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Anharmonic decay of confined optical phonons in quantum dots
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Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan

~Received 12 January 1998!

Due to the anharmonicity of lattice forces, the lifetime of confined optical phonons in semiconductor
quantum dots is studied by considering the typical channel of decay into two bulk acoustic phonons. The model
in which the three-phonon coupling strength is expressed in terms of the Gru¨neisen constant enables us to
obtain a compact expression for the lifetime from standard perturbation theory. The lifetime is shown to be
weakly size dependent, which increases with decreasing dot size. For GaAs quantum dots, the results are found
to be completely consistent with other theoretical approaches and experimental data in bulk GaAs. Further-
more, we present a brief discussion for the carrier relaxation in quantum dots. Due to the decay of the confined
phonons, we find that the carrier relaxation time can be as short as tens of picoseconds in a wide energy
detuning of tens of meV; thus the so-called phonon-bottleneck effect is not a serious problem in quantum-dot-
based device applications.@S0163-1829~98!08919-X#
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I. INTRODUCTION

It is well known that lattice anharmonicities influenc
greatly such properties as carrier-lattice thermalization, th
mal expansion and conductivity, velocity of sound, and R
man and neutron scattering.1,2 The anharmonicity force, typi-
cally expanded to the cubic term, causes the decay o
optical phonon into two acoustic phonons and conseque
a finite lifetime of the optical phonon. Because of the dom
nant role of electron optical-phonon coupling in polar sem
conductors, detailed knowledge of the optical-phonon de
is of particular importance in the understanding of the car
dynamics. Furthermore, the finite lifetime of optical phono
determines directly the linewidth of the optical spectrum
the defects, the infrared absorption, and the Raman sca
ing. For these reasons, in bulk semiconductors the lat
anharmonic effects have been studied extensively for a l
time; see Refs. 1 and 2 and references quoted therein
more recent papers see, for example, Refs. 3–5. Howe
much less attention has been given to semiconductor mi
structures, although it has been demonstrated that in the
text of semiconductor lasers the optical-phonon emiss
alone does not dominate determinatively the carrier ene
relaxation rates since the subsequent optical-phonon d
events influence the overall relaxation process.6,7

In this paper, applying a phenomenological approach
veloped by Klemens,1 in which the various anharmonic con
tributions were replaced with a single parameter, i.e.,
Grüneisen constant, which characterizes the average of
third-order elastic constants, we study the lifetime of t
confined optical phonons in quantum dots due to the de
into two bulk acoustic phonons. The same approach has b
used to study the lifetime of the imperfection-induced loc
ized phonons8 and the optical phonons in bulk systems.9,10

We will derive an expression that can be conveniently
plied to practical calculations for the decay rates of optic
phonon modes confined in spherical quantum dots, where
spatial overlap integral of the three coupled phonons is s
plified greatly. For the zero-angular-momentum modes,
570163-1829/98/57~19!/12285~6!/$15.00
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expression is simplified further and the final result can
carried out easily. As an example of application we consi
the GaAs quantum dot. The analysis of the lifetime of t
zero-angular-momentum mode shows that the lifetime of
confined mode is weakly size dependent, increases with
creasing dot size, and approaches a constant value~;7.5 ps
at zero temperature! after the dot radius is larger than 5 nm
To compare with the available measured data in bulk Ga
~7 ps at 77 K and 3.5 ps at 300 K! we consider a dot with a
radius of 8 nm to study the temperature dependence of
lifetime. The obtained results are in excellent agreement w
the experimental data and completely consistent with the
oretical results in Ref. 4.

