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Non-Abelian geometric phases and conductance of spiholes
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Angular momentum)= 3 holes in semiconductor heterostructures are shown to accumulate non-Abelian
geometric phases as a consequence of their motion. We provide a general framework for analyzing such a
system and compute conductance oscillations for a simple ring geometry. We also analyze a figure-eight
geometry that captures intrinsically non-Abelian interference eff¢8&163-182¢08)13519-]

I. INTRODUCTION In this paper we consider an alternative setting for an
observation of the non-Abelian geometric phase. We study
A nondegenerate quantum state undergoing adiabatic evangular momenturd-holes confined to conducting loops em-
lution accumulates both a dynamical as well as a geometribedded in a two-dimensional hole gas of a heterostructure. A
(Berry’s) phase-? The geometric phase is responsible for ahole’s momentunp [or coordinates(t) in a ring] acts as an
wide array of interference phenomena, and has been measiabatically changing quantization axis for its angular mo-
sured in opticS, with neutral beam$, and by magnetic mentumJ. For motion around a ring, however, this amounts
resonancé® Most theoretical and experimental work has fo- to a rotation about only one axis. To exhibit the non-Abelian
cussed on the adiabatic evolution of nondegenerate eigeeffects lurking here, we propose to effectively place the sys-
states, where the geometric phase may be interpreted as ariem in a rotating frame by imposing a static magnetic field
ing from aU(1) gauge potential. The canonical example isin the plane of the rind? Intrinsically non-Abelian interfer-
that of a spin in a constant amplitude magnetic fiBid) ence effects are measurable in the conductance oscillations
=Bn whose directiom varies in a closed path over the unit of the figure-eight device discussed bel¢see Fig. 2 An-
spheret The phase is determined by the solid angle subother notable feature is that unlike the case studied in Refs. 8
and 11, both hole doublets manifest a non-Abelian ho-
lonomy.
d The coupling ofp to J, which arises naturally within a
k- p treatment of conduction electron and valence hole states,
is analogous to the spin-orbit interaction. It is qualitatively
different, however, from the spin-orbit splitting of electron
states>! For electrons in zinc-blende crystals, the spin
_ , i states are split because of the inversion asymmetry, which in
U="Pexg —I é A'dA, (D & quantum well or heterostructure leads to a linear coupling
between spin and momenturhanother source of linear cou-
pling is the asymmetry of the quantum well or heterojunction
itself.® The electron’s momentum then acts as an in-plane
component of the magnetic field, and as the electron moves
around a ring its spin quantization axis traverses the unit
'sphere at a colatitud9=tan‘l(HZ/Ap(ﬁ), whereH, is the

tended byn in the course of its evolution.

In certain high-symmetry situations, an entirdold de-
generate set of levels may adiabatically evolve. Wilczek an
Zed showed that in such cases th€1) geometric phase
generalizes to & (n) matrix,

where A, ;= —i(a|d/d\;|B) is the gauge potential matrix
(la), | B) are adiabatic eigenstaje$\(t)} is a set of slowly
evolving parameters, an® is the path ordering operator.
Such a system may exhibit non-Abelian effects in which
€.g., one member of a multiplet evolves into another upon, qica magnetic fieldoriented perpendicular to the plane
cqmpletlon of a cy_clg n parameter space. One example f the ring, p, is the azimuthal component of the electron’s
this phenomenon_ is in crystalline nuclear qua(_:irup_ole reSO 0mentum, and\ is a coupling constarif, (The Abelian
nalnce (NQR)’ since .the qua_drupole Hamlltonla_\r‘i-(_ geometric phase due to an effective momentum-dependent
=32Qylil; is quadratic in the spin. When the electric-field g predicted in Ref. 17 has recently been experimentally
gradient tensor has cyllndrlAcaI symmetr}/, the Hamiltoniangpcarved in Ref. 18 Although the spin-orbit coupling is by
can be taken to bé{=%wg(n-1)? wheren lies in the di- nature a relativistic effect, it is effectively enhanced in a
rection of the principal axis oR;; . The non-Abelian gauge crystalline environment, and the fictitious in-plane compo-
structure for this problem was discussed in Refs. 810 anglent of the field can be of considerable magnittitie)-
measured in theé =3 nucleus **Cl by Zwanziger, Koenig, though the splitting off and | states is still much less than
and Pineg?! Paths in whichn rotates about more than one the kinetic energy of the electrons.

