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Vertical correlations and anticorrelations in multisheet arrays of two-dimensional islands
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The energetics of multisheet arrays of two-dimensional islands is studied where the structure of the surface
sheet is determined by thermodynamic equilibrium under the constraint of a fixed structure of sheets of buried
islands. For the arrangement of islands in a single surface sheet, both a one-dimensional structure of stripes and
a two-dimensional structure of square-shaped islands are examined. The buried islands are considered as planar
elastic defects characterized by a uniaxially anisotropic double force density, and the surface islands are
considered as two-dimensional islands characterized by an isotropic intrinsic surface stress tensor. It is shown
that, in cubic crystals with a negative parameter of elastic anisotropy,j5(c112c1222c44)/c44,0, the elastic
interaction between successive sheets of islands parallel to the~001! crystallographic plane exhibits an oscil-
latory decay with the separation between sheets. This oscillatory decay is related to generalized Rayleigh
waves in elastically anisotropic crystals. By varying the distance between successive sheets of islands, a
transition occurs from vertical correlations between islands where islands of the upper sheet are formed above
the buried islands of the lower sheet toanticorrelationsbetween islands where islands of the upper sheet are
formed above the spacings in the lower sheet. The separation between successive sheets of islands correspond-
ing to this transition depends drastically on the anisotropy of the double force density of buried islands. Thus
an explanation for the recently observed anticorrelations in multisheet arrays of CdSe islands in the ZnSe
matrix is obtained.@S0163-1829~98!04619-0#
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I. INTRODUCTION

Recent breakthroughs in quantum wire and quantum
fabrication relies considerably on effects of spontaneous
mation of ordered nanostructures.1–8 The latter include~i!
single-sheet ordered arrays of two-dimensional~2D! islands
formed, e.g., in heteroepitaxial systems upon submonola
deposition;9–11 ~ii ! single-sheet ordered arrays of thre
dimensional ~3D! coherently strained islands formed
highly lattice-mismatched heteroepitaxial systems;12–22 ~iii !
multisheet arrays of 3D coherently strained islands orde
both in the lateral plane and in the vertical direction;12,23–31

~iv! composition-modulated structures in semiconductor
loy films revealing lateral superlattices,32 vertical
superlattices,33–35 arrays of quantum wires, or quantu
dots.36,37Recently, multisheet arrays of 2D islands have be
fabricated.38

In the field of spontaneous formation of ordered semic
ductor nanostructures, two possibilities are traditionally d
tinguished. First,equilibrium domain structurescan be
formed in closed systems. Such formation is realized by
long-time growth interruption or by post-growth annealin
Thermodynamics can be applied to describe the equilibr
structures that meet the conditions of the Helmholtz free
ergy minimum. Second,nonequilibrium structurescan be
formed in open systems. Such structures are formed in th
growth process and observedin situ or ex situ in as-grown
samples. The structures are additionally governed by grow
kinetics.

Multisheet arrays of islands are distinct from other typ
of nanostructures for the two following reasons.
570163-1829/98/57~19!/12262~13!/$15.00
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First, formation of multisheet arrays of 2D or 3D island
is a process that is dominated by both equilibrium order
and kinetic-controlled ordering. If the deposition of the fir
sheet of islands of material 2 on a material 1 is followed
a growth interruption, or just the growth rate is sufficient
low, islands of the equilibrium structure are formed. If th
islands are regrown by material 1, and the second cycle
the deposition of material 2 is introduced, a new grow
mode occurs. For typical growth temperatures and gro
rates, the structure of the buried islands of the first sheet d
not change during the deposition of the second sheet.
second sheet of islands growsin the strain field created by
the buried islands of the first sheet. And the structure of the
second sheet of islands reaches the equilibriumunder the
constraint of the fixed structure of buried islands of the fi
sheet.

Second, a variation of the separation between succes
sheets gives an additional possibility~as compared to single
sheet arrays! to tune geometrical and electronic character
tics of nanostructures.

A remarkable feature of multisheet arrays of 3D islands
that the buried islands in successive sheets are spatially
related. At the surface, new islands were observed to
formed directly above buried islands. The existing theo
explaining well the correlation is based on accounting
strain created by buried islands. In Refs. 25 and 26,
strain-induced migration of adatoms of the growing lay
was shown to drive adatoms to positions above buried
lands. In Ref. 28, energetically preferred sites for nucleat
of islands of the second sheet were shown to occur ab
buried islands. In above papers, buried islands were appr
12 262 © 1998 The American Physical Society
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57 12 263VERTICAL CORRELATIONS AND ANTICORRELATIONS . . .
mated as elastic point defects, and the crystal was treate
an elastically isotropic medium.

In seeming contradiction to the above experimental a
theoretical results, very recent experiments on multishee
rays of 2D islands of CdSe in the ZnSe matrix39 unambigu-
ously and surprisingly revealed verticalanticorrelation be-
tween islands in successive sheets. Surface islands
formed above the spacings in the sheet of buried islands

Motivated by these observations, we examine here in
tail the energetics of multisheet arrays of 2D islands and s
the equilibrium configuration of the array of surface islan
under the constraint of a fixed array of buried islands. T
two key experimental and theoretical inputs of our treatm
that make it different from both those of Xieet al.25,26 and
that of Tersoffet al.28 are as follows.

First, we consider 2D islands of 1–2 monolayers~ML !
height,39 where the separation between successive shee
comparable to or even less than the lateral size of the isla
in the (xy) plane. We take into account their exact shape

Second, elastic anisotropy of cubic crystals is known
favor the ordering of nanostructures in elastically s
directions,1,4,5,18 and one can expect a significant effect
elastic anisotropy on vertical correlations between island

Since a single-sheet array of 2D islands can exist in
qualitatively different forms, namely as a one-dimensio
array of stripes or as a two-dimensional array of disks,40,41

both possibilities are addressed in the paper.