There is growing activity in the search for energy rela
ation mechanisms in quantum dots, where the discrete na
of energy levels implies a strongly reduced energy relaxa
unless the level separation equals the LO-phonon ene
which is the so-called phonon bottleneck problem.11,12How-
ever, to date, this bottleneck effect is very unlikely in expe
ments. Recently, a mechanism based on multiphonon e
sion has been proposed both theoretically a
experimentally.13–17 More interestingly, in Ref. 18, a prob
lem of the simple use of Fermi’s golden rule for the analy
was pointed out and it was shown that the carrier ene
relaxation rate can be larger than 1010 s21 in a wide energy
range of tens of meV by using the coupled mode equa
derived from the time-dependent Schro¨dinger equation and
thus the phonon bottleneck is not a serious problem in de
application. In that calculation, a phonon lifetime of 2.5 ps
used, which is the present theoretical result at a tempera
of 300 K. In this paper we present a more straightforwa
understanding of this issue, on the basis of a simplified tw
level picture. We conclude that, due to the decay of the c
fined optical phonons, as well as the enhanced elect
phonon coupling strength in quantum dots, the carr
relaxation time can be as short as tens of picoseconds
wide energy detuning of tens of meV; thus the well-know
theoretical prediction of the phonon bottleneck effect is qu
questionable, even considering only the phonon mechan
12 285 © 1998 The American Physical Society
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II. FORMALISM

To calculate the lifetime, the vibration function of th
confined mode is needed. In Ref. 19 we found its solut
based on the macroscopic hydrodynamic~HD! approach. To
satisfy both the HD mechanical and the electromagn
boundary conditions, say, the continuities of the norm
component of vibrating velocity, the HD pressure, the el
tric potential, and the normal component of electric displa
ment vector, we included an interface polariton~IP! compo-
nent in addition to the LO vibration. For both the LO and
vibration components, we are able to introduce the mech
cal potentialsF̃ andG, respectively, which satisfy the wav
equation¹2F̃1k2F̃50 and the Laplace equation¹2G50,
where k2 is defined by the dispersion relationv25vL

2

2v2k2, with vL the limiting LO frequency andv the sound
velocity. The vibrating displacement fieldu is related to the
mechanical potential by

u5A“@F̃1BG#[A“F, ~1!

whereA andB are two constants determined by the boun
ary conditions and the amplitude normalization.

First we normalize the amplitudes of the confined mod
in quantum dots. From the virial theorem we know the
netic energy

(
j 51,2

FM jv
2

2

1

bj
3 E

Vj

d3x~“F!2GA25
Ep

2
, ~2!

where Vj characterizes the inner (j 51) and the outer (j
52) volume of the dot,M j is the cell atomic mass,bj

3 is the
cell volume, andv(Ep) is the frequency~energy! of the
mode. With the help of the vector-field-theory formu
*Vd3x@f¹2c1“f•“c#5rSds fn̂•“c, where S is a
closed surface surrounding the volumeV andn̂ is the normal
unit vector of the integral elementds, the normalized con-
stantA can be expressed as

A5F Ep

~M1Sk1M2Sk1D12!v
2G 1/2

[F Ep

M̃v2G 1/2

, ~3!

where

Sk5
k2

b1
3 E

V1

d3x F1
2,

Sk52
k2

b2
3 E

V2

d3x F2
2,

D125 R
S
ds urFM1F1

b1
3 2

M2F2

b2
3 G .

HereF1 andF2 are the dot-inside and -outside mechani
potentials, which satisfy the wave equations¹2F11k2F1
50 and¹2F22k2F250, respectively, where2k2 is due
to the decay feature of the mode outside the dot. The ra
component of the vibrating displacement at the the interf
is continuous, i.e.,ur5(] rF1)uS5(] rF2)uS . However, the
mechanical potentialsF1 andF2 can be different from each
other at the interface in the HD treatment~see Ref. 19!,
where the boundary condition of the continuity of the elect
n
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potential instead of the mechanical potential is applied. T
discontinuity of the mechanical potential implies that t
slightly tangential slide of the two materials at the interfa
is allowed, which is in fact an intrinsic feature of the hydr
dynamic approach.

