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Local moments in an interacting environment
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We discuss how local moment physics is modified by the presence of interactions in the conduction sea.
Interactions in the conduction sea are shown to open up new symmetry channels for the exchange of spin with
localized moments. We illustrate this conclusion in the strong-coupling limit by carrying out a Schrieffer-Wolff
transformation for a local moment in an interacting electron sea, and show that these corrections become very
severe in the approach to a Mott transition.@S0163-1829~98!01414-3#
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I. INTRODUCTION

In recent times, the ‘‘quantum chemistry’’ approach h
proven one of the most effective ways to formulate minim
models of strongly correlated electron systems. The co
sponding strategy of first solving the physics of a stron
interacting atom or cluster, and later superimposing the
tersite couplings has provided an underlying philosophy
many models of interacting electron systems,1,2 and led to
several new concepts, such as the ‘‘local moment,’’1 the
‘‘upper’’ and ‘‘lower’’ Hubbard bands,2 and the ‘‘Zhang-
Rice singlet.’’3

A key underlying assumption of the quantum chemis
approach is that the interacting environment that devel
around each local scattering center, atom or cluster, does
qualitatively change its scattering properties. This long-h
assumption may not hold in all densely interacting syste
and for this reason, deserves special scrutiny. We alre
know that this assumption fails in one dimension, where
teractions in the bulk Luttinger liquid alter the scaling exp
nents for forward and backward scattering, qualitativ
changing the character of the scattering center. A weak
tential scatterer renormalizes into an infinitely strong blo
ade to transport,4 while a one-channel Kondo develops pro
erties reminiscent of a two-channel Kondo effect.5,6

Motivated by these considerations, this paper discus
how an interacting environment can qualitatively modify t
scattering properties of a local moment in higher dimensio
In one dimension, forward and backward scattering are
lineated by their effects on spin-charge coupling: the form
preserves spin-charge decoupling, whereas the latter cou
spin and charge together. This accounts for their very dif
ent scaling properties in the presence of interactions.
higher dimensions, spin exchange between a local mom
and its environment can be similarly divided, and in keep
with the lower dimensional analog, Coulomb interactio
tend to suppress those components of the spin scattering
couple to charge currents. Some aspects of these effects
been discussed by Schork and Fulde.7 Our paper serves to
highlight a particular point, namely, that this effect gives r
to new spin-exchange channels between the local mom
and its environment. In the lattice, these new scattering ch
nels qualitatively modify the interactions between mob
Kondo singlets. A forthcoming paper10 will discuss how sec-
ond channel scattering in a Kondo lattice can give rise t
570163-1829/98/57~20!/12757~6!/$15.00
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collective Kondo effect that destabilizes the Fermi liquid a
ultimately gives rise to composite pairing.11

II. MAGNETIC IMPURITY IN A NONINTERACTING
ENVIRONMENT

The usual starting point for studying a magnetic impur
is the Anderson impurity model.1 We shall examine how the
reduction of the Anderson model to a Kondo model is
fected by the presence of interactions among the conduc
electrons. We begin with a brief resume´ of the situation in a
noninteracting environment. The original Anderson mode
written

H5Ho1Hv1Hd , ~1!

where

Ho5(
ks

ekc
†

kscks ~2!

describes a sea of conduction electrons,

Hd5Edd†
sds1Und↑nd↓ , ~nds5d†

sds!, ~3!

is the Hamiltonian for a localizedd state, with an on-site
Coulomb interaction of strengthU, and

Hv5V(
ks

@Fdkc
†

ksds1H.c.# ~4!

describes the hybridization between the continuum and
localized atomic orbital. The matrix element

Vfdk5E dxeik–xV~x!fd~x! ~5!

