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Path-integral approach to the scattering theory of quantum transport

D. Endesfelder*
Theoretical Physics, Oxford University, 1 Keble Road, Oxford, United Kingdom

~Received 15 August 1997!

The scattering theory of quantum transport relates transport properties of disordered mesoscopic conductors
to their transfer matrixT. We introduce an approach to the statistics of transport quantities which expresses the
probability distribution ofT as a path integral. The path integal is derived for a model of conductors with
broken time-reversal invariance in arbitrary dimensions. It is applied to the Dorokhov-Mello-Pereyra-Kumar
~DMPK! equation which describes quasi-one-dimensional wires. We use the equivalent channel model whose
probability distribution for the eigenvalues ofTT† is equivalent to the DMPK equation independent of the
values of the forward scattering mean free paths. We find that infinitely strong forward scattering corresponds
to diffusion on the coset space of the transfer-matrix group. It is shown that the saddle-point of the path integral
corresponds to ballistic conductors with large conductances. We solve the saddle-point equation and recover
random-matrix theory from the saddle-point approximation to the path integral.@S0163-1829~98!11319-X#
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I. INTRODUCTION

Advances in microfabrication technology led to the re
ization of mesoscopic electronic devices. In such devices
mean free path for inelastic electron scattering exceeds
dimension of the device. As a consequence, phase coher
is maintained, which leads to quantum interference effe
like universal conductance fluctuations, persistent curre
and Aharanov-Bohm oscillations in rings, or wea
localization.1 The phase coherence also has serious theo
cal implications. It causes large conductance fluctuati
which are related to the problem of high gradient operat
in the field-theoretic description of the metal insulat
transition.2–5 These fluctuations manifest themselves in
metallic regime as logarithmic normal tails of the condu
tance probability distribution. As the critical regime is a
proached, the conductance probability distribution becom
increasingly broader, until it reaches a logarithmic norm
form in the insulating regime.6

A common approach to transport quantities of mesosco
conductors is the scattering theory of quantum transport.7,8 It
models the conductor by a disordered region which is c
nected to a number of ideal leads which support propaga
wave modes. The number of leads corresponds to the n
ber of measurement terminals. Here only two terminal geo
etries will be considered. The scattering matrix relates
amplitudesI k ,I k8 of the incoming with the amplitudesOk ,Ok8
(k51, . . . ,N) of the scattered propagating wave modes
the Fermi energy,

S O

O8
D 5SS I

I 8
D , ~1!

where

S5S r t8

t r8
D . ~2!

t and r are the transmission and reflection matrices for in
dent waves from the left, andt8 and r8 are the transmission
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and reflection matrices for incident waves from the rig
The dimensionless two-probe conductanceg5G/(e2/h) in
terms of the transmission eigenvaluesTk of tt† is

g5 (
k51

N

Tk . ~3!

There are three universality classes which correspond to
ferent physical situations. Conductors with time-reversal
variance lie in the orthogonal universality class. The unita
universality class corresponds to conductors in which
time-reversal symmetry is broken, e.g., by a magnetic fie
Conductors with spin-flip scattering processes but no tim
reversal symmetry breaking fall into the symplectic unive
sality class.

Recently, the quasi-one-dimensional wire has attrac
considerable attention. The width of a quasi-one-dimensio
wire is of the order of the mean free path for elastic elect
scattering so that transverse diffusion can be neglected
the cross section of the wire becomes structureless. Inte
ing nonperturbative results which are valid for all wi
lengths have been obtained for this system.9–12 Furthermore,
it has been the ideal playground for ideas in the field
quantum transport.

One of these ideas is the Fokker-Planck~FP! approach to
quasi-one-dimensional wires. The FP equation which
scribes the probability distribution for the transmission
genvalues is known as the Dorokhov-Mello-Pereyra-Kum
~DMPK! equation. It has been derived by a number
authors13–17 who started from various different models. I
form is

]p~s;$Gk%!

]s
5

2

g (
k51

N
]

]Gk
S ]p

]Gk
1bp

]V~$Gk%!

