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Experimental and theoretical studies of the electron dynamics in open equilateral triangular billiards are
presented. We focus on the question to what extent classical mechanics can be used to model electron transport
in comparison to a fully quantum-mechanical treatment. The classical simulations of the magnetoresistance,
which are based on a billiard-ball model, agree in great detail with the temperature averaged, gross features of
the measured data. The frequency of experimentally observed conductance fluctuations can be related to a
simple closed electron orbit, which, in turn, is shown to be particularly important for classical electron dy-
namics. The magnetoresistance calculated quantum mechanically shows, in additioidadbieal gross
features, also quasiperiodic conductance fluctuations in the same frequency range as experimentally observed.
We address the effect of the distortion of the classical trajectories induced by the magnetic field on the
frequency of the conductance fluctuations. This effect appears to be less important in small samples. In order
to also visually compare the classical and quantum-mechanical pictures of electron transport, plots of the
particle density inside the billiard are presented, which were obtained with both classical and quantum-
mechanical methods. The resemblance is weak at low-magnetic fields, while at high fields strikingly similar
images are obtained with the two techniqu&0163-18208)08519-]

[. INTRODUCTION magnetoresistance with simulations of classical electron tra-
jectories the positions of the resistance peaks could be cor-
Two-dimensional cavities of arbitrary shape can be fabri+telated with specific commensurate trajectories. Also the
cated from semiconductor heterostructures such agverall gross features of the classically simulated data were
GaAs/AlLGa, _,As.! For high-quality samples, the typical found to be in good agreement with measured data. These
size can be smaller that the mean-free path for both elastigrevious studies were concerned with the experimental re-
and inelastic scattering at low temperatures, but larger thagime where thermal broadening and inelastic scattering are
the Fermi wavelength of the electrons. Transport througreffective such that quantum interference effects are sup-
such cavities, called billiards, is then ballistic, phase coherpressed. In the present work, we focus on the fine structure
ent, and sensitive to the shape of the boundaries at which tibat emerges in the form of conductance fluctuations when
electrons are reflectéd. The transport properties of electron the temperature is lowered, and we will present results from
billiards provide an experimental and controllable tool forfully quantum-mechanical calculations as well as comple-
the investigation of the type of dynamics obeyed by the elecmentary classical simulations. In a detailed comparison of
trons inside the cavity. Depending on the geometric shapéhe two approaches we will discuss a number of fundamental
and how electrons are injected into the billiard, the classicatjuestions. The first one deals with the usefulness of
motion will be regular or chaotic. At the same time the size(semjclassical dynamics to model transport in a regime
will determine whether the dynamics is wave mechanical owhere quantum interference effects are observed. For a large
classical, or as here, in the border area between classical addt like ours, one is, in practice, close to the regime in which
guantum behavior. Hence, we will focus on the case of arelectrons should behave as classical objects. If this is the
equilateral triangle subject to a homogeneous perpendiculaase, classical modeling is a convenient and correct alterna-
magnetic field. The classical motion of an electron bouncingive to more cumbersome quantum-mechanical approaches.
from wall to wall inside such a cavity is regular in the ab- Interference effects due to the wave mechanical nature of the
sence of a field. The corresponding quantum states are alstectrons then enter only as corrections to a basically classi-
available in analytic forffi’ and the level statistics for cal picture. The second question is therefore how to explain
nearest-level separations shows an abundance of level crogke conductance fluctuations caused by electron interference.
ings, as expected for a regular system. For a finite magneti@/e will discuss the origin of the fluctuations in terms of
field the classical motion becomes irregular and quantunperiodic orbits and full quantum-mechanical solutions, and
levels start to repel each other. compare the results. The third question is to which extent the
Transport through a large triangular electron billiard in aclassical electron orbits, on which a semiclassical interpreta-
perpendicular magnetic field and with two opposite leads hation of the magnetoresistance is based, are reflected by the
been investigated recenflyBy comparing the measured quantum-mechanical wave functions. We will therefore com-
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FIG. 2. The plot shows the conductance fluctuatioch&

FIG. 1. Measured magnetoresistance of an equilateral triangulat [G(T=0.3 K)—G(T=4.4 K)]. In the region of the maximum
electron billiard at 4.4 K(thin solid CUNQ and 0.3 K(thICk solid of the resistance arouri8l= Bc: 50 mT, the fluctuations are quasi_
curve. Indicated are the trajectories of electrons that enter the bilperiodic and the amplitude is enhanced. The inset shows the Fourier
liard along the symmetry axis through the side opening atransform of the data in the range<®<1.58;.

