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Anharmonic decay of confined optical phonons in quantum dots
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Due to the anharmonicity of lattice forces, the lifetime of confined optical phonons in semiconductor
guantum dots is studied by considering the typical channel of decay into two bulk acoustic phonons. The model
in which the three-phonon coupling strength is expressed in terms of theeiSem constant enables us to
obtain a compact expression for the lifetime from standard perturbation theory. The lifetime is shown to be
weakly size dependent, which increases with decreasing dot size. For GaAs quantum dots, the results are found
to be completely consistent with other theoretical approaches and experimental data in bulk GaAs. Further-
more, we present a brief discussion for the carrier relaxation in quantum dots. Due to the decay of the confined
phonons, we find that the carrier relaxation time can be as short as tens of picoseconds in a wide energy
detuning of tens of meV; thus the so-called phonon-bottleneck effect is not a serious problem in quantum-dot-
based device applicationsS0163-18208)08919-X

[. INTRODUCTION expression is simplified further and the final result can be
carried out easily. As an example of application we consider
It is well known that lattice anharmonicities influence the GaAs quantum dot. The analysis of the lifetime of the
greatly such properties as carrier-lattice thermalization, therzero-angular-momentum mode shows that the lifetime of the
mal expansion and conductivity, velocity of sound, and Ra-confined mode is weakly size dependent, increases with de-
man and neutron scatteriig.The anharmonicity force, typi- creasing dot size, and approaches a constant VaTe5 ps
cally expanded to the cubic term, causes the decay of aat zero temperatufefter the dot radius is larger than 5 nm.
optical phonon into two acoustic phonons and consequentljfo compare with the available measured data in bulk GaAs
a finite lifetime of the optical phonon. Because of the domi-(7 ps at 77 K and 3.5 ps at 300) Kve consider a dot with a
nant role of electron optical-phonon coupling in polar semi-radius of 8 nm to study the temperature dependence of the
conductors, detailed knowledge of the optical-phonon decalifetime. The obtained results are in excellent agreement with
is of particular importance in the understanding of the carriethe experimental data and completely consistent with the the-
dynamics. Furthermore, the finite lifetime of optical phononsoretical results in Ref. 4.
determines directly the linewidth of the optical spectrum of There is growing activity in the search for energy relax-
the defects, the infrared absorption, and the Raman scattestion mechanisms in quantum dots, where the discrete nature
ing. For these reasons, in bulk semiconductors the latticef energy levels implies a strongly reduced energy relaxation
anharmonic effects have been studied extensively for a longnless the level separation equals the LO-phonon energy,
time; see Refs. 1 and 2 and references quoted therein; favhich is the so-called phonon bottleneck probfEn? How-
more recent papers see, for example, Refs. 3—-5. Howeveeyer, to date, this bottleneck effect is very unlikely in experi-
much less attention has been given to semiconductor micranents. Recently, a mechanism based on multiphonon emis-
structures, although it has been demonstrated that in the cosion has been proposed both theoretically and
text of semiconductor lasers the optical-phonon emissiomxperimentally®>~1” More interestingly, in Ref. 18, a prob-
alone does not dominate determinatively the carrier energlem of the simple use of Fermi’s golden rule for the analysis
relaxation rates since the subsequent optical-phonon decawas pointed out and it was shown that the carrier energy
events influence the overall relaxation procgSs. relaxation rate can be larger than'467* in a wide energy
In this paper, applying a phenomenological approach derange of tens of meV by using the coupled mode equation
veloped by Klemens,in which the various anharmonic con- derived from the time-dependent Sctinger equation and
tributions were replaced with a single parameter, i.e., théhus the phonon bottleneck is not a serious problem in device
Grineisen constant, which characterizes the average of thapplication. In that calculation, a phonon lifetime of 2.5 ps is
third-order elastic constants, we study the lifetime of theused, which is the present theoretical result at a temperature
confined optical phonons in quantum dots due to the decagf 300 K. In this paper we present a more straightforward
into two bulk acoustic phonons. The same approach has beemderstanding of this issue, on the basis of a simplified two-
used to study the lifetime of the imperfection-induced local-level picture. We conclude that, due to the decay of the con-
ized phonor$and the optical phonons in bulk syste?g. fined optical phonons, as well as the enhanced electron-
We will derive an expression that can be conveniently apphonon coupling strength in quantum dots, the carrier
plied to practical calculations for the decay rates of optical+elaxation time can be as short as tens of picoseconds in a
phonon modes confined in spherical quantum dots, where thgide energy detuning of tens of meV; thus the well-known
spatial overlap integral of the three coupled phonons is simtheoretical prediction of the phonon bottleneck effect is quite
plified greatly. For the zero-angular-momentum modes, thguestionable, even considering only the phonon mechanism.
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Il. FORMALISM potential instead of the mechanical potential is applied. The

