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Resonant and nonresonant polarons in bulk InSb

P. Pfeffer
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
(Received 3 November 1997

The theory of polarons in weakly polar InSb-type narrow-gap semiconductors in the presence of a magnetic
field is developed, taking into account resonant and nonresonant contributions to the electron Green function
and a nonparabolicity of the conduction band both in the energies and wave functions. An ansatz for the
nonresonant correction to the Landau energies is proposed, and shown to lead to good results for upper and
lower polaron branches. It is demonstrated that the band nonparabolicity weakens the effective electron—optic-
phonon interaction. Experimental results of various authors concerning the cyclotron and the combined reso-
nances in bulk InSb in regions of resonant polarons are described. The theory accounts very well for the
available data[S0163-182318)02219-X]

[. INTRODUCTION The influence of band nonparabolicity on the polaron be-
havior has to be taken into account in narrow-gap semicon-
Resonant polarons in semiconductors, since their discovductors. The position of the resonaneg- ep~fw, is di-
ery in magneto-optical properties of InSb by Johnson andectly affected by the structure of the conduction band via
Larsen® have been the subject of numerous experimental anthe dependence of the Landau energigon the magnetic
theoretical investigations. The resonant behavior in the vicinfield. The nonparabolicity causes the resonance to occur at
ity of fw.~%w,, where the higher Landau level splits into higher fields, which was recognized from the beginrfing.
upper and lower polaron branches, is of particular interest iffowever, in narrow-gap materials the structure of the wave
weakly polar semiconductors, as it allows one to determindunctions also enters the polaron problem via the matrix el-
directly the polar coupling constanat The polaron problem ements of the Frohlich interaction. This was first included by
offers some theoretical difficulties concerning an instability Swierkowski and Zawadzki(cf. also Swierkowskiet al,
of the upper branch, a choice of the adequate formalism, an@ef. 13. Pfeffer and Zawadzkf described an observable
an importance of the nonresonant polaron correction to encase of resonant interband polar interaction in the zero-gap
ergies. As a result, there exist in the literature quite a fewnaterial Hg_,Mn,Te, in which the initial electron state is a
misunderstandings on the subject. conduction Landau level, while the final state is a heavy-hole
Harpef explained a broadening of the cyclotron reso-Landau level. Das Sarma and MasSr;onsidering theB
nance line above the resonante.=#%w_ , observed by =0 case and neglecting the proper structure of the wave
Summers, Harper, and Smittusing the Green-function for- functions, predicted nonresonant large corrections due to
malism, Korovin and Pavidvand Nakayantashowed that a band nonparabolicity. Larséfi, taking into account the
pinning behavior of the upper branch is due to the imaginaryproper band structure, showed that the corrections are con-
part of the self-energy(The Wigner-Brillouin perturbation siderably smaller. Huant and Karrdi,considering theB
theory, which implicitly assumes the imaginary part of the #0 case within a three-levéd-p model for the conduction
self-energy to vanish, leads to a nonphysical behavior of théand of InSb, showed that in the limit &— 0 the nonreso-
upper branc) Swierkowski and Zawadzki considered nant polaron corrections related to the band nonparabolicity
separately resonant and nonresonant contributions to the pbave a negligible influence on the effective mass at the band
laron energy, and showed that the “offset” effect near theedge. This result could be expected, since in weakly polar
resonancedi.e., an energy shift ofv/i w, between lower and materials the nonresonant polaron contributions are very
upper polaron branchgsclaimed by some authofs, does  small to begin with, and the band at the edge is parabolic.
not exist. This was confirmed in a more complete theory by The resonant polarons in InSb were also considered in
Pfeffer and Zawadzk{° two-dimensional system$:*® The upper polaron branch in
A proper incorporation of the nonresonant polaron correcsuch systems can be described without recourse to the
tion into the resonant behavior turned out to be a nontrivialGreen-function formalism, since, because of the absence of a
task. Lindemanmet al, in Ref. 11, considering the lower po- k, dependence of the Landau levels, the real phonon emis-
laron branch, proposed to shift all levels by the Railegh-sion does not occur also above the resondntebelow).
Schralinger correction to the lowest Landau level. This re- In the present paper, we consider the influence of band
sults in the so-called improved Wigner-BrillouidWB)  nonparabolicity in InSh(both concerning the energies and
perturbation theory. The same procedure was adopted e wave functionswithin the Green-function formalism,
Peeters and Devree$eVarious improvements of the Green- which allows us to treat correctly both lower and upper po-
function description were discussed by Pfeffer andlaron branches. This is particularly important in narrow-gap
Zawadzkil® and it was shown that Lindemaret al. ansatz  materials since, due to the smallness of the effective mass,
leads to good results for the resonant polaron behavior ithe resonance conditiohw.~% w_ is reached at low mag-
GaAs (both lower and upper branches netic fields(B,.¢&~3.7 T for InSH. We pay due attention to
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the nonresonant polaron contributions, generalizing and sim- V3 hw.n) 2