B/B.=1,3,5, respectivelysee text, which are thought to be related

to the local maxima of the resistance. Dashed curve: magnetoresi§an be explained in great detail by commensurability effects

tance(in arbitrary unit$ as obtained from simulations of classical due to the classically ballistic motion of the electrons inside

electron orbits(from Ref. §. Apart from the fast fluctuations that the triangular billiard? In particular, the three maxima of the

are due to statistical noise, the simulations show extensive similafmagnetoresistance can be related to reflected electron trajec-

ity with the experimental data recorded &t 4.4 K. tories present when the magnetic field is an odd multiple of a
characteristic fieldB., as indicated in Fig. 1. Her8, is

pare classical and quantum-mechanical electron-density dislefined as the magnetic field when the cyclotron radijus

tributions at a number of different magnetic fields. =mug/eB equals half the length of the side of the triangle,

Our paper is organized as follows. In Sec. Il we give awhereuv is the Fermi velocity andh is the effective mass of
brief presentation of the measurements and introduce thilne electron. The reason for the importance of these particu-
classical ball trajectories associated with the resistanckr trajectories was found to be their relative stability towards
maxima. In order to make our presentation more comprehersmall changes of initial conditions, and their relatively small
sive, we also summarize some previous results. In Sec. llength® When the temperature is decreased below a few
we discuss the theoretical modeling of magnetotransport. Afkelvin, such that phase destructive electron-electron
ter some general comments we present results of classicaiteractions® and thermal averaging are sufficiently sup-
simulations in Sec. lll A and from full wave-mechanical pressed, quantum interference effects manifest themselves as
considerations in Sec. Il B, where we also compare the twaeproducible fluctuations of the magnetoresistaritteck
approaches. The results of our discussions are finally sunsolid curve in Fig. 1L These fluctuations are thought to be
marized in Sec. IV. due to the interference of electrons inside the billiatd%12

In the following we focus attention on the fluctuations in
the magnetic-field region around the global maximum of the
magnetoresistance &=B.=50 mT. In Fig. 2, the differ-

The experimental data presented in this work, which arence between the data obtained at 0.3 K and at 4.5 K is
representative of data from several different devices thashown, plotted as the change of the conductah@ The
were studied, were obtained from a wet-etchedrms amplitude of the conductance fluctuations is about
GaAs/ALGa_,As electron billiard with the lithographic 0.06e?/h. A Fourier transform of these data in the range
shape of an equilateral triangle of sideu3n. The Fermi between zero and 1B; (inset of Fig. 2 shows a dominant
energy of the unpatterned two-dimensional electron gas walsequency f=130 T !, which corresponds to an area of
Er=10 meV and the mean free path was 4. The point  f/(e/h)=0.54 um?. Recently, periodic conductance fluc-
contacts at the center of one side and at onéiniget of Fig.  tuations in electron billiards have been related to particular
1) had an estimated electric width of 200 nm and the numbeclassical electron trajectories*° (see also Refs. 6, 16, and
of subbands in the channels was about thileermi wave- 17 for classical periodic orbits and scarrintn our case, the
length A\g=45 nm). Further details about the device have dominant frequency is found only in the magnetic-field range
been reported elsewhetdll resistance measurements were around the maximum @&=B,_. Therefore, we suggest that
carried out in a four-terminal geometry using a current-the periodic fluctuations are related to the reflected trajectory
controlled lock-in technique with an excitation voltage of thought to be the reason for the resistance maximurB at
less that 1QuV. =B, (Fig. 1). The area Q) enclosed by this trajectory equals