I I . discontinuity of the mechanical potential implies that the
To calculate the lifetime, the vibration function of th.e slightly tangential slide of the two materials at the interface

) ) s allowed, which is in fact an intrinsic feature of the hydro-
based on the macroscopic hydrodynaii®) approach. To dynamic approach.

e o, o e Somes o oo TO anaize i spersion eaon of the phonons te
component of vibratiﬁg veiocity the HD pressure, the elec—cry.Stal. potential is gxpanded_ on!y to the quadratic term,
tric potential, and the normal co}nponent of eIectri(’: displaceyvhICh 's the harmonic approximation. Howeyer, o describe

’ ) : ; the decay of phonons, the cubic and other higher-order terms
ment vector, we included an interface polarit®R) compo-

. ). oo known as the anharmonic terms in the crystal potential
Ciekz)?;tlir:)r??:?)l;trllonog)e::: bv% \QP;?LOIQ'toF?r:t?g(;tégihl‘eonfengh:iils_hould be taken into account. It is widely accepted that the
P ' cubic anharmonic term will dominate the phonon decay and

cal the”tigL@ a2r1gG, respectively, which satisfy ;he WavVe thus the matrix element of the perturbation Hamiltonian due
equationV<®+k“®=0 and the Laplace equatidn"G=0,  to the three-phonon interaction has the férm
where k? is defined by the dispersion relation?= w?

—v%k?, with o the limiting LO frequency and the sound 73 | c(w,0", oIk K")|?
velocity. The vibrating displacement fieldis related to the HL[?=|= 22 T,
mechanical potential by MM3V ww @
U=AV[®+BG]=AV®, (1) (N+DN'N" @
. N(N'+1)(N"+1)
whereA andB are two constants determined by the bound-
ary conditions and the amplitude normalization. whereN, N’, andN” are the Bose occupation numbers of

First we normalize the amplitudes of the confined modeghe confined mode and the bulk acoustic phonons, with fre-
in quantum dots. From the virial theorem we know the ki-quenciesw, ', and »” respectively; the upper line of the
netic energy matrix describes the decay process of the confined mode into
the bulk acoustic phonons, whereas the lower line describes
the microscopic inverse process. Other quantities in(&Q.
are explained as follows. Since for LO phonons the decay
occurs mainly through the creation of two LA phonons, the

where Vj characterizes the innej€1) and the outer (" overlap integral of the three phonons with the polarization
=2) volume of the dotM is the cell atomic mas#; isthe  symmation can be treated as

cell volume, andw(E,) is the frequency(energy of the

mode. With the help of the vector-field-theory formula R 3y ik +K")-x

TVd3X[ pV2y+ V- Vip]=$sda sA-Vi, where S is a 1(k',k >—§ fd xe [Vo],, (5
closed surface surrounding the voluMendn is the normal

unit vector of the integral elements, the normalized con- Where the indexa characterizes the vibrating projection
stantA can be expressed as component of the confined modes. To estimate the three-

phonon coupling strength, two approaches can be classified:
E, r/z Ep @ the highly complex microscopic model with parameters that
= ) are very difficult to measure and the simple macroscopic
(M1SHMS+A ) Mo? model where various anharmonic contributions are replaced
where by a single parameter related to the averaged third-order
elastic constants. In this work we adopt the latter approach
for simplicity, in which the coefficientc(w,w’,0") is