II. BASIC EQUATIONS

The key mechanism responsible for the relative arran
ment of islands in successive sheets is the formation o
equilibrium array of surface islands in the strain field of bu
ied islands. To extract the essential physics governing
anticorrelation, it suffices to examine a double-sheet ar
that is comprised of one sheet of buried islands and one s
of surface islands. The further extension to an arbitrary nu
ber of sheets is then very straightforward.

Let material 2 be deposited on the~001! surface of the
cubic substrate 1. Upon submonolayer deposition, a peri
array of monolayer-height islands is formed.2,3,40,41Let the
structure then be regrown by the substrate material 1,
introduce the second cycle of deposition of material 2. T
total energy of the surface array of islands in the strain fi
of the buried islands is

Etotal5Esurf1Eboundaries1DEelastic
~SS! 1Eelastic

~SB! . ~2.1!

Here,Esurf is the sum of the surface energy of surface islan
and of the surface energy of uncovered parts of materia
Eboundariesis the energy of island boundaries,DEelastic

(SS) is the
elastic relaxation energy of surface (S) islands due to the
discontinuity of the intrinsic surface stress tensor on isla
boundaries,2,3 Eelastic

(SB) is the elastic energy of the interaction
surface islands (S) and of buried islands (B). Since we ad-
dress effects of the finite lateral size of islands and of ela
anisotropy and avoid other complications, we focus on
typical experimental situation ofan equal amount of the de
posited material in each deposition cycle. Then each sheet o
islands alone tends to form thesame periodic structure,
which corresponds to the minimum of the sum of the fi
three terms on the right-hand side of Eq.~2.1!. If the inter-
as
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action between the surface islands and the buried island
neglected, the surface array of islandsas a wholecan be
subject to an arbitrary shift in thexy plane. The strain field
created by buried islands has the same periodicity as
array of surface islands alone. Therefore, the fourth term
Eq. ~2.1! does not change the periodicity of the surface str
ture, and just defines itsrelative position with respect to the
array of buried islands~Fig. 1!. Since the interaction energ
Eelastic

(SB) is the only term in Eq.~2.1! that depends on the shif
of the array of surface islands as a whole with respect to
buried islands, we will focus on this energy term only. B
low, we will derive the dependence ofEelastic

(SB) on the shiftX0

for a 1D array of stripes@Fig. 1~a!# and on the shiftsX0 and
Y0 for a 2D array of compact islands. For simplicity, we w
consider the extreme case of compact islands distinct f

FIG. 1. Geometry of double-sheet arrays of two-dimensio
islands. The array of surface islands has the same structure a
array of buried islands but is shifted as a whole.~a! Each sheet of
islands forms a one-dimensional array of stripes. The cross sec
of the double-sheet structure is shown.~b! Each sheet of islands
forms a two-dimensional array of square-shaped islands. The
view of the double-sheet structure is plotted. Buried islands
depicted by dashed lines, and solid lines are used for surfac
lands.



n

re
c
d

a

n
a

th

th
te

o
th

in

dy

en-

e

re

ty
ree

lity
the

s,

ing
ee
e

by

nd
per

12 264 57SHCHUKIN, BIMBERG, MALYSHKIN, AND LEDENTSOV
infinitely elongated stripes, namely, square-shaped isla
@Fig. 1~b!#.

A. Elastic interaction in a system
of macroscopic coherent inclusions

If all three dimensions of the islands are large compa
to the lattice parametera, the islands can be treated as ma
roscopic coherent inclusions in a matrix. For planar islan
this condition reads

a!h!L, ~2.2!

whereL is the lateral dimension of the islands andh is their
height. Macroscopic coherent inclusions in a matrix are ch
acterized by the stress-free strain« i j

(0) , which refers to the
difference between the unit cell of the inclusion material a
the unit cell of the matrix material. For a cubic inclusion in
cubic matrix,« i j

(0)5(Da/a)d i j , where (Da/a) is the relative
lattice mismatch,d i j 51 if i 5 j , andd i j 50 otherwise. The
spatial distribution of inclusions can be described by
shape function of the inclusionsq~r ! defined by

q~r !5H 1 if r is inside the inclusion

0 otherwise.
~2.3!

To provide coherent conjugation between inclusions and
matrix, additional strain appears in the heterophase sys
and the elastic stresss i j (r ) is proportional to the deviation
of the strain from stress-free strain,1

s i j ~r !5l i j lm@« lm~r !2« lm
~0!q~r !#. ~2.4!

We assume, for simplicity, that the elastic modulus tens
l i j lm of the matrix and of the inclusions are equal. Then
elastic displacement fieldui(r ) obeys the following equilib-
rium equation of the elasticity theory:1

l i j lm¹ j¹ lum~r !5¹ j@s i j
~0!q~r !#, ~2.5!

where the tensors i j
(0) is connected with the stress-free stra

« i j
(0) as follows:

s i j
~0!5l i j lm« lm

~0! . ~2.6!

The physical meaning of the tensors i j
(0) can be elucidated if

one substitutesq(r )5*d3r d(r2 r̃ )q( r̃ ) into Eq. ~2.5!.
Then Eq.~2.5! takes the following form:

l i j lm¹ j¹ lum~r !5E d3r̃ ¹ j@s i j
~0!d~r2 r̃ !#q~ r̃ !. ~2.7!

The integrand on the right-hand side of Eq.~2.7! does not
vanish inside inclusions, and the quantity
ds

d
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s

r-

d

e

e
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e

f i~r !5s i j
~0!¹ jd~r2 r̃ ! ~2.8!

may be regarded as thebody force densityexisting at each
point inside the inclusions. The particular form of the bo
force density~2.8! corresponds to asuperposition of three
mutually perpendicular double forces without moment c
tered at the pointr̃ .42,43 In this sense, the tensors i j

(0) has the
meaning of thedouble force densitycharacterizing the given
inclusion. To avoid confusion it is worth noting that th
‘‘body force density’’ is the vector¹ j@s i j

(0)q(r )# while the
‘‘double force density’’ is the second-rank tensors i j

(0)q(r ).
For more than one type of inclusion, the tensors i j

(0) and
« i j

(0) depend on the type of inclusionsp. The elastic energy
of interacting inclusions may be written in the form whe
shape functions of the inclusions enter explicitly,1

Eelastic5(
p

1

2 E d3r s i j
~0!pqp~r !@« i j

~0!p2« i j ~r !#

5(
p

1

2 E d3r s i j
~0!p« i j

~0!pqp~r !