To analyze the dispersion relation of the phonons,
crystal potential is expanded only to the quadratic ter
which is the harmonic approximation. However, to descr
the decay of phonons, the cubic and other higher-order te
known as the anharmonic terms in the crystal poten
should be taken into account. It is widely accepted that
cubic anharmonic term will dominate the phonon decay a
thus the matrix element of the perturbation Hamiltonian d
to the three-phonon interaction has the form1

uH68 u25F \3

M̃M2
2V2G uc~v,v8,v9!I ~k8,k9!u2

vv8v9

3F ~N11!N8N9

N~N811!~N911!
G , ~4!

whereN, N8, andN9 are the Bose occupation numbers
the confined mode and the bulk acoustic phonons, with
quenciesv, v8, andv9 respectively; the upper line of th
matrix describes the decay process of the confined mode
the bulk acoustic phonons, whereas the lower line descr
the microscopic inverse process. Other quantities in Eq.~4!
are explained as follows. Since for LO phonons the de
occurs mainly through the creation of two LA phonons, t
overlap integral of the three phonons with the polarizat
summation can be treated as

I ~k8,k9!5(
a

E d3x e2 i ~k81k9!•x@“F#a , ~5!

where the indexa characterizes the vibrating projectio
component of the confined modes. To estimate the th
phonon coupling strength, two approaches can be classi
the highly complex microscopic model with parameters t
are very difficult to measure and the simple macrosco
model where various anharmonic contributions are repla
by a single parameter related to the averaged third-o
elastic constants. In this work we adopt the latter appro
for simplicity, in which the coefficientc(v,v8,v9) is
approximately1

c~v,v8,v9!52 i
2M

)

g

v
vv8v9, ~6!

whereg is the Grüneisen constant,v is the sound velocity,
andM is the cell atomic mass. Due to the strong confinem
of the optical mode,v and M are approximately the dot
inside material values. In deriving Eq.~4! the normalized
amplitudes of the phonons have been used,
(\/M̃v)1/2

“F for the confined mode and
(\/M2v8)1/2e2 ik8•x and (\/M2v9)1/2e2 ik9•x for the acoustic
phonons. Because of the relatively small size of the dot,
normalization for the acoustic phonons can be regar
mainly over the outer material of the quantum dot.

Following Fermi’s golden rule, the transition rate is o
tained as
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G65
2p

\ (
k8,k9

uH68 u2d~\v2\v82\v9!. ~7!

The lifetime of the confined phonons is related to both
rateG1 at which they decay into two acoustic phonons a
the rateG2 at which they are generated by the annihilati
of two acoustic phonons. At thermal equilibrium, the d
tailed balance principle requiresG12G2;(N11)N8N9
2N(N811)(N911)50. We assume that the derivatio
from equilibrium is caused by the change of occupation
the confined phonons, i.e.,N→N1dN; hence we have

G12G2;2dN~N81N911!. ~8!

Consequently, the lifetimet can be defined as

1

t
52

G12G2

dN
, ~9!

which gives

1

t
5

2p

\

\3

M̃M2
2V2 (

k8,k9

uc~v,v8,v9!I ~k8,k9!u2

vv8v9

3~N81N911!d~\v2\v82\v9!. ~10!

After replacing the summation overk8 andk9 by an integral
and integrating out thed function, we obtain

1

t
5F4

3

1

~2p!5 S M

M2
D 2

\v

M̃v2

g2

v
G E d3k8

3E dV9k92v8v9uI ~k8,k9!u2~N81N911!, ~11!

wheredV9 is the solid angle ofk9 andv9 is related tov8 by
v81v95k8v1k9v5v.

Below we analyze the overlap integralI (k8,k9), see Eq.
~5!. Again, applying the vector-field-theory formul
*V“c d3x5rScn̂ ds, we can reexpress the overlap int
gral as

I ~k8,k9!5(
a

êa•F R
S
ds n̂e2 i ~k81k9!•x~F12F2!

1 i ~k81k9!E d3x e2 i ~k81k9!•xFG . ~12!