is the overlap of the local orbital with the surrounding co
duction electron orbitals. An important point to note is th
the local atomic orbital only hybridizes with asingle Wan-
nier state with a particular local symmetry. For a transiti
metal system,fdk hasd symmetry, in a heavy fermion sys
tem this matrix element hasf symmetry. The single-channe
nature of the model becomes clear in a tight-binding rep
sentation, for ifc†

j s5(kc
†

kse2 ik•xj creates an electron a
site j , thenFdk5( jFd(xj)e

2 ik•xj is clearly the form factor
of a Wannier state of nearby atomic orbitals so thatcds

†

12 757 © 1998 The American Physical Society
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12 758 57P. COLEMAN AND A. M. TSVELIK
5(jFd(xj)cj s
† creates an electron at this state. In this ba

the hybridization can be written

Hv5V(
s

@d†
scds1H.c.#. ~6!

A large Coulomb interactionU suppresses charge fluctu
tions on the impurity site, causing local-moment formation
the ‘‘d orbital.’’1 In this situation, virtual charge fluctuation
induce an antiferromagnetic interaction between the lo
moment and the surrounding conduction sea and the An
son model can be further reduced by means of
Schrieffer-Wolff8 transformation that integrates out the
fluctuations to yield an effective Kondo model

H5Ho1HI , ~7!

where

HI5JS•c†
dscd ~8!

describes the residual antiferromagnetic interaction betw
the spin of the local momentS5 1

2 d†sd(nd51) and the
electron spin density and

J5S V2

U1Ed
D1S V2

2Ed
D , ~9!

where Ed is taken to be negative. The two terms in th
expression are the perturbations to the energy resulting f
virtual charge fluctuationsd11e2
d2 and d1
d01e2

into thed2 andd0 configurations, respectively. Once aga
the local moment only interacts with a single Wannier
bital.

In momentum space the Kondo interaction can be writ

HI5(
k,k8

Jk,k8c
†
ksck8•S, ~10!

where

Jk,k85JFdkFdk8
* ~11!

involves a single Wannier state. In a site basis, the Ko
interaction becomes

HI5(
l ,l 8

Jl ,l 8c
†

lscl 8•S ~12!

where Jl ,l 85JFd(xl)Fd* (xl8). The nonlocality of the ex-
change means that an electron at a neighboring orbital
exchange spin with the local moment at the same time
hopping to one of the other neighboring orbitals. These
the processes that couple spin and charge fluctuations
gether.

III. EFFECT OF INTERACTIONS IN THE ENVIRONMENT

Now let us discuss how the spin exchange between
local moment and its environment is modified when the s
rounding environment becomes interacting. Suppose we
troduce a weak spin-spin interaction into the conduction s
writing
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H5Ho1HI1(
q

I ~q!s2q•sq, ~13!

wheresq5(kc
†

k2qsck is the conduction electron spin den
sity at momentumq and I (q) defines the strength of spin
spin interactions at this wave vector. To leading orderO(I ),
there is a vertex correction to the Kondo interaction,
shown in Fig. 1. Written out explicitly, this gives

Jk,k85Jk,k8
~o!

1Jxd~k2k8!I ~k2k8!, ~14!

where

xd~q!52(
k

f ~ek2q!2 f ~ek!

ek2ek2q
Fdk2q* Fdk ~15!

is the spin susceptibility of thed state to a magnetic field a
wave vectorq. By expanding the Kondo coupling in terms o
a complete set of orthogonal Wannier states$Flk% with crys-
tal field symmetryl, Jk,k85(lJlFlkFlk8

* , we see that

Jl5Jddl1J(
k,k8

xd~k2k8!I ~k2k8!Flk* Flk8 ~16!

now contains components in new symmetry channelslÞd.
To follow how these effects grow with the strength

interaction, we now repeat the analysis in the stron
coupling limit, carrying out a Schrieffer-Wolff transforma
tion in the presence of a strongly interacting environment.
be specific, consider a two-dimensional, tight-binding mo
of conduction electrons with a local moment located in t
center of a single square plaquet at the origin~Fig. 2!. If the
on-site Coulomb interaction between the electrons on
lattice is much larger than the bandwidth, the motion of t
electrons is described by an infiniteU Hubbard model2

Ho5 (
l ,l 8,s

@ t l l 82md l l 8#Xls
† Xl 8s , ~17!