2(
p,q

1

2 E d3rE d3r 8s i j
~0!pqp~r !¹ j

3Gil ~r ,r 8!¹m8 s lm
~0!qqq~r 8!. ~2.9!

Here,Gil (r ,r 8) is the static Green’s tensor of the elastici
theory defined for a given crystal and obeying stress-f
boundary conditions on the surfaces.44

Since we focus on planar islands that obey the inequa
~2.2! the height of the islands is the smallest dimension in
system. Then, the equation for the elastic energy~2.9! can be
simplified. First, we integrate overr 8 by parts and use for the
shape function of the islands the following equations:

qB~r !5hBQB~r i!d~z1z0!, ~2.10a!

qS~r !5hSQS~r i!d~z!. ~2.10b!

Here superscriptsB andS refer to buried and surface island
respectively,r i5(x,y) is the 2D position vector.QB(r i) and
QS(r i) are 2D shape functions. For planar islands obey
the inequality~2.2!, one may approximate that the stress-fr
boundary conditions on the surface are imposed on thz
50 plane. Then, for the Green’s tensorGil (r ,r 8) one may
use the Green’s tensor for a semi-infinite crystal bounded
a stress-free planar surfacez50, Gil (r i2r i8 ;z,z8). By sub-
stituting Eqs.~2.10a! and~2.10b! into Eq. ~2.9!, and extract-
ing only the energy of interaction of the surface islands a
of the buried islands, one obtains the interaction energy
unit surface area as follows:
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Eelastic
~SB! 5

hShB

A E d2r i E d2r i8Q
S~r i!s i j

~0!S@¹ j¹m8 Gil ~r i

2r i8 ;z,z8!#U
z852z0

z50
s lm

~0!BQB~r i8!, ~2.11!

whereA is the total surface area.
Since the islands in the two sheets form identical perio

structures shifted byR05(X0 ,Y0), it is convenient to use
the Fourier series expansion for the shape functions,
nd
w
ium
s

l

en

on
c

QB~r !5(
ki

Q̃~ki!exp~ iki•r i!, ~2.12a!

QS~r !5(
ki

Q̃~ki!exp~2 iki•R0!exp~ iki•r i!,

~2.12b!

where the summation is carried out over the reciprocal-lat
corresponding to a periodic structure of the single shee
islands. By substituting Eqs.~2.12a! and ~2.12b! into Eq.
~2.11!, one obtains the interaction energy in the form of t
sum over the reciprocal-lattice vectors,
Eelastic
SB 5hBhS(

ki

uQ̃~ki!u2exp~ iki•R0!s i j
~0!S@¹ j¹m8 Gil̃ ~ki ;z,z8!#U

z852z0

z50
s lm

~0!B , ~2.13!
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where ¹x[ ikx , ¹x8[2 ikx , ¹y[ iky , and ¹y8[2 iky .
Since we intend to apply our approach mainly to III-V a
II-VI semiconductors having the zinc-blende structure,
consider the crystal as elastically anisotropic cubic med
and use the Fourier transform of the static Green’s ten
Gil̃ (ki ;z,z8) obtained by Portz and Maradudin.44 For the
double force densitys i j

(0) we take the tensor with the uniaxia
symmetry,

s i j
~0!S,B5S s i

~0!S,B 0 0

0 s i
~0!S,B 0

0 0 s'
~0!S,B

D
5s i

~0!S,BS 1
0
0

0
1
0

0
0

PS,B
D , ~2.14!

whereP is the anisotropy parameter of the double force d
sity. The substitution of Eqs.~2.14! and of the explicit form
of the Green’s tensor from Ref. 44 into Eq.~2.13! yields the
interaction energy

Eelastic
SB 5hShBs i

~0!Ss i
~0!B(

ki

uŨ~ki!u2 exp~ iki•R0!ki

3(
s51

3

Qs
uniaxial~PS,PB;w!exp„2as~w!kiz0….

~2.15!

Here s51,2,3 labels static analogs of Rayleigh waves c
tributing to the Green’s tensorGil̃ (ki ;z,z8), as(w) are di-
mensionless attenuation coefficients of these waves, andw is
the angle between theki vector and@100# crystallographic
direction. CoefficientsQs for cubic inclusions (PS5PB

51! were obtained elsewhere.45,46 Explicit definition of Qs
for arbitraryPB andPS is given in Appendix A.
e

or

-

-

B. Interactions between monolayer-height islands

The above equations are derived for macroscopic co
ent inclusions in the matrix, where all dimensions of incl
sions are large compared to the lattice parameter. To ex
our approach to monolayer-thick inclusions, we refer to
macroscopic description of the strain field created by po
defects.42 A point defect located atr̃ is represented by the
superposition of three mutually perpendicular double forc
and the effective body force density is

f i~r !5ai j ¹ jd~r2 r̃ !. ~2.16!

