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Classical and quantum dynamics of electrons in open equilateral triangular billiards
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Experimental and theoretical studies of the electron dynamics in open equilateral triangular billiards are
presented. We focus on the question to what extent classical mechanics can be used to model electron transport
in comparison to a fully quantum-mechanical treatment. The classical simulations of the magnetoresistance,
which are based on a billiard-ball model, agree in great detail with the temperature averaged, gross features of
the measured data. The frequency of experimentally observed conductance fluctuations can be related to a
simple closed electron orbit, which, in turn, is shown to be particularly important for classical electron dy-
namics. The magnetoresistance calculated quantum mechanically shows, in addition to the~classical! gross
features, also quasiperiodic conductance fluctuations in the same frequency range as experimentally observed.
We address the effect of the distortion of the classical trajectories induced by the magnetic field on the
frequency of the conductance fluctuations. This effect appears to be less important in small samples. In order
to also visually compare the classical and quantum-mechanical pictures of electron transport, plots of the
particle density inside the billiard are presented, which were obtained with both classical and quantum-
mechanical methods. The resemblance is weak at low-magnetic fields, while at high fields strikingly similar
images are obtained with the two techniques.@S0163-1829~98!08519-1#
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I. INTRODUCTION

Two-dimensional cavities of arbitrary shape can be fab
cated from semiconductor heterostructures such
GaAs/AlxGa12xAs.1 For high-quality samples, the typica
size can be smaller that the mean-free path for both ela
and inelastic scattering at low temperatures, but larger t
the Fermi wavelength of the electrons. Transport throu
such cavities, called billiards, is then ballistic, phase coh
ent, and sensitive to the shape of the boundaries at which
electrons are reflected.2,3 The transport properties of electro
billiards provide an experimental and controllable tool f
the investigation of the type of dynamics obeyed by the e
trons inside the cavity. Depending on the geometric sh
and how electrons are injected into the billiard, the class
motion will be regular or chaotic. At the same time the s
will determine whether the dynamics is wave mechanica
classical, or as here, in the border area between classica
quantum behavior. Hence, we will focus on the case of
equilateral triangle subject to a homogeneous perpendic
magnetic field. The classical motion of an electron bounc
from wall to wall inside such a cavity is regular in the a
sence of a field. The corresponding quantum states are
available in analytic form4-7 and the level statistics fo
nearest-level separations shows an abundance of level c
ings, as expected for a regular system. For a finite magn
field the classical motion becomes irregular and quan
levels start to repel each other.

Transport through a large triangular electron billiard in
perpendicular magnetic field and with two opposite leads
been investigated recently.8 By comparing the measure
570163-1829/98/57~19!/12306~8!/$15.00
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magnetoresistance with simulations of classical electron
jectories the positions of the resistance peaks could be
related with specific commensurate trajectories. Also
overall gross features of the classically simulated data w
found to be in good agreement with measured data. Th
previous studies were concerned with the experimental
gime where thermal broadening and inelastic scattering
effective such that quantum interference effects are s
pressed. In the present work, we focus on the fine struc
that emerges in the form of conductance fluctuations w
the temperature is lowered, and we will present results fr
fully quantum-mechanical calculations as well as comp
mentary classical simulations. In a detailed comparison
the two approaches we will discuss a number of fundame
questions. The first one deals with the usefulness
~semi!classical dynamics to model transport in a regim
where quantum interference effects are observed. For a l
dot like ours, one is, in practice, close to the regime in wh
electrons should behave as classical objects. If this is
case, classical modeling is a convenient and correct alte
tive to more cumbersome quantum-mechanical approac
Interference effects due to the wave mechanical nature of
electrons then enter only as corrections to a basically cla
cal picture. The second question is therefore how to exp
the conductance fluctuations caused by electron interfere
We will discuss the origin of the fluctuations in terms
periodic orbits and full quantum-mechanical solutions, a
compare the results. The third question is to which extent
classical electron orbits, on which a semiclassical interpre
tion of the magnetoresistance is based, are reflected by
quantum-mechanical wave functions. We will therefore co
12 306 © 1998 The American Physical Society
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57 12 307CLASSICAL AND QUANTUM DYNAMICS OF ELECTRONS . . .
pare classical and quantum-mechanical electron-density
tributions at a number of different magnetic fields.