The thin solid curve in Fig. 1 is the magnetoresistance 0D.04&?, wherea is the electric side length of the triangle.
the device at the temperatuie=4.4 K. It has been found From the position of the peak &=B_. we finda=3.6 um,
that at this relatively high temperature, at which quantumwhich gives A=0.52 um?, in strikingly good agreement
interference effects are absent, the magnetoresistance datith the observed frequency and with previous estimates of

Il. EXPERIMENTS
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the size of the trianglBWe note, however, that our estimates
may be subject to uncertainties related to, for instance, the
correct assignment of the electron density inside the billiard,
the location ofB.., and the true nature of the confining walls.
We will return to the periodic fluctuations in connection with
the full guantum-mechanical modeling.

Ill. THEORY

The quantity directly measured in the experiment is the
resistance of the cavity, the inverse of which gives the con-
ductanceG. The two-probe conductance is in turn given by
the Landauer-Bttiker formula(see, for example, Ref)1

2e?
G= TTi,j ; 1)

where T, ; is the total transmission for electrons being in- . . . .
jected from leadj and subsequently collected in lead FIG. 3. Superpositions of the trajectories of 5000 electrons in-
wherei #j refer to the different leads 1 and 2, i.e., we havejected through the side opening at the magnetic fields indicated.
eitherT, , or T, 1, depending on the direction (;f .th.é current. OnIY the trajectories of electrons reflected by the billiard are plot-
In thész”OV%/’i]I.’], sections we will determine the transmis- ted. The white lines are the trajectories of electrons injected along
sion of a trian ulgr billiard from, first, simulations in which the symmetry axis. AB=0 these electrons are transmitted. At
9 ! ’ . B/B.=1 andB/B.=3, where many electrons follow orbits similar
electrons are treated as classical charged particles and, s

% the ones indicated, the probability of reflection is high and the

ond, from a full quantum-mechanical calculation. In the Clas'magnetoresistance reaches a maximum. The reflecting trajectory at

sical case, the transmission is obtained from the distributiorE;ZZBC is unstable and only few electrons follow this or similar
of trajectories for particles injected at different angles fromy gjectories; no maximum of the resistance is observed at this value
one of the Iea_ds. The to_tal refle(_:tlﬁqj is related taT ;. bY  of the magnetic field.

the conservation of particles. N is the number of available

channels in the leads, one hég;+R; ;=N. In the discus- ¢ | (for further detail Linket al®). F
sion of the classical case we will assume a scale in whicl? travel (for further details, see Linket al”). From a com-

T, +R; =1, such thafT; ; is simply the probability that a parison of the measured and the simulated data in Fig. 1 it is
C|'gssicgi par’ticle is trané'#nitted through the billiard. apparent that the simulation reproduces the overall behavior
In the quantum-mechanical case the conductance at zeRj the experimental data, including some fine structures with

temperature is related to the complex transmission matrix the exception of the statistical noise. In particular, the posi-
as tions of the major resistance maxima that can be related to

g2 the simple reflected electron trajectories indicated in Fig. 1
G(Ep)= —Tr(tt"), 2) are reproduced in the simulation. Only the position of the
h maximum around3/B.=5 appears to be somewhat shifted

wheret, ;=(t), 4 is the transmission amplitude from in- towards lower fields relative to the measured value.
coming modeg in one lead into modex in the other, col- The semiclassical interpretation of the magnetoresistance
lecting lead. The relation to the total transmissign is then ~ given in Sec. Il and in Ref. 8 emphasizes a small number of
specific electron trajectorie@=ig. 1). In a more complete
Ti= > |ta,ﬁ|2' (3)  description, the magnetoresistance and the conductance fluc-
aei,Bej tuations should be viewed as the result of a superposition of
It follows that T; ;+R; ;=N. With these preliminaries we all possible electron trajectories inside the billiard. In order