As mentioned previously, the mechanical potential can
discontinuous at the interface within the hydrodynamic tre
ment. However, this discontinuity is very small if the ele
tromagnetic properties of the two materials are not very
ferent since the electric potential is in fact continuou
Furthermore, due to the approximately rigid confineme
which implies that both the electric potential and the m
chanical potential are almost zero at the interface, the
term on the right-hand side of Eq.~12! can be neglected. Le
us denoteq[k81k9 and chooseq to be the reference direc
tion for the projection of the vibrating amplitude of the co
fined mode. Thus the summation for the polarization of
confined mode yields
e
d

-

f

e
t-

-
.
t,
-
st

e

I ~k8,k9!5 iqE d3x e2 iq•xF, ~13!

where q5uqu[uk81k9u. The specific function form ofF
due to the spherical confinement

F~x!5 f l~r !Ylm~u,f!, ~14!

whereYlm is the spherical harmonics andf l(r ) is the radial
part of the vibration potential, enables us to simplify furth
the integral of Eq.~13!. We expand the plane wave as

e2 iq•x54p(
l 50

`

(
m52 l

l

~2 i ! l j l~qr !Yl ,m~uq ,fq!Ylm* ~u,f!,

~15!

where (uq ,fq) are the direction angles ofq. Inserting Eqs.
~14! and ~15! into Eq. ~13! and utilizing the property of the
spherical harmonics, we obtain

I ~k8,k9!54p~2 i ! l 21qYlm~uq ,fq!E dr r 2 j l~qr ! f l~r !.

~16!

To carry out the integral of Eq.~11!, we need the expression
of q anduq in terms ofk8 andk9. Let (u8,f8) and (u9,f9)
be the direction angles ofk8 andk9. It is easy to show that

q5@k821k9212k8k9 cosG#1/2, ~17!

whereG is the angle betweenk8 andk9, which can be ob-
tained from cosG5cosu8 cosu91sinu8 sinu9 cos(f82f9).
The angleuq betweenq andez is given simply by

cosuq5~k8cosu81k9u9!/q. ~18!

Combining Eqs.~16!–~18!, from Eq. ~11! we can calculate
straightforwardly the lifetime for arbitrarily confined optica
phonons in spherical quantum dots.

Considering the special case for modes with ze
angular momentum,Y00(uq ,fq)51/A4p is a k8- and
k9-independent constant, which implies the integral*dV9 in
Eq. ~11! being independent of the direction ofk8. Accord-
ingly, for the l 50 modes, the lifetime formula has a mo
simplified form

1

t
5F 4

3p2 S M

M2
D 2

\v

M̃v2

g2

v
G E

0

kD
dk8k82

3E
0

p

dG sin Gk92v8v9q2I 0
2~q!~N81N911!,

~19!

whereI 0(q)5*dr r 2 j 0(qr) f 0(r ), kD5vD /v, andvD is the
Debye frequency.

III. APPLICATION

Below we apply the above formalism to GaAs quantu
dots. In the numerical calculation we adopt the GaAs para
eters as the sound velocityv55.223105 cm/s, the zone-
center LO-phonon energy\vL536 meV, and M.M1
5rb3, wherer55.32 g/cm3 is the material density andb
55.65 Å is the lattice constant. To compare with the ava
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able measured result in bulk GaAs, we approximately t
M2.M1 and estimate the Debye wave numberkD from
(4p/3)kD

3 /(2p)351/b3, which gives kD5@2p(3/4p)1/3#/
b. We take g52 as a typical value of the Gru¨neisen
constant.8,9 As a specific example we consider the mode w
zero angular momentuml 50. In Ref. 19 we have shown tha
the l 50 mode is purely LO vibrational, being different from
the lÞ0 mode, which mixes an interface polariton comp
nent into the bulklike LO vibration. Further, as a good a
proximation to the realistic confinement, we assume a ri
boundary condition, which results in a simple function for
for the l 50 mode as

F; f 0,n~r !5
sin~knr !

knr
, ~20!

wherekn5np/a andn51,2,3,... . Correspondingly, the pho
non energy is given by

\vn5A~\vL!22~\knv !2, ~21!

