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Calculation of vibrational lifetimes in amorphous silicon using molecular dynamics simulations
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The decay of normal-mode excitations is calculated for amorphous silicon through molecular-dynamics
simulations within periodic supercells consisting of 216 and 4096 atoms. Phenomenological structural and
interatomic potential models are employed. At moderate temperatures, lifetimes are found to be on the order of
10 ps and lifetimes of localized and extended nonpropagating modes are comparable. These features are in
agreement with related perturbation theory calculations, and in strong disagreement with the frustrated anhar-
monic decay predicted by the fracton model and apparently with the results of anti-Stokes Raman experiments
performed aff =10 K. [S0163-18208)01319-9

The investigation of the vibrational properties of amor- Here we present the results of calculations of vibrational
phous solids has been an active area of research since Zelléetimes for models of amorphous silicon using molecular-
and Pohl first found evidence that the thermal properties oflynamics(MD) simulations. These types of numerical ex-
these materials differ remarkably from their crystalline coun-P€riments have been increasingly used to study the proper-

terparts at low temperaturésn addition, the heat capacities Ee?WOf anlgrphous rg;aterialfs in "tin z'a\';lten:pt to btrlidgteh thehgap
and thermal conductivities of a wide variety of amorphous etween theory and experiments. host recently, they have

materials have been found to have the same qualitative a b en used to nvestigate the Raman spectrum O.f. amorphous
I Same g licon’ and high-frequency modes in fused silf€aAl-

quantitative temperature dependences, indicating an appargfit, ,gh the use of atomistic models restricts the interpretation
universality. A phenomenological model based on tunnelingg the classical regime, experimentally relevant information
between states of constant spectral density has been useddi§out the amorphous structure and vibrational modes has
explain this behavior. However, the physical nature of thes&een obtained. An early study similar to ours, but for a crys-
entities is not well understodd? talline model, was done by Dickey and Paskin.

To further complicate this picture, recent theoreficaid We choose the same potential and structural models as
time-resolved Ramdrstudies of the lifetime of high-energy used by Fabian and Allen in their study except that we also
vibrational modes in amorphous silicon disagree by severdn@ke use of a 4096 atom model in addition to their 216 atom

orders of magnitude. The experimental results were obtainef/0d€!- The 4096 atom model that we use was obtained from

- o Wooten and co-worket$ and relaxed, as for the 216 atom
by measuring the decay rates of nonequilibrium phononmodel, using the Stillinger-WebéBW) potential’ The con-

populgtions produced by the relaxation of hot charge (.:arrierﬁnuous random network models, like those produced by the
following pulsed laser excitation. The temporal evolution OfWooten-Winer-Weaire procedure, give radial distribution

the Stokes and anti-Stokes Raman intensities suggests thah igng that are in good agreement with the experiment and

the yibrational lifetime increases wit_h increasing frequency,re aiso supported by recent “variable coherence transmis-
and is on the Qrder of 10 ns for 'Fhe highest-frequency modes;ion  electron microscopy” experiments in amorphous
The perturbative study by Fabian and Alfeon the other  germaniunt? Equilibration of those models with respect to
hand, predicts a ps time scale that follows the two phonofhe SW potential does not affect the structural characteristics
density of states. greatly.

A theoretical treatment based on a fractal network, albeit The SW potential gives reasonably accurate results for
of fractal dimensionality three, has been proposed by Orbacharmonic and quasiharmonic properties of the crysStahe
and Jagannathan to explain the experimental reSuftsheir  potential’s empirical content was structural data from both
theory of fractons, a crossover length scale is defined thatolid and liquid silicon, the melting temperature of the crys-
divides the density of states into(lawer frequency Euclid-  tal, and the cohesive energy of the solid. It is important to
ean form and dhigher frequencyfracton form. The cross- point out that the SW potential has been shown to yield
over wavelength for amorphous silicon is assumed to be 2@ifferences in elastic properties between amorphous and
or 30 A, which corresponds to a low-frequency boundarycrystalline silicon quite accurately.For a detailed compari-
(mobility edge between localized and extended states —son of the SW potential with experiment for mode Geisen
much lower than for our models that show a quite clear moparameters and pressure dependences of elastic constants see
bility edge near the top of the vibrational spectrum. OfPorteret all’ and Feldmaret al,'® respectively. The SW
course, we cannot rule out unusual localization on a largepotential yields the high-temperature thermal expansivity ex-
length scale than that of our supercells, which are at most 48emely accuratehf*°but it has been pointed ddtthat this
A along an edge. The work of Fabian and Allen and ofis due in large part to a cancellation of errors in modérGru
Fabiarf also give contrary evidence to a claim by Orbacheisen parameters. Recall that Geisen parameters depend
and Jagannathan that these localized modes cannot decayarsthird-order derivatives linearly, whereas inverse lifetimes
fast as extended phononlike modes. depend on them quadratical(jn lowest-order perturbation
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theory). Since certain mode Gneisen parameters are poorly ing the perturbation. This condition, which fixes the initial