will now discuss the classical and quantum cases separatelg’. visualize this situation, we have simulated a large number
f electron trajectories with different initial conditions. In an
approach similar to that described above, the classical trajec-
tories of over 5000 electrons, starting at the Fermi velocity
The result of a classical simulation of the magnetoresisfrom one contact opening, were traced inside the billiard
tance is shown in Fig. 1. In the simulation, electrons thatuntil the electrons escaped. The initial angle was cosine dis-
start at Fermi velocity at different initial angles from the tributed betweent90° and the starting point was evenly
opening in the sidénamed ) were traced inside the billiard distributed within the opening. No impurity scattering or
until they escaped through openings 1 or 2. The ratio of thelectron-electron interaction was taken into account. The
electrons transmitted through the billiard at each setting ofongest electron trajectories, about 10% of the total number,
the magnetic fieldT, 4(B), was determined and then related were neglected. This was done because long trajectories
to the resistanceR) by settingR(B)ocszl(B)*l. The elec- make a disproportionally large contribution to the classical
trons were treated entirely as classical, charged particles in@ensity of trajectories, while they are in reality unimportant
hard-wall potential. A realistic amount of impurity scattering because they are randomized by impurity scattering.
was taken into account by changing the direction of motion Figure 3 shows a superposition of the trajectories of all
randomly after an exponentially distributed random distanceelectrons entering and leaving the billiard through the side

A. Simulations using classical trajectories
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opening. Trajectories of transmitted electrons are not in-
cluded. This plot can be viewed as the classical particle-
density distribution of theeflectedelectrons. Figures(a)—
3(d) are forB/B.=0, 1, 2, and 3, respectively. The white
lines are the ideal trajectories of electrons injected along the
symmetry axis of the triangle. =0, electrons injected in
the forward direction are transmitted, in agreement with the
resistance minimum observed at this field. B8,=1 and
at B/B.=3, a significant number of electrons follows re-
flected trajectories, which are similar to the white lines, sup-
porting the interpretation of the peaks in the magnetoresis-
tance(Fig. 1. In contrast, aB/B.=2, where no maximum
of the resistance is observed, the white line is not a represen-
tative electron trajectory. Instead the particle density is
smeared out over a large portion of the area of the triangle,
and no simple trajectories can be found. The reason is that
the Lyapunov exponent averaged over all injection angles at
B/B.=2 is relatively large, and the white trajectory in Fig.
3(c) is comparably unstabfe. FIG. 4. Superpositions of electron trajectories, startind® at
Also, the semiclassical interpretation of the Aharanov-+3B. from the side openinf(a) and(c)], and from the tip opening
Bohm-like periodic conductance fluctuations experimentallyat B=—3Bc [(b) and (d)], respectively. The arrows indicate the
observed at abolB=B, (Fig. 2) is supported by Fig. 3. The direption of injgction. The upper two figures show Fhe transmitted
fluctuation frequency was found to correspond to the areQ_rb'tS only, while the lower show the_ reflegted o_rblts. B_ecau_se c_)f
enclosed by the trajectory of electrons injected through thélme-reversal symr_netry, the transmlttlr_lg traJec_torles are identical in
base contact along the symmetry axisBat B. . In fact, a the two cases, while the reflected orbits are different.
significant number of the reflected electrons follows trajec-
tories that enclose approximately the same @Fég. 3(b)]. s illustrated in Fig. 4 in which@) and (b) show superposi-
Also, atB=0, a fraction of the electrons injected follows a tions of transmitted electron orbits &/B.=3, starting at
similar trajectory, but not at the higher fields. This finding is either opening. In fact, the resulting particle density plots are
in agreement with our quantum-mechanical calculations ostrikingly similar. In contrast, the corresponding plots of re-
the transmission that predict quasiperiodic oscillations of thidlected electron trajectories do not show similarities because
frequency aB=<B.. our triangular billiard lacks a symmetry axis perpendicular to
So far in the discussion of the classical electron trajectothe current directioni(c) and(d) in Fig. 4].
ries we have considered exclusively reflected electron orbits Although the above discussion shows that it is formally
that start from the side opening. The success of this selectiveufficient to consider only the reflected trajectories starting
model may appear surprising because one could expect thiiom the side contact, it remains puzzling that we were not
all possible trajectories, including transmitted ones, need table to find a similarly descriptive explanation for the mag-
be considered for a complete understanding. However, as weetoresistance when considering any of the other three sets
will show in the following, the classical magnetoresistanceof trajectories.
of a general two-terminal billiard is entirely described by
considering either only transmitted or only reflected electron
trajectories starting from only one of the openings. This is B. Wave-mechanical picture
due to two factors: First, _because of time reversal symmetry, The basic picture of electrons injected into classical tra-
any arbitary electron trajectory that connects the two leadgsctories in the triangular cavity is evidently a strong one. An
can be followed in either direction, provided that the mag-attractive aspect is that the underlying physics becomes very
netic field is reversed simultaneously with the electron mo+ansparent and easy to handle, conceptually as well as com-
tion. Therefore, equally many classical initial conditions leadpytationally. Gross features, such as the location of the major
to the transmission of electrons starting at either of the tWQnaxima and minima in the magnetoresistance, are predicted
contacts, and the probabilities for transmission are equalyith considerable success. The reason is that the cavity is so
T; j(+B)=T;i(—B). Second, the probabilities for reflec- |arge that the wave nature of the electrons appears to be of
tion are related to the probabilities for transmissionR)y  |ess importance. Hence, arguments based on classical par-
=(1-T;,), and therefore, ticle dynamics and “ray optics” are valid. On the other
— — _ hand, the observation of conductance fluctuations in the low-
(1= RA(+B)]=Tou(+B)=T1d~B)=[1-RoA B)]@) temperature magnetoresistariEe. 2) shows that the wave-
mechanical nature of the electrons cannot be ignored alto-
Consequently, one of the four parameters contains the infogether. We may say that we are in the border area between
mation on the other three. However, it should be noted thajuantum mechanics and the classical world.
only the transmitting trajectories are the same for either di- To gain an insight into how quantum and classical me-
rection of the current, while the reflecting trajectories arechanics meet in our particular problem we have supple-
topographically different if the billiard does not have a sym-mented the classical simulations with a fully quantum-
metry axis perpendicular to the direction of the current. Thismechanical evaluation of the magnetotransport. In the
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Magnetic field (T) With an electron densityng=2.5x10"®> m~2, and corre-
8 0 0.2 0.4 0.6 0.8 spondingly,Er=9 meV, this leaves three channels open. As
S L S N above, the results are plotted agaiBsto emphasize general
- l‘ E . qualitative features and to faciliate comparisons with mea-