FIG. 1. Vertex correction to Kondo interaction.

FIG. 2. Magnetic moment in an interacting environment. Loc
ized electron at center of plaquet hybridizes in thedxy channel with
nearby atoms. The on-site interaction at each atomic siteUc is taken
to be far larger than the electron bandwidtht.
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57 12 759LOCAL MOMENTS IN AN INTERACTING ENVIRONMENT
where Xj s5cj s(12nj 2s) is a Hubbard operator2 and t l l 8
52t for nearest neighbors, but is zero otherwise. Supp
that the localized state has ad symmetry, so that

H5Ho1Hv1Hd , ~18!

where

Hv5V(
ls

@Fd~xl !ds
†Xls1H.c.#, ~19!

and with the configuration shown in Fig. 2, it is thedxy
orbital of the local moment that hybridizes strongly with t
nearby atoms. The value of thedxy Wannier state at the fou
nearest-neighbor sites labeled sequentially around the l
moment~Fig. 2! is

Fl@Ri #5 1
2 ~1,21,1,21!, ~20!

where F(x)50 for more distant neighbors. In the lim
where uEdu and U1Ed are much larger than botht and V,
only virtual charge fluctuations take place at the localiz
moment. We may integrate these fluctuations out by carry
out a Schrieffer-Wolff transformationH→H* 5eiSHe2 iS,
where S is chosen to eliminate the hybridization term
i @S,Ho#52Hv . This yields

H* 5Ho1HI , ~21!

where

HI5H V2

Ed
AA†2

V2

U1Ed
A†AJ , ~22!

where

A5(
l

Fd~xl !ds
†Xls . ~23!

Reordering the operators, we find that

HI5J~S•C†
dsCd!2K~C†

dCd!, ~24!

whereJ is given by Eq.~9!,

Cds5(
l

Fd~xl!Xls , ~25!

and

K5S V2

U1Ed
D1S V2

Ed
D . ~26!

For simplicity, we chose the symmetric case, whereU1Ed
52Ed so K50 and potential scattering vanishes. In th
case the interaction between the local moment and its e
ronment takes the form

HI5(
l ,l 8

Jl ,l 8S•X†
lsXl 8, ~27!

whereJl ,l 85J/4 for all sites around the spin. We see that t
net effect of the strong interactions in the environment is
replace the conduction electron operators by Hubbard op
tors
e

al

d
g

i-

o
a-

cj s→cj s~12nj 2s!5Xj s . ~28!

We now examine the consequences of this replacement
We may divide the Kondo interaction into a one-site a

two-site component, writing

Jl ,l 85~J/4!@d l l 81~12d l ,l 8!#. ~29!

These two terms are thelooseanalog of forward and back
ward scattering in one dimension. The site diagonal terms
not involve charge fluctuations and these are unaffected
the presence of interactions. By contrast, processes wher
electron exchanges spin and hops from site to site are
pressed by the Coulomb interactions in the conduction s
these processes are completely eliminated in the limit wh
there is one electron per site.

We may make a crude estimation of the effect of t
Hubbard operators by making a Gutzwiller approximation

X†
jsXl→c†

jscl3H 1, ~ j 5 l !,

~12x!, ~ j Þ l !,
~30!

wherex is the concentration of electrons. This approximati
yields the right physics forx;0 and in the limitx→1. It
follows that

HI5(
l ,l 8

Jll 8S•c†
lscl 8, Jl ,l 85

J

4
@~12x!1xd l l 8#.

~31!