Our paper is organized as follows. In Sec. II we give
brief presentation of the measurements and introduce
classical ball trajectories associated with the resista
maxima. In order to make our presentation more compreh
sive, we also summarize some previous results. In Sec
we discuss the theoretical modeling of magnetotransport.
ter some general comments we present results of clas
simulations in Sec. III A and from full wave-mechanic
considerations in Sec. III B, where we also compare the
approaches. The results of our discussions are finally s
marized in Sec. IV.

II. EXPERIMENTS

The experimental data presented in this work, which
representative of data from several different devices
were studied, were obtained from a wet-etch
GaAs/AlxGa12xAs electron billiard with the lithographic
shape of an equilateral triangle of side 3mm. The Fermi
energy of the unpatterned two-dimensional electron gas
EF510 meV and the mean free path was 10mm. The point
contacts at the center of one side and at one tip~inset of Fig.
1! had an estimated electric width of 100 nm and the num
of subbands in the channels was about three~Fermi wave-
length lF545 nm!. Further details about the device ha
been reported elsewhere.8 All resistance measurements we
carried out in a four-terminal geometry using a curre
controlled lock-in technique with an excitation voltage
less that 10mV.

The thin solid curve in Fig. 1 is the magnetoresistance
the device at the temperatureT54.4 K. It has been found
that at this relatively high temperature, at which quant
interference effects are absent, the magnetoresistance

FIG. 1. Measured magnetoresistance of an equilateral triang
electron billiard at 4.4 K~thin solid curve! and 0.3 K~thick solid
curve!. Indicated are the trajectories of electrons that enter the
liard along the symmetry axis through the side opening
B/Bc51,3,5, respectively~see text!, which are thought to be relate
to the local maxima of the resistance. Dashed curve: magnetor
tance~in arbitrary units! as obtained from simulations of classic
electron orbits~from Ref. 8!. Apart from the fast fluctuations tha
are due to statistical noise, the simulations show extensive sim
ity with the experimental data recorded atT54.4 K.
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can be explained in great detail by commensurability effe
due to the classically ballistic motion of the electrons ins
the triangular billiard.8 In particular, the three maxima of th
magnetoresistance can be related to reflected electron tr
tories present when the magnetic field is an odd multiple o
characteristic fieldBc , as indicated in Fig. 1. HereBc is
defined as the magnetic field when the cyclotron radiusl c
5mvF /eB equals half the length of the side of the triang
wherevF is the Fermi velocity andm is the effective mass o
the electron. The reason for the importance of these part
lar trajectories was found to be their relative stability towar
small changes of initial conditions, and their relatively sm
length.8 When the temperature is decreased below a
kelvin, such that phase destructive electron-elect
interactions1,9 and thermal averaging are sufficiently su
pressed, quantum interference effects manifest themselve
reproducible fluctuations of the magnetoresistance~thick
solid curve in Fig. 1!. These fluctuations are thought to b
due to the interference of electrons inside the billiard.2,3,10-12