A monolayer-thick inclusion with macroscopic dimensions
a two-dimensional array of point defects occupying ea
atomic site within a certain area. The latter can be descri
by a two-dimensional shape functionQB(r i). The body
force density associated with the given inclusion can be
tained by adding contributions of single point defects fro
Eq. ~2.16!. In the macroscopic approach, this summation c
be replaced by integration, i.e.,

f i~r !5
1

A0
E d2r̃ iai j ¹ j@d~r i2 r̃ i!d~z2 z̃!#QB~ r̃ i!,

~2.17!

whereA0 is unit cell area in thexy plane. Two expressions
for the double force density, a macroscopic one from E
~2.8! and a microscopic one from Eq.~2.17!, coincide if one
setss i j

(0)5ai j /v, wherev is the unit cell volume.
Equation ~2.17! is derived under the assumption of n

mutual influence between the point defects comprising
inclusion. Generally speaking, the tensorai j characterizing
the double force density is different for a single point defe
and for a monolayer-thick inclusion. A substitutional imp
rity atom in a zinc-blende crystal of III-V or II-VI semicon
ductor hasTd site symmetry, and the corresponding doub
force tensorai j has cubic symmetry. On the other hand,
the inclusion of equal substitutional impurity atoms is o
ented in the~001! plane of the zinc-blende crystal, has mon
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12 266 57SHCHUKIN, BIMBERG, MALYSHKIN, AND LEDENTSOV
layer thickness, and infinite lateral dimensions, each atom
the inclusion hasD2d symmetry. Therefore, the tensorsai j

ands i j
(0) characterizing the double force density of a buri

island of a monolayer-thickness haveuniaxial symmetry.
With the increase of the thickness of the inclusion, com
nentss i

(0) ands'
(0) depend on the thickness. For an inclusi

with three macroscopic dimensions, the tensors i j
(0) becomes

related to the stress-free strain« i j
(0) via Eq. ~2.6!. For an

inclusion of a cubic material in a cubic matrix, the tens
s i j

(0) reduces then to an isotropic one,s i j
(0)5(c11

12c12)(Da/a)d i j , wherec11 and c12 are elastic moduli in
the Voigt notation.

The above discussion shows that the double force den
s i j

(0) has clear physical meaning even for inclusions of 1 M
thickness, whereas the stress-free strain« i j

(0) is defined only
for macroscopic inclusions. This is why we are usings i j

(0) as
the main characteristic of inclusions in the present paper

The energy of the surface island in the strain field can
described in terms of theintrinsic surface stress tensor.47

The crystal surface partially covered by monolayer-hei
islands can be regarded as a system of two distinct phas
and 2, where the phase 1 is the bare surface of material 1
the phase 2 is the complex surface of a monolayer-he
island of material 2 on the substrate of material 1. These
phases are characterized by different intrinsic surface st
tensors, tab

(1) and tab
(2) , $a,b%5$x,y%. Then the strain-

dependent contribution to the surface energy equals

DEsurface5E d3r iQ
S~r i!tab

~2!«ab~r i ,z!uz50

1E d2r i@12QS~r i!#tab
~1!«ab~r i ,z!uz50 .

~2.18!

To reveal the energy of the interaction of surface islands
of buried islands, one should keep in Eq.~2.18! only terms
containing the shape functionQS(r i) and to retain in
the strain«ab~r i , z50! only its part due to buried islands
«ab

B ~r i , z50!. This yields

Eelastic
SB 5E d2r iQ

S~r i!~Dtab!«ab
B ~r i ,z!uz50 , ~2.19!

where (Dtab)5tab
(2)2tab

(1) .
To establish the connection between the energy of ela

interaction of two arrays of islands written in terms of t
double force densitys i j

(0) ~2.9!, and the energy written in
terms of the intrinsic surface stress~2.19!, it is necessary to
reduce the energy of Eq.~2.9! to a form where only in-plane
components«ab

B (r i ,z) enter. Since the surfacez50 is a
stress-free one, the corresponding boundary conditions a
us to express all components of the strain tensor in term
«ab

B (r i ,z) only. This procedure carried out in Appendix
yields the energyEelastic

SB as follows:

Eelastic
SB 5hSE d2r iQ

S~r i!sab̃«ab
B ~r i ,z!uz50 , ~2.20!

wheresab̃ are in-plane components of the stress tenso
the uniform flat film of material 2 coherently conjugated
of

-

r

ity

e

t
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tic

w
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n

the substrate of material 1. Equation~2.19! formally coin-
cides with Eq.~2.20! if one sets

Dtab5sab̃hS. ~2.21!

However, although the intrinsic surface stresstab can be
qualitatively modeled as bulk stress in the epitaxial layer,
~2.21! does not hold quantitatively. The substrate surfa
covered with a monolayer-thick epitaxial layer is, strict
speaking, a completely new surface distinct from both
substrate surface and the surface of the deposited mate
This complex surface has its own surface energy and its o
intrinsic surface stress tensor.

Nevertheless, apart from special cases where the dis
tinuity of the intrinsic surface stress tensorDtab differs sig-
nificantly from Eq. ~2.21! ~see, e.g., Ref. 50!, in many
lattice-mismatched heteroepitaxial systems Eq.~2.21! yields
the correct sign and the correct order of magnitude ofDtab .
To clarify the physical reason for it, we make a rough es
mate of the right-hand side of Eq.~2.21!, by settingsab̃h
'Y«0h, whereY is Young’s modulus,«0 is the lattice mis-
match, anda is the lattice parameter. The substitution
Y'500 meV Å23, «0'0.07, and a53 Å yields
'100 meV Å22, which is of the order of the characterist
value of t for surfaces of pure crystals, wheret;100
meV Å22.48,49

Below we assume that Eq.~2.21! holds for the system in
question. The above arguments show that this assump
gives in most cases the correct sign and the order of ma
tude of the interaction energy. The former will enable us
obtain the correct relative arrangement of the two sheet
islands, whereas the latter will allow us to compare the ch
acteristic energy with other typical energies involved in t
spontaneous formation of surface domain structures.

Besides that, it follows from Eq.~2.20! that sab̃ is the
only quantity that depends on the characteristics of the
face island, particularly, on the parameterPS referring to the
anisotropy of the double force density associated with t
island. Therefore, the variation ofPS would result only in the
variation of the common factor in the energy~2.20! indepen-
dent of the separationz0 between layers, and of the relativ
shift (X0 ,Y0) of the two arrays. Moreover, for monolaye
thick surface islands, the quantityPS is irrelevant since the
surface islands are characterized by theplanar tensorDtab .