given by the SW parameter and since SW pressure derivgghase and amplitude of the vibrational mode, may be ex-

tives of elastic constants are too small by about 25% opressed as

more, it is not surprising that the crystalline value of the SW .. o

inverse lifetime for the TO zone-center mode was found to r=rr—{e(wo)-[rr—rol}e(wo) 1)

be too small by a factor of 2ZRef. 5 in comparison to ex-

periment. A parametrized fit of a generalized Keating cubic-

anharmonic model to first principles local-density approxi- > = - > o~ -
. . . o : V=Vy— -V +A , 2

mation (LDA) calculations yielded similar disagreement 7~ [&(wp)Vr]&(wo) + Agwol( o) @

. . 0 e . 1 > N A A

with experlme_n_lz, but ab initio LDA calculatlops? as well  wherer; andv; are N-dimensional vectors that represent

as early empirical tight-binding MD calculatiof& yielded the instantaneous displacements and velocities at tempera-

excellent agreement with experiment. It was suggested if,re T 7, are the equilibrium coordinates at zero tempera-

Ref. 20 that their disagreement with experiment was an inture, andA, is the scaling amplitude for the energy put into

S'Cat'OPhOf thek?eed to m;_ludi anharmon|c|lt3:htotht|r?hesr;/c\)/rde% vibrational mode with eigenvectc&(wo) and frequency
erms han cubic ones. Finally, we remark that the po-wO. Strictly speaking, Eqg1) and(2) are appropriate if the

tential ca_nnot r_epresent the observed flattening _Of a‘COUSt'&'genvectors are independent of temperature. We find that
branch dispersion curves or the observed negative therm is is indeed the case for temperatures below 30 K, but the

expansivity over a low-temperature range. average displacements and zero-temperature coordinates de-
~ The 216 atom model is identical to the one used by Fayjate at higher temperatures as the system accesses other
bian and Allen, so the MD and perturbative results are exgonfigurations during the constant volume simulations. Some
pected to be similar; however, the computer simulations alpf the high-frequency modes are strongly affected by these
low the full anharmonic potential to be explored. Decaystructural changes since they are spatially localized with dy-
mechanisms in addition to those due to cubic anharmonicityyamics that depend on the local environment.
may therefore contribute to the relaxation. Although the MD  After the perturbation described above, the kinetic energy
results are only applicable to the classical regime, these rén a given mode is monitored as a function of time by com-
alistic models for the potential and amorphous structurguting
should yield an order of magnitude estimate of the vibra- . R
tional lifetime. In addition, we obtain very similar results for K(wg,t)=[& wg)-V]%. 3)
supercells with 216 and 4096 atoms, so the finite system si . — : . I
in these calculations does not seem to be a factor. These ?@e Instantaneous 'k|net|c energy 1s a rapl'dly pscnlatmg
unction, soK(wq,t) is averaged over a few vibrational pe-

the first studies of this nature for a large-scale realistic amorz 1< 1o smooth the data. This type of probe is valid as long
phous system.

our initial svst 216 and 4096 at lis th as the decay rate is slow compared to the vibrational period,
urinitial systems are an atom supercells thaf,p, js the case for the modes and temperatures considered

have been relaxed to zero temperature and pressure using alye To check that the system has actually reached equilib-
incremental time step obt=0.005r, where the basic time jym the power spectral densitPSD of the lattice is com-
unit 7 is equal to 0.076634 ps. The 216 atom model and gyted to monitor changes in the nonequilibrium density of
similar one with 1000 atoms have previously been used t@tates. The PSD has the advantage of not requiring the
calculate the phase diagrédimand thermal conductivity®  normal-mode eigenvectors, however, direct calculation of
Isokinetic ensembles are then obtained by assigning randotne kinetic energy using Edq3) yields information on spe-
velocities to each atom and scaling them to correspond to theific modes rather than the average of a group of modes that
desired temperature. During a preliminary simulation, thesdies within a small frequency band.

velocities are rescaled at increasing time intervals, which In the weak perturbation limit, the kinetic energy of the
calibrates the kinetic energy of the system without a resonanthode is assumed to decay exponentially, in which case the
accumulation of energy in any vibrational modésAfter ~ atomic velocities have the time dependence

5000 time steps, the thermostat is removed and the system
allowed to adjust to a microcanonical ensemble by continu- Uq,i = €a,iPowee " COwol). (4)
ing the MD simulation for another 50 000 time steps. Thetp equilibrium value at=« has been neglected in this

instantaneous displacements, velocities, and accelerations ARalysis, but it should be noted that the kinetic energy in
then used as initial conditions in the computer experimentSeach mode decays to a equilibrium valuekd@2, not zero.