Mjwz
2

1 E
- 3 2|p2_2P
bj?’ Jl/jd X(V®) }A 2 (2)

j=1.2

1/2

2

— 3y @2
Sk_b? Vld x @3, approximately
K2 3 2 ( ! //) 1 2M ’y ! n (6)
S =—— d3x ®3, C(w,0 ,0"')=—1 —— ww 0",
b bg A 2 V3 U
M-®.  Mad where vy is the Grineisen constant is the sound velocity,
A= fﬁ do u, %— # , andM is the cell atomic mass. Due to the strong confinement
z by b> of the optical modep and M are approximately the dot-

Here®, and®, are the dot-inside and -outside mechanicalinSide material values. In deriving E¢4) the normalized
potentials, which satisfy the wave equatioVid®,+k>®, amplitudes of the phonons have been used, ie,
—0 andV2d,— x20,=0, respectively, where- 2 is due  (A#/Mw)?>Vd  for the confined mode and
to the decay feature of the mode outside the dot. The radigti/M,w’) Y% K" * and (/M ,0") Y%~ k"X for the acoustic
component of the vibrating displacement at the the interfac@honons. Because of the relatively small size of the dot, the
is continuous, i.e.u,=(d,P4)|s=(4,®P,)|s . However, the normalization for the acoustic phonons can be regarded
mechanical potential$®, and®, can be different from each mainly over the outer material of the quantum dot.

other at the interface in the HD treatmefsiee Ref. 18 Following Fermi's golden rule, the transition rate is ob-
where the boundary condition of the continuity of the electrictained as
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2

=7

> |HL28(hw—fho' —hao'). (7) I(k’,k”):iqf d3x e 19X, (13
k,,k”

The lifetime of the confined phonons is related to both theVhere d=[d|=[k’+k’|. The specific function form ofb
rateT'* at which they decay into two acoustic phonons anddU€ to the spherical confinement

the ratel' ™ at which they are generated by the annihilation D) =F ()Y, (0 14

of two acoustic phonons. At thermal equilibrium, the de- (=1 Yin( 0, 6), a4
tailed balance principle require§™—TI'"~(N+1)N’N”  whereY,, is the spherical harmonics arig(r) is the radial
—N(N’+1)(N"+1)=0. We assume that the derivation part of the vibration potential, enables us to simplify further
from equilibrium is caused by the change of occupation ofthe integral of Eq(13). We expand the plane wave as

the confined phonons, i.eN— N+ 6N; hence we have

0 |

—ig-x— _ i\ *
[+ =~ — 6N(N'+N"+1). © € =Am2 s 2 (DN Y0, be) Yin(6,4),
Consequently, the lifetime can be defined as (15)
where @,¢) are the direction angles @f. Inserting Egs.
1 r —r- (14) and(15) into Eq. (13) and utilizing the property of the
T TSN (9 spherical harmonics, we obtain
h. h i ! = H
whieh gives (K" k") =4m(—i) 1qY|m(eq,¢q>f dr r3j,(gnfy(r).
1 27 #° lc(w, 0", 01K K")|2 (16)
s A M M2Vv2 T wo' o To carry out the integral of Eq11), we need the expressions
’ of g and ¢, in terms ofk” andk”. Let (6',¢') and (6", ¢")
X(N'"+N"+1)8(ho—tho' —ho"). (10 be the direction angles & andk”. It is easy to show that
After replacing the summation ov&f andk” by an integral q=[k'2+Kk"2+2k'k" cosI']"2, (17)

and integrating out thé function, we obtain wherel is the angle betweek’ andk”, which can be ob-

tained from cod'=cosé’ cosd'+sin @' sin 8’ cos@’ —¢").