It follows from the above discussion that it is possible
describe the interaction between the two sheets of island
Eq. ~2.15! and to setPS51. Then the anisotropy of the
double force density ofburied islands PB is the only key
parameter that governs the elastic interaction between
two sheets of islands.

III. ONE-DIMENSIONAL ARRAYS OF STRIPES

Since most of the essential physics can be understoo
the example of a one-dimensional array of stripes, we pre
first the detailed analysis of the 1D case. The orientation
stripes is governed by the anisotropy of the intrinsic surfa
stress tensortab , on the one hand, and by the anisotropy
the bulk elastic modulus tensorl i j lm , on the other hand. The
principal axes of the tensortab are @110# and @11̄0# direc-
tions and this anisotropy promotes the orientation of stri
in one of these directions, whereas the anisotropy of the b
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elastic modulus tensor favors the orientation of sponta
ously ordered structures in the elastically soft directio
@100# and @010#. Both orientations are observed in expe
ment. InAs striped islands on GaAs~001! under submono-
layer coverage are oriented in the@11̄0# direction,9,10whereas
a larger than 1-ML coverage in the same system reveals
planar morphology with islands elongated in the@100#
direction.11 In the present study of stripe-shaped islands,
will consider both of these symmetries. For both cas
stripes are oriented perpendicular to a mirror plane, and
elastic displacement field created by islands contains o
sagital displacements in the mirror plane, whereas transv
displacements vanish.

Since we intend to apply our consideration mainly
III-V and II-VI semiconductors with zinc-blende structur
we consider the crystal as elastically anisotropic cubic m
dium with a negative parameter of elastic anisotropy,

j5
c112c1222c44

c44
,0. ~3.1!

The crucial consequence of the negativej is that the dimen-
sionless coefficients of static analogs of Rayleigh wa
as(w), which govern the dependence of the interaction
ergy ~2.15! on the separation between the two layers,
complex. Particularly, evaluation ofas for each direction of
the wave vectorki by means of Eq.~2.16! of Ref. 44 yields
that two coefficients are complex conjugate,

a1,25a86 ia9, ~3.2!

where the sign1 or 2 stands fora1 or a2 , respectively, and
the third coefficient is real,a3* (w)5a3(w). Complex attenu-
ation coefficientsa imply that the static analogs of Rayleig
waves exhibit not purely an exponential decay, but an os
latory one. This phenomenon is known for surface acous
waves which aregeneralized Rayleigh wavesin elastically
anisotropic crystal.51,52 The complex attenuation coefficien
lead to the conclusion that the elastic interaction betw
successive sheets of islands exhibits an oscillatory de
with the separation between sheets.

To discuss the impact of this oscillatory decay on t
mutual arrangement of two successive sheets of islands,
worthwhile to consider the simplest model where the Fou
expansion of the shape function of the islands~2.12a! con-
tains a single Fourier harmonics,

Q~r i!5Q1cosS 2px

D D , ~3.3!

and stripe-shaped islands are oriented perpendicular to
~010! mirror plane of the crystal. Then, by evaluatin
Qs

uniaxial for this orientation, and by substituting it into Eq
~2.15!, one obtains the interaction energy as a function of
shift X0 and of the depth of the layer of buried islands,z0 ,

Eelastic
SB 52h2~Q1!2

p

D

~s i
~0!!2

c44a9
R cosF2pX0

D G
3sinFF02a9

2pz0

D GexpF2a8
2pz0

D G . ~3.4!
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HereR andF0 are the absolute value and the phase of
quantity,

12
~c121c44!~11PBa1,2

2 !

c11a1,2
2 1c12

5R exp~6 iF0!. ~3.5!

The dependence of the energy from Eq.~3.4! on the relative
shift of two arrays of islands is governed by a single fac
cos@2pX0 /D#. Therefore, the energy reaches its minimum
X050 ~correlation!, or at X056D/2 ~anticorrelation!. The
transition from correlation to anticorrelation occurs if th
sine in Eq.~3.4! changes its sign. The latter occurs if th
thickness of the separation layerz0 obeys the equation

F02a9ukxuz05np, ~3.6!

wheren is an arbitrary integer number. These values ofz0
correspond to the transition between correlation and anti
relation for a model structure where the shape function of
islands contains one Fourier harmonic only. Figure 2 dep
the phase diagram of correlation and anticorrelation, wh
depends on the anisotropy of the double force density
buried islands,PB5s'

(0)/s i
(0) , and on the separation be

tween islands. An important issue of the phase diagram is
very steep slope close toPB51. It implies that even smal
deviations from isotropic double force density, i.e., fro
PB51, may lead to dramatic changes of the arrangemen

FIG. 2. The model phase diagram of the elastic interaction
tween the array of surface stripe-shaped islands and the arra
buried stripe-shaped islands. The phase diagram is constructe
the model one-dimensional sinusoidal shape function of the isla
Q(r i);cos(ki•r i). PB is the anisotropy of the double force densi
of buried islands.z0 is the separation between the surface and
sheet of buried islands, andD is the period.C denotes vertical
correlation, andA denotes vertical anticorrelation. The modulatio
of the density occurs in the@100# direction,kii@100#.
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FIG. 3. The interaction energy of a sheet
surface islands and a sheet of buried islands. B
sheets consist of identical one-dimensional arra
of infinitely elongated stripes. The energy is d
fined per unit surface area and is given
meV Å22. The width of the islands equals 0.2D
in ~a!, ~b!, and~c!; 0.35D in ~d!, ~e!, and~f!; 0.5
D in ~g!, ~h!, and~i!.
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a multisheet array of islands. The phase diagram for str
elongated in the@110# direction is very much like the one in
Fig. 2.

The shape function of real islands is not a single Fou
harmonic but a rectangular function in real space. For
array of stripes of the widthL having the periodicityD, the
Fourier transform of the shape function equals

Q̃~ki!5
2

D

sin~kxL/2!

kx
. ~3.7!