]Gk
D , ~4!

where
12 448 © 1998 The American Physical Society
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V~$Gk%!52(
k, l

lnu~coshGk2coshG l !/2u

21/b(
k

lnusinhGku, ~5!

g5bN122b, and coshGk5(22Tk)/Tk . The values ofb are
1, 2, and 4 for the orthogonal, unitary, and symplectic u
versality classes, respectively. The DMPK equation has b
studied intensively in the past few years.18–27Beenakker and
Rejaei28,29 discovered that the variation

p~s;$Gk%!5expH 2
b

2
V~$Gk%!J c~s;$Gk%! ~6!

of the Sutherland transformation30 which is known to solve
the Brownian motion model for the circular unitar
ensemble,31 works as well for the DMPK equation. After thi
transformation,c(s;$Gk%) obeys a Schro¨dinger equation for
N noninteracting particles. As a consequence the exact f
of p(s;$Gk%) could be determined. This solution has been
basis for Frahm’s exact calculation of the one- and two-po
correlation functions of the transmission eigenvalues.11

In this paper we present an approach to the scatte
theory of quantum transport which expresses the probab
distribution of the transfer matrix as a path integral. O
motivation has been the belief that the path-integral te
nique can be developed into a tool which is more powe
than the FP approach when it comes to the description
higher-dimensional conductors.

II. SCATTERING MODEL

We use the transfer matrixT instead of theS matrix to
model the scattering properties of the disordered conduc
The transfer matrix relates the scattering amplitudes in
left lead with the scattering amplitudes in the right lead:

S O8

I 8
D 5TS I

OD . ~7!

It has the advantage that it obeys the multiplication law

T~L1dL,0!5T~L1dL,L !T~L,0!, ~8!

which leads to the simple Langevin equation

Ṫ~x![
dT~x,0!

dx
5«~x!T~x,0!

[S «11~x! «12~x!

«21~x! «22~x!
DT~x,0! ~9!

for the stochastic evolution of the transfer matrix. The dis
der is generated by the multiplicative noise«.

In this paper we consider only conductors in the unita
universality class. ThenT obeys the symmetry constraint

SzT
†SzT51, ~10!

which ensures flux conservation, where

Sz5S 1 0

0 21D . ~11!
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A convenient parametrization of the transfer matrix is t
polar decomposition15,32

T5S u1 0

0 u3
D S cosh~G/2! sinh~G/2!

sinh~G/2! cosh~G/2!
D S u2 0

0 u4
D ,

~12!

whereG is a real, diagonalN3N matrix, andui ( i 51, 2, 3,
and 4! are unitaryN3N matrices.

Relation ~10! implies thatSz«
†Sz1«50, leading to the

symmetries

«11†52«11,

«22†52«22, ~13!

«12†5«21

for the noise. The stochastics properties of« could be de-
rived from a microscopic Hamiltonian.33,34 Here we adopt a
simple model17,35which assumes Gaussian white noise, su
that

^«kl~x!&50,

^«kl
11~x!«k8 l 8

11* ~x8!&5
1

l kl
f

dkk8d l l 8d~x2x8!,

~14!

^«kl
22~x!«k8 l 8

22* ~x8!&5
1

l 8kl
f

dkk8d l l 8d~x2x8!,

^«kl
12~x!«k8 l 8

12* ~x8!&5
1

l kl
b

dkk8d l l 8d~x2x8!,

and all other independent second moments are zero.
mean free pathsl kl

f , l 8kl
f , andl i j

b , l 8kl
b for forward and back-

ward scattering, respectively, are defined by the limits of
disorder averages

1

l kl
f

[ lim
dL→0

^utkl2dklu2&dL

dL
,

1

l 8kl
f

[ lim
dL→0

^utkl8 2dklu2&dL

dL
,

~15!

1

l kl
b

[ lim
dL→0

^ur klu2&dL

dL
,

1

l 8kl
b

[ lim
dL→0

^ur kl8 u2&dL

dL

for a short piece of conductor with lengthdL. Note that the
symmetries~13! imply the relationl kl

b 5 l 8 lk
b .

We want a path-integral representation of the stocha
process~9! in terms of the transfer matrixT. The derivation
technique which is most suited for that purpose derives
path-integral directly from the Langevin equation~see Chap.
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4 in Ref. 36!. The symmetry constraints~10! on T will be
taken into account byd functions, which leads naturally to
the invariant measure of the transfer-matrix group as the p
integration measure. We illustrate the essential ideas of
derivation technique with the simple example of diffusion
a circle before we deal with the transfer matrix.

