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Path-integral approach to the scattering theory of quantum transport
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The scattering theory of quantum transport relates transport properties of disordered mesoscopic conductors
to their transfer matrix. We introduce an approach to the statistics of transport quantities which expresses the
probability distribution ofT as a path integral. The path integal is derived for a model of conductors with
broken time-reversal invariance in arbitrary dimensions. It is applied to the Dorokhov-Mello-Pereyra-Kumar
(DMPK) equation which describes quasi-one-dimensional wires. We use the equivalent channel model whose
probability distribution for the eigenvalues @' is equivalent to the DMPK equation independent of the
values of the forward scattering mean free paths. We find that infinitely strong forward scattering corresponds
to diffusion on the coset space of the transfer-matrix group. It is shown that the saddle-point of the path integral
corresponds to ballistic conductors with large conductances. We solve the saddle-point equation and recover
random-matrix theory from the saddle-point approximation to the path int¢@@163-18208)11319-X]

[. INTRODUCTION and reflection matrices for incident waves from the right.
The dimensionless two-probe conductamgzeG/(e?/h) in

Advances in microfabrication technology led to the real-terms of the transmission eigenvalugsof tt' is
ization of mesoscopic electronic devices. In such devices the
mean free path for inelastic electron scattering exceeds the
dimension of the device. As a consequence, phase coherence N
is maintained, which leads to quantum interference effects 9121 Tk )
like universal conductance fluctuations, persistent currents,
and Aharanov-Bohm oscillations in rings, or weak
localization® The phase coherence also has serious theoretFhere are three universality classes which correspond to dif-
cal implications. It causes large conductance fluctuationgerent physical situations. Conductors with time-reversal in-
which are related to the problem of high gradient operatoryariance lie in the orthogonal universality class. The unitary
in the field-theoretic description of the metal insulatoruniversality class corresponds to conductors in which the
transition’™ These fluctuations manifest themselves in thetime-reversal symmetry is broken, e.g., by a magnetic field.
metallic regime as logarithmic normal tails of the conduc-Conductors with spin-flip scattering processes but no time-
tance probability distribution. As the critical regime is ap- reversal symmetry breaking fall into the symplectic univer-
proached, the conductance probability distribution becomesality class.
increasingly broader, until it reaches a logarithmic normal Recently, the quasi-one-dimensional wire has attracted
form in the insulating regim@. considerable attention. The width of a quasi-one-dimensional

A common approach to transport quantities of mesoscopiwire is of the order of the mean free path for elastic electron
conductors is the scattering theory of quantum transbitt. scattering so that transverse diffusion can be neglected and
models the conductor by a disordered region which is conthe cross section of the wire becomes structureless. Interest-
nected to a number of ideal leads which support propagatinghg nonperturbative results which are valid for all wire
wave modes. The number of leads corresponds to the nunfengths have been obtained for this systeff.Furthermore,
ber of measurement terminals. Here only two terminal geomit has been the ideal playground for ideas in the field of
etries will be considered. The scattering matrix relates theuantum transport.

amplituded I, of the incoming with the amplitude®, ,Oy One of these ideas is the Fokker-PlariE®) approach to
(k=1,... N) of the scattered propagating wave modes aiguasi-one-dimensional wires. The FP equation which de-
the Fermi energy, scribes the probability distribution for the transmission ei-
genvalues is known as the Dorokhov-Mello-Pereyra-Kumar
(0] I (DMPK) equation. It has been derived by a number of
(O’) :S< aE (1) authord®**"who started from various different models. Its
form is
where
rot ap(siT) 2. (4 JQ{T
S:( ) @ p(sild) _2< 9 (dp ) SN A
t r Js Yk=1 c?Fk c?Fk &Fk

t andr are the transmission and reflection matrices for inci-
dent waves from the left, and andr’ are the transmission where
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A convenient parametrization of the transfer matrix is the

QT =~ k2<| In|(cosH"—cosh))/2| polar decompositiot?-?
_ _(ul 0)(cosk(l“/2) sint(F/Z))(uz O)
— B2, In[sini, ®) =0 ulsinr2) cosiria))l 0w,/

y=BN+2— 8, and cosh,=(2—Ty)/T,. The values of3 are ) ] ] )
1, 2, and 4 for the orthogonal, unitary, and symplectic uni-whereI' is a real, diagonaN X N matrix, andy; (i=1, 2, 3,
versality classes, respectively. The DMPK equation has beednd 4 are unitaryN x N matrices.

