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Vertical correlations and anticorrelations in multisheet arrays of two-dimensional islands
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The energetics of multisheet arrays of two-dimensional islands is studied where the structure of the surface
sheet is determined by thermodynamic equilibrium under the constraint of a fixed structure of sheets of buried
islands. For the arrangement of islands in a single surface sheet, both a one-dimensional structure of stripes and
a two-dimensional structure of square-shaped islands are examined. The buried islands are considered as planar
elastic defects characterized by a uniaxially anisotropic double force density, and the surface islands are
considered as two-dimensional islands characterized by an isotropic intrinsic surface stress tensor. It is shown
that, in cubic crystals with a negative parameter of elastic anisotépyc,,— C1o— 2C44)/C24<0, the elastic
interaction between successive sheets of islands parallel {@@1ie crystallographic plane exhibits an oscil-
latory decay with the separation between sheets. This oscillatory decay is related to generalized Rayleigh
waves in elastically anisotropic crystals. By varying the distance between successive sheets of islands, a
transition occurs from vertical correlations between islands where islands of the upper sheet are formed above
the buried islands of the lower sheetanticorrelationsbetween islands where islands of the upper sheet are
formed above the spacings in the lower sheet. The separation between successive sheets of islands correspond-
ing to this transition depends drastically on the anisotropy of the double force density of buried islands. Thus
an explanation for the recently observed anticorrelations in multisheet arrays of CdSe islands in the ZnSe
matrix is obtained[S0163-1828)04619-(

I. INTRODUCTION First, formation of multisheet arrays of 2D or 3D islands
is a process that is dominated by both equilibrium ordering

Recent breakthroughs in quantum wire and quantum datnd kinetic-controlled ordering. If the deposition of the first
fabrication relies considerably on effects of spontaneous forsheet of islands of material 2 on a material 1 is followed by
mation of ordered nanostructured. The latter include(i)  a growth interruption, or just the growth rate is sufficiently
single-sheet ordered arrays of two-dimensiof2®) islands  low, islands of the equilibrium structure are formed. If then
formed, e.g., in heteroepitaxial systems upon submonolaydslands are regrown by material 1, and the second cycle of
deposition® ! (ii) single-sheet ordered arrays of three-the deposition of material 2 is introduced, a new growth
dimensional (3D) coherently strained islands formed in mode occurs. For typical growth temperatures and growth
highly lattice-mismatched heteroepitaxial systefig? (i) rates, the structure of the buried islands of the first sheet does
multisheet arrays of 3D coherently strained islands orderedot change during the deposition of the second sheet. The
both in the lateral plane and in the vertical directfé?®3!  second sheet of islands grousthe strain field created by
(iv) composition-modulated structures in semiconductor althe buried islands of the first sheétnd the structure of the
loy films revealing lateral superlatticés, vertical second sheet of islands reaches the equilibriumder the
superlattice$®=3® arrays of quantum wires, or quantum constraint of the fixed structure of buried islands of the first
dots®¢3”Recently, multisheet arrays of 2D islands have beersheet
fabricated®® Second, a variation of the separation between successive

In the field of spontaneous formation of ordered semiconsheets gives an additional possibiligs compared to single-
ductor nanostructures, two possibilities are traditionally dissheet arraysto tune geometrical and electronic characteris-
tinguished. First, equilibrium domain structurescan be tics of nanostructures.
formed in closed systemsSuch formation is realized by A remarkable feature of multisheet arrays of 3D islands is
long-time growth interruption or by post-growth annealing.that the buried islands in successive sheets are spatially cor-
Thermodynamics can be applied to describe the equilibriunmelated. At the surface, new islands were observed to be
structures that meet the conditions of the Helmholtz free enformed directly above buried islands. The existing theory
ergy minimum. Secondnonequilibrium structurescan be  explaining well the correlation is based on accounting the
formed in open systemsSuch structures are formed in the strain created by buried islands. In Refs. 25 and 26, the
growth process and observéd situ or ex situin as-grown  strain-induced migration of adatoms of the growing layer
samplesThe structures are additionally governed by growthwas shown to drive adatoms to positions above buried is-

kinetics. lands. In Ref. 28, energetically preferred sites for nucleation
Multisheet arrays of islands are distinct from other typesof islands of the second sheet were shown to occur above
of nanostructures for the two following reasons. buried islands. In above papers, buried islands were approxi-
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mated as elastic point defects, and the crystal was treated as z

I
an elastically isotropic medium. L 0
In seeming contradiction to the above experimental and X,
——
D

theoretical results, very recent experiments on multisheet ar-
rays of 2D islands of CdSe in the ZnSe mattiunambigu-
ously and surprisingly revealed verticahticorrelation be- T— I
tween islands in successive sheets. Surface islands are

formed above the spacings in the sheet of buried islands.

Motivated by these observations, we examine here in de-
tail the energetics of multisheet arrays of 2D islands and seek
the equilibrium configuration of the array of surface islands,
under the constraint of a fixed array of buried islands. The
two key experimental and theoretical inputs of our treatment
that make it different from both those of Xt al?®% and
that of Tersoffet al?® are as follows.

First, we consider 2D islands of 1-2 monolayéksl )
height>® where the separation between successive sheets is a)
comparable to or even less than the lateral size of the islands
in the (Xy) plane. We take into account their exact shape.

Second, elastic anisotropy of cubic crystals is known to
favor the ordering of nanostructures in elastically soft
directionst*>*8 and one can expect a significant effect of r
elastic anisotropy on vertical correlations between islands. !