The first term inJl ,l 8 describes spin exchange in the origin
single channel. The second term is site diagonal and th
fore involves a sum over new spin exchange channels.
this lattice there are four orthogonal Wannier sta
Fl , l5(1,4) that overlap with the nearest-neighbor a
oms. The value of the Wannier state at the four sites labe
sequentially around the local moment is then

Fl~Ri !5 1
2 @1,2 i l,~21!l,2~2 i !l#, ~32!

where we identifyF0[Fd , with the primaryd channel.l
51 andl53 correspond top channels, whereasl53 de-
scribes the extendeds channel. If we expandJl ,l 8 in this
basis, writingJl5( l ,l 8Jl ,l 8Fl* (xl)Fl(xl8), we find that

Jl /J55 12
3x

4
, l50, Primary ch.

x

4
, l51,2,3, Secondary ch.

~33!

so that interactions induce spin exchange in three new ch
nels: twop and one extendeds channel, each with scatterin
amplitudeJx/4. Schematically,

d channel——→
interactions

d,p,s channel.

We may compactly represent the spin exchange by repla
Jk,k8 in Eq. ~11! by

Jk,k85 (
l50,3

JlFlkFlk8
* . ~34!
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12 760 57P. COLEMAN AND A. M. TSVELIK
Remarkably, the strength of the scattering in the other ch
nels is broadly comparable with that in the primary chann
and in the extreme limit of one electron per site (x51), the
amplitude to scatter becomes equal in each channel. In
special limit, all spin-hop processes have been suppres
and the Kondo interaction becomes four individual Heis
berg spin couplings to each neighboring atom. This me
that in the vicinity of a Mott transition, a local moment wi
behave as a multichannel Kondo model.

IV. CHANNEL SYMMETRY AND IMPLICATIONS
FOR THE KONDO LATTICE

Physical realizations of a Kondo lattice will always in
volve electron interactions in the conduction sea. From
arguments we have just developed, we expect these inte
tions to induce a Kondo coupling in new symmetry channe
Predominantly f -channel heavy fermion systems are e
pected to develop weaker spin-exchange couplings to
d, p, ands channels. Likewise,d-channel transition meta
systems will develop weaker Kondo coupling to thep ands
channels.

At first sight, these weaker secondary couplings might
thought to be irrelevant, as they are for example, in a sin
impurity model.12–14 For an impurity magnetic ion, the
Kondo effect develops exclusively in the strongest screen
channel. However, Kondo impurity models have a spe
local symmetry that preserves the channel quantum num
of scattered electrons. By contrast, an electron traveling
Kondo lattice can change symmetry channels as it mo
from one spin site to another, so that channel quantum n
ber is not conserved. This has a profound influence on
Kondo lattice, for it means that the subspace of Kondo s
glets in one channel is no longer orthogonal to the subsp
of Kondo singlets in other channels. Thus the developm
of Kondo effect in one channel no longer excludes the p
sibility of a Kondo effect developing coherently in the oth
channels.

To illustrate this point we shall consider a two-chann
Kondo lattice in the strong-coupling limit, where the ban
width is set to zero, so

H5H ~1!1H ~2!,

H ~l!5~Jl /Ns! (
k,k8, j

FlkFlk8
* c†

lksclk8•Sje
i ~k82k!•Rj ,

~35!

where(kF1kF2k* 50 defines the orthogonality between th
channels andNs is the number of sites in the lattice.

Let us now contrast the effect ofH (2) in a single impurity
model, with its effect in a lattice~Fig. 3!. SupposeJ1@J2, so
that the low-energy physics is determined by the project
of H into the space of Kondo singlets in channel one. F
consider an impurity model. ForJ(2)50, the ground state is
a Kondo singlet formed between the local moment, and
electron in channel one,

uf&5 1
2 @c1↑

† d↓
†2c1↓

† d↑
†#u0&, ~36!

where c1s
† 5N2

21/2(kF1kc
†
ks , and we have representedS

5dj
†(s/2)dj . Now H (2) flips the spin of the local momen
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without affecting the spin of the electron it is bound to. T
see this, note that H (2)5J2S•c2

†sc2 where c2
†

5Ns
21/2(kF2kc

†
k . Orthogonality of the scattering channe

guarantees that$c1s ,c2s8
† %50, i.e.,c2 has no overlap with

the bound electron in channel one. This means that when
projectH (2) into the low-energy subspace

H ~2!→^fuSuf&•c2
†sc250, ~37!

because there are no matrix elements of the spin operatS
in the singlet subspace.