axis are essential if intrinsically non-Abelian aspects are to This situation is quite different for holes in group IV or
be captured. I1I-V semiconductors, which are characterized by x4
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matrix Luttinger Hamiltonian, acting on states in thg rep- . d _
resentation of double groups @f, or Op,.2*14?°The effec- Ap(P)=—i{a(t)] @Ug(t)% 5

tive Hamiltonian for bulk holes contains a ternp-()?,

which distinguishes between lightd3=+3) and heavy-
(J%=+13) hole branches. This term is large and is present iréigenstates ofi,, expressed in eigenstates 3f, form two
bulk centrosymmetric materials. In contrast to the elemrorbegenerate bloc,k&)(= +): ’

case, characterized by the effective magnetic field, the hole
Hamiltonian is thus characterized by the effective quadru-

pole tensor field. This leads to non-Abelian effects, which

can be probed in the conductance of the double loop device,
discussed below.

where|a(t))=V'|a) is an adiabatic eigenstate @f. The

[Lo)=ug|=3)+v,|+3),
20)=ug|+3)+v,|=2),

E,=3(K+E)+oJK?+E?—KE, (6)

with u, =v_=cos;9, v,=—u_=sin}d¥, and where taft
= J3K/(2E —K). The 4x4 gauge potential matrid, is

1. HAMILTONIAN AND ITS GAUGE STRUCTURE

The effective Hamiltonian for the valence band is written
in terms of a spirg operatorJ and the crystal momentum
.14,21

p:t block diagonal in this basis with>22 subblocks
H=—(A+5B)p*+B(p-J)? 2 + a b
' Ac(d)=| . _|
whereA (B) is given by :42(m;,t+m1), in terms of the
light hole and heavy hole masses. For simplicity, in this )
work we take the Hamiltonian for bulk holes in the spherical a=(z=*cosd), (7)

approximation; we also neglect all terms in the Hamiltonian
that arise due to the absence of inversion symmetry. Con-
sider now a geometry in which holes are confined to a ring
lying within the plane perpendicular to tlik(OOl) axis. The
radial coordinater is constrained to lie betweeR and R This gauge potential determines the adiabatic evolution of
+a, with a<R and the coordinate is also confined. Then Wave functions of holes. Finally, tHe(2) phase accrued by
the spin-dependent part of the effective Hamiltonian reads @ state evolving according to the Hamiltoniaft-H' is

)
valid to ordera/R, with (p?)~ 7?%2/a?, and(pZ) depending

3Q ) Q )
b= \/:— sin e '~ 3— (1% cost)e*'?.
2w w

Her=(P2)BI+3(p7)B(I 77! +I7e'")?, Uty to) =eehe ™ P10 A LW, (1, o) A e 0%,

on the confining potential. We now treat tlemotion semi-
classically and letp(t) be a prescribed function of time, with
d¢/dt=w for motion around a ring? The spin Hamiltonian
becomesH=K(n-J)2+ EJZ, whereK =B(p?), E=B(p?),
and n=xcosp(t)+ysing(t) is the time-varying principle

K
Ww(<751,¢o)=7>exp(—ILS d¢Aw(¢)), )
0
where A 4 transforms from the)* eigenbasis to the basis of
Eqg. (6), kg is the Fermi momentum of the holek, is the
distance traveled, and where the path ordering operator

quadrupole axis for our problem. Now this quadrupole fieldplaces earlietimesto the right. Adiabaticity is satisfied pro-
rotates about only one axis, and in order to extract nonvided w,Q)<< JKZ+EZ-KE.

Abelian effects from this setting, we must effectively intro-
duce another axis of rotation by applying emplane mag-

netic field H=H,x, which adds a ternH’ = —gugH,Jy/%

to the Hamiltonian. Note that there is no perpendicular com-

IIl. CONDUCTANCE OSCILLATIONS IN A LOOP

We next consider the ballistic transport of holes in the

ponent, hence no orbital effects of the magnetic field. We/PPer (= +) doublet through a ring confined to the two-

then eliminateH, by shifting to a rotating basis via the gauge

transformation | ¢) = exp(—iQtJ /A)[). In this basis, the
Hamiltonian becomes

H=V"HV(1),
V(t)=exdi¢(t)d, /5] exp(iQtd, /%),

Ho=KJI2+EJ2, (4)

with Q=gugHy/A. This Hamiltonian is similar to that ex-
plored in Refs. 6, 8 and 11 in the context &3 NQR,

although’,, in our case is anisotropic.

We next compute the non-Abelian gauge potential matrix

A p(t):

dimensional hole gas. High-mobility hole gases have been
investigated experimentally in Ref. 23. The mobility of
~10° cn?/V s in these samples makes ballistic transport in
such constrictions feasible. We assume that the ring is con-
nected to leads through two antipodally placegunctions,
each described by th® matrix2*