studied intensively in the past few yeafs?’ Beenakker and Relation (10) implies that.,e"%,+ =0, leading to the
Rejaef®?° discovered that the variation symmetries
B glife _ g1l
p(siilb) ZGXD{ - 59({Fk})] psiild) (6
et _ g2 (13

of the Sutherland transformatihwhich is known to solve
the Brownian motion model for the circular unitary gl2t— g2t
ensemblé! works as well for the DMPK equation. After this
transformation(s;{I",}) obeys a Schiinger equation for for the noise. The stochastics propertieseofould be de-
N noninteracting particles. As a consequence the exact forrfived from a microscopic Hamiltoniait:>* Here we adopt a
of p(s;{T",}) could be determined. This solution has been thesimple model”*which assumes Gaussian white noise, such
basis for Frahm’s exact calculation of the one- and two-pointhat
correlation functions of the transmission eigenvaltfes.
In this paper we present an approach to the scattering (ew(x))=0,
theory of quantum transport which expresses the probability
distribution of the transfer matrix as a path integral. Our " 1%, 0 1 ,
motivation has been the belief that the path-integral tech- (e (X) ey (X)) = |T5kk/ o1 8(x—=x"),
nigue can be developed into a tool which is more powerful ki (14)
than the FP approach when it comes to the description of L
higher-dimensional conductors. (sﬁf(x)si,zf,(x’»: |T5kk' 811 S(x=X"),
II. SCATTERING MODEL “

1
<8&|2(X)8|i,2r,(xl)>: IT(Skk/ 5” /5(X_X,),
ki

We use the transfer matrix instead of theS matrix to
model the scattering properties of the disordered conductor.
The transfer matrix relates the scattering amplitudes in the
left lead with the scattering amplitudes in the right lead: and all other independent second moments are zero. The

, mean free pathk;, Iy, andl}}, I}, for forward and back-
(O ) =T( I ) 7) vv_ard scattering, respectively, are defined by the limits of the
I’ (0] disorder averages

It has the advantage that it obeys the multiplication law

1 im (Iti— Sl o
T(L+6L,00=T(L+4L,L)T(L,0), (8) If Tale oL ’
which leads to the simple Langevin equation
1 t— Sal?
. dT(X,O) — = lim <| ki kl| >¢SL,
T(x)= =&(X)T(x,0) |'f SL—0 oL
dx k' (15
£(x) slz(x)) 1 (ral?
= T(x0 (9 == fim 0%
21, 22 ’
(8 (x) &%) 12 a0 OL
for the stochastic evolution of the transfer matrix. The disor-
der is generated by the multiplicative noise 1 P s
In this paper we consider only conductors in the unitary —5 = lim L
universality class. Thefl obeys the symmetry constraint P a—o
ST T=1 (10) for a short piece of conductor with leng#iL. Note that the
_ e symmetrieg(13) imply the relationl },=1"F, .
which ensures flux conservation, where We want a path-integral representation of the stochastic

procesq9) in terms of the transfer matriX. The derivation
_ 10 (11) technique which is most suited for that purpose derives the
2\o0 —-1)° path-integral directly from the Langevin equatitsee Chap.
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4 in Ref. 36. The symmetry constraintd0) on T will be sfutu~L(t)—e(t)]D
taken into account by functions, which leads naturally to Ajj(t,t)= o : (22
the invariant measure of the transfer-matrix group as the path out (')

integration measure. We illustrate the essential ideas of th?he average over the Gaussian probabmty measure
derivation technique with the simple example of diffusion on