according to the dispersive model for LO vibrations.
Figure 1 shows the size dependence of the lifetime at z

temperature, where the solid and dashed lines represen
results of then51 and 2 modes, respectively. The slight
longer lifetime of then52 mode is due to its weaker cou
pling to the two bulk LA phonons, which is manifeste
mathematically in the overlap integral in Eq.~19!, i.e.,
uI 0,1(q)u2.uI 0,2(q)u2. In Fig. 1~a! the dispersion relation~21!
is used. This relation is reasonable at the long-wavelen
limit. For ultrasmall quantum dots, which implies the brea
down of the long-wavelength approximation, we know fro
Eq. ~19! that the use of this dispersion relation would ove
estimate the lifetime since the realistic dispersion of L
phonons is weaker than this relation. To set a lower limit
the lifetime within the present formalism, we use altern
tively a dispersionless LO-phonon energy of\v5\vL
536 meV in Eq.~19!. The result is shown in Fig. 1~b!. We
see that except for the regiona,4 nm, the results in Figs
1~a! and 1~b! are almost the same. At this stage, we arrive
the conclusion that the lifetime of the confined mode
weakly size dependent in the range of ultrasmall sizes an
eventually approaches the bulk value aftera.5 nm. The
size-dependent behavior of the lifetime in Fig. 1 can be
derstood from the general overlap integral in Eq.~11! as

FIG. 1. Size dependence of the lifetime at zero temperature~a!
the dispersion relation~21! is used;~b! the dispersionless phono
energy\v[\vL536 meV is applied to set a lower limit for th
lifetime. The solid~dashed! curve is for then51 (n52) mode.
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follows. SinceI (q) is in fact the Fourier component of th
confined phonon potential, for a more localized mode,
Fourier q spectrum will extend to a wider range. On th
other hand, the final momentum summation of the two L
phonons is physically restricted to a finite range. Thus
longer lifetime is expected for a more localized mode. T
simple argument seems to be generally valid in the thr
phonon interaction model, which leads us to the followi
two conjectures:~i! The lifetime of confined phonons in
other microstructures may also be weakly size depend
just like the behavior of the confined modes in quantum do
and~ii ! for the lÞ0 mode in quantum dots, despite its mo
complex functional form due to the mixture of an IP comp
nent, a size dependence similar to that of thel 50 mode is
expected. The detailed study of thelÞ0 mode is left to our
future work.

In Fig. 2, for a given size of dot with radiusa58 nm, we
show the temperature dependence of the lifetime of the c
fined mode with zero angular momentum, where the cur
are the same as in Fig. 1. We see that the results in Fig. 2
in excellent agreement with the measured data~7 ps at 77 K
and 3.5 ps at 300 K! in bulk GaAs, especially at low tem
peratures. At room temperature, our calculated lifetime~2.5
ps! is slightly shorter than the measured value~3.5 ps!,
which can be understood from the neglect of the tempera
dependence of the three-phonon coupling constant, say
Grüneisen constant. Note that in Ref. 4, where a more co
plex microscopic treatment was presented for bulk Ga
better agreement with the measured data is obtained at r
temperature, but poorer agreement at low temperatu
which is attributed to the overall use of the third-order elas
constant estimated at 300 K. Therefore, if a temperatu
dependent coupling constant were available, our res
would be completely consistent with that in Ref. 4 and w
the experimental result.

IV. CARRIER ENERGY RELAXATION

In this section we address the impact of the finite lifetim
of phonons on the phonon bottleneck effect, in a sligh
different way from the direct numerical calculation in Re
18, which is expected to be instructive in the understand
of this issue more physically and intuitively. For simplicit
consider the electron in a quantum dot coupling to a sin
phonon mode and denote the electron ground and exc
states byug& and ue&, respectively. As we consider the ele

FIG. 2. Temperature dependence of the lifetime for a dot w
radiusa58 nm. The curves are the same as in Fig. 1.
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tron transition from stateue& to ug& by emitting an optical
phonon, the two relevant states areue,0& and ug,1&, where 0
and 1 mean no phonon and one phonon states. This is in
a two-level description.

