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Electron-electron interaction effect on the conductivity and the Hall conductivity
of weakly disordered electron systems
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The effect of the electron-electron Coulomb interaction on the conductivity and Hall conductivity of weakly
disordered(T7>1, wherer is the electron mean free patthree- and two-dimensional electron systems is
studied. We find thati) temperature-dependent interaction corrections to the impurity resistivity and the Hall
coefficient are positive in three and two dimensiq(is;in two dimensions, gapless plasmons and particle-hole
excitations both contribute to the electron-electron-impurity interference correction, to the resistivitjii Jand
in two-dimensional electron systems such as GaAs heterojunctions, the electron-electron interaction gives the
leading temperature-dependent correction to the impurity conductivity and the Hall conductivity more impor-
tant than the corresponding corrections from the piezoelectric electron-phonon interaction.
[S0163-18298)04419-1

I. INTRODUCTION impurity Hall conductivity in weak magnetic fields, a prob-
lem which has never been studied before, to our knowledge.
It is well known that interference between electron-For the similar problem of localization and interaction ef-
electron and electron-impurity interactions leads to numerfects on the Hall conductivity in the diffusion regimé the
ous anomalies in the low-temperature properties of impurdinear-response method was applied. This method requires
electron systemsSuch anomalies originate from the diffu- Working with vector potentials, and the gauge invariance
sion motion of electrons, and come from the region of smalfmust be maintained. In addition, the electron-hole asymme-
momentum and energy transfeg<1 and wr<1, wherel Ty must also be taken into account. For these reasons, the

—yer is the electron mean free path, andis elastic calculations were very involved. We will apply the quantum

electron-impurity relaxation time. The above conditions arekméatIC equ?_tlofh lrgethog_, t\:v?ere we deal W'.th real electric
satisfied for temperaturdg< 1/r. and magnetic fields, which for our purpose is more conve-

The deformation electron-phonon interaction affects thenient than the linear-response method.
P Another motivation for the present work is to study the

low-temperature conductivity differently. As shown in Ref. role of gapless two-dimensional plasmons in the electron ki-

2, the interference between the deformation electron-phonofyi.s Recently, it was showrthat two-dimensional plas-

and electron-impurity interactions leads to an importantyqns jead to a nonanalytical structure of the electron density
temperature-dependent contribution to the impurity conducyf states. In the present work we show that two-dimensional
tivity o not in the diffusion region but in the short-wave gapless plasmons are important for electron-electron-

region,qrl>1, whereqr=T/u is the thermal phonon wave impurity interference corrections to the conductivity and the
vector andu is the sound velocity. This effect was experi- Hall conductivity.

mentally studied in Refs. 3 and 4.
Now we are going to study the contribution to the con-

ductivity from the interference between electron-electron and II. INTERFERENCE CORRECTIONS
electron-impurity interactions in the short-wave regiaop, TO THE CONDUCTIVITY
>1 andw7>1, which corresponds > 1/7. It is expected In this section, we develop a formalism for calculating

that in typical metals this correction to the conductivity corrections to the conductivity from interference of the
6% is less important that the _correspondmhg correctiong|ectron-electron and electron-impurity interactions. The pi-
from the electron-phonon impurity interferen8&”'o due to  ezgelectric electron-phonon interaction will be considered in
the relative smallness of the electron-electron interactiony separate section. We apply the quantum kinetic equation
However, we expect that, in semiconductors with a smalinethod based on the Keldysh diagrammatic technidue,

Fermi energy, and especially in the two-dimensional casgynere, in addition to the retarded and advanced Green’s
the interference correction to the conductiviy°o- will be  fynctions

important. In addition, in semiconductors without the inver-
sion center, the piezoelectric electron-phonon interaction
dominates over the deformation one in low-temperature elec-
P G§(P)=[GH(P)]* =

tron kinetics. Thus we extend the analysis of electron- e—&ptil2r’

phonon-impurity interferenéefor the case of piezoelectric

electron-phonon interaction in semiconductor two- s 2

dimensional systems such as GaAs heterostructures. £ = P™—PF P=(p,e) )
Then we study electron-electron interaction effects on the P 2m —(p.€),
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_ So(e)=S(e)

T

®

Constructing the electron-electron collision integrils
andl¢.c.imp, We need the advanced electron self-energy, the
second diagram of Fig. 1,

A )

\

- A B i d4Q
2e—e(p)_z J

o=~y 2 dk A
4 N & Ie—imp:m_ J W[S(k,e)—S(p,e)]lm Go(k,e€)
~ /,,

(2m)*
X[VR(Q)GE(P+Q)+VS(Q)GH(P+Q)],

FIG. 1. Diagrams of the electron self-energy.

wherer is the elastic scattering time, a functi@f is intro-

duced. In the first order in the nonuniformit@C is defined 9
by the equation where VE=2i Im[VR(Q)][2N(w)+1], and VR(Q) is the re-
c A R c tarded electron-electron potential which will be discussed
GH(P)=S(P)[G"(P)—G"(P)]+ 6G™(P), later, andN(w) is the Bose distribution function.