Since a single-sheet array of 2D islands can exist in two L
qualitatively different forms, namely as a one-dimensional
array of stripes or as a two-dimensional array of difks, r--r
both possibilities are addressed in the paper. \

Lo—--Jd
Lo
Lo

| I |
| I

II. BASIC EQUATIONS

The key mechanism responsible for the relative arrange- S TTr

ment of islands in successive sheets is the formation of an ~ ” 11—

equilibrium array of surface islands in the strain field of bur- L

ied islands. To extract the essential physics governing the —

anticorrelation, it suffices to examine a double-sheet array

that is comprised of one sheet of buried islands and one sheet b)

of surface islands. The further extension to an arbitrary num-

ber of sheets is then very straightforward. FIG. 1. Geometry of double-sheet arrays of two-dimensional
Let material 2 be deposited on tl{@01) surface of the islands. The array of surface islands has the same structure as the

cubic substrate 1. Upon submonolayer deposition, a periodiarray of buried islands but is shifted as a whd®.Each sheet of

array of monolayer-height islands is formed*>*!Let the islands forms a one-dimensional array of stripes. The cross section

structure then be regrown by the substrate material 1, anof the double-sheet structure is showh) Each sheet of islands

introduce the second cycle of deposition of material 2. Thdorms a two-dimensional array of square-shaped islands. The plan

total energy of the surface array of islands in the strain fieloview of the double-sheet structure is plotted. Buried islands are
of the buried islands is depicted by dashed lines, and solid lines are used for surface is-

lands.

Lo—-_-Jd

Eota= Esurit E L+ AESS +ECE 2.1 . _ o .
total ™ =surf T =boundaries” = “elastic “elastic @1 action between the surface islands and the buried islands is

Here,Eg s is the sum of the surface energy of surface islandsieglected, the surface array of islanas a wholecan be
and of the surface energy of uncovered parts of material Isubject to an arbitrary shift in they plane. The strain field
EpoundariesiS the energy of island boundariesE$Y. is the  created by buried islands has the same periodicity as the
elastic relaxation energy of surfac&)(islands due to the array of surface islands alone. Therefore, the fourth term in
discontinuity of the intrinsic surface stress tensor on islandd. (2.1) does not change the periodicity of the surface struc-
boundarieg;® EGB..is the elastic energy of the interaction of ture, and just defines itlative position with respect to the
surface islands$) and of buried islandsE). Since we ad- array of buried islandgFig. 1). Since the interaction energy
dress effects of the finite lateral size of islands and of elastiEsmeiciS the only term in Eq(2.1) that depends on the shift
anisotropy and avoid other complications, we focus on thedf the array of surface islands as a whole with respect to the
typical experimental situation afn equal amount of the de- buried islands, we will focus on this energy term only. Be-
posited material in each deposition cycknen each sheet of low, we will derive the dependence B2, on the shiftX,
islands alone tends to form th&ame periodic structure for a 1D array of stripegFig. 1(a)] and on the shiftX, and
which corresponds to the minimum of the sum of the firstY, for a 2D array of compact islands. For simplicity, we will
three terms on the right-hand side of E@.1). If the inter-  consider the extreme case of compact islands distinct from
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inf_initely elongated stripes, namely, square-shaped islands fi(r):O.i(jO)Vja(r_?) (2.9
[Fig. 1b)].
A. Elastic interaction in a system may be regarded as thmdy force densitgxisting at each
of macroscopic coherent inclusions pOInt |nS|de the InC|USIOnS The pal’tICU|al' fOI’m Of the body

rce density(2.8) corresponds to auperposition of three
utually perpendicular double forces without moment cen-
tered at the point.*2*%In this sense, the tensot) has the
?neaning of thedouble force densitgharacterizing the given
inclusion. To avoid confusion it is worth noting that the
“body force density” is the vectol;[ (> 9(r)] while the
a<h<lL, (2.2 “double force density” is the second-rank tenaq‘fjo)ﬂ(r).

For more than one type of inclusion, the tens¢f’ and
whereL is the lateral dimension of the islands amds their £’ depend on the type of inclusioms The elastic energy
height. Macroscopic coherent inclusions in a matrix are charof interacting inclusions may be written in the form where
acterized by the stress-free straiff’, which refers to the ~Shape functions of the inclusions enter explicttly,
difference between the unit cell of the inclusion material and
the unit cell of the matrix material. For a cubic inclusion in a
cubic matrix,e )= (Aa/a); , where (\a/a) is the relative 1
lattice mismatchg;;=1 if i=j, and 6;;=0 otherwise. The EelastiCZE 5
spatial distribution of inclusions can be described by the P
shape function of the inclusion®(r) defined by

If all three dimensions of the islands are large comparecﬁ
to the lattice parametex, the islands can be treated as mac-
roscopic coherent inclusions in a matrix. For planar island
this condition reads

d®r o (PO (r)[ e’ P—eij(r)]

-
—_— —_—

:%5

3 0 0

5) 1 if r is inside the inclusion 2.3
ry= . .
0 otherwise. -3 % f d3rf d3r’o§j°)p1‘}p(r)Vj
P.q
To provide coherent conjugation between inclusions and the
matrix, additional strain appears in the heterophase system, ><Gi|(f,f')Vr'nU|(r?1)q19q(r')- (2.9
and the elastic stress;;(r) is proportional to the deviation
of the strain from stress-free strdin,
Here, G; (r,r'") is the static Green'’s tensor of the elasticity
theory defined for a given crystal and obeying stress-free
aij (N =Nijiml e1m(1) — e 9(D)]. (2.4 boundary conditions on the surfac¥s.
Since we focus on planar islands that obey the inequality
We assume, for simplicity, that the elastic modulus tensoré2.2) the height of the islands is the smallest dimension in the
Nijim Of the matrix and of the inclusions are equal. Then thesystem. Then, the equation for the elastic en¢gg9) can be
elastic displacement field,(r) obeys the following equilib- simplified. First, we integrate ovef by parts and use for the
rium equation of the elasticity theofy: shape function of the islands the following equations:

NijimV;ViUm(r) = V[ o? (1], (2.5 9B(r)=hBOB(r,) 8(z+ 2q), (2.103

where the tenswi(jo) is connected with the stress-free strain

(0) :
eij’ as follows: 95(r)=h%03(r)) 8(z). (2.10b

(0) —y (0)
Tij = Nijim&im - (2.6 Here superscriptB andS refer to buried and surface islands,

respectivelyy, = (x,y) is the 2D position vectoi®&(r,) and
The physical meaning of the tensef” can be elucidated if ®S(r,) are 2D shape functions. For planar islands obeying
one substitutesd(r)=fd* &(r—T)9(r) into Eq. (2.5. the inequality(2.2), one may approximate that the stress-free
Then Eq.(2.5 takes the following form: boundary conditions on the surface are imposed onzthe
=0 plane. Then, for the Green’s teng@y(r,r') one may
use the Green'’s tensor for a semi-infinite crystal bounded by
)\ijlmvjvlum(r):f d3 Vj[ai(jo)ﬁ(r—?)]ﬁ(?). (2.7 a_str(_ass-free planar surfaze 0, _G“(r”—rH’ :2,2"). By sub-
stituting Egs.(2.10g and(2.10b into Eq.(2.9), and extract-
ing only the energy of interaction of the surface islands and
The integrand on the right-hand side of E8.7) does not of the buried islands, one obtains the interaction energy per
vanish inside inclusions, and the quantity unit surface area as follows:
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hSh8
Egalsa?tic:T J dzr\\f dzrﬁ®S(ru)0i(j0)s[VerInGi|(ru

@B(r)zg Ok exp(ik,-r), (2.123
Il
-r/;2,2")] al2Be8(r/), (2.11) N
- 03(r)= ; O(ky)exp(—ik;-Ro)expik;-r),
I
(2.12n
whereA is the total surface area. where the summation is carried out over the reciprocal-lattice

Since the islands in the two sheets form identical periodicorresponding to a periodic structure of the single sheet of
structures shifted byR,=(X,,Yo), it is convenient to use islands. By substituting Eq€2.129 and (2.129 into Eq.

the Fourier series expansion for the shape functions, (2.11), one obtains the interaction energy in the form of the
sum over the reciprocal-lattice vectors,

Edaaic=h®he Bk Pexptik - Ro) ol TV V1. Gii(kis2.2)1| ol 213
I z=

z'=

29

where V,=ik,, V,=-ik,, Vyziky, and V;E—iky_ B. Interactions between monolayer-height islands

Since we intend to apply our approach mainly to Ill-V-and  The above equations are derived for macroscopic coher-
lI-VI semiconductors having the zinc-blende structure, wegnt inclusions in the matrix, where all dimensions of inclu-
consider the crystal as elastically anisotropic cubic mediungjons are large compared to the lattice parameter. To extend
and use the Fourier transform of the static Green's tensasyr approach to monolayer-thick inclusions, we refer to the
Gil(k;;2,2') obtained by Portz and Maradudifi.For the  macroscopic description of the strain field created by point
double force densityri(jo) we take the tensor with the uniaxial defects*? A point defect located af is represented by the
symmetry, superposition of three mutually perpendicular double forces,
and the effective body force density is

o580 0
a_i(jO)S,B: 0 O_‘(‘O)S,B O f|(r):a|JV]5(r_T:) (216}
0 0 5(0SB A monol_ayer-t_hick inclusion with_ macroscopic dimensions is
L a two-dimensional array of point defects occupying each
1 0 O atomic site within a certain area. The latter can be described
=aﬁ°)S'B 01 o0 (2.14 by a two-dimensional shape functiof®(r,). The body

force density associated with the given inclusion can be ob-
tained by adding contributions of single point defects from
Eqg. (2.16. In the macroscopic approach, this summation can
be replaced by integration, i.e.,

0 0 PSP

whereP is the anisotropy parameter of the double force den
sity. The substitution of Eqg2.14) and of the explicit form
of the Green'’s tensor from Ref. 44 into ER.13 yields the

) . 1 ~ ~ -
interaction energy fi(r)=A— f dzﬂ‘aijvj[a(r“—r”)é(z—z)]B(rH),
0
(2.17
Edasic ShBUﬁO)S‘TﬁO)B; |0(k)|? explik;- Ro)k whereA, is unit cell area in thexy plane. Two expressions
! for the double force density, a macroscopic one from Eq.
s o (2.8) and a microscopic one from E¢R.17), coincide if one
stl QL™ PS, PB; ¢) expl— ars( @) ko). setso{()=a;; /v, wherev is the unit cell volume.

Equation (2.17) is derived under the assumption of no
(2.195 mutual influence between the point defects comprising the
inclusion. Generally speaking, the tensmy characterizing
Heres=1,2,3 labels static analogs of Rayleigh waves con+the double force density is different for a single point defect
tributing to the Green’s tensdg; (k;;z,2'), as(¢) are di- and for a monolayer-thick inclusion. A substitutional impu-
mensionless attenuation coefficients of these wavesgpaad rity atom in a zinc-blende crystal of IlI-V or II-VI semicon-
the angle between thie, vector and[100] crystallographic  ductor hasT site symmetry, and the corresponding double-
direction. CoefficientsQg for cubic inclusions PS=PB  force tensora;; has cubic symmetry. On the other hand, if
=1) were obtained elsewhef&*® Explicit definition of Q;  the inclusion of equal substitutional impurity atoms is ori-
for arbitrary P® and PS is given in Appendix A. ented in thg001) plane of the zinc-blende crystal, has mono-
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layer thickness, and infinite lateral dimensions, each atom ahe substrate of material 1. Equati¢2.19 formally coin-
the inclusion had,; symmetry. Therefore, the tensaag cides with Eq.(2.20 if one sets

and Ui(jo) characterizing the double force density of a buried ~s

island of a monolayer-thickness hawmiaxial symmetry ATop=0aph™. (2.2

With the increase of the thickness of the inclusion, compoHowever, although the intrinsic surface stresg; can be

nentso{”) ando'® depend on the thickness. For an inclusion qualitatively modeled as bulk stress in the epitaxial layer, Eq.
with three macroscopic dimensions, the tensfﬂ) becomes (2.21) does not hold quantitatively. The substrate surface
related to the stress-free stra;ijﬁjo) via Eq. (2.6). For an covered with a monolayer-thick epitaxial layer is, strictly

inclusion of a cubic material in a cubic matrix, the tensorspeaking, a completely new surface distinct from both the

gi(.o) reduces then to an isotropic Oneqri(jo)=(cn substrate surface and the surface of the deposited material.