To perform numerical calculations, we use particular para
eters of CdSe:ZnSe islands studied experimentally in R
39. As will be discussed in detail in Sec. V, the islands
Zn12xCdxSe islands having a thickness of 2 ML and t
characteristic lateral periodicity of'100 Å. For the double
force density s i

(0)S,B entering Eq. ~2.15! we take s i
(0)B

5s i
(0)S5(c1112c12)«

(0)x, where« (0)50.0725 is the lattice
mismatch between bulk CdSe and bulk ZnSe, andx50.4 is
the Cd content in the islands. The elastic modulic11
50.85031012 erg cm23, c1250.50231012 erg cm23, and
c4450.40731012 erg cm23 are taken from Ref. 53. The an
es

r
n

-
f.
e

isotropy parameter of the double force densityPB is the fit-
ting parameter of the theory. Below we study the depende
of the relative arrangement of the two sheets of islands
the parameterPB both for 1D arrays of stripes~in this sec-
tion! and for 2D arrays of square-shaped islands~in Sec. IV!.
Comparison of our theoretical conclusions with the expe
mental observations of Ref. 39, which is carried out in S
V, gives the interval for the parameterPB, PB<0.5. Here we
present a more detailed analysis of the dependence of
relative arrangement of the two sheets of islands on the s
rationz0 between the layers and on the coverageQ5L/D by
fixing one particular value ofPB50.5.

Figure 3 shows the elastic interaction energy versus
shift X0 of two successive sheets of islands where results
presented for three different separationsz0 and for three val-
ues of the coverageQ. If z50.2D, and the coverageQ
equals 0.5@Fig. 3~i!# or Q50.35 @Fig. 3~f!#, vertical correla-
tion occurs. IfQ50.2, the plot of the energy versus the sh
X0 has two minima per period. For larger separation betw
sheets of islands,z050.35D, the amplitude of the energy
profile decreases, and vertical correlations are replaced
anticorrelation@Fig. 3~h!# or by an intermediate arrangeme
@Fig. 3~e!#. For a lower coverageQ50.2, an intermediate
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arrangement of islands persists@Fig. 3~b!#. For even larger
separation,z050.5D, all three arrays show anticorrelation

To discuss the numerical values presented in Fig. 3
compare them with the energy per unit area for a single-s
structure of islands. By extending the equation derived
elastically isotropic media in Ref. 40, for the~001! surface of
the cubic crystal, one obtains the energy per unit area
single-sheet array of stripes,E52sin(pQ)(Dt)22a8c11(c11

2

2c12
2 )21(pD)21, whereQ is the coverage of the surface

By substituting hereDt5(c1112c12)(c112c12)c11
21« (0)xhS,

Q50.5, and by using the above-mentioned numerical valu
one obtainsE520.08 meV Å22. From this estimate it fol-
lows that, if the separation between two sheetsz0 is smaller
than 0.5D, the energy of the interaction between two she
of islands is of the same order of magnitude as the energ
a single sheet.This comparison confirms that the elastic i
teraction between the two sheets of islands can indeed re
in vertical correlation or anticorrelation between the tw
sheets.

It should be noted that the dependence ofE on X0 , which
has more than one minimum per period, as in Figs. 3~b!,
3~c!, and 3~e!, may give rise, in principle, to a splitting o
surface islands in the external strain field. Numerical te
show, however, that at least atz0>0.2D, such splitting is not
energetically favorable. Below, we do not consider suc
possibility.

The onset of the intermediate arrangement of islands
the successive sheets is due to the interplay of different F
rier harmonics of the strain field. Since higher harmon
decrease faster with the separation between the two shee
islands than the lower ones, higher harmonics are impor
only in a narrow region of the separationz0 where the am-
plitude of the main harmonic vanishes.

Figure 4 demonstrates phase diagrams of a double-s
array of stripe-shaped islands. Phase diagrams are
structed with respect to variablesz0 andPB for two different
coverages of the surface. Each point on the phase diag
corresponds either to vertical correlation or to vertical an
correlation, or to an intermediate arrangement. These
grams also demonstrate that the intermediate arrange
occurs mainly if the separation between sheets is not v
large, or just if the system is close to the transition fro
vertical correlation to vertical anticorrelation.

For the smaller value of the coverageQ @Fig. 4~a!#, the
amplitude of the first Fourier harmonics decreases, and
role of higher Fourier harmonics increases. Correspondin
the parameter region on the phase diagram correspondin
an intermediate arrangement is larger for smallerQ.

IV. TWO-DIMENSIONAL ARRAYS
OF COMPACT ISLANDS

In this section, we discuss multisheet arrays of 2D isla
where each single sheet is a 2D superlattice of compac
lands. To reveal the characteristic behavior of such arr
we focus on such islands that are the most distinct ones f
1D stripes, namely on square-shaped islands. To be spe
we consider square islands oriented in the@100# and @010#
directions. For compact islands on the~001! surface of a
cubic crystal, the elastic interaction makes a square supe
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tice the most favorable arrangement.5 The primitive lattice
vectors of the superlattice are oriented in the@100# and@010#
directions. Taking into account the anisotropic part of t
surface stress tensor could make, under certain circ
stances, an asymmetric superlattice more favorable. T
complexion is not discussed here.