The first interference collision integrale ¢.jm, corre-
oy | A R sponds to the correction to the electron density of states in
6G-(P)= 5 {So(€),G"(P)+ G (P)}, 2 leimp iN the form 8, (G*=(Gg)?S 4 . (the third self-energy
diagram of Fig. 1,
where the Poisson brackets in the electric and magnetic fields

aré® 2 f dk
Ie—e—imp_ﬂ_VT (271_)3 [S(k,€)
dA 9B dB JA
{A,B}EIGE(E %— 55), (3) _S(p,E)]lm{[Gé(k,E)]Zzé-e(kf)}- (10)
The second interference collision integrel .y, corre-
e JA B sponds to the electron self-energy diagram with the impurity
{A’B}HZE H- %X%)- (4)  vertex correction, the fourth diagram of Fig. 1.

Calculating the interaction corrections to the conductivity,

The functionS(P) plays the role of the electron distribution W€ drop the magnetic field term in E¢5). Assuming the
function. In equilibrium, S=S,= —tanh@T). In the pres- electron-impurity scattering is a dominant momentum relax-

. . . . _ E
ence of the electric and weak magnetic fielthee quantiza- &tion process, we solve EqS) by iteration: S=Sy+ ¢

tion of the electron levels is neglecle® is determined from  +2i¢; i=1,2,... For the first correctiogyy, we keep
the following quantum transport equation: only le.imp in Eg. (5), and find
0Sy(€)
S e S ) E(P)=—er(v-E . 11
e(v-E) E"‘ E (VXH) 5_p:Ie-imp+Ie-e+|e-e-imp+|e-e-imp1 ¢O( ) ( ) Oe ( )
(5 The correctionsﬁiE correspond to the other collision inte-

wherel g i, andl ¢ ¢ are the collision integrals corresponding grals in Eq.(5) which include the effects of the electron-
to the electron-impurity and the electron-electron interac.£lectron interaction. Below, we describe all these corrections

tions, andle.e.imp and 4 iy, are the interference collision M detail. The first correctionby is

integrals containing both electron-electron and electron- ¢E: (oo (¢E)] (12
impurity interactions; they will be described in detail below. 17 Tl e-e-impl Po) -

All collision integrals are expressed in terms of the COIfe-The next Correctiong)g and ¢5, contain terms in the colli-
sponding self-energies by the equation sion integrall ¢_ in the form of the the Poisson brackétee

0 0 irs'C A_SR Ea- (],
1(S)=19%(S)+681(S), 19=—i[=C¢-S(2A-3R)], (6)
5= —ir 658~ So(832 .~ 53R )1, (13
8l =—i[63°—Sy(63A— 63R) ]+ 3{3A+3R S}, (7)
E_T vA R

where &2, is the correction in Poisson brackets form. In our ¢2’_2 Zee(So) T 2ee(So).Sol)}e (149
case, 82 is obtained by taking into account the correction o c E.
8GC in the expressions fck. Note that contribution 082 ¢ , term to¢; is canceled out by

. . E .

The collision integrall ¢ i, that corresponds to the first contribution to¢;, from theV® terms in3¢, and3¢,.
electron self-energy diagram of Fig. 1 is chosen in the sim- The contribution from&E@_e and 5Efj_e terms in Eq.(13)
plest form: is
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dE=1iSo(835 —63R))

i d
=i7Sy(€) IEJ %z Im VR(Q)8GC(P+Q).
(19

According to Eq.(2),

5G%P+Q)=%@e v+% -E{[Go(P+Q)T?
+[G5(P+QI%, (16
and thus
dS(e+
s5=r50 [ 5 o imDRQ) 2 2
X el v+ %) -E R§GH(P+Q)]2 (17