+2¢,,)(Aa/a) 8, wherecy; andcy, are elastic moduli in This complex surface has its own surface energy and its own

The above discussion shows that the double force density Nevertheless, apart from special cases where the discon-
Ui(jO) has clear physical meaning even for inclusions of 1 MLtm_uny of the intrinsic surface stress tensbr,z d|ffers sig-
thickness, whereas the stress-free sttéfﬁ is defined only mﬁpantly from Eq. (2.2 (s_ee, €9, Ref. 30 in marny
for macroscopic inclusions. This is why we are ust fﬁ) as lattice-mismatched heteroepitaxial systems @R1) yields
the main characteristic of i.nclusions in the present paper the correct sign and the correct order of magnituda of,

) . A "_To clarify the physical reason for it, we make a rough esti-

The energy of the surface island in the strain field can b ity physi LW u9 I

described in terms of thintrinsic surface stress tens6f Tate of the right-hand side of E2.21), by settingo, gh

The crystal surface partially covered by monolayer-heighSEYSOh’ whereY is Young's modulusg, is the lattice mis-

islands can be regarded as a system of two distinct phase Etggo anda\}sAEr;e 'a“'ieo gz;\rametgr. T_hg s%\bsntgt:gn of
and 2, where the phase 1 is the bare surface of material 1 anAgIOO me\r;],i‘z Wr’“ch‘o’?;o]; th’e o?c?er (i‘_the chargtlz?eriZtic
the phase 2 is the complex surface of a monolayer—heigh\;alue of = for, surfaces of pure crystals, where-100
island of material 2 on the substrate of material 1. These twQ v A 24849 '

phases are characterized by different intrinsic surface stred8® '
tensors, 7} and 713}, {a.B}={x,y}. Then the strain-

dependent contribution to the surface energy equals

Below we assume that EQR.21) holds for the system in
question. The above arguments show that this assumption
gives in most cases the correct sign and the order of magni-
tude of the interaction energy. The former will enable us to
AEgyfface j d3r||®s(r“)rf[§saﬁ(r” 2)|,-0 obtain the correct relative arrangement of the two sheets of
islands, whereas the latter will allow us to compare the char-
acteristic energy with other typical energies involved in the
+f d’r[1=05(r)]I e ap(ry,2)] =0 spontaneous formation of surface domain structures.
Besides that, it follows from Eq2.20 that o, is the
(2.18  only quantity that depends on the characteristics of the sur-

To reveal the energy of the interaction of surface islands anéfce island, particularly, on the parameRt referring to the
of buried islands, one should keep in H@8.18 only terms ~ anisotropy of the double force density associated with this
containing the shape functio®S(r,) and to retain in island. Therefore, the variation _@Iswould result only in the
the straine ,4(r;, z=0) only its part due to buried islands, variation of the common factor in the ener®:20 indepen-
e8,(r,, z=0). This yields dent of the separatior, between layers, and of the relative
shift (Xy,Yo) of the two arrays. Moreover, for monolayer-
ss o s 8 thick surface islands, the quantiB® is irrelevant since the
Eelastic_f dr,® (ru)(ATaB)Saﬁ(rH’Z)|z:0a (2.19 surface islands are characterized by phenar tensorA 7,5 .

It follows from the above discussion that it is possible to
where A 7,p)=77)— 7). describe the interaction between the two sheets of islands by
To establish the connection between the energy of elastigq. (2.15 and to setPS=1. Then the anisotropy of the

interaction of two arrays of islands written in terms of the double force density oburied islands B is the only key
double force densityri(jo) (2.9, and the energy written in parameter that governs the elastic interaction between the
terms of the intrinsic surface stre€x19), it is necessary to two sheets of islands.

reduce the energy of E€R.9) to a form where only in-plane

ComponentSagﬁ(rH,z) enter. Since the surface=0 is a IIl. ONE-DIMENSIONAL ARRAYS OF STRIPES

stress-free one, the corresponding boundary conditions allow

us to express all components of the strain tensor in terms of SiNCe most of the essential physics can be understood in
eo4(ry,2) only. This procedure carried out in Appendix B ;hetiﬁanéplf $fgonel—dlmer1fstlﬁnallgrray of :c,l_t;lpes: the pt).reserflt
yields the energieSE. _as follows: irst the detailed analysis of the 1D case. The orientation o

stripes is governed by the anisotropy of the intrinsic surface
stress tensor,z, on the one hand, and by the anisotropy of
ESBi= hsf d?r @5(r)) T 5e54(11,2)|,—0. (220 the bulk elastic modulus tensh, , on the other hand. The
principal axes of the tensar,; are[110] and[110] direc-
whereo,; are in-plane components of the stress tensor irions and this anisotropy promotes the orientation of stripes
the uniform flat film of material 2 coherently conjugated to in one of these directions, whereas the anisotropy of the bulk
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elastic modulus tensor favors the orientation of spontane-
ously ordered structures in the elastically soft directions
[100] and[010]. Both orientations are observed in experi- 204

ment. InAs striped islands on Ga@91) under submono- /

layer coverage are oriented in til0] direction®*°whereas o

a larger than 1-ML coverage in the same system reveals non- 154
planar morphology with islands elongated in th&00]| ]
direction!! In the present study of stripe-shaped islands, we c ] A
will consider both of these symmetries. For both cases, 1
stripes are oriented perpendicular to a mirror plane, and the 25
elastic displacement field created by islands contains only ]
sagital displacements in the mirror plane, whereas transverse
displacements vanish. 05 -
Since we intend to apply our consideration mainly to A ] C
[1I-V and 11-VI semiconductors with zinc-blende structure, )
we consider the crystal as elastically anisotropic cubic me- 1

dium with a negative parameter of elastic anisotropy, o 40 30 20 o 0 o 2 30 a0 e PP