III. DIFFUSION ON THE CIRCLE
AS A SIMPLE EXAMPLE

Let the anglew determine the position on a circle. Th
analog of the Langevin equation~9! is

u̇[
du~ t !

dt
5«~ t !u~ t ! ~16!

where u5exp(iw). The symmetry «* 52« implies
d(uu* )/dt50, which ensures thatu remains a phase
Choosing Gaussian white noise for the imaginary part o«,
such that

^«~ t !&50,

^«~ t !«~ t8!* &52Dd~ t2t8! ~17!

leads to the FP equation

]p~ t;w!

]t
5D

]2p~ t;w!

~]w!2
, ~18!

which describes diffusion on the circle.
The probability distribution ofu can be formally ex-

pressed as

p~ t;u!5^d@u2ū~ t !#& ~19!

whereu[u(1)1 iu (2), d(u)[d(u(1))d(u(2)), andū(t) is the
value ofu which is acquired at timet for a certain realization
of the noise and the initial valueū(0)5u0. The brackets
^•••& denote the average over all possible noise configu
tions. The path-integral representation is derived by inser
a product ofd functions

p~ t;u!5K E )
t850

t

du~ t8!d@u~ t8!2ū~ t8!#d@u~ t !2u#L ,

~20!

wheredu[du(1)du(2). The d function d@u(t8)2ū(t8)# re-
stricts the value ofu(t8) to ū(t8). Sinceū(t8) is not explic-
itly known, we enforce this constraint implicitly by the rela
tion u̇(t)u21(t)2«(t)50, which follows from the Langevin
equation~16!. That leads to

p~ t;u!5K E )
t850

t

du~ t8!udetÂud@ u̇~ t8!u21~ t8!2«~ t8!#

3d@u~ t !2u#L , ~21!

where the operatorÂ is defined by the functional derivativ
th
he

a-
g

Aj j 8~ t,t8!5
d@ u̇~ t !u21~ t !2«~ t !#~ j !

du~ j 8!~ t8!
. ~22!

The average over the Gaussian probability measure

P@«#)
x50

L

d«~x!5
1

NexpH 2E
0

L

dx
«~x!«* ~x!

4D J )
x50

L

d«~x!,

~23!

where

d«5d«~1!d«~2!d~«1«* !, ~24!

yields

p~ t;u!5
1

NE )
t850

t

du~ t8!d@ u̇~ t8!u21~ t8!

1u̇* ~ t8!u21* ~ t8!#udetÂuexp$2S%, ~25!

where

S5
1

4DE
0

t

dt8u̇~ t8!u21~ t8!@ u̇~ t8!u21~ t8!#* , ~26!

and the path summation includes all paths which start au0
and end atu.

The property that ẇ(t)w21(t)1ẇ* (t)w21* (t)
5u̇(t)u21(t)1u̇* (t)u21* (t) if w(t)5u(t)v(t), wherev(t)
is a phase, suggests that) t850

t du(t8)d@ u̇(t8)u21(t8)

1u̇* (t8)u21* (t8)# is proportional to ) t850
t dm@u(t8)#,

where dm(u) is the invariant measure onU(1). This be-
comes explicit if thed function is introduced via an auxiliary
field k(t8)

p~ t;u!5E )
t850

t

du~ t8!dk~ t8!udetÂuexp$2 S̃%, ~27!

where

S̃5S1 i E
0

t

dt8k~ t8!@ u̇~ t8!u21~ t8!1u̇* ~ t8!u21* ~ t8!#

5S1 i E
0

t

dt8k~ t8!
d

dt8
ln@u~ t8!u* ~ t8!#. ~28!

Partial integration yields

S̃5S1 i E
0

t

dt8l~ t8!ln@u~ t8!u* ~ t8!#, ~29!

where l(t)52k̇(t). The Jacobian of the transformatio
l(t)52k̇(t) is an irrelevant constant which can be incorp
rated into the normalization factor. Hence

p~ t;u!5N21E )
t850

t

dm@u~ t8!#udetÂuexp$2S%, ~30!

sincedu d@ ln(uu* )#5dud(uu*21), which is proportional to
the invariant measuredm(u).34 The restriction touu* 51 in
the invariant measure simplifies action~26!,
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S5
1

4DE
0

t

dt8u̇~ t8!u̇* ~ t8!. ~31!

To calculate detA, we evaluate Eq.~22!, which gives

A11~ t,t8!5@a~ t,t8!1a* ~ t,t8!#/2,

A12~ t,t8!5 i @a~ t,t8!2a* ~ t,t8!#/2,
~32!