1 1
r —V1-r* —J1-r?
A
1 1 1
S= E\/ﬁz —E E y (9)
1 = 1 1
E -f 2 2
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g08F 1 go8fF E whereA,, is a two-component vector describing the incident
Boef 4 Bosf 3 flux of holes in the upper doublet. The real parametarsy
N 1 E..E 1 satisfyt?+u?+v?=1 and are assumed to be the same for
s f 1 & ¢ ] both states of the doublet~1 corresponds to weak cou-
Fozr 1 Foz2f - pling between the leads and the figure eight, &g=S, 4
o E 5 0 3 =0 means that there is negligible backscattering betvieen
0 5 10 15 0 4

andA and betweerB andF. The vertex at the center of the

figure eight is assumed to paBsto C and D to E with
FIG. 1. Transmission coefficients;; and Ty, as a function of ~ Negligible scattering into other channels, i.e., BBCB S

/o for a simple ring geometry. matrix corresponds to that of EL0) with t=1. This en-

. ] . o sures that holes that enter the figure eight through br&nch
wherer is the reflection amplitude for a wave incident from il execute aBDCE circuit before entering the lead or
the incoming lead, and where, for simplicity, we assume thaheing rescattered int®. Such a scattering matrix for the
Sis real and is diagonal in the basis of Bf). In Fig. 1 we g cp contact is realized when this contact is collimating,

plot the transmission probabiliti€B,, =T, ,—due to the ;o it conserves the momentum of holes. The conservation
non-Abelian geometric phase an incoming hole in stat

|1+) may be transformed with probabilif§,, to the state

) y ! tact holds if dimensions of the contact are larger than the
|2+>2' The conductan%e of the device is given &  \5yelength of holes, so that diffraction effects are sup-
= (e°/h) 2,5/ Ty, =(2€°/) T (since both degenerate lev- hrassed. Such contacts are technologically feasible and were
els are occupied in the incoming lgath our computations ¢t ,died in electron transpoffor a review, see Ref. 37Un-

we assumed that holes are confined to a plane thickness 10@; these conditions, we may write the relation betwBen

A, the Fermi energyfor holeg is 2 meV, the ring radius is andE as

1um, and the width of the ring and leads is 400 A. This
io;:)elgmoznds to a rotation frequenay=pgr/myR~4.84 I — Ty — T=T,+T,,

TheT,, are plotted fok-R=0.370(mod 7)—the quali- | et ;’:Zlir | g S e 10
tative results are roughly insensitive to this parameter—as ¢_ 4 | 9 LoskE
function of O/w for two values of J at both weak ( e f 1 <
=0.10) and strongr(=0.85) coupling of leads to ring. With 2 %6 [ IRl 1
g=2.6 as in GaAs, we hav@/H,=2.28<x 102 Hz/T,soa %o04F ;‘ i 4 Zoaf y T ]
ratio of )/ w=4 corresponds to a field of 0.85 T. The reso- & ., [ ~ 1 &b~ I ]
nances arise due to interference effects both Abelian ant ST W T - i "
non-Abelian in origin—the intrinsically non-Abelian effects T T T s T o % T
manifested irl ;, are not possible to isolate in this geometry. Q/w 0/
IV. FIGURE-EIGHT DEVICE | R IR et SRR A
The device depicted in Fig. 2 probes non-Abelian inter- § ®® F 3 5°°F E
ference effects. Holes incident from leAdmay scatter into & 0.6 | 4 fosf 3
branchB of the figure eight or else continue on to leRd g o b 3 é oa b
Neglecting the effect of the magnetic field on the contactsg | ] s !
themselves, we assume a time-reversal invariaet, sym- - %2 F 1 Foz2fp
metric) S matrix for the ABEF vertex of the form® 0 Bl e Loy s o B B LoV
0 2 4 6 8 10 0 1 2 3 4
Agut u v 0 t A, Q/w 0/w
Bout v —u t 0 Bin FIG. 3. Transport through the figure eight. The parameters of
E = 0 t U —v E |’ (10 Eq. (10) are related ton by t=cosy, u=uv=1/y2siny. kel
out " =0.197modmr in all cases, where =Lg+Lc+Lp+ L is the dis-
Fout t 0 -v —u/l\Fj tance traveled in the figure eight.
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Ei,=e'kF*W,(0,— m)W_ (— ,7)W,,(7,0)Boyt, tion of magnetic field. These oscillations are a non-Abelian
(11) effect, because the path executed by the holes corresponds to
Eoqu=e “F'W_ _(0,mW, (7, — m)W_ (— m,0)B,,. a zero net solid angle subtended by the effective quadrupole

field,2® meaning that Abelian effects are canceled.

This result, in conjunction with Eq.10), determines the We note that the interaction of holes moving in constric-
ballistic conductance of the figure-eight device. It is easy tdions with localized holes or nuclei via spin-spin interactions
see that wherf)=0 (no in-plane fielg, the gauge potential leads to possibilities of observing non-Abelian phases in
A, is diagonal and there are no non-Abelian effects—theuclear-(spin- resonance experiments. Yet another option is

guadrupole field rotates only about theaxis. This reduces © study optical transitions of constricted holes.
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