—A

Cy1—Cio—2C
= M< 0. (3.2 FIG. 2. The model phase diagram of the elastic interaction be-

Caq tween the array of surface stripe-shaped islands and the array of

. . . buried stripe-shaped islands. The phase diagram is constructed for
The crucial consequence of the negaiévis that the dimen- the model one-dimensional sinusoidal shape function of the islands,

sionless coefficients of static analogs of Rayleigh Wave%@(ruhcos((wru). P8 is the anisotropy of the double force density

as(¢), which govern the dependence of the interaction enys yy rieq islandsz, is the separation between the surface and the

ergy (2.19 on the separation between the two layers, ar&peet of buried islands, ar is the period.C denotes vertical
complex. Particularly, evaluation ef; for each direction of  qrrejation, andd denotes vertical anticorrelation. The modulation
the wave vectok; by means of Eq(2.16) of Ref. 44 yields  of the density occurs in thgl00] direction, k,lI[ 100].

that two coefficients are complex conjugate,

ay=a' *ia", (3.2
HereR and ® are the absolute value and the phase of the

where the signt or — stands forx, or a5, respectively, and quantity,

the third coefficient is realy} (¢) = a3(¢). Complex attenu-
ation coefficientsy imply thatthe static analogs of Rayleigh
waves exhibit not purely an exponential decay, but an oscil-
latory one This phenomenon is known for surface acoustic 5
waves which aregyeneralized Rayleigh waves elastically C11@] 51+ Ca
anisotropic crystal:®2 The complex attenuation coefficients
lead to the conclusion that the elastic interaction betwee
successive sheets of islands exhibits an oscillatory dec
with the separation between sheets.

L (CiztCad(1+Pat))

=Rexpxzidy). (3.5

Y he dependence of the energy from E8}4) on the relative
Bhift of two arrays of islands is governed by a single factor

: . ; . cog2mXy/D]. Therefore, the energy reaches its minimum at
To discuss the impact of this oscillatory decay on thexozO (correlation, or atX,=+D/2 (anticorrelatioh. The

mutual arrangement of two successive sheets of islands, it Pansit : : X .
) . ; . transition from correlation to anticorrelation occurs if the
worthwhile to consider the simplest model where the Fourier_.

expansion of the shape function of the islaridsl2g con- tsr:?cekrl:;sliqc.)ﬁhé?a ggaggftisoﬁ;lgn&; hes Lﬁgeé ?j(;(i:JOrFS] if the
tains a single Fourier harmonics, P VB y q

21X
@(I’”)=®1CO<T), (33) ®O_ Of”|kx|20:n7T, (36)

and stripe-shaped islands are oriented perpendicular to thgneren is an arbitrary integer number. These valuesggf
(010 mirror plane of the crystal. Then, by evaluating correspond to the transition between correlation and anticor-
Q"™ for this orientation, and by substituting it into EQ. relation for a model structure where the shape function of the
(2.19, one obtains the interaction energy as a function of thgsjands contains one Fourier harmonic only. Figure 2 depicts
shift X, and of the depth of the layer of buried islandg,  the phase diagram of correlation and anticorrelation, which
depends on the anisotropy of the double force density of

ESE _ _h2(0,)? w (a)”)? R cod 27X buried islands,P8=¢{"/o{?, and on the separation be-
elastic VD cge” D tween islands. An important issue of the phase diagram is the

very steep slope close ©%=1. It implies that even small
deviations from isotropic double force density, i.e., from
PB=1, may lead to dramatic changes of the arrangement of

2’7TZO
D

Xsin ®g—a” (3.9

, 27720
ex o D |
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FIG. 3. The interaction energy of a sheet of
surface islands and a sheet of buried islands. Both
sheets consist of identical one-dimensional arrays

-0.05

-0.10 fined per unit surface area and is given in

meV A~2. The width of the islands equals @2
in (a), (b), and(c); 0.39D in (d), (e), and(f); 0.5
D in (g), (h), and(i).

E
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’: r of infinitely elongated stripes. The energy is de-

0.35D

c) f) i)

a multisheet array of islands. The phase diagram for stripeisotropy parameter of the double force den$¥ is the fit-
elongated in th¢110] direction is very much like the one in ting parameter of the theory. Below we study the dependence
Fig. 2. of the relative arrangement of the two sheets of islands on
The shape function of real islands is not a single Fouriethe parameteP® both for 1D arrays of stripeéin this sec-
harmonic but a rectangular function in real space. For agjon) and for 2D arrays of square-shaped islafidsSec. I\).
array of stripes of the width having the periodicityd, the  comparison of our theoretical conclusions with the experi-
Fourier transform of the shape function equals mental observations of Ref. 39, which is carried out in Sec.
V, gives the interval for the parametef, PB<0.5. Here we
) present a more detailed analysis of the dependence of the
3 _sm(kXL/Z) _ (3.7 relative arrangement of the two sheets of islands on the sepa-
D Ky rationz, between the layers and on the cover@yel/D by
fixing one particular value oPE=0.5.
To perform numerical calculations, we use particular param- Figure 3 shows the elastic interaction energy versus the
eters of CdSe:ZnSe islands studied experimentally in Refshift X, of two successive sheets of islands where results are
39. As will be discussed in detail in Sec. V, the islands arepresented for three different separatiagsand for three val-
Zn,_,Cd,Se islands having a thickness of 2 ML and theues of the coverag®. If z=0.2D, and the coverag®
characteristic lateral periodicity of 100 A. For the double equals 0.9Fig. 3(i)] or Q=0.35[Fig. 3f)], vertical correla-
force density o{”’S® entering Eq.(2.15 we take o{®®  tion occurs. IfQ=0.2, the plot of the energy versus the shift
=o({D%=(c11+2¢1) eDx, wheree®=0.0725 is the lattice X, has two minima per period. For larger separation between
mismatch between bulk CdSe and bulk ZnSe, ard.4 is  sheets of islandszy=0.33D, the amplitude of the energy
the Cd content in the islands. The elastic modal;,  profile decreases, and vertical correlations are replaced by
=0.850x 10" ergcm 3, ¢;,=0.502x10% ergcm®, and  anticorrelatior[Fig. 3h)] or by an intermediate arrangement
C44=0.407x 10" erg cm 2 are taken from Ref. 53. The an- [Fig. 3e)]. For a lower coverag®=0.2, an intermediate