A21~ t,t8!52 i @a~ t,t8!2a* ~ t,t8!#/2,

A22~ t,t8!5@a~ t,t8!1a* ~ t,t8!#/2,

where

a~ t,t8!5u21~ t !S d

dt
d~ t2t8!2d~ t2t8!u̇~ t !u21~ t ! D .

~33!

The decompositionÂ5B̂ĈD̂ into a product of three opera
tors

@B̂#~ t,t8!5
1

A2
S d~ t2t8! 2 id~ t2t8!

2 id~ t2t8! d~ t2t8!
D ,

@ Ĉ#~ t,t8!5S a~ t,t8! 0

0 a* ~ t,t8!
D , ~34!

@D̂#~ t,t8!5
1

A2
S d~ t2t8! id~ t2t8!

id~ t2t8! d~ t2t8!
D ,

implies that detÂ5detĈ5detâdetâ* , since detB̂5detD̂51.
The operatorâ can be as well factorized intoâ5â1â2â3,
where

a1~ t,t8!5u21~ t !d~ t2t8!,

a2~ t,t8!5
d

dt
d~ t2t8!, ~35!

a3~ t,t8!5d~ t2t8!2u~ t2t8!u̇~ t8!u21~ t8!.

The determinant ofâ1â1* is 1 since thed function in the path
integration measure enforces thatu(t)u* (t)51. The deter-
minant ofâ2 is an irrelevant constant which contributes on
to the normalization. Using det5exp tr ln and ln(11x)
5(k51

` (21)k11xk/k to evaluate detâ3 yields

detâ35expH 2E
0

t

dt8u~0!u̇~ t8!u21~ t8!1•••J . ~36!

The higher-order terms which are indicated by the dots v
ish due to products ofu functions. The quantityu(0) is not
yet defined, which can be traced back to the multiplicat
noise in the Langevin equation~16!. The correct choice is
u(0)5 1

2 ~see the discussion in Chap. 4 of Ref. 36!. Here this
choice does not matter, since u̇(t8)u21(t8)
1u̇* (t8)u21* (t8)50, which implies that detâ3detâ3* 51,
leading to the final form
-

e

p~ t;u!5N21E )
t850

t

dm@u~ t8!#exp$2S% ~37!

of the path-integral representation of the stochastic proc
~16!.

IV. PATH INTEGRAL FOR THE TRANSFER MATRIX

The analog of Eq.~20! for the transfer matrix is

p~L;T!5E K E )
x50

L

dT~x!d@T~x!2T̄~x!#d@T~L !2T#L ,

~38!

where

dT[)
k,l

dTkl
~1!dTkl

~2! ,

~39!

d~T2T̄![)
k,l

d~Tkl
~1!2T̄kl

~1!!d~Tkl
~2!2T̄kl

~2!!.

Enforcing T̄(x) by Ṫ(x)T21(x)2«(x)50, which follows
from the Langevin equation~9!, yields

p~L;T!5E K E )
x50

L

dT~x!udetAud@ Ṫ~x!T21~x!2«~x!#

3d@T~L !2T#L , ~40!

where the operatorÂ is defined by the functional derivativ

Akl,k8 l 8
j j 8 ~x,x8!5

d@ Ṫ~x!T21~x!2«~x!#kl
~ j !

dTk8 l 8
~ j 8!

~x8!
. ~41!

Performing the average over the Gaussian probability m
sure

P@«#)
x50

L

d«~x!5
1

NexpH 2 1
2 E

0

L

dx@ l kl
f «kl

11~x!«kl
11* ~x!

1 l 8kl
f «kl

22~x!«kl
22* ~x!1 l kl

b «kl
12~x!«kl

12* ~x!

1 l 8kl
b «kl

21~x!«kl
21* ~x!#J )

x50

L

d«~x!, ~42!

where
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d«[ )
i , j ,k,l

d«kl
i j ~1!«kl

i j ~2!dS~«!,

dS~«![)
k, l

$d@~«kl
111« lk

11* !~1!#d@~«kl
111« lk

11* !~2!#

3d@~«kl
221« lk

22* !~1!#d@~«kl
221« lk

22* !~2!#%

3)
k

d@~«kk
11!~1!#d@~«kk

22!~1!#

3)
k,l

d@~«kl
122« lk

21* !~1!#d@~« lk
21* 2«kl

12!~2!#

~43!

yields

p~L;T!5N21E )
x50

L

dT~x!dS@ Ṫ~x!T21~x!#

3udetÂuexp$2S%, ~44!

where

S5
1

2E0

L

dx$ l kl
f @ ṪT21#kl

11@ ṪT21#kl
11*

1 l 8kl
f @ ṪT21#kl

22@ ṪT21#kl
22* 1 l kl

b @ ṪT21#kl
12@ ṪT21#kl

12*

1 l 8kl
b @ ṪT21#kl

21@ ṪT21#kl
21* %. ~45!

