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Calculation of vibrational lifetimes in amorphous silicon using molecular dynamics simulations
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~Received 6 January 1998!

The decay of normal-mode excitations is calculated for amorphous silicon through molecular-dynamics
simulations within periodic supercells consisting of 216 and 4096 atoms. Phenomenological structural and
interatomic potential models are employed. At moderate temperatures, lifetimes are found to be on the order of
10 ps and lifetimes of localized and extended nonpropagating modes are comparable. These features are in
agreement with related perturbation theory calculations, and in strong disagreement with the frustrated anhar-
monic decay predicted by the fracton model and apparently with the results of anti-Stokes Raman experiments
performed atT510 K. @S0163-1829~98!01319-8#
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The investigation of the vibrational properties of amo
phous solids has been an active area of research since Z
and Pohl first found evidence that the thermal properties
these materials differ remarkably from their crystalline cou
terparts at low temperatures.1 In addition, the heat capacitie
and thermal conductivities of a wide variety of amorpho
materials have been found to have the same qualitative
quantitative temperature dependences, indicating an app
universality. A phenomenological model based on tunnel
between states of constant spectral density has been us
explain this behavior. However, the physical nature of th
entities is not well understood.2–4

To further complicate this picture, recent theoretical5 and
time-resolved Raman6 studies of the lifetime of high-energ
vibrational modes in amorphous silicon disagree by sev
orders of magnitude. The experimental results were obta
by measuring the decay rates of nonequilibrium phon
populations produced by the relaxation of hot charge carr
following pulsed laser excitation. The temporal evolution
the Stokes and anti-Stokes Raman intensities suggests
the vibrational lifetime increases with increasing frequen
and is on the order of 10 ns for the highest-frequency mod
The perturbative study by Fabian and Allen,5 on the other
hand, predicts a ps time scale that follows the two phon
density of states.

A theoretical treatment based on a fractal network, alb
of fractal dimensionality three, has been proposed by Orb
and Jagannathan to explain the experimental results.7 In their
theory of fractons, a crossover length scale is defined
divides the density of states into a~lower frequency! Euclid-
ean form and a~higher frequency! fracton form. The cross-
over wavelength for amorphous silicon is assumed to be
or 30 Å, which corresponds to a low-frequency bounda
~mobility edge! between localized and extended states
much lower than for our models that show a quite clear m
bility edge near the top of the vibrational spectrum.
course, we cannot rule out unusual localization on a lar
length scale than that of our supercells, which are at mos
Å along an edge. The work of Fabian and Allen and
Fabian8 also give contrary evidence to a claim by Orba
and Jagannathan that these localized modes cannot dec
fast as extended phononlike modes.
570163-1829/98/57~19!/12234~5!/$15.00
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Here we present the results of calculations of vibratio
lifetimes for models of amorphous silicon using molecula
dynamics~MD! simulations. These types of numerical e
periments have been increasingly used to study the pro
ties of amorphous materials in an attempt to bridge the
between theory and experiments. Most recently, they h
been used to investigate the Raman spectrum of amorp
silicon9 and high-frequency modes in fused silica.10 Al-
though the use of atomistic models restricts the interpreta
to the classical regime, experimentally relevant informat
about the amorphous structure and vibrational modes
been obtained. An early study similar to ours, but for a cr
talline model, was done by Dickey and Paskin.11

We choose the same potential and structural models
used by Fabian and Allen in their study except that we a
make use of a 4096 atom model in addition to their 216 at
model. The 4096 atom model that we use was obtained f
Wooten and co-workers12 and relaxed, as for the 216 atom
model, using the Stillinger-Weber~SW! potential.13 The con-
tinuous random network models, like those produced by
Wooten-Winer-Weaire procedure, give radial distributi
functions that are in good agreement with the experiment
are also supported by recent ‘‘variable coherence transm
sion electron microscopy’’ experiments in amorpho
germanium.14 Equilibration of those models with respect
the SW potential does not affect the structural characteris
greatly.