i surements. In the present ca$,=0.166 T, about three
{ times larger than for the experimental case because of the
- N difference in size between the experimental and theoretical
5'0 00 samples. '_I'he overall features of the theoretical results are
1/AB (1/T) obvpusly in good agreement with the measurements. The
maximum at abouB/B.=5 is in closer agreement with the
classical simulation than with the measured results, which
indicates that the geometry of the experimental sample may
not be perfecE The experimentally observed low-
ol v temperature fluctuations are now reproduced in a qualitative
0 1 > 3 4 5 6 way and can be traced to wave-mechanical interference, or
Reduced magnetic field (B ) standing wave effects.
One may discuss the conductance fluctuations in the fol-
FIG. 5. Quantum-mechanical magnetoresistaticearbitrary  lowing, somewhat simplistic way by assuming that they are
units) as obtained from the Green's-function calculations for anessentially related to the density of states or shell structure of
open, equilateral triangle with hard walls. The side of the triangle ishe nominally isolated billiard. Using for the moment the

1 pm and the width of the twdinfinitely long) leads is 0.1um.  convenient semiclassical theory for this purpose, one
With the electron densitp,=2.5x10' m™? (Ex=9 meV) there  ind:23 that the first isolated orbit in an equilateral triangle
are three open channels. T.he .|nset .shows the Fourier transform zero magnetic field, indicated in the inset of Fig[&ihd
o et vt e et s 1N 1 850 vsible among the tajectarkes i Fifad

. o ives rise to a modulation clog/(#/e)] of the density of
the magnetoconductance was obtained. The arrow indicates the pg- _ . .