4 1 J' d3k’ The angled, betweenq ande, is given simply by

3(2m)°

M

? ho ¥?
M,

Mv? v

1
r

cos 0= (k'cos9’ +K"8")/q. (18

Xf dQHk/Qwrwn“(kr’k//)|2(Nr+Nrr+ 1), (11) Combining Eq3(16)—(18), from Eq (11) we can calculate
straightforwardly the lifetime for arbitrarily confined optical
] . ) phonons in spherical quantum dots.
whered{)" is the solid angle ok™ and«” is related tow” by Considering the special case for modes with zero
o'to"=kvtk'v=0. _ o angular momentum,Yoo( 6y, ) =147 is a k'- and
Below we analyze the overlap integrdk’ k"), see EQ. . ingependent constant, which implies the integidf” in
(5. Agsaln, applying the vector-field-theory formula gq (11) being independent of the direction kf. Accord-
JvV i d>x=$s¢n do, we can reexpress the overlap inte-jqy for the |=0 modes, the lifetime formula has a more

gral as simplified form
~ ~ H ’ " 2 2
|(k/.k”)22 e, % do ne (k' +k )-X(q)l_(bz) E: i ﬂ f_wy_ jdeklk/Z
* * r |37\ M, Mv? v |Jo
+i(k!+k") | d3x e 1K FKDxp | 12 m
I )J X (12 xf dT sinTK"20’ o"q213(q) (N’ +N"+1),
0

As mentioned previously, the mechanical potential can be (19)

discontinuous at the interface within the hydrodynamic treat-

ment. However, this discontinuity is very small if the elec- wherelo(q)=dr r?jo(qr)fo(r), k= wp /v, andwp is the
tromagnetic properties of the two materials are not very dif-Debye frequency.

ferent since the electric potential is in fact continuous.

Furthermore, due to the approximately rigid confinement, lll. APPLICATION

which implies that both the electric potential and the me-

chanical potential are almost zero at the interface, the first Below we apply the above formalism to GaAs quantum
term on the right-hand side of E(L2) can be neglected. Let dots. In the numerical calculation we adopt the GaAs param-
us denoteg=k’ +k” and choose to be the reference direc- eters as the sound velocity=5.22x 10° cm/s, the zone-
tion for the projection of the vibrating amplitude of the con- center LO-phonon energyiw, =36 meV, and M=M;,
fined mode. Thus the summation for the polarization of the= pb®, where p=5.32 g/cni is the material density and
confined mode yields =5.65 A is the lattice constant. To compare with the avail-
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FIG. 2. Temperature dependence of the lifetime for a dot with

FIG. 1. Size dependence of the lifetime at zero temperataye: i e
radiusa=8 nm. The curves are the same as in Fig. 1.

the dispersion relatiofi21) is used;(b) the dispersionless phonon
energyfio=fiw =36 meV is applied to set a lower limit for the
lifetime. The solid(dashed curve is for then=1 (n=2) mode. follows. Sincel(q) is in fact the Fourier component of the
confined phonon potential, for a more localized mode, the
able measured result in bulk GaAs, we approximately takéourier q spectrum will extend to a wider range. On the
M,=M, and estimate the Debye wave numbey from  other hand, the final momentum summation of the two LA
(473)k3/(2m)%=1/b%, which gives kp=[27(3/47)*3]/  phonons is physically restricted to a finite range. Thus a
b. We take y=2 as a typical value of the Gmeisen longer lifetime is expected for a more localized mode. This
constant® As a specific example we consider the mode withsimple argument seems to be generally valid in the three-
zero angular momentuirn=0. In Ref. 19 we have shown that phonon interaction model, which leads us to the following
thel=0 mode is purely LO vibrational, being different from two conjecturesi(i) The lifetime of confined phonons in
the | £0 mode, which mixes an interface polariton compo-other microstructures may also be weakly size dependent,
nent into the bulklike LO vibration. Further, as a good ap-just like the behavior of the confined modes in quantum dots,
proximation to the realistic confinement, we assume a rigicand (i) for thel#0 mode in quantum dots, despite its more
boundary condition, which results in a simple function form complex functional form due to the mixture of an IP compo-

for thel =0 mode as nent, a size dependence similar to that of tked mode is
. expected. The detailed study of th& 0 mode is left to our