The symmetry of the system with a square superlattice
buried islands and no surface islands is described by
P4mm layer group. Figure 6~a! depicts seven types of sym
metry positions within a unit cell of the superlattice. Th

FIG. 4. Phase diagrams of a double-sheet array comprised o
array of surface islands and an array of buried islands. Both ar
are identical one-dimensional arrays of infinitely elongated strip
Stripes are oriented in the@010# direction.PB is the anisotropy of
the double force density of buried islands,z0 is the separation be
tween the surface and the sheet of buried islands, andD is the
period. C denotes vertical correlation,I denotes an intermediat
arrangement andA denotes vertical anticorrelation.~a! The cover-
age of the surface is 0.2.~b! The coverage of the surface is 0.5.
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FIG. 5. The interaction energy of an array of surface islands
of an array of buried islands. Both arrays are identical 2D squ
superlattices of square-shaped islands. The primitive lattice vec
of each superlattice are~1,0,0! and~0,1,0!. The energy per unit area
is calculated as the function of the relative shift (X0 ,Y0) of two
arrays and is given in meV Å22. The fraction of the surface cov
ered by islands equals 0.35. The separation between sheets
lands equals 0.5D for ~a!, 0.35D for ~b!, and 0.2D for ~c!.
notations of Ref. 54 are used. We will characterize the re
tive shift of two sheets of islands by the symmetry positi
of the projection of the center of a surface island onto
superlattice formed by buried islands.

To calculate the energy of interaction between two she
of islands, we fix the coverage of the surfaceQ5L2/D2

50.35, and the parameter of the anisotropy of the dou
force densityPB50.5. The Fourier transform of the shap
function Q~r ! for square islands equals

Q̃~ki!5
4

D2

sin~kxL/2!

kx

sin~kyL/2!

ky
. ~4.1!

We substitute Eq.~4.1! into Eq. ~2.13! and calculate the en
ergy as a function of (X0 ,Y0) for several thicknesses of th
separation layerz0 . Results are plotted in Fig. 5. For a sma
thickness of the separation layer,z050.2D, energy minima
correspond to 4d symmetry positions close to the 1a posi-
tion @Fig. 5~c!#. Approximately the two sheets of islands e
hibit vertical correlation in both@110# and @11̄0# directions.
For z50.35, energy minima correspond to 4f positions@Fig.
5~b!#, and forz50.5D the energy reaches its minimum valu
at 1b positions@Fig. 5~a!#, which implies vertical anticorre-
lation in both@110# and @11̄0# directions.

To give a broader overview of possible relative arrang
ments of two sheets of islands, we fix the coverage of
surfaceQ50.35 and construct the phase diagram in va
ablesPB2z0 . We define the net of parametersPB and z0 ,
calculate for each point (PB,z0) of the net, the energy versu
(X0 ,Y0) and seek the optimum shift (X0 ,Y0) corresponding
to the energy minimum. Symmetry of this optimum point
indicated for each region of the phase diagram of Fig. 6~b!
according to the definition of Fig. 6~a!. For a thin separation
layer,z0<0.5D, several types of relative arrangement of tw
sheets are possible. For thicker separation layer, only m
harmonics of the strain field are important. This yields t
energy minimum either for vertical correlation~position 1a!
or for vertical anti-correlation in both in-plane direction
~position 1b!.

V. DISCUSSION

The only experimental results on multisheet arrays of
islands reported so far are those by Straßburget al.39 A 20-
period vertical superlattice composed of nominally 1
monolayer~ML ! CdSe insertions separated by 30 Å Zn
has been grown by molecular beam epitaxy. Structural ch
acterization by cross-section high-resolution transmiss
electron microscopy~HRTEM! has been performed alon
the ^110& directions. The processing of HRTEM image
clearly reveals that the deposited Cd forms a thin layer~1–2
ML ! of an alloy Zn12xCdxSe with low Cd content and 2D
islands having higher Cd content and lateral dimensi
40–50 Å. The islands in successive sheets exhibit antico
lation in both~110! and ~11̄0! planes.

The results of Ref. 39 show that the islands of each sin
sheet have a compact shape. The HRTEM reveals con
modulations of 4 ML height. Here we take into account th
the width of contrast modulation can exceed the actual wi
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of islands due to the presence of steps, and we model isl
as having 2 ML thickness and a higher Cd content than in
layer between islands. Only the excess content of Cd in
lands with respect to the Cd content in the intermediate la
contributes to the inhomogeneous strain field and is resp

FIG. 6. The phase diagram of a double-sheet array comprise
an array of surface islands and an array of buried islands. B
arrays are identical 2D square superlattices of square-shape
lands. Each square-shaped island is oriented along@100# and @100#
directions. The primitive lattice vectors of each superlattice
~1,0,0! and ~0,1,0!. ~a! The relative shift (X0 ,Y0) is defined by the
projection of the center of a surface island onto the superlat
formed by the buried islands. This projection is characterized
one of seven types of symmetry depicted in the figure.~b! The
phase diagram constructed in variablesz0 /D vs PB. PB is the an-
isotropy of the double force density of buried islands,z0 is the
separation between the surface and the sheet of buried islands
D is the period. Domains of the phase diagram are labeled acc
ing to the symmetry of the projection of the center of a surfa
island onto the superlattice of buried islands, labels being define
~a!.
ds
e

s-
er
n-

sible for vertical anticorrelation of islands. We take this e
cess content equal to 40%.

This makes our model of 2D coherent inclusions app
cable to the particular experimental situation. Since, on
one hand, the thickness of Cd-rich islands is sufficien
small ~2 ML!, and, on the other hand, composition of Cd
islands is sufficiently high (.40%), it is reasonable to as
sume a uniaxially anisotropic double force density associa
with the islands. The characteristic periodicityD of Cd-rich
islands is about 80–100 Å, leading to a rat
z0 /Dz0 /D'0.3–0.4, and the coverage of the surface is
the interval 0.25–0.4. Therefore, the phase diagram of F
6~b! applies to the system in question. The parameter
uniaxial anisotropyPB<0.5 matches the experimental re
sults on anticorrelation of islands. Further structural char
terization including plan view TEM and cross-section H
TEM for systems with other thickness of separation layer
needed to obtain more information and to extract mate
parameters of Zn12xCdxSe islands.