In the following we focus attention on the fluctuations
the magnetic-field region around the global maximum of
magnetoresistance atB5Bc.50 mT. In Fig. 2, the differ-
ence between the data obtained at 0.3 K and at 4.5 K
shown, plotted as the change of the conductanceDG. The
rms amplitude of the conductance fluctuations is ab
0.06e2/h. A Fourier transform of these data in the ran
between zero and 1.5Bc ~inset of Fig. 2! shows a dominant
frequency f .130 T21, which corresponds to an area o
f /(e/h)50.54 mm2. Recently, periodic conductance fluc
tuations in electron billiards have been related to particu
classical electron trajectories3,13-15 ~see also Refs. 6, 16, an
17 for classical periodic orbits and scarring!. In our case, the
dominant frequency is found only in the magnetic-field ran
around the maximum atB5Bc . Therefore, we suggest tha
the periodic fluctuations are related to the reflected trajec
thought to be the reason for the resistance maximum aB
5Bc ~Fig. 1!. The area (A) enclosed by this trajectory equa
0.040a2, wherea is the electric side length of the triangle
From the position of the peak atB5Bc we find a53.6 mm,
which gives A50.52 mm2, in strikingly good agreemen
with the observed frequency and with previous estimates

lar

il-
t

is-
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FIG. 2. The plot shows the conductance fluctuationsDG
5@G(T50.3 K)2G(T54.4 K)#. In the region of the maximum
of the resistance aroundB5Bc.50 mT, the fluctuations are quas
periodic and the amplitude is enhanced. The inset shows the Fo
transform of the data in the range 0,B,1.5Bc .
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12 308 57L. CHRISTENSSONet al.
the size of the triangle.8 We note, however, that our estimat
may be subject to uncertainties related to, for instance,
correct assignment of the electron density inside the billia
the location ofBc , and the true nature of the confining wall
We will return to the periodic fluctuations in connection wi
the full quantum-mechanical modeling.

III. THEORY

The quantity directly measured in the experiment is
resistance of the cavity, the inverse of which gives the c
ductanceG. The two-probe conductance is in turn given
the Landauer-Bu¨ttiker formula ~see, for example, Ref. 1!

G5
2e2

h
Ti , j , ~1!

where Ti , j is the total transmission for electrons being i
jected from leadj and subsequently collected in leadi ,
whereiÞ j refer to the different leads 1 and 2, i.e., we ha
eitherT1,2 or T2,1, depending on the direction of the curren

In the following sections we will determine the transm
sion of a triangular billiard from, first, simulations in whic
electrons are treated as classical charged particles and,
ond, from a full quantum-mechanical calculation. In the cl
sical case, the transmission is obtained from the distribu
of trajectories for particles injected at different angles fro
one of the leads. The total reflectionRj , j is related toTi , j by
the conservation of particles. IfN is the number of available
channels in the leads, one hasTi , j1Rj , j5N. In the discus-
sion of the classical case we will assume a scale in wh
Ti , j1Rj , j51, such thatTi , j is simply the probability that a
classical particle is transmitted through the billiard.

In the quantum-mechanical case the conductance at
temperature is related to the complex transmission matrt
as

G~EF!5
2e2

h
Tr~ tt†!, ~2!

where ta,b5(t)a,b is the transmission amplitude from in
coming modeb in one lead into modea in the other, col-
lecting lead. The relation to the total transmissionTi , j is then

Ti , j5 (
aP i ,bP j

uta,bu2. ~3!

It follows that Ti , j1Rj , j5N. With these preliminaries we
will now discuss the classical and quantum cases separa

A. Simulations using classical trajectories

The result of a classical simulation of the magnetore
tance is shown in Fig. 1. In the simulation, electrons t
start at Fermi velocity at different initial angles from th
opening in the side~named 1! were traced inside the billiard
until they escaped through openings 1 or 2. The ratio of
electrons transmitted through the billiard at each setting
the magnetic field,T2,1(B), was determined and then relate
to the resistance (R) by settingR(B)}T2,1(B)21. The elec-
trons were treated entirely as classical, charged particles
hard-wall potential. A realistic amount of impurity scatterin
was taken into account by changing the direction of mot
randomly after an exponentially distributed random dista
e
,

e
-

ec-
-
n

h

ro

ly.