In analogy with Sec. III, we expect tha
)x50

L dT(x)dS@ Ṫ(x)T21(x)# is proportional to
)x50

L dm@T(x)#, wheredm(T) is the invariant measure of th
transfer-matrix group. This will be proven in the Append
The form of the invariant measure in terms of the polar
ordinates~12! is

dm~T!5)
k, l

~coshGk2coshG l !
2)

k
sinhGkdGk)

k51

4

dm~uk!,

~46!

where dm(uk) is the the invariant measure on the unita
group.15

We proceed with the calculation of detA. Using ]/]Tkl
(1)

5]/]Tkl1]/]Tkl* , ]/]Tkl
(2)5 i (]/]Tkl2]/]Tkl* ), and

]Tkl
21/]Tk8 l 852Tkk8

21Tl 8 l
21 to evaluate Eq.~41! yields

@Â#115~Â1Â* !/2,

@Â#125 i ~Â2Â* !/2,
~47!

@Â#2152 i ~Â2Â* !/2,

@Â#225~Â1Â* !/2,

where
-

Akl,k8 l 8~x,x8!5dkmTnl
21~x!S d

dx
d~x2x8!dmk8dnl8

2d~x2x8!@ Ṫ~x!T21~x!#mk8dnl8D .

~48!

The decompositionÂ5B̂ĈD̂ into a product of three opera
tors,

B̂5
1

A2
S 1̂ 2 i 1̂

2 i 1̂ 1̂
D ,

Ĉ5S Â 0

0 Â*
D , ~49!

D̂5
1

A2
S 1̂ i 1̂

i 1̂ 1̂
D ,

where@ 1̂#kl,k8 l 8(x,x8)5d(x2x8)dkk8d l l 8, implies that detÂ
5detĈ5detÂdetÂ* , since detB̂5detD̂51. The operatorÂ
can be as well factorized intoÂ5Â1Â2Â3, where

A1;kl,k8 l 8~x,x8!5@1^ ~T21!T~x!#kk8,l l 8d~x2x8!,

A2;kl,k8 l 8~x,x8!5
d

dx
d~x2x8!dkk8d l l 8, ~50!

A3;kl,k8 l 8~x,x8!5@d~x2x8!1^ 12u~x2x8!

3Ṫ~x8!T21~x8! ^ 1#kl,k8 l 8.

The product detÂ1detÂ1* is 1 since the determinant of th

transfer matrix is a phase. The determinant ofÂ2 is an irrel-
evant constant which contributes only to the normalizati
Using det5exp tr ln and ln(11x)5(k51

` (21)k11xk/k to evalu-

ate detÂ3 yields

detÂ35expH 2Nu~0!E
0

L

dx tr@ Ṫ~x!T21~x!#J . ~51!

The symmetries of the transfer matrix imply th
tr„Ṫ(x)T21(x)1@ Ṫ(x)T21(x)#* …50, which gives
detÂ3detÂ3* 51.

That leads to the final form

p~L;T!5N21E )
x50

L

dm@T~x!#exp$2S% ~52!

of the path integral, whereS is the action of Eq.~45!.

V. DMPK EQUATION

We formulate the DMPK equation in terms of diffusio
on the coset space of the transfer-matrix group, as done
Hüffmann.20 In our context, this can be achieved with th
equivalent channel model~ECM!. This model was intro-
duced by Mello and Tomsovic for the orthogonal univers
ity class.37,17They showed that it is equivalent to the DMP
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equation withb51, in the sense that the joint probabilit
distributions forG of both models are identical. The ECM
for the unitary universality class is just model~14!, with
backscattering mean free paths of the form

1

l mn
b

5
1

lN
, ~53!

and arbitary forward scattering mean free paths. It is equ
lent to the DMPK equation withb52 in the same sense. Th
difference between the DMPK equation and the ECM is t
the unitary matrices need not be isotropically distributed, a
that there can be correlations between them andG.

