! ropl’ n pl”
CSS/S/’,aﬁy(lvl,1|H)us,a(q1]l)us’,ﬁ(q !JZ)US”,y(q !JS)e Ha-R+a R +at-RD)
SS’S",a,B'y,l/,I"

= 2 [CSS’S”,aﬁy(Iil,1|”)us,a(q1jl)uﬁ(jZ)uS”,y(qﬁijS)

SS'S”,aB'y,I',I"

. 4 . ’ o —ilqa. n pl”
+CSS’S”,a,87(|1I’vlﬂ)us,a(qvjl)u;ﬂ’(IZ)qB’uS",'y(q 1]3)]6 HQ-R+q™-RY)
X[1—ig'-R"+0O(-i(q’'-R")?]. (B9)

We find that the lowest order term in the right-hand sidewherea is a constant that can depend of the directiomjof
contains the sum (we have omitted terms of higher ordlein a similar way we
can prove that

|/ES/ CSS’S”,a,By(l,|’,|”)U/5'(j2):0’ (BlO) 2FOHA+A:|q,|b(a,sa”)|q”|y (512)

i.e., the decay process involving two acoustic phonons must
vanish quadratically in the long-wavelength limi is a con-

stant that can depend on the orientation of the two acoustic
phonong. It is easy to generalize these formulas to decay

where we have used the sum rule E83). It is easy to see
that, in general, the remaining terms vanish linearlygin
Since in the long-wavelength limit the frequency of an

acoustic phonon vanishes likex(9')=c(q')[q’| (9" indi-  processes involving all possible combinations of phonon
cates a unit vect@y with the help of Eq(B4) and Eq.(B5) branches. Our results explain why the decay processes that
we obtain, after some straightforward algebra, that involve acoustic phonons near the Brillouin zone center give
R in general small contributions to the Raman linewidths in
2l o ar0=a(q")|q’'|, (B11)  comparison to the other decay channels.
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