By contrast, in the lattice where channel conservation
lost, H (2) does act on the electrons bound into Kondo s
glets, so that there are finite matrix elements ofH (2) in the
low-lying singlet subspace of channel one. Ifua& andub& are
states in this low-lying subspace, this means

^auH ~2!ub&5H 0, impurity,

O~J2!, lattice.
~38!

This marks a qualitative difference between the impurity a
lattice models. It means that we can no longer tacitly assu
that in the lattice second-channel couplings are an irrelev
perturbation.

We now calculate the form of these additional terms
the lattice. We follow the method developed by Zhang a
Rice for reducing a two-band model of the cuprate pero
kites to a one-bandt-J model.3 The Zhang-Rice reduction to
a single band was carried out on a model with spin excha
in a single (dx22y2) channel. We now examine how thi
analysis changes when a weak additional spin excha
channel is introduced. We first construct a set of orthogo
Zhang-Rice singlet operators for channel one. An electron
the Wannier state with the symmetry of channel one is c
ated at sitej by the operator

pj s
† 5

1

AN2
(

k

F1k

uF1kz e
ik–Rjcks

† . ~39!

FIG. 3. Contrasting the strong-coupling limit of a single imp
rity and lattice model with a weak second-channel coupling. In
impurity model, there is no matrix element ofH (2) in the low-
energy subspace. In the lattice, where channel number is not
served, the matrix element ofH (2) in the low-energy subspace i
finite, and gives rise to interactions among the mobile Zhang-R
singlets.
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57 12 761LOCAL MOMENTS IN AN INTERACTING ENVIRONMENT
We can write bothH (1) andH (2) in this basis as follows:

H ~l!5
Jl

Ns
(

k,k8, j

F̃lkF̃lk8
* p†

kspk8•Sje
i ~k82k!•Rj , ~40!

where

F̃lk5uFlkuF F1k* Flk

uF1kuuFlku
G . ~41!

Our ability to write H (2) in terms of the Wannier states o
channel one is a direct consequence of the absence of c
nel conservation.

The low-lying basis of Zhang-Rice singlets forH (1) is
constructed using the operator

bj
†5

1

A2
@pj↑

† dj↓
† 2pj↓

† dj↑
† #, ~42!

to create a ‘‘Zhang-Rice’’ singlet in channel one at sitej . In
the low-lying manifold of states, each site is either occup
by a Zhang-Rice singlet, or an isolatedd spin. The vacuum
corresponds to a singlet at every site

uf&5)
j

bj
†u0&, ~43!

and a general state is formed by acting on this state with
Hubbard operatorXj s

† 5A2dj s
† bj as follows:

u$ j s j%&5 )
$ j ,s j %

Xj s j

† uf&. ~44!

Within this manifold of states an electron can only be add
by the creation of a Zhang-Rice singlet. For statesua&,ub&
that lie in the low-lying subspaceu$ j s j%&,

^aupj s
† ub&5^auA2sbj

†dj ,2sub&5^ausXj 2sub&, ~45!

so we may carry out the projection into the low-energy s
space by replacingpj s

† →sXj 2s . The projected form for
H (l) is then

H ~l!5
Jl

Ns
(

l ,l 8, j

F̃l~xl 8 j !F̃l* ~xl j !X
†

l 8sXl•Sj . ~46!