O(k) =
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arrangement of islands persigig. 3(b)]. For even larger
separationzy=0.5D, all three arrays show anticorrelation.

To discuss the numerical values presented in Fig. 3 we 201
compare them with the energy per unit area for a single-sheet /
structure of islands. By extending the equation derived for 1
elastically isotropic media in Ref. 40, for tli@01) surface of 15
the cubic crystal, one obtains the energy per unit area of a 1
single-sheet array of stripeg= —sin(7rQ)(Ar)22a’cll(ci1 c 1 A
—c2) X#D) "%, whereQ is the coverage of the surface.
By substituting here\ 7= (cy;+ 2¢15) (C1;—C19) G118 (PxhS,
Q=0.5, and by using the above-mentioned numerical values,
one obtainE=—0.08 meV A 2. From this estimate it fol- A }
lows that, if the separation between two shegtss smaller 0.5
than 0.B, the energy of the interaction between two sheets
of islands is of the same order of magnitude as the energy of I
a single sheefThis comparison confirms that the elastic in- SN S
teraction between the two sheets of islands can indeed result 50 -40 30 20 -10 0 10 20 30 40 50 P°
in vertical correlation or anticorrelation between the two
sheets a)

It should be noted that the dependenc&ain X, which
has more than one minimum per period, as in Fig¥),3
3(c), and 3e), may give rise, in principle, to a splitting of
surface islands in the external strain field. Numerical tests 207
show, however, that at leastat=0.2D, such splitting is not /
energetically favorable. Below, we do not consider such a B,
possibility. 5

The onset of the intermediate arrangement of islands in :
the successive sheets is due to the interplay of different Fou- c | A
rier harmonics of the strain field. Since higher harmonics
decrease faster with the separation between the two sheets of A
islands than the lower ones, higher harmonics are important 4
only in a narrow region of the separatiap where the am- ]
plitude of the main harmonic vanishes. 05 -

Figure 4 demonstrates phase diagrams of a double-sheet A 1 c
array of stripe-shaped islands. Phase diagrams are con- p
structed with respect to variableg and P® for two different I 1 —
coverages of t.he surface.. Each point. on the phas_e diagrgm a0 40 30 80 140 © 10 20 30 40 5o PP
corresponds either to vertical correlation or to vertical anti-
correlation, or to an intermediate arrangement. These dia- b)
grams also demonstrate that the intermediate arrangement
occurs mainly if the separation between sheets is not very FiG. 4. Phase diagrams of a double-sheet array comprised of an
large, or just if the system is close to the transition fromarray of surface islands and an array of buried islands. Both arrays
vertical correlation to vertical anticorrelation. are identical one-dimensional arrays of infinitely elongated stripes.

For the smaller value of the covera@e[Fig. 4a)], the  Stripes are oriented in tH®10] direction. PB is the anisotropy of
amplitude of the first Fourier harmonics decreases, and thihe double force density of buried islands,is the separation be-
role of higher Fourier harmonics increases. Correspondinglytween the surface and the sheet of buried islands, @nd the
the parameter region on the phase diagram corresponding period. C denotes vertical correlatiori, denotes an intermediate

an intermediate arrangement is larger for smaQer arrangement ané\ denotes vertical anticorrelatiofe) The cover-
age of the surface is 0.2b) The coverage of the surface is 0.5.

IV. TWO-DIMENSIONAL ARRAYS

OF COMPACT ISLANDS tice the most favorable arrangemérithe primitive lattice

vectors of the superlattice are oriented in [h60] and[010]

In this section, we discuss multisheet arrays of 2D islandslirections. Taking into account the anisotropic part of the
where each single sheet is a 2D superlattice of compact isurface stress tensor could make, under certain circum-
lands. To reveal the characteristic behavior of such arraystances, an asymmetric superlattice more favorable. This
we focus on such islands that are the most distinct ones fromomplexion is not discussed here.
1D stripes, namely on square-shaped islands. To be specific, The symmetry of the system with a square superlattice of
we consider square islands oriented in ffi60] and[010]  buried islands and no surface islands is described by the
directions. For compact islands on tl@01) surface of a P4mmlayer group. Figure @) depicts seven types of sym-
cubic crystal, the elastic interaction makes a square superlataetry positions within a unit cell of the superlattice. The
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notations of Ref. 54 are used. We will characterize the rela-
tive shift of two sheets of islands by the symmetry position
of the projection of the center of a surface island onto the
superlattice formed by buried islands.

To calculate the energy of interaction between two sheets
of islands, we fix the coverage of the surfa@e=L2/D?
=0.35, and the parameter of the anisotropy of the double
force densityPB=0.5. The Fourier transform of the shape
function O(r) for square islands equals

4 sin(k,L/2) sin(k,L/2)

y

We substitute Eq4.1) into Eq.(2.13 and calculate the en-
ergy as a function ofXg,Y,) for several thicknesses of the
separation layer,. Results are plotted in Fig. 5. For a small
thickness of the separation layep=0.2D, energy minima
correspond to d symmetry positions close to thealposi-
tion [Fig. 5(c)]. Approximately the two sheets of islands ex-
hibit vertical correlation in boti110] and[110] directions.
Forz=0.35, energy minima correspond té gositions|Fig.
5(b)], and forz=0.5D the energy reaches its minimum value
at 1b positions[Fig. 5a)],_which implies vertical anticorre-
lation in both[110] and[110] directions.