The SW potential gives reasonably accurate results
harmonic and quasiharmonic properties of the crystal.15 The
potential’s empirical content was structural data from bo
solid and liquid silicon, the melting temperature of the cry
tal, and the cohesive energy of the solid. It is important
point out that the SW potential has been shown to yi
differences in elastic properties between amorphous
crystalline silicon quite accurately.16 For a detailed compari-
son of the SW potential with experiment for mode Gru¨neisen
parameters and pressure dependences of elastic constan
Porter et al.17 and Feldmanet al.,18 respectively. The SW
potential yields the high-temperature thermal expansivity
tremely accurately17,19 but it has been pointed out17 that this
is due in large part to a cancellation of errors in mode Gr¨n-
eisen parameters. Recall that Gru¨neisen parameters depen
on third-order derivatives linearly, whereas inverse lifetim
depend on them quadratically~in lowest-order perturbation
12 234 © 1998 The American Physical Society
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57 12 235CALCULATION OF VIBRATIONAL LIFETIMES I N . . .
theory!. Since certain mode Gru¨neisen parameters are poor
given by the SW parameter and since SW pressure de
tives of elastic constants are too small by about 25%
more, it is not surprising that the crystalline value of the S
inverse lifetime for the TO zone-center mode was found
be too small by a factor of 2~Ref. 5! in comparison to ex-
periment. A parametrized fit of a generalized Keating cub
anharmonic model to first principles local-density appro
mation ~LDA ! calculations yielded similar disagreeme
with experiment,20 but ab initio LDA calculations,21 as well
as early empirical tight-binding MD calculations,22 yielded
excellent agreement with experiment. It was suggested
Ref. 20 that their disagreement with experiment was an
dication of the need to include anharmonicity to higher-or
terms than cubic ones. Finally, we remark that the SW
tential cannot represent the observed flattening of acou
branch dispersion curves or the observed negative the
expansivity over a low-temperature range.

The 216 atom model is identical to the one used by
bian and Allen, so the MD and perturbative results are
pected to be similar; however, the computer simulations
low the full anharmonic potential to be explored. Dec
mechanisms in addition to those due to cubic anharmoni
may therefore contribute to the relaxation. Although the M
results are only applicable to the classical regime, these
alistic models for the potential and amorphous struct
should yield an order of magnitude estimate of the vib
tional lifetime. In addition, we obtain very similar results fo
supercells with 216 and 4096 atoms, so the finite system
in these calculations does not seem to be a factor. Thes
the first studies of this nature for a large-scale realistic am
phous system.

Our initial systems are 216 and 4096 atom supercells
have been relaxed to zero temperature and pressure usin
incremental time step ofdt50.005t, where the basic time
unit t is equal to 0.076634 ps. The 216 atom model an
similar one with 1000 atoms have previously been used
calculate the phase diagram23 and thermal conductivity.24

Isokinetic ensembles are then obtained by assigning ran
velocities to each atom and scaling them to correspond to
desired temperature. During a preliminary simulation, th
velocities are rescaled at increasing time intervals, wh
calibrates the kinetic energy of the system without a reson
accumulation of energy in any vibrational modes.25 After
5000 time steps, the thermostat is removed and the sys
allowed to adjust to a microcanonical ensemble by conti
ing the MD simulation for another 50 000 time steps. T
instantaneous displacements, velocities, and acceleration
then used as initial conditions in the computer experimen

At each temperature, kinetic energy is put into selec
modes of vibration and monitored as a function of time. A
suming the system is a microcanonical ensemble before
perturbation, the average vibrational energy should be
same in each mode. However, the instantaneous pote
and kinetic energies generally differ from the ensemble
erage, which complicates the comparison of the decay r
for different modes and/or different temperatures. To elim
nate this problem, we found it useful to remove the init
potential and kinetic energy in the desired mode before a
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ing the perturbation. This condition, which fixes the initi
phase and amplitude of the vibrational mode, may be
pressed as

r¢5r¢T2$ê~v0!–@r¢T2r¢0#%ê~v0! ~1!

and

v¢5v¢T2@ ê~v0!–v¢T#ê~v0!1A0v0ê~v0!, ~2!

wherer¢T and v¢T are 3N-dimensional vectors that represe
the instantaneous displacements and velocities at temp
ture T, r¢0 are the equilibrium coordinates at zero tempe
ture, andA0 is the scaling amplitude for the energy put in
a vibrational mode with eigenvectorê(v0) and frequency
v0. Strictly speaking, Eqs.~1! and ~2! are appropriate if the
eigenvectors are independent of temperature. We find
this is indeed the case for temperatures below 30 K, but
average displacements and zero-temperature coordinate
viate at higher temperatures as the system accesses
configurations during the constant volume simulations. So
of the high-frequency modes are strongly affected by th
structural changes since they are spatially localized with
namics that depend on the local environment.

After the perturbation described above, the kinetic ene
in a given mode is monitored as a function of time by co
puting

K~v0 ,t !5@ ê~v0!–v¢#2. ~3!