If, according to Eq.(9), we include in34, and=R . only

terms withVVR andV#, we obtain
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1 dp
Eo (@)= - | 5o GHPIGEP+Q)(~er-E)
E-q
=ie _Tq (23

The electric current and the correction to the electric cur-
rent due to the electron-electron interaction are given by the
equations

——|J’ 2n )4evGC P), (24

8)=S0E= 2] @) 4ev(¢0 IM{[GH(P) 1?2 2(So)}

+SIM{[GH(P) P22 c(ho)} + (BT + 5+ ¢5)

><|m[G (P)D, (25
where éo is the correction to the impurity conductivity due
to the electron-electron interaction. The first and third terms

in Eq. (25 mutually cancel out. The second term gives the
following correction to the conductivity:

. dpP
15="00 [ 52 el v+ 3] E RV(Q)] omae (277)4
><So(e+w)lm[G§(P+Q)] (18 f ) 4 v-n v+ ‘NSy(€) ﬁS(e;rw)

As seen from Eq(18), the correction(bg, is proportional to
the real part of the potential. It may be shown that such
terms, corresponding to the renormalization effébtgre  wheren is a unit vector. There are two choices how to get
less important than terms proportional to the imaginary parthe imaginary part in the right-hand side of Eg6),
of the potential; thusp, will be dropped.

The next correctionb$ is associated with the interference
collision integral,l ¢ ¢ imp

XIm{[G§(P)]Im GS<P+Q>VR<Q>}. (26)

IM{{GH(P)12Im GH(P+Q)VR(Q)}
=Im[G{(P)]?Im G5(P+Q)Re VR(Q)
$5= 1} 0.imp(€0) + 1 & e.imp(NONED)], (19 +Re Go(P)J?Im Gg(P+Q)Im VX(Q).  (27)

The first term proportional to the real part of the potential

where collision integral$e.c.imp(€0)+ I e.e.imp(NONE) COITE- il he dropped. Keeping the second term, we have

sponding to the equilibrium and nonequilibrium vertex func-

tionsI" and dI', are derived following Ref. 2, dpP
5?60':2627 v
4o (2m)
e cimp(€t)=2 f 57 $6(PIL(@)So(e+ ) s<e+w>
(2) f 2n )4v n v+ ‘NSy(€) ———

X R G(P+Q)VAQ)], (20)
x1m VR(Q)RE Gy(P)]%2 Im GH(P+Q). (28

, . dQ Equation(28) can be rewritten in the following way:
e_e_imp(noneq)=|f W EST(q)Sy(e+ w)

dP
(2m*

f(z em* "

XIm VR(Q)3 lm{[Gé(P+Q)][G§(P)]2}-
I'(g)= J (—gGA(P)G (P+Q)— , (22 (29)

mVT

580 =2¢e?
<2 mcaP - QVAQ, (21 Lo

0S(e+ w
V+ S( )

NS(e) ————

where the vertex functions fajv > w are
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The d)z term gives the following correction to the conduc- WhereK3 4me’vyle andvy=

tivity:
dP
5‘29_130':2627' W
d IS(e+
(2Q)4v n v+ ‘NSy(€) ———— S(E ©)
X 1m VR(Q)Im G§(P)Rd Gj (P+Q)]2 (30
Again we can rewrite Eq30) as
dpP
5§'ea'=2€27' —(277)4
Xf d—Q4v n v+ ‘nSy(€) —— aS(eer)
(2m)
xIm VR(Q)3 lm{Gé(P)[G§<P+Q>]2}. (31)

Comparing Egs(29) and(31), we see that] ®o= &5 °o.

The collision integrals with equilibrium and nonequilib-

rium vertex functions, Eqg20) and(21), give the following
corrections to the conductivity

<[ s st S T
XIm VR(Q)RE GA(P)GR(P+Q)], (32
55 Co=i2er (:prl
(:Q)N NSo( e+ w) ﬂ) ST (q)
XIm VR(Q)Im[G{(P)GR(P+Q)], (33

In the next sections we will calculate the correcti@ig,o in
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mpe [ w?
The combined contribution of o and 55 %o is

621/30,2:7 2pg
e-e __
01,0= 1ont JQO dqq2
% [ do tmis@m vi@.e), @
where
etw €
f(wlT)= fdetanb'( —tanl’(z_r>
w
w coth o (39
and

dQ
= [ 5 [ de,GRPIGAP+QT, @9

and{), means angular variables of vectprPerforming in-
tegration forql>1 andw7>1, we have

| ~ . Jl dx 2w
(D="7Re | o wtiln? (qop)?
q>0o=|w|/ve. 40

Performing the remaining calculations, we have

o 7 (1)

g3 :ﬁ
46|: |
T n

o

The corrections to the conductivity from equilibrium and
nonequilibrium vertex corrections are