At each temperature, kinetic energy is put into selecteqncjusion of this term does not significantly affect the calcu-
modes of vibration and monitored as a function of time. As-|ated value of the decay rate, so it will not be considered
suming the system is a microcanonical ensemble before thgrther. With this approximation, the average kinetic energy
perturbation, the average vibrational energy should be th@uring one vibrational period, is then
same in each mode. However, the instantaneous potential
and kinetic energies generally differ from the ensemble av- AdwiT ot
erage, which complicates the comparison of the decay rates (K(wo))=———(1—e""0™). ©)
for different modes and/or different temperatures. To elimi- 0
nate this problem, we found it useful to remove the initial The lifetime of the mode is thew/2, and the corresponding
potential and kinetic energy in the desired mode before adddecay rate id" = 2%/ 7.

—t/r
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FIG. 1. Logarithm(base 10 of the average kinetic energy as a
function of time and frequency for the initial conditions described
in the text. The kinetic energy is averaged over successive time

intervals of 3.1 ps for each of the 648 modes during a 122.6 ps L L 1 L
0.0 5.0 10.0 15.0 20.0 25.0

simulation.
time (psec)
Energies have been calculated using &).for a pertur- FIG. 2. Exponential fits to the average kinetic energy of the

bation with amplitudeA,=0.05 in the highest-frequency highest-frequency mode in the 4096 atom supercell for different
mode in the 216 atom supercell withy=78.7 meV. This perturbation amplitudes. The initial temperatusebi K and the vi-
produces a net temperature increaéd & from the initial brational frequency is 87.8. meV. The oscillations i.n hg=0.10
temperature of 5 K. The log kinetic energies of all g4gcurve are due to anh_armonlc cogphng to othe_r Iocallze_d modes. The
modes are plotted as a function of time and frequency in Figl_lfetlme increases with decreas_lng perturbation amplitude and ex-
1. The data are obtained by averaging E%). over 3.1 ps trapolates to a value of approximately 14 psgt=0.
intervals for each vibrational frequency, and the maxima of
the time and frequency axes are 122.6 ps and 78.7 me\gvident when the perturbation amplitude is large. A more
respectively. Although the perturbation energy is put into adetailed analysis shows that these oscillations arise from
single mode, a small portion is quickly and nonradiativelycoupling to other high-frequency localized modes. Although
transferred to other modes by anharmonic coupling. The inithese modes are orthogonal in the harmonic limit, they are
tial kinetic energy spectrum therefore has a strong peak at theot always spatially isolated and may be coupled by anhar-
perturbation frequency with secondary peaks at lower fremonicity when nearest or next-nearest neighbors are shared.
guencies. As the simulation progresses, this nonequilibriunThis coupling does not, however, appear to be a significant
distribution evolves into a microcanonical ensemble withdecay mechanism. The small amplitude lifetime is approxi-
each mode having the same average kinetic energy. The timeately 14 ps, which is in qualitative agreement with the
scale for this relaxation is on the order of tens of ps, andifetimes of other modes in the 216 and 4096 atom super-
similar decay times have been obtained for other localizedells.
and extended, nonpropagating modes in the 216 atom The temperature dependence of the decay rates is ob-
model?® tained by extrapolating lifetimes such as those determined
In the derivation of Eq(4), the amplitude in a given mode from the simulation data in Fig. 2 to the limit of zero pertur-
is assumed to decay exponentially as the system evolves tbation amplitude. The perturbative decay rates for the
wards equilibrium. This implies that the lifetime is indepen- highest-frequency mode in the 216 atom supercell are plotted
dent of the perturbation amplitude. Figure 2 shows the decaby the dashed curve in Fig. 3, while the MD results for the
of the kinetic energy of a localized mode with a frequency ofsame mode are plotted using open squares. The error bars are
87.8 meV in the 4096 atom system for four different pertur-representative of the uncertainty in the numerical fits due to
bation amplitudes. The initial temperature®K increased finite simulation times, statistical noise, and the background
by 1.05, 0.28, 0.11, and 0.06 K for input amplitudesAgf  kinetic energy level. The solid line represents the best linear
=0.10, 0.05, 0.03, and 0.02, respectively. Exponential fits tdit to the simulation data. Note that the MD decay rate is
the simulation data are plotted with heavy lines, yieldingapproximately a factor of 2 larger than the high-temperature
lifetimes of 8.3, 11.7, 13.9, and 13.9 ps, respectively. Thidimit of the perturbative result, which indicates that higher
functional form is an excellent fit for all four cases, althoughorders of anharmonicity not included in the latter analysis
low-frequency oscillations in the average kinetic energy aranay be important. The MD decay rates for the highest-
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FIG. 3. Log decay rates as a function of temperature for modes .
in amorphous silicon. The perturbative and MD decay rates for the FIG. 4. Frequency dep(_endence .Of decay rates in the ?16 atpm
highest-frequency mode in the 216 atom superceti-&f are plot- supercell of amorphous silicon. Solid squares represent simulation
ted with the dashed curve and open squares, respectively, while t sults at 5 a'?d 10 K that have_ been scaled to 300 K and gveraged.
open circles represent the MD decay rate for the highest-frequency, e perturbative results of Fabian and Allen are plotted using open