-
t

e
f

a

n
e

of travel ~for further details, see Linkeet al.8!. From a com-
parison of the measured and the simulated data in Fig. 1
apparent that the simulation reproduces the overall beha
of the experimental data, including some fine structures w
the exception of the statistical noise. In particular, the po
tions of the major resistance maxima that can be relate
the simple reflected electron trajectories indicated in Fig
are reproduced in the simulation. Only the position of t
maximum aroundB/Bc55 appears to be somewhat shifte
towards lower fields relative to the measured value.

The semiclassical interpretation of the magnetoresista
given in Sec. II and in Ref. 8 emphasizes a small numbe
specific electron trajectories~Fig. 1!. In a more complete
description, the magnetoresistance and the conductance
tuations should be viewed as the result of a superpositio
all possible electron trajectories inside the billiard. In ord
to visualize this situation, we have simulated a large num
of electron trajectories with different initial conditions. In a
approach similar to that described above, the classical tra
tories of over 5000 electrons, starting at the Fermi veloc
from one contact opening, were traced inside the billia
until the electrons escaped. The initial angle was cosine
tributed between690° and the starting point was even
distributed within the opening. No impurity scattering
electron-electron interaction was taken into account. T
longest electron trajectories, about 10% of the total numb
were neglected. This was done because long trajecto
make a disproportionally large contribution to the classi
density of trajectories, while they are in reality unimporta
because they are randomized by impurity scattering.

Figure 3 shows a superposition of the trajectories of
electrons entering and leaving the billiard through the s

FIG. 3. Superpositions of the trajectories of 5000 electrons
jected through the side opening at the magnetic fields indica
Only the trajectories of electrons reflected by the billiard are p
ted. The white lines are the trajectories of electrons injected al
the symmetry axis. AtB50 these electrons are transmitted. A
B/Bc51 andB/Bc53, where many electrons follow orbits simila
to the ones indicated, the probability of reflection is high and
magnetoresistance reaches a maximum. The reflecting trajecto
B52Bc is unstable and only few electrons follow this or simil
trajectories; no maximum of the resistance is observed at this v
of the magnetic field.
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57 12 309CLASSICAL AND QUANTUM DYNAMICS OF ELECTRONS . . .
opening. Trajectories of transmitted electrons are not
cluded. This plot can be viewed as the classical partic
density distribution of thereflectedelectrons. Figures 3~a!–
3~d! are for B/Bc50, 1, 2, and 3, respectively. The whit
lines are the ideal trajectories of electrons injected along
symmetry axis of the triangle. AtB50, electrons injected in
the forward direction are transmitted, in agreement with
resistance minimum observed at this field. AtB/Bc51 and
at B/Bc53, a significant number of electrons follows r
flected trajectories, which are similar to the white lines, s
porting the interpretation of the peaks in the magnetore
tance~Fig. 1!. In contrast, atB/Bc52, where no maximum
of the resistance is observed, the white line is not a repre
tative electron trajectory. Instead the particle density
smeared out over a large portion of the area of the trian
and no simple trajectories can be found. The reason is
the Lyapunov exponent averaged over all injection angle
B/Bc52 is relatively large, and the white trajectory in Fi
3~c! is comparably unstable.8

Also, the semiclassical interpretation of the Aharano
Bohm-like periodic conductance fluctuations experimenta
observed at aboutB.Bc ~Fig. 2! is supported by Fig. 3. The
fluctuation frequency was found to correspond to the a
enclosed by the trajectory of electrons injected through
base contact along the symmetry axis atB5Bc . In fact, a
significant number of the reflected electrons follows traj
tories that enclose approximately the same area@Fig. 3~b!#.
Also, at B50, a fraction of the electrons injected follows
similar trajectory, but not at the higher fields. This finding
in agreement with our quantum-mechanical calculations
the transmission that predict quasiperiodic oscillations of
frequency atB&Bc .