2pe\? 2p?
2] )
K3 (2pp)°+ K3

(41)

2

three and two dimensions. 83 °o=— Trj 6120, 65°0=—4730. (42)
Ill. THREE-DIMENSIONAL CASE Thus the final result is
The screened Coulomb electron-electron interaction is 5o a4 T2
Vo(q) o3 288 6_F)
VRQ- R (39 s, 2p:2] 2p2
where in three dimensions the nonscreened potential is {In T )_I [ (K_g) }_ (2pg)%+ Kg_ll’
V() =4me?/q?e, wheree is the static dielectric constant, (43

and the polarization operator fow > w is

iTw
1+_)

2 (39

PR(Q)=-

Thus

2
1 K3

Vs q’+ k3(1+imol2qug)’ (36

VR(Q)=

Where03=e2v3v,2:7/3 is the Drude conductivity in three di-
mensions.

It is interesting to compare E¢43) with the correction to
the conductivity from the interference of electron-impurity
and the deformation electron-phonon interactidns,

&P [ 4 1 8 [u)’] BT 24
0w |32 12 322\0) | 2epu Y
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whereu, andu; are longitudinal and transverse sound veloci- 5550 2T

ties, andg, is the electron-longitudinal phonon coupling con- (} =T
stant. It is clear that in good metals, whegpu,<eg, the 2 F

corrections®P'o- dominates, while in semiconductors, where We note that unlike the three-dimensional case, the correc-
the electron-phonon coupling constant is much smaller thafion 5‘920 is negative in two dimensions. The reason for this

in metals, the correctio@®®o is more important. The case is the following: according to Eq49), the functionl ,(q) in

of the piezoelectric electron-phonon interaction will be con-the plasmon regionw>qug, is negative, unlikelz(q),

o=V T2. (51

sidered in Sec. V.

IV. TWO-DIMENSIONAL CASE

The nonscreened Coulomb interaction in two dimension%
is Vi?=27e?/e,q. For ql>1 and w1 the polarization

operator in two dimensions is

d’p  qu cos d(&p)
(27)? w—queCcos ¢p+i0

PX(Q)=2

i
T Jeri0—(qup?)”

In the particle-hole excitation regioqp > w,

PR(Q)=

(49)

—vy(1+iwlque),

K2

1
VR(q)=—

_ 2
vy q+ ko(l+iw/qug)’ K2=2me vyl e,

(46)

where «, is the two-dimensional Debye screening momen-

tum, andv,=m/ .
In the plasmon regiomue<w,

2

: (47)

Que
w+i0

PR(Q)= 22 (

and the screened potentM{Q) has a plasmon pole with the

spectrumw = v (k,q/2)"2.
We start with the correction to the conductivify 5o,

e V21)|2:T

TJ dq qf do f(o/T)ly(q)Im VR(q,),
(48)

e-e _ __
51'2(7—

27 d
a=im [ 52 [ agehPicieor

:—Rejzw 94 (49)

o (Quecosdp—w+il7)

It is easy to see that in two dimensions tge>1 andw™1,
the real part of the last integral exists only #rqug, and
1,(q)=—27/w?. Integrating the plasmon pole, we have

dqg
i0)2— kov2q/2

vzf dq gqlm VR(Q)= k,w?lm f
0 0 (w+

=Tz T (50

Finally the correction to the conductivi§f ;o is

which is positive in the particle-hole excitation regigng
>w.

For the other correctionsi§ ®c and 85 °o, the particle-
ole excitation regiomu > w gives the main contribution.
alculating the equilibrium and nonequilibrium vertex cor-
rections in two dimensions,

1 . E-q
F(q)=a, E5F(q)=|e32—, Quew, (52

we find the corresponding corrections to the conductivity are

85 o T 55 %o T
=——), =——. (53
(o) 2€|: (o) 46|:
The combined contribution of all terms is
oo 11T
=——— (54)
(] 4 €p