VI. SUMMARY

The spontaneous formation of multisheet arrays of tw
dimensional inclusions~islands! in a matrix where the struc
ture of each sheet of surface islands is being formed in
strain field of buried islands is studied here. The matrix
described as an elastically anisotropic cubic crystal boun
by a stress-free planar~001! surface, and buried islands ar
characterized by a uniaxially anisotropic double force d
sity. We have shown that the elastic interaction betwee
sheet of buried islands and a sheet of surface islands exh
an oscillatory decay with the thickness of the separat
layer, which is related to the existence of generalized R
leigh waves in elastically anisotropic crystals. By varying t
separation between successive sheets of islands, a tran
occurs from vertical correlations to vertical anticorrelatio
in the relative arrangement of islands in successive she
The separation corresponding to the transition depends
matically on the anisotropy parameter of the double fo
density characterizing buried islands. Phase diagrams
constructed for both 1D arrays of stripes and 2D arrays
compact islands forming each single sheet. The phase
grams demonstrate a variety of possible arrangements
small separation between successive sheets and reveal a
versal behavior for large separation where only vertical c
relation or anticorrelation are possible. Our results are
agreement with existing experimental data on anticorre
tions in multisheet arrays of 2D islands.
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APPENDIX A

The explicit expression for the second derivative of the Green’s tensor in Eq.~2.13! is

s i j
~0!S@¹ j¹m8 Gil̃ ~ki ;z,z8!#u

z852z0

z50 s lm
~0!B5s i j

~0!S(
j 51

3

(
m51

3 F ~12d j 3!ik j1d j 3PS
d

dzG
3F ~12dm3!~2 ikm!1dm3PB

d

dz8GGil̃ ~ki ;z,z8!U
z852z0

z50
s lm

~0!B . ~A1!

By substituting the static Green’s tensor from Ref. 44 into Eq.~A1!, one obtains the equation

s i j
~0!S@¹ j¹m8 Gil̃ ~ki ;z,z8!#u

z852z0

z50 s lm
~0!B5s i

~0!Ss i
~0!BFB0

uniaxial~PS,PB!d~z2z8!1ki(
s51

3

Cs
uniaxial~PS,PB;w!exp~2askiuz2z8u!

1ki(
s51

3

(
s851

3

Dss8
uniaxial

~PS,PB;w!exp~2askiuzu!exp~2as8kiuz8u!GU
z852z0

z50

, ~A2!
lu
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which extends the corresponding equation for cubic inc
sions (PS5PB51) obtained in Ref. 4. By substitutingz50
andz852z0 into the right-hand side of Eq.~A2! and intro-
ducing notations

Qs
uniaxial~PS,PB;w!5Cs

uniaxial~PS,PB;w!

1 (
s851

3

Ds8s
uniaxial

~PS,PB;w!, ~A3!

one obtains Eq.~2.15!.

APPENDIX B

To establish the connection between two equations for
elastic interaction energy of islands, one for islands of a m
roscopic thickness, and another for islands with a monola
thickness, one should use the boundary conditions on
stress-free surface and express all components of the s
tensor« i j ~r i , z50! in terms of in-plane components«ab~r i ,
z50! only, where (a,b)5(x,y). The procedure is similar to
that of Ref. 55 and is carried out as follows.

The interaction energy equals the sum of the energy
surface islands in the strain field of buried islands and of
energy of buried islands in the strain field of surface islan
Due to the reciprocity theorem of elasticity theory, bo
these energies are equal, and the total interaction en
equals twice the energy of surface islands in the strain fi
of buried islands. By substituting Eq.~2.10b! into Eq. ~2.9!,
we obtain the interaction energyEelastic

SB as follows:

Eelastic
SB 52hSE d2r iQ

S~r i!l i jpq«pq
~0!« i j

B~r i ,z!U
z50

,

~B1!

where« i j
B(r i ,z) is the contribution to the strain tensor at th

surface due to buried islands. This strain obeys the stress
boundary conditions at the surface, i.e.,
-

e
c-
er
he
ain

f
e
s.

gy
ld

ee

s iz~r i ,z!uz505l izpq«pq~r i ,z!uz502l izpq«pq
~0!

5l izab«ab
B ~r i ,z!uz501l izlz« lz

B ~r i ,z!uz50

2l izpq«pq
~0!

50. ~B2!

To find thelz components of the strain tensor« i j (r i ,z)uz50
it is convenient to introduce the (333) matrixG i l , which is
the inverse matrix tol izlz ,

G i l l lzmz5d im . ~B3!

Then the solution of Eq.~B2! yields

« lz
B ~r i ,z!uz505G l i @l izpq«pq

~0!2l izab«ab
B ~r i ,z!uz50#.

~B4!

By substituting« lz
B (r i ,z)uz50 from Eq. ~B4! into Eq. ~B1!,

one obtains the elastic energy in the form where only
plane components of the strain tensor«ab

B (r i ,z)uz50 enter,

Eelastic
SB 52hSE d2r iQ

S~r i!@labpq

2lab izG i l l lzpq#«pq
~0!«ab

B ~r i ,z!uz50

2hSE d2r iQ
S~r i!«pq

~0!lpqizG i l l lzrs« rs
~0! . ~B5!

In order to understand the physical meaning of the quan
in square brackets in the integrand on the right-hand sid
Eq. ~B5!, we will do the following procedure.

We consider a uniform flat film, lattice mismatched to t
substrate, which is coherently conjugated to the substrate
stress-free strain in the film being« i j

(0) . Then the strain ten-
sor in the film« i j is determined by conditions of cohere
conjugation in the interface plane,

«ab̃50, ~B6a!

and by stress-free boundary conditions at the surface,
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s i z̃5l izlz« l z̃2l izpq«pq
~0!50. ~B6b!

The solution of Eq.~B6b! gives « l z̃5G l i l izpq«pq
(0) , which

allows us to obtain the in-plane components of the str
tensor in the uniform film,

sab̃5lab lz« l z̃2labpq«pq
~0!52@labpq2lab lzG l i l izpq#«pq

~0! .
~B7!

By substituting Eq.~B7! into Eq. ~B5!, we obtain the energy
of the interaction of the array of surface islands and of
array of buried islands as follows:
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