So far in the discussion of the classical electron trajec
ries we have considered exclusively reflected electron or
that start from the side opening. The success of this selec
model may appear surprising because one could expect
all possible trajectories, including transmitted ones, need
be considered for a complete understanding. However, a
will show in the following, the classical magnetoresistan
of a general two-terminal billiard is entirely described
considering either only transmitted or only reflected elect
trajectories starting from only one of the openings. This
due to two factors: First, because of time reversal symme
any arbitary electron trajectory that connects the two le
can be followed in either direction, provided that the ma
netic field is reversed simultaneously with the electron m
tion. Therefore, equally many classical initial conditions le
to the transmission of electrons starting at either of the
contacts, and the probabilities for transmission are eq
Ti , j (1B)5Tj ,i(2B) . Second, the probabilities for reflec
tion are related to the probabilities for transmission byRi ,i
5(12Tj ,i) , and therefore,

@12R1,1~1B!#5T2,1~1B!5T1,2~2B!5@12R2,2~2B!#.
~4!

Consequently, one of the four parameters contains the in
mation on the other three. However, it should be noted
only the transmitting trajectories are the same for either
rection of the current, while the reflecting trajectories a
topographically different if the billiard does not have a sy
metry axis perpendicular to the direction of the current. T
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is illustrated in Fig. 4 in which~a! and ~b! show superposi-
tions of transmitted electron orbits atB/Bc53, starting at
either opening. In fact, the resulting particle density plots
strikingly similar. In contrast, the corresponding plots of r
flected electron trajectories do not show similarities beca
our triangular billiard lacks a symmetry axis perpendicular
the current direction@~c! and ~d! in Fig. 4#.

Although the above discussion shows that it is forma
sufficient to consider only the reflected trajectories start
from the side contact, it remains puzzling that we were
able to find a similarly descriptive explanation for the ma
netoresistance when considering any of the other three
of trajectories.

B. Wave-mechanical picture

The basic picture of electrons injected into classical t
jectories in the triangular cavity is evidently a strong one.
attractive aspect is that the underlying physics becomes
transparent and easy to handle, conceptually as well as c
putationally. Gross features, such as the location of the m
maxima and minima in the magnetoresistance, are predi
with considerable success. The reason is that the cavity i
large that the wave nature of the electrons appears to b
less importance. Hence, arguments based on classical
ticle dynamics and ‘‘ray optics’’ are valid. On the othe
hand, the observation of conductance fluctuations in the l
temperature magnetoresistance~Fig. 2! shows that the wave
mechanical nature of the electrons cannot be ignored a
gether. We may say that we are in the border area betw
quantum mechanics and the classical world.

To gain an insight into how quantum and classical m
chanics meet in our particular problem we have supp
mented the classical simulations with a fully quantu
mechanical evaluation of the magnetotransport. In

FIG. 4. Superpositions of electron trajectories, starting atB5
13Bc from the side opening@~a! and~c!#, and from the tip opening
at B523Bc @~b! and ~d!#, respectively. The arrows indicate th
direction of injection. The upper two figures show the transmit
orbits only, while the lower show the reflected orbits. Because
time-reversal symmetry, the transmitting trajectories are identica
the two cases, while the reflected orbits are different.
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12 310 57L. CHRISTENSSONet al.
quantum-mechanical case the motion in the leads is qu
tized. The number of open modes or channels~occupied
transverse states in the leads! depends on the dimensions
the leads, the magnetic field applied, and the position of
Fermi energy. To evaluate the conductance we have use
Landauer-Bu¨ttiker formalism, which relates the magnetoco
ductance of the device to its scattering characteristics as
lined above.

We have calculated the transmission matrixt on the basis
of a hybrid, recursive Green’s-function technique, which h
proved to be numerically efficient for calculating quantu
transport in large open cavities.18 To simulate inelastic scat
tering effects within the cavity we have included a wea
imaginary optical potential of the approximate form; i\/t,
where the chosen inelastic lifetimet 530 ps agreed in mag
nitude with experimental values recently published.19-22 This
results in a general smoothing of the calculated conducta
G, in practice resembling closely the effects of therm
broadening at finite temperatures. The inclusion of lifetim
broadening is also convenient from a calculational point
view because the number of data points required to m
reliable plots ofG is drastically reduced.~On the other hand
there is a price to be paid for this convenience. When in
ducing lifetime broadening in this simple phenomenologi
way one breaks the symmetry with respect to a reversa
the field. Here the lifetime broadening is chosen to be sm
of the same order as the thermal broadening, and for
reason we may simply ignore this complication.!