o . - . ; tates. Hereb=BA is the magnetic flux through the aréa
riodicity related to an undistorted electron orgemiclassical peri- ~ 2 2 S .
odic orbit theory. = ﬁa /16=0.11a encloseq by the peI’IOdIC. t_rlangular orbit,

undistorted by the magnetic field. The position of the arrow
guantum-mechanical case the motion in the leads is quarn the inset of Fig. 5, in which the Fourier transformation of
tized. The number of open modes or chann@scupied the calculated magnetoconductarce., of the inverted re-
transverse states in the leadepends on the dimensions of sistance dajas displayed, derives from these arguments and
the leads, the magnetic field applied, and the position of thés clearly in good agreement with a single dominant fre-

Fermi energy. To evaluate the conductance we have used tlggilency. One rough way of looking at the oscillations is
Landauer-Bttiker formalism, which relates the magnetocon- therefore the following one. They would occur simply be-
ductance of the device to its scattering characteristics as outause the perpendicular magnetic field induces a diamagnetic
lined above. shift of the shells associated with the triangular isolated orbit

We have calculated the transmission matron the basis (Fig. 5, insel. This would lead to a gradual magnetic de-
of a hybrid, recursive Green’s-function technigue, which hagopulation of the shells and result in a periodic modulation
proved to be numerically efficient for calculating quantumof the density of states at the Fermi level and, hence, the
transport in large open cavitié$ To simulate inelastic scat- conductance on increasing magnetic field. Although this is a
tering effects within the cavity we have included a weak,qualitatively appealing picture, it appears that we are facing a
imaginary optical potential of the approximate forai#/r, guantitative problem when the numerical values of theoreti-
where the chosen inelastic lifetime=30 ps agreed in mag- cal and experimental periodicities are compared. Our
nitude with experimental values recently publisi&@ This  quantum-mechanical simulation as presented in Fig. 5 ap-
results in a general smoothing of the calculated conductangeears to favor undistorted trajectories, while the measure-

G, in practice resembling closely the effects of thermalments are consistent with trajectories distorted by the mag-
broadening at finite temperatures. The inclusion of lifetimenetic field, as indicated in Fig. 1. This discrepancy appears to
broadening is also convenient from a calculational point ofoe an interesting one from a conceptual point of view. In the
view because the number of data points required to makease of the experimental data in Sec. Il the semiclassical
reliable plots ofG is drastically reducedOn the other hand, periodic orbit theory is applied to a large cavitp=3.6
there is a price to be paid for this convenience. When introum). In the theoretical modeling the side of the triangle was
ducing lifetime broadening in this simple phenomenologicalchosen much smaller for computational convenieree 1
way one breaks the symmetry with respect to a reversal gfim). Undoubtedly the distorted orbit is intuitively more ap-
the field. Here the lifetime broadening is chosen to be smallpealing on classical grounds. One may therefore ask the rel-
of the same order as the thermal broadening, and for thigvant question whether the size of the cavity matters. Does it
reason we may simply ignore this complicatipn. have to be a certain size before semiclassical arguments ap-

Figure 5 shows the magnetoresistance obtained from thely? To answer this question, we performed a number of

Green’s-function approach for an open triangle with hardsimulations fora ranging from~0.5 to ~2 um. The answer
walls. For computational reasons we have chosen the side & not clearcut. In fact, it turns out to be quite difficult to
the triangle smaller than the real device, i.euyrh instead of formulate a strict and consistent picture. With some good
3.6 um. The width of the two leads is chosen as @uh.  will, however, we may argue that the distorted orbits emerge

F.T. (arb. units)

Resistance (arb. units)
N
L

[
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B(B) the relative strength of the frequencies, i.e., the mixing of the
0 1 o) 3 4 5 6 billiard eigenstates, is different for different lead positions.
' ! ' ' ' As the magnetic field is swept there is a rich variation of
the linear combinations of states inside the billiard. If there
exists any similarity with the classical picture it should be
revealed in visualizations of the quantum-mechanical prob-
ability distributions of the density and the velocity. The fol-
lowing results are based on a particular scattering state in
which the initial, incoming state is constructed as a symmet-
ric linear combination of all incoming modes. Figure 7
shows the density and velocity distributions for the four