To give a broader overview of possible relative arrange-
ments of two sheets of islands, we fix the coverage of the
surfaceQ=0.35 and construct the phase diagram in vari-
ablesPB—z,. We define the net of parametdP€ and z,,
calculate for each pointR®,z,) of the net, the energy versus
(Xp,Yo) and seek the optimum shifXg,Y,) corresponding
to the energy minimum. Symmetry of this optimum point is
indicated for each region of the phase diagram of Fiy) 6
according to the definition of Fig.(8). For a thin separation
layer,z;<0.5D, several types of relative arrangement of two
sheets are possible. For thicker separation layer, only main
harmonics of the strain field are important. This yields the
energy minimum either for vertical correlatigposition 1a
or for vertical anti-correlation in both in-plane directions
(position 1b.

V. DISCUSSION

The only experimental results on multisheet arrays of 2D
islands reported so far are those by StraRteirgl3® A 20-
period vertical superlattice composed of nominally 1.1
monolayer(ML) CdSe insertions separated by 30 A ZnSe
has been grown by molecular beam epitaxy. Structural char-
acterization by cross-section high-resolution transmission
electron microscopyHRTEM) has been performed along
the (110 directions. The processing of HRTEM images
clearly reveals that the deposited Cd forms a thin ld§er2

FIG. 5. The interaction energy of an array of surface islands ané\/”‘) of an e}lloy Z_q_xCdXSe with low Cd content gnd ZD

of an array of buried islands. Both arrays are identical 2D squaréSl@nds having higher Cd content and lateral dimensions
superlattices of square-shaped islands. The primitive lattice vector80—50 A. The islands in successive sheets exhibit anticorre-
of each superlattice af@,0,0 and(0,1,0. The energy per unit area 1ation in both(110 and(110) planes.

is calculated as the function of the relative shif,(Y,) of two The results of Ref. 39 show that the islands of each single
arrays and is given in meV A2, The fraction of the surface cov- Sheet have a compact shape. The HRTEM reveals contrast
ered by islands equals 0.35. The separation between sheets of i®odulations of 4 ML height. Here we take into account that
lands equals 0I5 for (a), 0.3 for (b), and 0.D for (c). the width of contrast modulation can exceed the actual width
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oo r--=9 oA sible for vertical anticorrelation of islands. We take this ex-
) . \ A . . cess content equal to 40%.
! ' ! ' f I This makes our model of 2D coherent inclusions appli-
1b cable to the particular experimental situation. Since, on the
4d one hand, the thickness of Cd-rich islands is sufficiently
G small (2 ML), and, on the other hand, composition of Cd in
islands is sufficiently high %40%), it is reasonable to as-
sume a uniaxially anisotropic double force density associated
with the islands. The characteristic periodicilyof Cd-rich
islands is about 80-100 A, leading to a ratio
X \ ( X Z7/Dz,/D~0.3-0.4, and the coverage of the surface is in
! [ [ the interval 0.25-0.4. Therefore, the phase diagram of Fig.
e C___ L____ 6(b) applies to the system in question. The parameter of
L_D_J uniaxial anisotropyP®<0.5 matches the experimental re-
a) sults on anticorrelation of islands. Further structural charac-
terization including plan view TEM and cross-section HR-
TEM for systems with other thickness of separation layer are
% needed to obtain more information and to extract material
D parameters of Zn ,Cd, Se islands.

2.0 -
1b / 1a
] VI. SUMMARY

15 - The spontaneous formation of multisheet arrays of two-
] dimensional inclusion§islands in a matrix where the struc-
1a | 1b ture of each sheet of surface islands is being formed in the
10 strain field of buried islands is studied here. The matrix is
- described as an elastically anisotropic cubic crystal bounded
1 2¢c by a stress-free plan#001) surface, and buried islands are
1b ] characterized by a uniaxially anisotropic double force den-
05 4 1a sity. We have shown that the elastic interaction between a
] sheet of buried islands and a sheet of surface islands exhibits
4 4d 1b an oscillatory decay with the thickness of the separation
Bgﬁ' r— Ad 4 layer, which is related to the existence of generalized Ray-
50 40 -30 20 10 0 10 20 30 40 so0 PP leigh waves in elastically anisotropic crystals. By varying the
b) separation between successive sheets of islands, a transition
occurs from vertical correlations to vertical anticorrelations
) . in the relative arrangement of islands in successive sheets.
FIG. 6. The phase diagram of a double-sheet array comprised 6o geparation corresponding to the transition depends dra-
an array of surface islands and an array of buried islands. BO“l)haticaIIy on the anisotropy parameter of the double force
arrays are identical 2D square superlattices of square-shaped iaénsity characterizing buried islands. Phase diagrams are

I"’?ndsi Each squart_a-s_haped '.Sland is oriented &1b00] and[lQO] constructed for both 1D arrays of stripes and 2D arrays of
directions. The primitive lattice vectors of each superlattice are