Figure 5 shows the magnetoresistance obtained from
Green’s-function approach for an open triangle with ha
walls. For computational reasons we have chosen the sid
the triangle smaller than the real device, i.e., 1mm instead of
3.6 mm. The width of the two leads is chosen as 0.1mm.

FIG. 5. Quantum-mechanical magnetoresistance~in arbitrary
units! as obtained from the Green’s-function calculations for
open, equilateral triangle with hard walls. The side of the triangl
1 mm and the width of the two~infinitely long! leads is 0.1mm.
With the electron densityns52.531015 m22 (EF59 meV! there
are three open channels. The inset shows the Fourier trans
~F.T.! of the data in the main figure in the range 0,B,1.5Bc .
Prior to the Fourier transformation the data were inverted such
the magnetoconductance was obtained. The arrow indicates th
riodicity related to an undistorted electron orbit~semiclassical peri-
odic orbit theory!.
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With an electron densityns52.531015 m22, and corre-
spondingly,EF.9 meV, this leaves three channels open.
above, the results are plotted againstBc to emphasize genera
qualitative features and to faciliate comparisons with m
surements. In the present case,Bc50.166 T, about three
times larger than for the experimental case because of
difference in size between the experimental and theoret
samples. The overall features of the theoretical results
obviously in good agreement with the measurements.
maximum at aboutB/Bc55 is in closer agreement with th
classical simulation than with the measured results, wh
indicates that the geometry of the experimental sample m
not be perfect.8 The experimentally observed low
temperature fluctuations are now reproduced in a qualita
way and can be traced to wave-mechanical interference
standing wave effects.

One may discuss the conductance fluctuations in the
lowing, somewhat simplistic way by assuming that they a
essentially related to the density of states or shell structur
the nominally isolated billiard. Using for the moment th
convenient semiclassical theory for this purpose, o
finds6,23 that the first isolated orbit in an equilateral triang
in zero magnetic field, indicated in the inset of Fig. 5@and
which is also visible among the trajectories in Fig. 3~a!#,
gives rise to a modulation cos@f/(\/e)# of the density of
states. Heref5BA is the magnetic flux through the areaA
5A3a2/16.0.11a2 enclosed by the periodic triangular orbi
undistorted by the magnetic field. The position of the arr
in the inset of Fig. 5, in which the Fourier transformation
the calculated magnetoconductance~i.e., of the inverted re-
sistance data! is displayed, derives from these arguments a
is clearly in good agreement with a single dominant f
quency. One rough way of looking at the oscillations
therefore the following one. They would occur simply b
cause the perpendicular magnetic field induces a diamagn
shift of the shells associated with the triangular isolated o
~Fig. 5, inset!. This would lead to a gradual magnetic d
population of the shells and result in a periodic modulat
of the density of states at the Fermi level and, hence,
conductance on increasing magnetic field. Although this
qualitatively appealing picture, it appears that we are facin
quantitative problem when the numerical values of theor
cal and experimental periodicities are compared. O
quantum-mechanical simulation as presented in Fig. 5
pears to favor undistorted trajectories, while the measu
ments are consistent with trajectories distorted by the m
netic field, as indicated in Fig. 1. This discrepancy appear
be an interesting one from a conceptual point of view. In
case of the experimental data in Sec. II the semiclass
periodic orbit theory is applied to a large cavity (a53.6
mm!. In the theoretical modeling the side of the triangle w
chosen much smaller for computational convenience (a51
mm!. Undoubtedly the distorted orbit is intuitively more ap
pealing on classical grounds. One may therefore ask the
evant question whether the size of the cavity matters. Doe
have to be a certain size before semiclassical arguments
ply? To answer this question, we performed a number
simulations fora ranging from;0.5 to;2 mm. The answer
is not clearcut. In fact, it turns out to be quite difficult t
formulate a strict and consistent picture. With some go
will, however, we may argue that the distorted orbits eme
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from the quantum-mechanical modeling when the cavity
large enough, i.e., when it becomes truly semiclassical.