V. PIEZOELECTRIC ELECTRON-PHONON
INTERACTION IN HETEROSTRUCTURES

Calculation of the interference correctiaii "o for the
deformation electron-phonon interaction performed in Ref. 2
is complicated, because local charge disturbance is respon-
sible for both the electron-phonon interaction and electron-
impurity scattering. Therefore, to insure the local electroneu-
trality of the electron-ion system, the processes of inelastic
electron-impurity scattering should be taken into account. In
piezoelectric crystals, where the electron-phonon interaction
stems from the coupling of electrons with a macroscopic
electric field caused by the local elastic strain, the electro-
neutrality does not affect the piezoelectric coupling. As was
shown recently! in a piezoelectric crystal, local strain
caused by an impurity is less important than local charge
disturbance, and processes of inelastic electron-impurity
scattering may be neglected. This fact allows us to treat the
piezoelectric electron-phonon and electron-electron interac-
tions on the same footing. We will concentrate on a two-
dimensional electron gas in GaAs heterojunctions. In what
follows, we treat phonons as bulk acoustic modes coupled to
a local electronic density by virtue of the screened vertex

eh14 A)\ 1/2

@ o zaal

902q* 80;9°+q°
A|: 256 1 At: Z4Q6 ) (55)

whereQ=(q,q,) is the three-dimensional phonon momen-
tum, p is the bulk mass density of GaAs, ang is longitu-
dinal (1) or transverset{ sound velocity. We will use the
notationu for estimatesh,, is the only nonzero component
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of the piezoelectric constant, ardq, ») =1+ V?'P,(q, ) e I(So+ &)
is the two-dimensional electron dielectric function. ph(p.e)=—7 ¢ (vXH) —a
Equations (29)—(35) should be modified by assuming
two-dimensional integration over the electron momentum, e?r? Sy
using three-dimensional integration over the phonon =~ o VI (EXH) —=. (60)
momentum, and substituting Q) for
2,IM\(Q)]? Im DA(Q,w), where the imaginary part of the  The other correctionsg!’ include the effects of the
phonon propagator is electron-electron interaction. The first of theg', is ob-

tained by taking into account nonequilibrium functi¢1§' in
Im DA(Q,w)=m{8[w—0\(Q)] - 5[w+QA(Q)]},(56) Eq. (10,
¢ =l ccimp(b0)]. (61)

The next corrections are obtained from Ed@) where the
Poisson brackets are taken in the magnetic field form

{A.B}u,

2 d¢ 57 2= —IT08g~So(3ge =038 )], (62

here(}, (Q) is the phonon frequency. Calculating the contri-
bution 61 20¢.ph-imp, W€ Notice that after integrating over
the result is proportional to

lé(q)=—Ref

o (quecosgp—u,q+i/7)? =0,

H_T ;oA [ 4E R , 4E E

. . . == y + 20 , St .

because > u. Thus, unlike the electron-electron interaction $2=3 {Zee(bo) +2eelbo) St doln (63
in two dimensions, where the plasmon region contributes to ) ] o ]
integrall ,(q) [see Eq(49)], the contribution&‘i'gha is zero. The following calculations are similar to that presented in
Calculating the other contributions§ "o, we note that the Sec. Il for the correction to éh_e conductivity; e.ghy is
dielectric function may be taken in the static limi(q,»)  Satisfied by Eq(15), where5G™ is substituted for
=1+«,/q. There are two regimes of screening; strong

screening folT<T,., and weak screening far,<T, where SGE(P+Q)= ! {So(e+w)+ pE(P+Q),GHP+Q)
T,=k,u for GaAs, andT,~0.5 K. Calculations show that 2
for T,<T, the correctiorﬁgjﬁ’ha is temperature independent, +GR(P+Q)}
while for lower temperatures, <T,, 0 H
i ISy(e+ w) €° q
=7———— — | v+ —|-(EX
5§:§h0' Cs (ehyy)? ( T )2 59 2 de V' (ExH)
=T 2 T3 ,
oz A4 pui ke *{[GH(P+Q I+ [GH(P+Q)13. (64
where, for GaAs, Thus
dQ IS(e+ w) €°
1t H=72 f ——2 ImVRQ) ——— —
C3:Z J dx 9X2(1_X2)2 ¢2 SO(E) (277_)4 (Q) Je c
0
q
ug\® x| v+ —) (EXH)R4GH(P+ Q)12 (65)
+ u—t [8x4(1-x2)—(1-x)%]|=12. (59 m °
|