O~fy (1) sin(knr) 20 future work.
on Knr In Fig. 2, for a given size of dot with radiies=8 nm, we

) show the temperature dependence of the lifetime of the con-
wherek,=nm/a andn=1,2,3,... . Correspondingly, the pho- fineq mode with zero angular momentum, where the curves
non energy is given by are the same as in Fig. 1. We see that the results in Fig. 2 are

_ > 5 in excellent agreement with the measured dd@tps at 77 K
han=\(ho)*~ (ikw)?, @D and 35 ps at 300 Kin bulk GaAs, especially at low tem-
according to the dispersive model for LO vibrations. peratures. At room temperature, our calculated lifetié
Figure 1 shows the size dependence of the lifetime at zerpS is slightly shorter than the measured val@@&5 ps,
temperature, where the solid and dashed lines represent tMéich can be understood from the neglect of the temperature
results of then=1 and 2 modes, respectively. The slightly dependence of the three-phonon coupling constant, say, the
longer lifetime of then=2 mode is due to its weaker cou- Gruneisen constant. Note that in Ref. 4, where a more com-

pling to the two bulk LA phonons, which is manifested plex microscopic treatment was presented for bulk GaAs,
mathematically in the overlap integral in E@l9), i.e., better agreement with the measured data is obtained at room

||O'1(q)|2>||0'2(q)|2_ In F|g ]_(a) the dispersion re|ati0(21) temperature, but poorer agreement at low temperatures,
is used. This relation is reasonable at the |Ong-Wave|engtWhiCh is attributed to the overall use of the third-order elastic
limit. For ultrasmall quantum dots, which implies the break-constant estimated at 300 K. Therefore, if a temperature-
down of the long-wavelength approximation, we know fromdependent coupling constant were available, our results
Eq. (19) that the use of this dispersion relation would over-would be completely consistent with that in Ref. 4 and with
estimate the lifetime since the realistic dispersion of LOthe experimental result.

phonons is weaker than this relation. To set a lower limit for
the lifetime within the present formalism, we use alterna-
tively a dispersionless LO-phonon energy biw=r%w
=36 meV in Eq.(19). The result is shown in Fig.(h). We In this section we address the impact of the finite lifetime
see that except for the regia<4 nm, the results in Figs. of phonons on the phonon bottleneck effect, in a slightly
1(a) and Xb) are almost the same. At this stage, we arrive adifferent way from the direct numerical calculation in Ref.
the conclusion that the lifetime of the confined mode is18, which is expected to be instructive in the understanding
weakly size dependent in the range of ultrasmall sizes and if this issue more physically and intuitively. For simplicity,
eventually approaches the bulk value after5nm. The consider the electron in a quantum dot coupling to a single
size-dependent behavior of the lifetime in Fig. 1 can be unphonon mode and denote the electron ground and excited
derstood from the general overlap integral in Efjl) as states byg) and|e), respectively. As we consider the elec-

IV. CARRIER ENERGY RELAXATION
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1.5 pr—rrr filled if the maximum ofP(t) is smaller than ¥. Thus, for
the detuning that satisfies the conditi®p;,<1/e, the carrier
relaxation time is also about the phonon lifetime. For the
strong detuning withP,;,>1/e, the carrier relaxation time

| ! ! can be estimated as.=N7, where N is obtained from

P(t)
o
o o -
%
Lo berilinis

0 5 10 15 20 (Pmin)N~1/e, which gives, for the carrier relaxation time,
t (unit: 1/6)
r
1 T ~—
os E | 1 I(b) | - Te IN(1+ 72/A%)" (24
oF 8'2 - E For GaAs quantum dots, based on thée High interaction
02 L ] model, we estimate the coupling strength between the elec-
0 LN L tron and themost-efficientsingle phonon mode to be ap-