We choose forward scattering to be infinitely strong
that the mean free pathsl mn

f and l mn8 f are zero. Then action
~45! simplifies to

S5
Nl

2 E
0

L

dx tr$@ ṪT21#12~@ ṪT21#12!†

1@ ṪT21#21~@ ṪT21#21!†%. ~54!

Using that ṪT2152TT 2̇1, and the symmetries ofṪT21,
one can simplify further:

S5
Nl

8 E
0

L

dx tr$@ ṪT211~ ṪT21!†#2%,

5
Nl

8 E
0

L

dx tr$2ṪT21~ ṪT21!†2ṪT 2̇12Ṫ†T 2̇1†%

52
Nl

8 E
0

L

dx tr~Ṁ M2̇1!, ~55!

whereM5T†T which does not depend onu1 and u3 any-
more. The infinite strong forward scattering immediate
randomizes the probability distribution ofu1 andu3, so that
they become isotropically distributed. Note that the sp
which is formed by the matricesM is isomorphic to the cose
space of the transfer-matrix group. The path integral
scribes diffusion on the coset space, since the action is
classical action for free motion on this space.38,39

Introducing the dimensionless lengths5x/(Nl) yields

S52 1
8 E

0

1/gcl
ds tr~Ṁ M2̇1!, ~56!

where the dot now stands for the derivative with respect ts,
andgcl[Nl/L is the classical~bare! conductance24,22in units
of e2/h. Hence large conductances correspond to the ‘‘sh
time’’ regime of the path integral, which justifies a sadd
point approach for good conductors. The variati
M(s)1dM(s)5dT†(s)M(s)dT(s), wheredT511« and «
obeys the symmetries~13! leads to the saddle-point equatio

05dS}E
0

1/gcl
ds tr@~«†M1M«!M2̈1

2M̈~«M211M21«†!#. ~57!

One can verify easily thatMsp(s)5exp$sX% is the solution
for a path which starts atM(0)51 and ends at
a-

t
d

e

-
he

t-
-

M5exp$X/gcl%. Evaluation of the saddle-point action yield
the transfer-matrix probability measure in the saddle-po
approximation,

p~L;T!dm~T!')
k

expH 2
Nl

4L
Gk

2J dm~T!

5)
k, l

~coshGk2coshG l !
2)

k
expH 2

Nl

4L
Gk

2J
3)

k
sinhGkdGk)

k51

4

dm~uk!. ~58!

This is just the random-matrix theory probability distributio
measure which has been proposed for the tran
matrix.40,41,28Since it is known that random transfer-matr
theory describes the stochastic properties of ballis
conductors,42 we conclude that the saddle point of the pa
integral correctly describes the ballistic regime of the co
ductor.

VI. CONCLUSION

In summary, we have presented a path-integral appro
to the stochastic properties of mesoscopic disordered c
ductors. Its application to quasi-one-dimensional wires in
ballistic regime led to the random transfer-matrix theo
probability distribution. We believe that known results f
the quasi-one-dimensional wire could be recovered by a
tematic perturbation expansion in powers of 1/gcl . At the
moment it is not clear to us whether the short-time regime
the path integral in higher dimensions corresponds as we
conductors with large conductances. That still has to be cl
fied. The further development of the path-integral techniq
also remains to be done.
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APPENDIX: INVARIANT MEASURE
OF THE TRANSFER-MATRIX GROUP

The invariant measure on the transfer-matrix group d
not change under multiplication with a fixed transfer mat
T0 from the left or the right,

dm~T!5dm~T0T!5dm~TT0!. ~A1!

In this appendix we prove the claim of Sec. IV th
)x50

L dT(x)dS@ Ṫ(x)T21(x)# is proportional to
)x50

L dm@T(x)#.



as
st

a-

rix

ch

t

s

n
al

n

12 454 57D. ENDESFELDER
Since the inverse ofT in dS cannot be handled as easily
u21 in the example of diffusion on the circle, we show fir
thatdS(«)}dS(SzT

†Sz«T) up to a Jacobian. This will allow
us to replaceṪT21 in the argument ofdS by SzT

†SzṪ.
Writing the d function in terms of its Fourier represent

tion yields

dS~«!5
1

~2P!4N2E dk expH i

2
tr@k~«1Sz«

†Sz!#J ,

~A2!

where

k5S k11 k12

k21 k22D , ~A3!

k11†5k11,

k22†5k22, ~A4!

k12†52k21,

and

dk5)
k, l

dkkl
11~1!dkkl

11~2!dkkl
22~1!dkkl

22~2!