On the sites wherel 5 j or l 85 j , we can use the identity
(Sj•s)Xj52 3

2 Xj , to obtain

H ~l!5(
i,j

t i j
l Xis

† Xj s

1
Jl

Ns
(

l ,l 8Þ j

F̃l~xl 8 j !F̃l* ~xl j !X
†

lsXl 8•Sj , ~47!

wheret j l
l 5Ns

21(ktl(k)eik•Rjl and

tl~k!523JlF̃l~0!Re@F̃lk#. ~48!

The first term in Eq.~47! describes the motion of the Zhang
Rice holes. In general,F̃2k is a function with nodes, so
F̃2(0) vanishes, andH (2) contributes solely to an anisotrop
interaction among the holes.
an-

d

e

d

-

H ~2!5J2 (
l ,l 8, j

F̃2~xl 8 j !F̃2* ~xl j !X
†

lsXl 8•Sj . ~49!

The symmetry of this term is governed by the product
form factorsF̃2k}F2kF1k* , a function that has to contain
nodes, because of the orthogonality of form facto
((kF2kF1k* 50). In the primary channel, the correspondin
interaction term has an isotropic ‘‘extendeds’’ symmetry.
This term is numerically small and is generally neglected
an irrelevent perturbation to the infinite (s wave! onsite re-
pulsion between holes. The final form for the effecti
Hamiltonian is

H5t(
~ i , j !

Xi
†Xj1

J2

Ns
(

j ,a,a8
F̃2~a!F̃2* ~a8!X†

j 1asXj 1a8•Sj ,

where, we have neglected all but the nearest-neighbor c
ficients, so that (i , j ) represent nearest neigbors,a is a vector
linking nearest neigbors,t523F̃1(0)F̃1(a)J1. The second
term shows that spin-exchange processes in channel two
vive the projection into the subspace of singlets for chan
one. For this reason, we can no longer expect singlet for
tion in one channel to preempt a Kondo effect in the seco
weaker channel.

One of the interesting possibilities that this presents
with, is the possibility that Kondo spin exchange in the se
ond channel can generate pairing. If we consider a pai
Zhang-Rice holes, then the matrix elements between the
states produced byH (2) is given by

^k↑,2k↓uH ~2!uk8↑,2k8↓&}2J2F̃2kF̃2k8
* . ~50!

In the original Zhang-Rice problem, the primary spi
exchange channel hasdx22y2 symmetry. The projected form
factor for the primarydx22y2 spin-exchange channel is3

F̃1k5$11 1
2 @cos~kx!1cos~ky!#%1/2. ~51!

We expect there to also be spin-exchange terms of stre
J2;(d/8)J1, whered is the doping, in thep and extendeds
channels.15 Of these, the most interesting component is th
with extendeds symmetry, for in this caseF̃2k has the prod-
uct symmetrys^ dx22y25dx22y2, which has even parity and
can support singlet pairing. A careful calculation gives

F̃2k5@cos~ky!2cos~kx!#/~2F1k!. ~52!

SinceJ2 /J1;(x/8), this is a small, but significant perturba
tion to the model. Were it to lead to a genuine pair instab
ity, the microscopic description of the state that forms wou
involve the coherent presence of Zhang-Rice singlets of
distinct symmetries. This is a topic we shall return to in
forthcoming paper.10
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V. CONCLUSION

This paper has examined the effect of interactions aro
a local moment. Conventional wisdom assumes that a lo
ized moment scatters electrons in a symmetry channel of
same local symmetry. We have shown that electron inter
tions cause a local moment to exchange spin with electr
in scattering channels with different local symmetry. Clo
to a Mott transition these effects are extreme, and the s
exchange Hamiltonian acquires the symmetry of a mu
channel Kondo problem. Finally, we have discussed h
these new interaction terms become important in the Kon
lattice, where the absence of a conserved channel in
means that second-channel couplings generate importan
nd
cal-
the
ac-
ons
se
in-

lti-
ow
do
dex
t in-

teractions within the the low-energy subspace of Kondo s
glets. The possible consequences of these new couplings
be analyzed in a subsequent paper.
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