- K . . + + + c
plifying the procedure proposed in Ref. 11. The formalism is ®n =8, Ppurt 5 by Do $n-1U3
applied to various available experiments in InSh, which until n
the present has been regarded to be the model narrow-gap 1 ,[hon+1) 12
semiconductor. tobh| T ®n+1Us

n
Il. THEORY _ L Pk bule @
n [N+ ma* o
In this section we present a general formulation of the V2 Dn Mo

polaron problem in InSb-type narrow-gap materials. The

1/2
electronic band structure of such semiconductors in the Pres-,-—a- ¢ u,+ § b= ho(n+1) bri iU
ence of an external magnetic field is described, and the Froh-" """ *"2° 2 ™n D, ne1ta
lich electron-phonon interaction is introduced. Then the non- 2
resonant and resonant polaron corrections to the electron b= fik, bou 1 b(ﬁwcn) b1l
_ i I 57 5 - -1Ys»
self-energy are derived. vi o /Dn my n 2 "\ D, n

©)

where ¢,[(y—k,L?)/L] are the harmonic-oscillator func-
tions, 1L%=eB/# defines the magnetic radius, and the coef-

Band structure and Frohlich interaction

The initial Hamiltonian for the problem reads

ficients are
H=P?2my+Vo(r)+Hgo+He+Hpp, (1)
+ €g+ E: + er?
wherem, is the free-electron masB= [ ineti (an)=—r—=, (b)P=—171—=. (6)
o =p—+eA is the kinetic €41 2€, €4t 2¢€,

momentumA is the vector potential of magnetic field is

the periodic potential of the latticé], is the spin-orbit in-  The Luttinger-Kohn amplitudes are defined in Ref. 21, but

teraction Hp is the Frohlich interactiogassumed weakand  for our purposes it will suffice to know that they possess the

Hon is the free-phonon term. The first three terms describderiodicity of the lattice and are orthonormal within the unit

the band structure of the material in the presence of a madle”-

netic field. The structure of the wave functions, as expressed by Egs.
We describe the electron energies and wave functions iffY (5), and(6), must be taken into account together with the

InSb in the presence of a magnetic field within the threeand nonparabolicity in a consistent polaron theory for

level P-p model, which explicitly takes into account thig, ~ Narrow-gap semiconductors. o _

conduction level, separated by the energy gafrom thel's The Frohlich polar electron-phonon coupling is taken in