1
[ () —I> I casesB/B.=0, 1, 2, and Jleft and center column, respec-
I
1%

G (arb. units)

. tively), together with plots of the classical trajectories of
electrons injected into the billiard through the side opening
(right column. In contrast to Fig. 3, the classical plots dis-
played in this figure contain the transmittadd the reflected
trajectories, giving the complete classical density distribu-
, , tion. It appears that at zero field, the quantum-mechanical

0 50 100 density and velocity distributions are actually almost more
1/AB (1/T) collimated than the corresponding collection of classical tra-
jectories. There is a faint trace of scarring in the quantum-
FIG. 6. (8 Quantum-mechanically calculated magnetoconduc-mechanical distribution that resembles a classical path con-
tance and(b) the Fourier transformations for triangles with two necting the two leads. This striking picture is, however,
different lead configurations, as indicated in the insets. The paramsomewhat fortuitous because the spatial distributions are sen-
eters used for the calculations are the same as were used for the daféive to small changes in Fermi energy, direction of current,
displayed in Fig. 5. The solid lines refer to the symmetric triangle,etc. The same is true for the caBtB.=1. In this case, one
while the dashed lines refer to the unsymmetric structure. The congpserves a spreading of the density distribution, which is
tributing frequencies are the same in both cases, while their relativegnsistent with the classical distribution in a rough way, but
sftrenth is different. _'I'I_wis iIIust_rates the importance of the lead CON%t the same time there are no signs of the kind of scarring
figurations for the mixing of eigenstates. one would expect intuitively from the skipping orbit indi-
cated in Fig. 8).
from the quantum-mechanical modeling when the cavity is The situation is changed at higher fields, where the elec-
large enough, i.e., when it becomes truly semiclassical.  tron wave function becomes increasingly localized. The halo
A complication arising from the periodic orbit theory in observed foB/B,=2 has obvious similarities with the clas-
the present context is that it refers to the properties of aRkjcal case. ForB/Bc: 3, fina”y, Sk|pp|ng orbits emerge
isolated billiard. In a more Complete quantum deSCfiption 0fc|ear|y in accordance with the classical case, and the
magnetotransport the situation is more complex than just guantum-mechanical and the classical density distributions
density-of-states effect and a gradual depopulation of shellgre similar. To summarize the four cases, we find, in agree-
In fact, the leads have an important role for the magnetoconment with earlier findings® that there is little resemblance
ductance, and the scattering states inside the billiard mayjetween the quantum-mechanical and classical distributions
actually be viewed as a linear combination of the eigenstategt |ow fields. At higher fields, on the other hand, we find that
of the nominally isolated billiard:** The mixing occurs for  the similarity becomes quite striking.
states with energies in the close vicinity Bf and the par- When the magnetic field is increased even further, edge
ticular values of the mixing coefficients depend on the Charstates are fu||y deve|oped_ Figure 8 shows the Spatia| prob_
acteristics of the leads. For the triangular billiard, this is il- apijlity distributions forB/B.,=5 and for reversed field and
lustrated in Fig. €8) where the magnetoconductanG¢B)  current(voltage. One can clearly distinguish the collective
calculated quantum mechanically is shown for two differentexcitation of several edge states extending over the entire
lead configurations, as indicated. Clearly, the overall behaVedge region_ The overall features are independent of direc-
ior of the magnetoconductance is changed significantly whefion of field and current, although fine details are dependent
the lead at the side of the triangle is moved away from theyn these. In this sense the results appear to be in qualitative

symmetry axis. Classically, this behavior is expected becausggreement with the classical simulations of different current
the trajectories that contribute to electron transport are engjrections in Fig. 3.