a circle before we deal with the transfer matrix. X)e* (X

P[s]H de(x)= = exp‘ J dx =L )8 ( )} [T de(x),

Ill. DIFFUSION ON THE CIRCLE (23)
AS A SIMPLE EXAMPLE

where
Let the anglee determine the position on a circle. The
analog of the Langevin equatid@) is de=dePde@ (e +e*), (24)
. du(t) yields
u= T =g(t)u(t) (16) L )
) = — ' Y AN W)
where u=expi¢). The symmetry e*=—¢ implies p(t:u) N, tll_:IO du(t) SLu(tHu==(t)
d(uu*)/dt=0, which ensures thati remains a phase. ) R
Choosing Gaussian white noise for the imaginary part ,of +ur(t)umt*(t')]|detAlexp{—S}, (25
such that Where
<8(t)>:01 1
S=1p dt utHu" ) [utHu~ Yt T*,  (26)
(e(t)e(t')*)=2D8(t—t') 17
leads to the FP equation and the path summation includes all paths which statiat
and end au.
ap(tie)  ?p(tie) The property that w(t)w™(t)+w* (t)w=*(t)
4 D (902 (18 =utyu=t(t) +u* (t)u™* (1) if w(t) =u(t)v(t), whereu(t)
_ _ o _ is a phase, suggests thal} _,du(t’)s[u(t’)u (t’)
which describes diffusion on the circle. +u* (t')u~'*(t")] is proportional to H:,:Od,u[u(t’)],

The probability distribution ofu can be formally ex- where du(u) is the invariant measure od(1). This be-

pressed as comes explicit if thes function is introduced via an auxiliary
— field «(t’
W =(sTu-u(t)]) (19 «(t)
J— t
whereu=u®+iu®, s(u)=s(u®) 5(u®), andu(t) is the p(t;u)= H du(t’)dK(t’)|debzl|exp[—§}, (27
value ofu which is acquired at timefor a certain realization t'=0

of the noise and the initial valua(0)=u,. The brackets where
(---) denote the average over all possible noise configura-

tions. The path-integral representation is derived by inserting _ R R ST
a product ofs functions S=S+|J0dt w(U)[ut)Hu™ (") +u* (" )u™ > (t")]
t
’ ’ Y t d
p(t:U>=< IT dut’)sfu(t’)—u(t >]5[u(t>—u]>, =S+ifdt’K(t’)d—ln[u(t’)u*(t’)]- (29)
t'=0 0 t
(20)

_ Partial integration yields
wheredu=du®du®. The § function s[u(t’)—u(t’)] re-
stricts the value ofi(t’) to u(t’). Sinceu(t’) is not explic- Zo gt ftdt’)\(t’)ln[u(t’)u*(t’)], 29
itly known, we enforce this constraint implicitly by the rela- 0
tion U(t)u‘l(t) —¢(t) =0, which follows from the Langevin

equation(16). That leads to where \(t)=—«(t). The Jacobian of the transformation

\(t)=— k(t) is an irrelevant constant which can be incorpo-

t o rated into the normalization factor. Hence
p(t;u) [T duct’)|detd]sfu(t )u™(t")—=(t)] t
t'=0 ~
pt;w=~N""[ II dulut)]|detdlexp{—S}, (30
'=0
x slu(—u] ), @) ‘ o |
sincedu &[ In(uu*)]=du &(uu* —1), which is proportional to

i the invariant measuréu(u).3* The restriction tauu* =1 in
where the operatod is defined by the functional derivative the invariant measure simplifies actig26),



1 t YA ¥
——Dfodt u(t"Hu*(t’). (31

To calculate det, we evaluate Eq(22), which gives
At t)=[a(t,t’)+a*(t,t")]/2,
Ap(t,t))=i[a(t,t")—a*(t,t")]/2, (32

Ax(t,t))=—i[a(t,t’)—a*(t,t")]/2,

Aoo(t,t")=[a(t,t’)+a*(t,t")]/2,

where

d )
a(t,t’)zu1(t)(&5(t—t’)—5(t—t’)u(t)u1(t)).
(33

The decompositiond=BCD into a product of three opera-
tors

B 1( S(t—t") —i5(t—t’))
[Bl(tt)= 2\ —is(t=t")  s(t—t') )’
R , _(a(t,t’) 0 )
[CI(t,t")= 0 a*(t.t))" (34
- ( S(t—t") ib‘(t—t’))
[Dtt)= J2\is(t—t")  s(t—t') )’

implies that detl=deC=detdeq*, since deB=detD=1.
The operatora can be as well factorized inta=a;a,as,
where

a(t,t")=u"Yt)s(t—t"),

a(tt’) =4 ‘ Lo=t, (39

ag(t,t’)=8(t—t")— a(t—t" Hu(t )u (t").