(1,0,0 and(0,1.0. (a) The relative shift Ky,Yo) is defined by the compact islands forming e;ach single ;heet. The phase dia-
projection of the center of a surface island onto the superlattictgramS demor_lstrate a variety of pOSS'bIe arrangements for_
formed by the buried islands. This projection is characterized bfma” SeparaFlon between successive sheets and reyeal a uni-
one of seven types of symmetry depicted in the figute. The versgl behawor for Iarge separatlon_where only vertical cor-
phase diagram constructed in variabtggD vs PB. P8 is the an- relation or anticorrelation are possible. Our results are in
isotropy of the double force density of buried islandg,is the ~ agreement with existing experimental data on anticorrela-
separation between the surface and the sheet of buried islands, afi@ns in multisheet arrays of 2D islands.
D is the period. Domains of the phase diagram are labeled accord-
ing to the symmetry of the projection of the center of a surface
island onto the superlattice of buried islands, labels being defined in
(a. The authors are grateful to Yu. E. Kitaev for drawing their
attention to the description of the symmetry of the structure
by layer groups and to the usage of correct notations of sym-
metry positions. The authors thank I. L. Krestnikov for help-
of islands due to the presence of steps, and we model islandigl discussions. The work was supported by the Russian
as having 2 ML thickness and a higher Cd content than in th&oundation for Basic Research Grant No. 96-02-17943a, by
layer between islands. Only the excess content of Cd in isthe Joint Grant of the Deutsche Forschungsgemeinschaft
lands with respect to the Cd content in the intermediate laye{Sfb 296, and of the Russian Foundation for Basic Research
contributes to the inhomogeneous strain field and is respor(96-02-00168@ and by the Volkswagen Stiftung.
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APPENDIX A

The explicit expression for the second derivative of the Green’s tensor ilRBE® is

3
oV, VG (k522 a’,m B= (05D m§=) [(1—513)|kj+5jgpsd—z}

=1 m=1

X| (1= 8ma) (—ik >+5m3Pde} ..(k.zz) i - (A1)

,ZO
By substituting the static Green’s tensor from Ref. 44 into &d.), one obtains the equation
3

o PV, Gi(k;z.z ]z af,ﬁ? =050 (08 Bt‘,”iaXia'(PS,PB)5(z—z’)+kugl cunaxiai pS pB: o) exp( — ask)|z—2'|)

3 3
+k||sz 2_ szg'laXIal PS,P8; p)exp( — ask|z|)exp — as k| Z']) . , (A2)
7'=-z,
|
uih exens th coresponing euaton for cule e, )= i1 2o Nuet
andz’' = —z, into the right-hand side of E§A2) and intro- =Nizageop(1:2) =0+ Nizize (11,2 |20
ducing notations ()
izpa€pq
aniaxial( PS,PB;(,D) — Cuniaxial( PS,PB;(,D) =0. (BZ)

w

o To find thelz components of the strain tensef(r;,z)|,-o
2 unaxial ps pB: o), (A3) it is convenient to introduce the ¢33) matrixT";, , which is
s'=1 the inverse matrix to\,,,

one obtains Eq(2.15. CilNizmz= Oim - (B3)

Then the solution of Eq(B2) yields
APPENDIX B

B =T\ (0) _y. B
To establish the connection between two equations for the #1112 ]z=0=TilNizpee p )\'Z"‘Beaﬂ(r”’Z)|Z=°]'(B4)

elastic interaction energy of islands, one for islands of a mac-
roscopic thickness, and another for islands with a monolayeBy substitutings2(r,,z)|,—o from Eq. (B4) into Eq. (B1),
thickness, one should use the boundary conditions on thene obtains the elastic energy in the form where only in-
stress-free surface and express all components of the strggtane components of the strain tens@rﬁ(r” ,2)| .= enter,
tensore;j;(ry, z=0) in terms of in-plane componen&gﬁ(r”,
z=0) only, where @,8) =(X,y). The procedure is similar to £SB hsf d2r, O 5(r, [\
that of Ref. 55 and is carried out as follows. elastic— 19 LA appq
The interaction energy equals the sum of the energy of
surface islands in the strain field of buried islands and of the _)‘aﬁizril)‘lzv)q]qusaﬁ(r” 2)z=0
energy of buried islands in the strain field of surface islands.
Due to the .reciprocity theorem of elastic_ity theqry, both _hSJ erH@S(r“)sgj%))\pqizpn)\lmgﬁg>_ (B5)
these energies are equal, and the total interaction energy
equals twice the energy of surface islands in the strain fielgh order to understand the physical meaning of the quantity
of buried islands. By substituting E.100 into Eq.(2.9),  in square brackets in the integrand on the right-hand side of
we obtain the interaction enerdy2.,.as follows: Eqg. (B5), we will do the following procedure.
We consider a uniform flat film, lattice mismatched to the
B of o s (0 B substrate, which is coherently conjugated to the substrate, the
Eglasic= —h J d“r®@>(r)Nijpqepq &ij (r1,2)| stress-free strain in the film beirg® . Then the strain ten-
z=0 (B1) sor in the filme;; is determined by conditions of coherent

conjugation in the interface plane,
wheresﬁ(ru ,Z) is the contribution to the strain tensor at the =~-0 (B6a)
surface due to buried islands. This strain obeys the stress-free ap=
boundary conditions at the surface, i.e., and by stress-free boundary conditions at the surface,
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Ti2=Niz212812— NizpeE 0 =0. B6b —

Oiz iz1z€1z izpa€pq ( ) Eglgstic: th dzru@S(rH)U'a/;sEﬂ(r,Z)|z:o
The solution of Eq.(B6b) gives &, =T"i\i;peels . Which
allows us to obtain the in-plane components of the stress

tensor in the uniform film, _hsf d?r @5(r) e\ pgiliiNizrse Y . (BB)

—~— ~_ 0)_ _ _ (0) Here the first term on the right-hand side of E&8) is
Tap=Napiz812~ Nappa®pg = ~[Naspa )\“ﬁ'zr”)\”pq]spéy) obtained is the required form %ontaining only in-plaz‘ine com-
ponents of the strain tensor. Since the second term does not
By substituting Eq(B7) into Eq.(B5), we obtain the energy contain the strain due to the buried island, it can be omitted
of the interaction of the array of surface islands and of therom the interaction energy. This gives us the interaction

array of buried islands as follows: energy in the form of Eq(2.20.
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