3)
k

dkkk
11~1!dkkk

22~1!)
k,l

dkkl
12~1!dkkl

12~2! . ~A5!

Then the linear transformation

«85SzT
†Sz«T ~A6!

of « can be absorbed intok,

dS~«8!5
1

~2P!4N2E dk expH i

2
tr@k8~«1Sz«

†Sz!#J ,

~A7!

where

k85TkSzT
†Sz . ~A8!

Sincek8 has the same symmetries ask, it follows that

dS~«8!5dS~«!/uJ~T!u, ~A9!

whereJ(T) is the Jacobian of the linear transformation~A8!.
Hence replacement of the argumentṪT21 in dS by SzT

†SzṪ
via the linear transformation~A6! yields

)
x50

L

dS@ Ṫ~x!T21~x!#}E )
x50

L

dk~x!uJ@T~x!#u

3expH i E
x50

L

dxtrFk
d

dx
~SzT

†SzT!G J .

~A10!

Partial integration and using thatSzT
†SzT51 at the end

points gives
)
x50

L

dS@ Ṫ~x!T21~x!#

}E )
x50

L

dk~x!uJ@T~x!#u

3expH 2 i E
x50

L

dx tr@ k̇~SzT
†SzT21!#J .

~A11!

The Jacobian of the transformationk̃52k̇ is a constant.
Hence

)
x50

L

dS@ Ṫ~x!T21~x!#

})
x50

L

uJ@T~x!#udS@SzT
†~x!SzT~x!21#.

~A12!

In order to calculateJ(T), we introduce the (4N2) vector
notation

kW T5~k11, . . . ,k12N ,k21, . . . ,k2N2N! ~A13!

of the matrix k. Then kW 85@T^ (SzT
†Sz)

T#kW . There is a
complex matrixE such thatkW 5EkW ind , wherekW ind contains
the 4N2 real and imaginary parts of the independent mat
elements ofk. Therefore,

kW ind8 5E21@T^ ~SzT
†Sz!

T#EkW ind . ~A14!

J(T) is the determinant of this linear transformation, whi
is one since thed functions in Eq.~A12! enforcesSzT

†Sz to
be the inverse ofT. That leads to

)
x50

L

dS@ Ṫ~x!T21~x!#})
x50

L

dS@SzT
†~x!SzT~x!21#.

~A15!

It remains to be shown that

dm~T![dTdS~SzT
†SzT21! ~A16!

has the properties of Eq.~A1!, and is therefore the invarian
measure.

For multiplication with a transfer matrixT0 from the left,
the argument of thed function does not change, which lead
to

dm~T0T!5dTuI~T0!udS~SzT
†SzT21!, ~A17!

where I(T0) is the Jacobian of the linear transformatio
T85T0T. Expressing this transformation in terms of re
vectors yields

S TW 8~1!

TW 8~2!D 5S T0
~1!

^ 1 2T0
~2!

^ 1

T0
~2!

^ 1 T0
~1!

^ 1
D S TW ~1!

TW ~2!D . ~A18!

The JacobianI(T0) is the determinant of the transformatio
matrix, which can be decomposed into the product
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1

A2
S 1 2 i1

2 i1 1 D S T0^ 1 0

0 T0* ^ 1D 1

A2
S 1 i1

i1 1 D
~A19!

of three matrices. SinceSzT0
†SzT051 implies that

detT0detT0* 51, one finds thatI(T0)51, and therefore
dm(T0T)5dm(T).

Analogously it can be shown that the Jacobian for t
multiplication with T0 from the right is 1 as well, which
gives
c

e

dm~TT0!5dTdS@SzT0
†Sz~SzT

†SzT21!T0#. ~A20!

As shown above,dS(SzT0
†Sz«T0)5dS(«). Hence

dm~TT0!5dTdS~SzT
†SzT21!

5dm~T!, ~A21!

which proves our claim.
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16A. M. S. Macêdo and J. T. Chalker, Phys. Rev. B46, 14 985

~1992!.
17P. A. Mello and S. Tomsovic, Phys. Rev. B46, 15 963~1992!.
18P. A. Mello, Phys. Rev. Lett.60, 1089~1988!.
any.

s
s

B

19P. A. Mello, E. Akkermans, and B. Shapiro, Phys. Rev. Lett.61,
459 ~1988!.
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