tirely different when the point of injection is changed. Con-

cerning the conductance fluctuations, however, one could ex-

pect less dramatic changes, because the scattering states IV. SUMMARY

inside the billiard, through which the electrons have to tun-

nel, are defined by the overall geometry of the billiard and We have compared a classical and a quantum-mechanical
should not be too different in the two cases. In fact, theapproach to the analysis of the experimentally observed

Fourier transformations of the conductance détim. 6(b)] magnetoresistance of triangular electron billiards. In our dis-

show that the frequencies of the conductance fluctuations a@issions we have focused on the question to what extent
almost exactly the same for both lead configurations, whildsemjclassical dynamics can be used to model electron

F. T. (arb. units)
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B/Bc=0

B/Bc =1

FIG. 7. Left-hand and center columns:
Quantum-mechanical probability distributions
for density and velocity, respectively, at dif-
ferent fields, obtained from Green’s-function

calculations. Broadening due to inelastic ef-

B/Bc =2

fects is not included in these graphs. The
right-hand column shows the classical

particle-density distributions for electrons in-

jected through the side contact at the same
magnetic fields.

B/Bc=3

transport, in comparison to a full quantum-mechanical treat-
ment.

The classically simulated magnetoresistance was found to
agree with the measured data in great detail, in particular at
temperatures at which quantum interference effects are ab-
sent. The simple electron trajectories that were previously
found to be of great importance for the magnetoresisfance
were shown to be indeed abundant in plots of all possible
electron trajectories at different magnetic fields. The fre-
quency of quasiperiodic conductance fluctuations, experi-
mentally observed at lower temperatures, were found to cor-
respond to the area of the simplest reflected electron
trajectory in the billiard. In conclusion, thésemijclassical
model provides a consistent and complete understanding of
the main features that were observed in the relatively large
experimental sample.

The magnetoresistance calculated quantum mechanically
reproduced théclassical gross features of the experimental
data as well as the existence of conductance fluctuations in
the experimentally observed frequency range. These fluctua-
tions can be understood as being due to changes in the trans-
mission probability for electrons through the billiard, as the
density of states is shifted diamagnetically. The density of

FIG. 8. Quantum-mechanical probability distributions for the States in the real billiard may be thought of as being the

particle densitytop figure$ and for the velocitybottom figuregas
obtained from Green’s-function calculations wish=5B. . The fig-

result of the mixing of eigenstates of the closed billiard,
which in turn was shown to depend on the detailed position

ures on the left are for reversed fields and currents as compared @ the leads. Consequently, the results based on real samples
the figures on the right. As in the previous figure, broadening due t&€an only within certain limits be related to the density of

inelastic scattering is not included.

states of the ideal geometry.
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A conceptual problem remaining concerns the detailed reproaches by adding a phase to the classical trajectories. This
lation of classical electron trajectories and conductance flucwould also have the advantage that wave effects could be
tuations. While our experimental results and the semiclassistudied also in large samples, in which full quantum-
cal, periodic orbit theory suggest that the periodic orbitsmechanical calculations are numerically complicated and
distorted by the magnetic field, should be considered in ordegomputationally as yet too demanding.
to explain the frequency of the fluctuations, the results from
our quantum-mechanical calculations were not conclusive. It
would be interesting to investigate the role of the size of the
billiard in this context in more detail.

The interplay between the classical and the quantum- The authors thank S. M. Reimann for valuable comments
mechanical picture of electron dynamics was further studie@n the manuscript. The work was carried out within the Na-
by comparing classically and quantum-mechanically calcunometer Structure Consortium in Sweden and was supported
lated particle-density distributions inside the billiard. At low by the Swedish Engineering and Natural Science Research
magnetic fields, little resemblance between the two wasCouncils, and by the Ban Gustafsson Foundation for Re-
found, which makes the success of the classical model afearch in Natural Sciences and Medicine. We thank Claus B.
transport remarkable. At high fields, however, almost identi-Sfrensen, the 1lI-V NANOLAB, and CNAST for the MBE-
cal images of the particle density are obtained with the twayrown structures. Support from the Royal Swedish Academy
techniques. It would be exciting to bridge the two ap-of Sciencedl.Z.) is gratefully acknowledged.
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