The determinant o&;a¥ is 1 since thes function in the path
integration measure enforces thgt)u* (t)=1. The deter-
minant oféz is an irrelevant constant which contributes only
to the normalization. Using detexptrin and In(3x)
=37 (—1)F" Xk to evaluate det; yields

deﬁ3=exp{—Jtdt’ﬂ(O)U(t’)u_l(t’)jL... (36)
0

The higher-order terms which are indicated by the dots van-

ish due to products of functions. The quantity(0) is not

yet defined, which can be traced back to the multiplicative

noise in the Langevin equatiofi6). The correct choice is
6(0)= 3 (see the discussion in Chap. 4 of Ref).38ere this
choice does not matter, since u(t’')u~i(t)
+U*(t")u”*(t')=0, which implies that detded’=1,
leading to the final form
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t
IT dufu(t’)]exd s}

t'=0

p(t;u)=N"1 37

of the path-integral representation of the stochastic process
(16).

IV. PATH INTEGRAL FOR THE TRANSFER MATRIX

The analog of Eq(20) for the transfer matrix is

pLim= | < I H AT() S TO0 —TO0] AL T(L) - T]>
(38

where

dTEH dTPdTZ,
' (39

S(T-T)= H STP-TH)s(TZ-T).

Enforcing '?(x) by T(X)T %(x)—&(x)=0, which follows
from the Langevin equatiof®), yields

L
p(LiT)= f < f T dT(0]detd| a1 70T 00~ €]

X 5[T(L)—T]>, (40

where the operatad is defined by the functional derivative

SITOOT L(x)— e(x) 1

STUD(x')

ALJ,:k,l,(x,x’)= (41

Performing the average over the Gaussian probability mea-
sure

P[S]H de(x)= —exp{—%f dX{ e (X) 2™ (X)
+|'k'sk'(x)sﬁﬁ*(x)“E|€&|2(X)812*(x)
H de(x),

+1' gl ) e (x)] (42)

where
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. . d
EIHI d8|k]|(1)8|1<1|(2)55(8), Ak|,k/|'(XaX'):5kar:|1(X) d—x5(X_X/)5mk'5n|'
_ w\T T -1
so(e)=TT {al(eit+eli) Mol (et o) ] X LT |
(48)

< S| + 822\ 5 4 g22)(2) PN
[(eid+eic) 10 (i + o)} The decompositiond=BCD into a product of three opera-

tors,
T of(ehy® () . .
1T al(zid0 ™10 (= 0] Bl(l_il)
vl-ii 1)
<IT ol (eif—ef*) D1 (sf* — i) )] ]
kI _[A O
43 C= | 49
(43 0 Ar (49
yields
1 ( i i)
L D= PO
p(Lim=A2 | T dT00ad 1002001 v2lil 1
x=0 ~ A
R Where[l]k|’k/|/(X,X,): 5(X_X,)5kk’ 5”/, Implles that deﬂ
X |detd|exp{— S}, (44 =deC=detAdetA*, since deB=detD=1. The operatoA
where can be as well factorized intd=A;A,A;, where
Atk (X, X)) =1 (T™HT(X) T i (X —=X),
1L .
=§f dx{l [ TT G TT 1 q
0 ! !
Az ki (X, X ):&50(_)( ) Sk O s (50

TR TT G + R TT T 1

|[TT 1]ﬁl[TT 1]21* . 45) Az k(XX =[8(Xx—x")1®1— 6(x—x")

_ XT(X)T X )@ Ly prrr-
In  analogy with Sec. 1lll, we expect that

H';:odT(X) 55[T(X)T_1(X)] is proportional to The product deﬁldetA’l‘ is 1 since the determinant of the
I%_o,du[T(x)], wheredu(T) is the invariant measure of the transfer matrix is a phase. The determinanfgfis an irrel-
transfer-matrix group. This will be proven in the Appendix. evant constant which contributes only to the normalization.
The form of the invariant measure in terms of the polar co-Using det=exp tr In and In(#x)==;_,(— 1)< Xk to evalu-

ordinates(12) is ate ded,; yields
4 R L .
w(M =11 (cosH—cosH)2[[ sinhldly [T du(uy), dew\gzexp{—Ne(O)fO dx [ T)TH(x)]}. (51
K<l K k=1
(46) The symmetries of the transfer matrix imply that

wheredu(u,) is the the invariant measure on the unitarytf('[(X)Til(X)ﬂL[T(X)Tfl(x)]*)ZO, which gives
group®® deth;detd} =1.