(degeneratevalence level, which is in turn split by the spin- the standard form

orbit energyA from theI'; valence level. The resulting-p 1

set of éaolght coupled differential equations can be solved He=C = (eiq'rbq+e“q‘rb;), (7)

exactly=" For the electron energies satisfying the condition q

e<eyt+2A/3 one obtains the Landau-levelL) energies in

the forn?t whereC=[ av2#(fhw,)*27/Vm§ Y2 Herea is the polar

constantq is the phonon wave vectof,w, is the energy of
1 the longitudinal-optic phonon, and is the crystal volume.
+eD= } Since in a narrow-gap semiconductor the electron mass de-
€g n(kz) ) 2 . . .
pends in general on its energy, the problem arises as to
whether the constar@ does not depend on electron energy.
where However, the definition of the polar coupling constanin-
volves proportionality toymg (cf. Mahan, Ref. 28 so that
1 72K2 in reality the strength of electron-phonon interaction does not
*= gy usB+ —*Z (3) depend on the masHn fact, employing the initial formula-
2 2mg tion (1) it would make more sense to use in the definitions of
a and ofC the free-electron masg,, but this would lead to
in which w,=eB/mg is the cyclotron frequencymg is the  unusual values ofy, so we keep the standard definition
effective mass at the band edgeg=efi/2m, is the Bohr  which, as stated above, does not influence the final repults.
magnetongj is the spin Lande factor at the band edge, and We are interested in energies of the Landau stae k,
+ signs correspond to effective spin-up and spin-down=0, perturbed by the polar interaction with other Landau
states. The nonparabolicity of the conduction band is exstates, accompanied by a virtual or real emission of a
pressed by the square root in E@). longitudinal-optic phonon at low temperatures. If the emis-
Specifying the Landau gauge for the vector potential ofsion of phonons is real, the lifetime of an electron in the
the magnetic fieldA=(—By,0,0,), one looks for solutions initial state is finite. This requires the Green-function formal-
(the envelope functions in the form f(r)=expikx ism, involving both real and imaginary parts of the electron
+ik,2)p(y). The wave functions for the above range of ener-self-energy. The electron energy is given by the maxima of
gies are(cf. Ref. 2] the spectral functiol\,(E) = — (1/7)Im G,(E), where

2
€g

+ 6g
€ (k)=—5+||5

1
D§W9=hw4n+§
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a b tions, which amounts to assuminﬁ(kz)<eg. This leaves
3 only the first terms in Eqs4) and (5) with a, ~1.
4 \// The matrix elements in E(9) are calculated using the
\// // well-known formula for the harmonic-oscillator functicis
1 /3 2 /
/ \_/// -
/ /% f (m,ky ,k,|e”'%|n,0,0)
/ 1 1 I/ i o(m—n) AiL2q,q,/2
— i o(m—n)AiL“04q
hwc ///// /;// h 60’kz+qz50'kx+qxcecp er
0 ') 1/2
1 c n! 1
) hoy o X(—La, h@"‘”(—,) e LM 2 mon( 2g2 ),
| \ m! q

(10

FIG. 1. Landau levels v&,: (a) below the polaron resonance

hw.<hw, and(b) above the polaron resonante.>f%w_(sche-  whereg is the asimuthal anglej’ = g2+ g7 in the cylindric

matically). For fiw.<fiw_, all phonon emission transitions from coordinate system, aﬂcﬂ‘*”(quf/Z) are the associated La-

the leveln=1 at k,=0 are virtual (dashed arrows For ioc  guerre polynomials. Since the involvedvalues are rather

>hwp ,_the phonon emission to thE_: O_Ievgl is real(solid arrow. small, the exponential function exp{(g-r) is slowly varying

At hwg=fw,_, the real phonon emission is resonant. within the unit cell, so that one can take the andu, peri-
odic amplitudes in Eq4) and(5) out of the integral sign and

Gn(E)=1 /

use their normalization.
' ® For n=0, formula(9) leads to
is the Green function. HerE is the phenomenological level -
broadening not related to optic phonduiscussed later e, nro_ Ccv z i
is the unperturbed electron energy,' is the nonresonant O @2r)dih m
correction, and®;, is the resonant correction to the energy. 0.2
The situation is shown schematically in Fig. 1. « Jm 1 (Lg, /v2)?Me 0.2