We see that Eq(65 may be obtained from Eq17) by

Comparing Eqs(59) and (54), we see thap® o dominates substituting veclgoE for (e/c)E>.< H. It may be checked that
at low temperatures. In the three-dimensional case, usinﬁﬂe correctiongy may be obtained from Eq$19)—(23) by
Egs. (34) and (35) for the dielectric function, we can show the same substitution. o

quires an additional small factoil(xsu)2, and as a result Magnetic field is directed along tizeaxis, and that the elec-
the interference correction from the electron-electron interiric field is directed along the axis. The Hall currend, is

action %% [see Eq(43)] dominates in three dimensions as proportional toEXH. For the system_of nonintgracting elec-
well. trons we use Eq(24), and take the first term in Eq2) for

G® where we include the nonequilibrium functioqﬁg' in

S(P). As a result, we obtain the Hall conductivity of nonin-

TO THE HALL CONDUCTIVITY
4
In the presence of crossed electric and magnetic fields, the ny:ﬂZZef d_P4 qubg'lm GA(P)=Q703,
iteration solution of Eq.(6) is S=Sy+ @5+ o+ 34!, E (2m) o6
wherei=1,2, ... . Thecorrectionqbg is defined by Eq(11). (66)

The next correctionqsg depends on both the electric and whereQ)=eH/mc is the cyclotron frequency andg; is the
magnetic fields: Drude conductivity.
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The correction to the Hall current is that in semiconductors with small Fermi energy, the low-
4P temperature dependence of the conductivity is determined by
_ H A2 A the electron-electron interaction rather than the electron-
Ady ZeJ (2m)* 0yl boIML(Go)*>ee(So)] phonon interaction. It is worth mentioning that a well-known

A2eA |, H H o H A proof that the electron-electron interaction does not contrib-
+SIM[(Gp) T el o) + (&1 + ¢3 + ¢b3)Im Gpl}. ute to the conductivit}? does not hold in the impure case for
(67) the interference electron-electron-impurity correction to the

) _conductivity in both the diffusion regidrand the short-wave
It may be checked that the corrections to the Hall conductlv-region considered in the present work.

ity 6,40y are defined by Eqe28)—~(33), with additional In conclusion, we repeat that the correctiéf®o studied
factoreH/c and the unit vecton directed alond=xXH. Thus i the present paper is due to interference of the electron-

in any dimensions we have electron and electron-impurity interactions, and thus the ef-
e ey fect exists only in disordered electron systems. The condition
S (68)  that the electron-impurity scattering is a dominant momen-
Oxy o tum relaxation process means that the temperature-dependent
Consequently, for the Hall coefficieR,, we have the rela- correction to the conductivity is smaller than the Drude con-
tion ductivity. This condition restricts the effect from high tem-
peratures and clean materials, where direct electron-phonon
oy  O0°Ry 6%%0y, _ 6% 8o scattering is a dominant momentum relaxation proégss.
Ru=—2 Ry o 2— =T In strongly disordered samples, the low-temperature resis-

(69)  tivity associated with the weak localization and interaction
effects under conditio 7<<1 exhibits the minimum in re-
sistivity. In metals, the position of the minimum is defined
by competition between the above-mentioned weak localiza-

The temperature correction to the conductivity and thetion and electron-electron interactichsyith electron-
Hall conductivity due to interference of the Coulomb phonon-impurity interferenéeat TI>u, which were ob-
electron-electron interaction and electron-impurity scatteringerved in Refs. 3 and 4. As shown in the present paper, in
in the short-wave regim&> 1/7 is calculated. We find that strongly disordered semiconductors the minimum in resistiv-
the interference corrections to the conductivity and the Hality corresponds to a crossover from a low-temperature or
conductivity are negative in three and two dimensions. Thestrongly disordered regim&r<1 of the electron-electron
corresponding correction to the resistivity is positive, andinteraction, to a high-temperature or weakly disordered re-
therefore it does not lead to a minimum in resistivity typical gime Tr>1. While the low-temperature resistivity of ex-
of the long-wave(diffusion) regime. tremely clean two-dimensional semiconductors associated
In two dimensions, both two-dimensional plasmons andwith the electron-phonon interaction was measured
particle-hole excitations are equally important. In two di- recently!* we are not aware of measurements similar to
mensions, plasmons are gapless with the spectiwm Refs. 3 and 4 for disordered semiconductors.
=vr(k,9/2)"? and they play a role similar to the diffusion

modea_)=iDq2_ in the long-wave regimégl<1 andwr<1, ACKNOWLEDGMENTS
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