mode in the 4096 atom supercell. ircles.

frequency mode in the 4096 atom supercell are plotted usin§2ch Pin. Note that the MD decay rates are always faster
open circles, with the best linear fit represented by the soli¢iNce a_II orders of anharmonicity contribute to the vibrational
line. The slope is larger than that for the highest-frequencyélaxation.
mode in the 216 atom model; however, it is important to note N summary, molecular-dynamics simulations have been
that these modes are idiosyncraticl with decay rates tha{sed to calculate vibrational lifetimes in realistic models of
strongly depend on their local environments. For exampleamorphous silicon. These are the first calculations of this
the modes in the 216 atom model with the highest six frenature for large amorphous supercells and demonstrate the
guencies are all strongly localized with similar inverse par-ability to extract experimentally relevant information from
ticipation ratios, but have decay ratégetimes) that range computer simulations. The lifetimes found by this method
from 0.02 to 0.04 me\(30-15 p$ at 5 K. are in good agreement with the perturbative calculations of
The decay rates for several modes in the 216 atom modélabian and Allen and are on the order of 10 ps at low tem-
are plotted as a function of frequency in Fig. 4. The simula{peratures in both 216 and 4096 atom supercells. The life-
tion results for initial temperatures of 5 and 10 K have beertimes of high-frequency localized modes and extended, non-
averaged, scaled to 300 K, and plotted using solid squarepropagating modes with intermediate frequencies are
The scaling was done under the assumption that the decaymparable, in contrast to Raman experiments that find that
rates scale linearly with temperature, which would be thethe lifetime is on the order of 10 ns and increases dramati-
case if there were only cubic anharmonicity. This is a gooctally with increasing frequendyWhile this is a significant
approximation for small amplitude perturbations in thediscrepancy, it is unclear if the experiments and simulations
Stillinger-Weber potential, but the actual temperature depenare measuring the same quantities. In the Raman experi-
dence is actually sublinear due to higher orders of anharmanents, a large nonequilibrium phonon population was ex-
nicity. For comparison, the perturbative results of Fabian andited over the entire vibrational spectrum, with a typical pho-
Allen are plotted using open circl@sThere is good qualita- non occupation of 0.2 for the TO mode. This yields a
tive and quantitative agreement over the entire frequencyemperature of several hundred degrees in the region of the
range except near 40 meV where there is a minimum in théaser spot. Although this is well below the melting tempera-
density of state! The width assigned to thé functions in  ture, there will be local structural rearrangements as the sys-
the perturbative analysis could affect the calculated decatem relaxes to nearby metastable configurations. It is well
rates in this region since there are relatively few modes irknown that glass dynamics involve fast fluctuations about
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local structures as well as time evolution of the nonequilib-amine the influence of temperature-induced changes in the
rium local structures themselves. These latter processes céotal environment on the vibrational properties

occur on all time scales, even at low temperatdfeand

their coupling to normal-mode vibrations should be taken

into account. To add more realism to the computer experi- We wish to thank P. B. Allen, J. Fabian, R. Orbach, G.
ments, the decay rates of spatial and temporal energy puls&ngel, and J. Q. Broughton for stimulating discussions. We
are being calculated, allowing a more direct simulation of thehank M. Kluge for pointing out Ref. 7 to us. One of us
experimental conditions. An analysis of the amorphousS.R.B) acknowledges support by the NRC. This work was

structure of different size models is also being done to exsupported in part by the Office of Naval Research.
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