We proceed with the calculation of dét Using 9/aT(Y That leads to the final form
=0l T+l aTy,, (7/(9T(2)—I(¢9/(9Tk| alaTy),  and

L
-1
AT T =—Too T, to evaluate Eq(41) yields p(L;T)zN’lf XHO du[T(x)]expi— S} (52)

N1l R R
[A]"=(A+A")2, of the path integral, wherg is the action of Eq(45).

[A]*2=i(A-A*)/2, @ V. DMPK EQUATION

We formulate the DMPK equation in terms of diffusion
on the coset space of the transfer-matrix group, as done by
Huffmann?® In our context, this can be achieved with the

[A]%%=(A+A*)/2, equivalent channel moddECM). This model was intro-
duced by Mello and Tomsovic for the orthogonal universal-
where ity class®”1” They showed that it is equivalent to the DMPK

[A]%=—i(A—A%)/2,
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equation withg=1, in the sense that the joint probability M=exp{X/g.}. Evaluation of the saddle-point action yields
distributions forI" of both models are identical. The ECM the transfer-matrix probability measure in the saddle-point

for the unitary universality class is just model4), with
backscattering mean free paths of the form

1 1

|b
mn

and arbitary forward scattering mean free paths. It is equiva-
lent to the DMPK equation witlB=2 in the same sense. The

approximation,
NI,
p(LiT)du(M~11 exp - 77T} du(™)

NI
=11 (cosH'—cosH))?[ [ exp{ - IF&]

k<l k

difference between the DMPK equation and the ECM is that 4

the unitary matrices need not be isotropically distributed, and

that there can be correlations between them Bnd

We choose forward scattering to be infinitely strong s

that the mean free path§, andl/! are zero. Then action
(45) simplifies to

S= N% f Ode tr{[TT ([ TT 1131
HTTHPH(TT 2T, (54

Using thatTT '=—TT"%, and the symmetries of T 1,
one can simplify further:

NI (L . .
S= ?f dx tef[TT 2 +(TT-H 12},
0
NI (L . . .
=§f dx tr{2TT " X(TT " HT =TT 1-TTT-11
0
NI (L . .
=——f dx tr(MM™1), (55)
8 Jo

whereM=T'T which does not depend am, and uz any-

more. The infinite strong forward scattering immediately

randomizes the probability distribution af andug, so that

they become isotropically distributed. Note that the space
which is formed by the matricdd is isomorphic to the coset

x]'k[ sinrrkdrkk]'[ du(uy). (58)
=1

OThis is just the random-matrix theory probability distribution

measure which has been proposed for the transfer
matrix 24128 Since it is known that random transfer-matrix
theory describes the stochastic properties of ballistic
conductoré? we conclude that the saddle point of the path
integral correctly describes the ballistic regime of the con-
ductor.

VI. CONCLUSION

In summary, we have presented a path-integral approach
to the stochastic properties of mesoscopic disordered con-
ductors. Its application to quasi-one-dimensional wires in the
ballistic regime led to the random transfer-matrix theory
probability distribution. We believe that known results for
the quasi-one-dimensional wire could be recovered by a sys-
tematic perturbation expansion in powers of 1/ At the
moment it is not clear to us whether the short-time regime of
the path integral in higher dimensions corresponds as well to
conductors with large conductances. That still has to be clari-
fied. The further development of the path-integral technique
also remains to be done.
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of e?/h. Hence large conductances correspond to the “short-

time” regime of the path integral, which justifies a saddle-
The variation

point approach for good conductors.
M(s) + SM(s) = 8TT(s)M(s) 8T(s), wheresT=1+¢ ande

obeys the symmetrig4d.3) leads to the saddle-point equation

Yo T “1
0=6Sx | dst(eM+Me)M
0

—M(eM~t+M1eN]. (57)

One can verify easily thatls,(s) =exp{sX} is the solution
for a path which starts atM(0)=1 and ends at