A complication arising from the periodic orbit theory i
the present context is that it refers to the properties of
isolated billiard. In a more complete quantum description
magnetotransport the situation is more complex than ju
density-of-states effect and a gradual depopulation of sh
In fact, the leads have an important role for the magnetoc
ductance, and the scattering states inside the billiard m
actually be viewed as a linear combination of the eigenst
of the nominally isolated billiard.11,12 The mixing occurs for
states with energies in the close vicinity ofEF and the par-
ticular values of the mixing coefficients depend on the ch
acteristics of the leads. For the triangular billiard, this is
lustrated in Fig. 6~a! where the magnetoconductanceG(B)
calculated quantum mechanically is shown for two differe
lead configurations, as indicated. Clearly, the overall beh
ior of the magnetoconductance is changed significantly w
the lead at the side of the triangle is moved away from
symmetry axis. Classically, this behavior is expected beca
the trajectories that contribute to electron transport are
tirely different when the point of injection is changed. Co
cerning the conductance fluctuations, however, one could
pect less dramatic changes, because the scattering s
inside the billiard, through which the electrons have to tu
nel, are defined by the overall geometry of the billiard a
should not be too different in the two cases. In fact,
Fourier transformations of the conductance data@Fig. 6~b!#
show that the frequencies of the conductance fluctuations
almost exactly the same for both lead configurations, wh

FIG. 6. ~a! Quantum-mechanically calculated magnetocond
tance and~b! the Fourier transformations for triangles with tw
different lead configurations, as indicated in the insets. The par
eters used for the calculations are the same as were used for the
displayed in Fig. 5. The solid lines refer to the symmetric triang
while the dashed lines refer to the unsymmetric structure. The c
tributing frequencies are the same in both cases, while their rela
strength is different. This illustrates the importance of the lead c
figurations for the mixing of eigenstates.
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the relative strength of the frequencies, i.e., the mixing of
billiard eigenstates, is different for different lead positions

As the magnetic field is swept there is a rich variation
the linear combinations of states inside the billiard. If the
exists any similarity with the classical picture it should
revealed in visualizations of the quantum-mechanical pr
ability distributions of the density and the velocity. The fo
lowing results are based on a particular scattering stat
which the initial, incoming state is constructed as a symm
ric linear combination of all incoming modes. Figure
shows the density and velocity distributions for the fo
casesB/Bc50, 1, 2, and 3~left and center column, respec
tively!, together with plots of the classical trajectories
electrons injected into the billiard through the side open
~right column!. In contrast to Fig. 3, the classical plots di
played in this figure contain the transmittedand the reflected
trajectories, giving the complete classical density distrib
tion. It appears that at zero field, the quantum-mechan
density and velocity distributions are actually almost mo
collimated than the corresponding collection of classical t
jectories. There is a faint trace of scarring in the quantu
mechanical distribution that resembles a classical path c
necting the two leads. This striking picture is, howev
somewhat fortuitous because the spatial distributions are
sitive to small changes in Fermi energy, direction of curre
etc. The same is true for the caseB/Bc51. In this case, one
observes a spreading of the density distribution, which
consistent with the classical distribution in a rough way, b
at the same time there are no signs of the kind of scar
one would expect intuitively from the skipping orbit ind
cated in Fig. 3~b!.