First we neglect the dissipation of the phonon mode.
the absence of electron-phonon coupling, the energy le
of the two product states areE15Ee[E01D and E25Eg
1\vL[E02D, whereEe and Eg are the energy levels o
electron statesue& andug&, and 2D is the detuning of the two
states. In the presence of electron-phonon coupling, the
energy levels separate further as

E65E06Ah21D2[E06d, ~22!

whereh is the electron-phonon coupling strength. Assum
that the initial state isue,0&, a simple derivation gives for the
probability of the electron to stay on the initial stateue,0&,

P~ t !511
12~D/d!2

2
@cos~2dt !21#. ~23!

In Fig. 3~a! we schematically show this oscillating behavio
which is known as the Rabi oscillation. Note that if the d
tuning 2D is zero, the minimum ofP(t) can reach zero
otherwiseP(t) oscillates between 1 and nonzero minimu
Pmin5(D/d)2, which depends on both the electron-phon
coupling strengthh and the detuning 2D. In Fig. 3~b! we
show the dependence of the minimum ofP(t) on the detun-
ing.

Now we take into account the dissipation of the phon
mode, i.e., its decay to bulk acoustic phonons. In the p
ence of dissipation,P(t) is a decaying oscillating function
Approximately, the maximum value ofP(t) will reduce a
factor Pmin after each period of the phonon lifetimet. Con-
sequently, if the detuning is zero, the carrier lifetimetc is
equal to the phonon lifetimet. For the nonresonant case, w
can reasonably regard the carrier energy relaxation to be

FIG. 3. ~a! Rabi oscillation for a two-level system with no dis
sipation, whereP(t) is the probability of finding the initial state;~b!
the dependence of the minimum ofP(t) on the detuning of the two
levels.
ct

n
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o

g

-

n
s-

l-

filled if the maximum ofP(t) is smaller than 1/e. Thus, for
the detuning that satisfies the conditionPmin,1/e, the carrier
relaxation time is also about the phonon lifetime. For t
strong detuning withPmin.1/e, the carrier relaxation time
can be estimated astc5Nt, where N is obtained from
(Pmin)

N;1/e, which gives, for the carrier relaxation time,

tc;
t

ln~11h2/D2!
. ~24!

For GaAs quantum dots, based on the Fro¨hlich interaction
model, we estimate the coupling strength between the e
tron and themost-efficientsingle phonon mode to be ap
proximatelyh;0.3\v0 /Aa, wherea is the dot size in na-
nometers. For a typical dot witha510– 25 nm, the coupling
strengthh is about 2–3.5 meV. From Fig. 3 and the analy
giving rise to Eq.~24!, the detuning can be as large as abo
8h, which corresponds to an energy range of tens of meV
this detuning range the carrier relaxation time is only seve
times the phonon lifetime, which is fast enough with resp
to the phonon bottleneck problem, since the phonon lifeti
is only a few picoseconds. Although the above discussio
restricted to a two-level analysis, the qualitative result w
remain the same when one employs a full treatment to
coupling to multimodes. For more details, see Ref. 18.

V. CONCLUSION

In this paper, on the basis of a simple phenomenolog
approach treating the phonon decay into two acou
phonons, we have derived an expression for the lifetime
the confined optical phonons in spherical quantum dots.
GaAs dots, we have shown the size and temperature de
dences of the lifetime by taking the zero-angular-moment
mode as an illustrative example. The obtained results ar
excellent agreement with other theoretical and experime
results in bulk GaAs systems. Considering the wide lack
knowledge of the confined optical phonons in semiconduc
quantum dots, we feel that the present study is of particu
interest. It will be helpful to understand the optical spectru
linewidths associated with the emission and absorption
optical phonons in a large number of experiments. Furth
more, it leads us to the important conclusion that due to
decay of the confined optical phonons, the carrier relaxa
time can be as short as tens of picoseconds in a wide en
detuning of tens of meV. Thus the so-called phonon bot
neck effect is not a serious problem for the energy relaxa
in quantum dots.
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