N

-4 -2 0 2 proximately 7~0.3%wqy/+/a, wherea is the dot size in na-
Detuning [unit: 24/7] nometers. For a typical dot with=10—25 nm, the coupling
strengthz is about 2—3.5 meV. From Fig. 3 and the analysis
giving rise to Eq.(24), the detuning can be as large as about
87, which corresponds to an energy range of tens of meV; in
this detuning range the carrier relaxation time is only several
times the phonon lifetime, which is fast enough with respect
to the phonon bottleneck problem, since the phonon lifetime
is only a few picoseconds. Although the above discussion is
and 1 mean no phonon and one phonon states. This is in faE(?strigzted to a two-level analysis, the qualitative result will

remain the same when one employs a full treatment to the

a two-level description. ) ) .
First we neglect the dissipation of the phonon mode. mcouplmg to multimodes. For more details, see Ref. 18.

the absence of electron-phonon coupling, the energy levels
of the two product states ai,=E.=Ey+A and E,=E, V. CONCLUSION

+ho =Eq—A, whereE, andE, are the energy levels of |, this paper, on the basis of a simple phenomenological
electron statepe) and|g), and 2\ is the detuning of the two approach treating the phonon decay into two acoustic
states. In the presence of electron-phonon coupling, the tWghonons, we have derived an expression for the lifetime of
energy levels separate further as the confined optical phonons in spherical quantum dots. For
GaAs dots, we have shown the size and temperature depen-

E.=Eo* "+ A"=Eo* 4, (22 gences of the lifetime by taking the zero-angu?ar-momentﬁm

where 7 is the electron-phonon coupling strength. Assumingmode as an illustrative example. The obtained results are in
that the initial state i$e,0), a simple derivation gives for the excellent agreement with other theoretical and experimental

FIG. 3. (a) Rabi oscillation for a two-level system with no dis-
sipation, wheréP(t) is the probability of finding the initial statéb)
the dependence of the minimum B{t) on the detuning of the two
levels.

tron transition from statée) to |g) by emitting an optical
phonon, the two relevant states &eg0) and|g,1), where 0

probability of the electron to stay on the initial stdeg0), results in bulk GaAs systems. Considering the wide lack of
) knowledge of the confined optical phonons in semiconductor

1-(A/9) quantum dots, we feel that the present study is of particular

P(t)=1+ 2 [cog26t)—1]. (23 interest. It will be helpful to understand the optical spectrum

) ) , . . linewidths associated with the emission and absorption of
In Fig. 3(a) we schematically show this oscillating behavior, oniical phonons in a large number of experiments. Further-
which is known as the Rabi oscillation. Note that if the de-ore, it leads us to the important conclusion that due to the
tuning 2A is zero, the minimum ofP(t) can reach zero; gecay of the confined optical phonons, the carrier relaxation
otherwiseP(t) o_scnlates between 1 and nonzero minimumMtime can be as short as tens of picoseconds in a wide energy
Pmin=(A/8)?, which depends on both the electron-phonongetuning of tens of meV. Thus the so-called phonon bottle-

coupling strengthy and the detuning 2 In Fig. 3b) we  neck effect is not a serious problem for the energy relaxation
show the dependence of the minimumRi(ft) on the detun- iy quantum dots.

ing.

Now we take into account the dissipation of the phonon
mode, i.e., its decay to bulk acoustic phonons. In the pres-
ence of dissipationP(t) is a decaying oscillating function. This work was supported in part by the Research for the
Approximately, the maximum value d?(t) will reduce a  Future Program of the Japan Society for the Promotion of
factor P, after each period of the phonon lifetime Con-  Science(Project No. JSPS-RFTF96P0020by a Grant-in-
sequently, if the detuning is zero, the carrier lifetimeis  Aid of Priority Area by the Ministry of Education, Science
equal to the phonon lifetime. For the nonresonant case, we and Culture, and by the University-Industry Joint Project on
can reasonably regard the carrier energy relaxation to be fuRQuantum Nanostructures.
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