The situation is changed at higher fields, where the e
tron wave function becomes increasingly localized. The h
observed forB/Bc52 has obvious similarities with the clas
sical case. ForB/Bc53, finally, skipping orbits emerge
clearly in accordance with the classical case, and
quantum-mechanical and the classical density distributi
are similar. To summarize the four cases, we find, in agr
ment with earlier findings,11 that there is little resemblanc
between the quantum-mechanical and classical distribut
at low fields. At higher fields, on the other hand, we find th
the similarity becomes quite striking.

When the magnetic field is increased even further, e
states are fully developed. Figure 8 shows the spatial pr
ability distributions forB/Bc55 and for reversed field and
current~voltage!. One can clearly distinguish the collectiv
excitation of several edge states extending over the en
edge region. The overall features are independent of di
tion of field and current, although fine details are depend
on these. In this sense the results appear to be in qualita
agreement with the classical simulations of different curr
directions in Fig. 3.

IV. SUMMARY

We have compared a classical and a quantum-mecha
approach to the analysis of the experimentally obser
magnetoresistance of triangular electron billiards. In our d
cussions we have focused on the question to what ex
~semi!classical dynamics can be used to model elect
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FIG. 7. Left-hand and center columns
Quantum-mechanical probability distribution
for density and velocity, respectively, at dif
ferent fields, obtained from Green’s-functio
calculations. Broadening due to inelastic e
fects is not included in these graphs. Th
right-hand column shows the classic
particle-density distributions for electrons in
jected through the side contact at the sam
magnetic fields.
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FIG. 8. Quantum-mechanical probability distributions for t
particle density~top figures! and for the velocity~bottom figures! as
obtained from Green’s-function calculations withB.5Bc . The fig-
ures on the left are for reversed fields and currents as compar
the figures on the right. As in the previous figure, broadening du
inelastic scattering is not included.
transport, in comparison to a full quantum-mechanical tre
ment.

The classically simulated magnetoresistance was foun
agree with the measured data in great detail, in particula
temperatures at which quantum interference effects are
sent. The simple electron trajectories that were previou
found to be of great importance for the magnetoresistan8

were shown to be indeed abundant in plots of all poss
electron trajectories at different magnetic fields. The f
quency of quasiperiodic conductance fluctuations, exp
mentally observed at lower temperatures, were found to c
respond to the area of the simplest reflected elect
trajectory in the billiard. In conclusion, the~semi!classical
model provides a consistent and complete understandin
the main features that were observed in the relatively la
experimental sample.

The magnetoresistance calculated quantum mechanic
reproduced the~classical! gross features of the experiment
data as well as the existence of conductance fluctuation
the experimentally observed frequency range. These fluc
tions can be understood as being due to changes in the t
mission probability for electrons through the billiard, as t
density of states is shifted diamagnetically. The density
states in the real billiard may be thought of as being
result of the mixing of eigenstates of the closed billiar
which in turn was shown to depend on the detailed posit
of the leads. Consequently, the results based on real sam
can only within certain limits be related to the density
states of the ideal geometry.
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A conceptual problem remaining concerns the detailed
lation of classical electron trajectories and conductance fl
tuations. While our experimental results and the semicla
cal, periodic orbit theory suggest that the periodic orb
distorted by the magnetic field, should be considered in or
to explain the frequency of the fluctuations, the results fr
our quantum-mechanical calculations were not conclusive
would be interesting to investigate the role of the size of
billiard in this context in more detail.

The interplay between the classical and the quantu
mechanical picture of electron dynamics was further stud
by comparing classically and quantum-mechanically cal
lated particle-density distributions inside the billiard. At lo
magnetic fields, little resemblance between the two w
found, which makes the success of the classical mode
transport remarkable. At high fields, however, almost ide
cal images of the particle density are obtained with the t
techniques. It would be exciting to bridge the two a
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proaches by adding a phase to the classical trajectories.
would also have the advantage that wave effects could
studied also in large samples, in which full quantum
mechanical calculations are numerically complicated a
computationally as yet too demanding.
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