The instantaneous kinetic energy is a rapidly oscillat
function, soK(v0 ,t) is averaged over a few vibrational pe
riods to smooth the data. This type of probe is valid as lo
as the decay rate is slow compared to the vibrational per
which is the case for the modes and temperatures consid
here. To check that the system has actually reached equ
rium, the power spectral density~PSD! of the lattice is com-
puted to monitor changes in the nonequilibrium density
states. The PSD has the advantage of not requiring
normal-mode eigenvectors, however, direct calculation
the kinetic energy using Eq.~3! yields information on spe-
cific modes rather than the average of a group of modes
lies within a small frequency band.

In the weak perturbation limit, the kinetic energy of th
mode is assumed to decay exponentially, in which case
atomic velocities have the time dependence

va,i5ea,iA0v0e2t/t cos~v0t !. ~4!

The equilibrium value att5` has been neglected in thi
analysis, but it should be noted that the kinetic energy
each mode decays to a equilibrium value ofkT/2, not zero.
Inclusion of this term does not significantly affect the calc
lated value of the decay rate, so it will not be consider
further. With this approximation, the average kinetic ener
during one vibrational periodt0 is then

^K~v0!&5
A0

2v0
2t

4t0
~12e22t0 /t!. ~5!

The lifetime of the mode is thent/2, and the corresponding
decay rate isG52\/t.
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12 236 57S. R. BICKHAM AND J. L. FELDMAN
Energies have been calculated using Eq.~3! for a pertur-
bation with amplitudeA050.05 in the highest-frequenc
mode in the 216 atom supercell withv0578.7 meV. This
produces a net temperature increase of 4 K from the initial
temperature of 5 K. The log kinetic energies of all 6
modes are plotted as a function of time and frequency in F
1. The data are obtained by averaging Eq.~3! over 3.1 ps
intervals for each vibrational frequency, and the maxima
the time and frequency axes are 122.6 ps and 78.7 m
respectively. Although the perturbation energy is put into
single mode, a small portion is quickly and nonradiative
transferred to other modes by anharmonic coupling. The
tial kinetic energy spectrum therefore has a strong peak a
perturbation frequency with secondary peaks at lower
quencies. As the simulation progresses, this nonequilibr
distribution evolves into a microcanonical ensemble w
each mode having the same average kinetic energy. The
scale for this relaxation is on the order of tens of ps, a
similar decay times have been obtained for other locali
and extended, nonpropagating modes in the 216 a
model.26

In the derivation of Eq.~4!, the amplitude in a given mod
is assumed to decay exponentially as the system evolve
wards equilibrium. This implies that the lifetime is indepe
dent of the perturbation amplitude. Figure 2 shows the de
of the kinetic energy of a localized mode with a frequency
87.8 meV in the 4096 atom system for four different pert
bation amplitudes. The initial temperature of 5 K increased
by 1.05, 0.28, 0.11, and 0.06 K for input amplitudes ofA0
50.10, 0.05, 0.03, and 0.02, respectively. Exponential fits
the simulation data are plotted with heavy lines, yieldi
lifetimes of 8.3, 11.7, 13.9, and 13.9 ps, respectively. T
functional form is an excellent fit for all four cases, althou
low-frequency oscillations in the average kinetic energy

FIG. 1. Logarithm~base 10! of the average kinetic energy as
function of time and frequency for the initial conditions describ
in the text. The kinetic energy is averaged over successive
intervals of 3.1 ps for each of the 648 modes during a 122.6
simulation.
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evident when the perturbation amplitude is large. A mo
detailed analysis shows that these oscillations arise f
coupling to other high-frequency localized modes. Althou
these modes are orthogonal in the harmonic limit, they
not always spatially isolated and may be coupled by anh
monicity when nearest or next-nearest neighbors are sha
This coupling does not, however, appear to be a signific
decay mechanism. The small amplitude lifetime is appro
mately 14 ps, which is in qualitative agreement with t
lifetimes of other modes in the 216 and 4096 atom sup
cells.