APPENDIX: INVARIANT MEASURE
OF THE TRANSFER-MATRIX GROUP

The invariant measure on the transfer-matrix group does
not change under multiplication with a fixed transfer matrix
T, from the left or the right,

du(T)=du(ToT)=du(TTy). (A1)

In this appendix we prove the claim of Sec. IV that
szodT(x) 5S[T(x)T*1(x)] is proportional to
M odulT(9)].
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Since the inverse dF in §s cannot be handled as easily as L _
u~ ! in the example of diffusion on the circle, we show first H SLT(X)T 1(x)]
that 5¢(&) < 85(2,TT2,£T) up to a Jacobian. This will allow x=
us to replacel T~ 1 in the argument ofg by 3,T'3,T. L
Writing the & function in terms of its Fourier representa- ocJ H dr(X)| A T(X)]|
tion yields x=0
L )
Xexp{—if dx t (2, TS, T-1)]}.
os(8)= ZH)4N2 J drc ex —tr[x(s+zze*22>] x=0

(A2) (A11)

where The Jacobian of the transformatiae=—« is a constant.
Hence
Kt t?
L
= , A3 .
“ (.@1 ,@2) "9 IT s4Te0T (0]
x=0
KM= et L
o T(X) ]| 642, TT(X)Z,T(x)—1].
o2 ) IT 1770 6%, TT 002, T(0 ~ 1]
(A12)
K= — 2
In order to calculate7(T), we introduce the (M?) vector

and notation

dK—H Ak g L) g 22D ¢ 222)

<] e ViG] deid Vi (a5)

Then the linear transformation
=3T3, eT (AB)

of £ can be absorbed inte,

1

Os(& )ZW

J de exp[ iitr[l(,(&“l' 3,e'3,)]t,
(A7)

K =Tk, T'S,. (A8)

Sincex’ has the same symmetries asit follows that

s(&") = o5(e)I| T(T)], (A9)

whereJ(T) is the Jacobian of the linear transformati@®8).

Hence replacement of the argumdiit * in 65 by 3,T'S,T
via the linear transformatiofA6) yields

L

L
[T odTOOT 001 f 11 dwtl TR0
L
xexp{ljxodxtr

Partial integration and using th&,T'3,T=1 at the end
points gives

d
Kd—X(EZTTEZT)H .

(A10)

=(K11s - - - K1N K215 -+ - K2N2N) (A13)

of the matrix x. Then ' =[T®(2,T'3,)T]«. There is a
complex matrixE such thatc=Exj,q, Wherei,q contains

the 4N2 real and imaginary parts of the independent matrix
elements ofk. Therefore,
King=E T8 (2,T"%,) TIEking. (A14)

J(T) is the determinant of this linear transformation, which
is one since thé functions in Eq(A12) enforcess,T'S, to
be the inverse of. That leads to

L L
X[[O 65['T<x>T-1<x>]o<X1=]O 842, TT )3, T(x)—1].
(A15)

It remains to be shown that
du(T)=dT8g(3,TTS,T—1) (A16)

has the properties of E¢AL), and is therefore the invariant
measure.

For multiplication with a transfer matriX, from the left,
the argument of thé function does not change, which leads
to

du(ToT)=dT|Z(Ty) |62, T2, T-1), (A17)

where Z(Ty) is the Jacobian of the linear transformation
T'=TyT. Expressing this transformation in terms of real
vectors yields

T

f/(Z) -
The Jacobiarf(T,) is the determinant of the transformation
matrix, which can be decomposed into the product

T
T2

TiVe1
TY®1

-TY®1
To'®1

) . (A18)
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Tl 0
0 Tiel

1( 1 —i1 du(TTe)=dTod 3, To,(3, TS, T-1)Te]. (A20)

2l-i1 1

1/1 i1
NA !

V2

(A19)  As shown aboveds(3,T{3,eTo) = d¢(€). Hence
of three matrices. SinceEZngzTozl implies that

deffodefl§ =1, one finds thatZ(Ty)=1, and therefore du(TTe)=dTog(2,TTE,T—1)
du(ToT)=du(T). _

Analogously it can be shown that the Jacobian for the =du(T), (A21)
multiplication with Ty from the right is 1 as well, which
gives which proves our claim.
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