The temperature dependence of the decay rates is
tained by extrapolating lifetimes such as those determi
from the simulation data in Fig. 2 to the limit of zero pertu
bation amplitude. The perturbative decay rates for
highest-frequency mode in the 216 atom supercell are plo
by the dashed curve in Fig. 3, while the MD results for t
same mode are plotted using open squares. The error bar
representative of the uncertainty in the numerical fits due
finite simulation times, statistical noise, and the backgrou
kinetic energy level. The solid line represents the best lin
fit to the simulation data. Note that the MD decay rate
approximately a factor of 2 larger than the high-temperat
limit of the perturbative result, which indicates that high
orders of anharmonicity not included in the latter analy
may be important. The MD decay rates for the highe

e
s

FIG. 2. Exponential fits to the average kinetic energy of t
highest-frequency mode in the 4096 atom supercell for differ
perturbation amplitudes. The initial temperature is 5 K and the vi-
brational frequency is 87.8 meV. The oscillations in theA050.10
curve are due to anharmonic coupling to other localized modes.
lifetime increases with decreasing perturbation amplitude and
trapolates to a value of approximately 14 ps atA050.
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57 12 237CALCULATION OF VIBRATIONAL LIFETIMES I N . . .
frequency mode in the 4096 atom supercell are plotted u
open circles, with the best linear fit represented by the s
line. The slope is larger than that for the highest-freque
mode in the 216 atom model; however, it is important to n
that these modes are idiosyncratic, with decay rates
strongly depend on their local environments. For exam
the modes in the 216 atom model with the highest six f
quencies are all strongly localized with similar inverse p
ticipation ratios, but have decay rates~lifetimes! that range
from 0.02 to 0.04 meV~30–15 ps! at 5 K.

The decay rates for several modes in the 216 atom m
are plotted as a function of frequency in Fig. 4. The simu
tion results for initial temperatures of 5 and 10 K have be
averaged, scaled to 300 K, and plotted using solid squa
The scaling was done under the assumption that the d
rates scale linearly with temperature, which would be
case if there were only cubic anharmonicity. This is a go
approximation for small amplitude perturbations in t
Stillinger-Weber potential, but the actual temperature dep
dence is actually sublinear due to higher orders of anhar
nicity. For comparison, the perturbative results of Fabian
Allen are plotted using open circles.5 There is good qualita-
tive and quantitative agreement over the entire freque
range except near 40 meV where there is a minimum in
density of states.24 The width assigned to thed functions in
the perturbative analysis could affect the calculated de
rates in this region since there are relatively few modes

FIG. 3. Log decay rates as a function of temperature for mo
in amorphous silicon. The perturbative and MD decay rates for
highest-frequency mode in the 216 atom supercell ofa-Si are plot-
ted with the dashed curve and open squares, respectively, whil
open circles represent the MD decay rate for the highest-freque
mode in the 4096 atom supercell.
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each bin. Note that the MD decay rates are always fa
since all orders of anharmonicity contribute to the vibration
relaxation.

In summary, molecular-dynamics simulations have be
used to calculate vibrational lifetimes in realistic models
amorphous silicon. These are the first calculations of t
nature for large amorphous supercells and demonstrate
ability to extract experimentally relevant information fro
computer simulations. The lifetimes found by this meth
are in good agreement with the perturbative calculations
Fabian and Allen and are on the order of 10 ps at low te
peratures in both 216 and 4096 atom supercells. The
times of high-frequency localized modes and extended, n
propagating modes with intermediate frequencies
comparable, in contrast to Raman experiments that find
the lifetime is on the order of 10 ns and increases dram
cally with increasing frequency.6 While this is a significant
discrepancy, it is unclear if the experiments and simulatio
are measuring the same quantities. In the Raman exp
ments, a large nonequilibrium phonon population was
cited over the entire vibrational spectrum, with a typical ph
non occupation of 0.2 for the TO mode. This yields
temperature of several hundred degrees in the region of
laser spot. Although this is well below the melting tempe
ture, there will be local structural rearrangements as the
tem relaxes to nearby metastable configurations. It is w
known that glass dynamics involve fast fluctuations ab

s
e

the
cy

FIG. 4. Frequency dependence of decay rates in the 216 a
supercell of amorphous silicon. Solid squares represent simula
results at 5 and 10 K that have been scaled to 300 K and avera
The perturbative results of Fabian and Allen are plotted using o
circles.
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12 238 57S. R. BICKHAM AND J. L. FELDMAN
local structures as well as time evolution of the nonequi
rium local structures themselves. These latter processes
occur on all time scales, even at low temperatures,27 and
their coupling to normal-mode vibrations should be tak
into account. To add more realism to the computer exp
ments, the decay rates of spatial and temporal energy pu
are being calculated, allowing a more direct simulation of
experimental conditions. An analysis of the amorpho
structure of different size models is also being done to
-
an

n
i-
es
e
s
-

amine the influence of temperature-induced changes in
local environment on the vibrational properties
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