0 az (_€0+ €m+h2q§/2m3 +h(1)|_) dq
11

E+iF—(en+2; +Eﬂr)

Nonresonant polaron correction

According to the second-order perturbation theory, the

nonresonant correction to theh LL at k,=0 is , : :
The summation can be performed analytically, and the inte-

. | 2 gration is carried out in the spherical coordinate system. The
Mnm(a) final result is
2= 2 0 )
= E,—[En(k) +thw ]’
m=n ( n m\Rz L

whereE,(k,) is the energy of thenth level andM,,(q) are oo aho, (= exp(—t/B)rg() dt, (12
the matrix elements of the Frohlich interacti¢the phonon NvaB Jo \/f\/t—l

emission pait

One proves in a diagrammatical analysis of the polaron _ _ — _
problem that in the self-energy calculation the energigs V_Vhee,rf;“ BS_irﬁi(ll;Crll ﬁ“f’(')-r’ ng—(?o_rlg(c\)/gt;invg 1) and 7=t/(1
should be final energies, i.e., they should already include ' Y, N
corrections due to the electron-phonon interactitff. We

write, in general,E,,=e,+ d,,, Where ¢, are the unper- oho " f(t)—\/f it
turbed energies and,, are the unknown corrections. For the ET —_ 7t et(lllﬂ){_ +
lowest level of the sum of Eq9) (the most important one 2\/77_3 0 t-1 71
for the perturbationone deals withs,,, and we propose to
take 8,,= &, for all m. Since for thenth LL in question one N 2(r—t)—t/(7—1) o(m) |t 13
can also writeE,= €,+ &,, the above approximation leads Jir(r—1) '
to the cancellation o8, in the denominators of formul@®),
and the latter becomes simply the Raleigh-Sdimger (RS
perturbation series. Thus we obtaiff'= 5%°. The RS theory Where
is known t% 2give the best results for the nonresonant
perturbations? The above ansatz generalizes the proposition IN(VE+Vi—D)/Vi—1  for t=1

_ ¢RS
of the authors of Ref. 11, who toak,= 6, for all m andn. f(t)= arccosyi/VI—t for t<1.

Further(only for the nonresonant pariwe take the para-
bolic approximation to electron energies, i.es, (k,)
~D, (ky); cf. Eq.(3). We do the same for the wave func- Forn=2,
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S _ oo (7 llﬂ){f(t)[ 15 3(e'-4)

2 ¢_ 16(t—1)2 8(t—1)
ﬁ 33-26t+8t2 (e'—4)(2t—5)

o RN T T ST 1

Jt [tel(27-5) Jtg(7) 3te!
8r(r—1) | JHr—1)%|Br(r—1)
m(7—1)
1 fdt, (14)

wheref(t) is defined as above.

In the limit of B—0, the complete nonresonant correc-

tions for various LL’'s give the polaron “binding energy”
AE=—ahw_ (the details are given in the Appendix-or
n=0 and 1, this was shown by Lars&hand for arbitraryn

by Peeters and Devreéddcf. also Huant and Karrai, Ref.
17). In weakly polar materials this shift is very small, and it

tions ¢ and quickly varying periodic Luttinger-Kohn ampli-
tudesu; . One can then use the orthonormality relations for
u;, and they disappear from the final results. The matrix
elements of expfig-r) between various harmonic oscilla-
tors are calculated according to E¢0). It turns out that the
structure of the wave functiong) and (5) leads to the de-
crease of the matrix elements, as compared to those in which
only the first terms in Eq94) and (5) are accounted for. In
more physical terms, the band nonparabolicity leads to weak-
ening of the electron-phonon interaction. This feature has
already been noticed in the calculation of electron mobility
in InSb; cf. Ref. 27][It should be emphasized that this result
is in contradiction with the conclusions of Huant and Karrai
(Ref. 17 who stated that the band nonparabolicity makes the
effect of electron-phonon interaction strondeén the calcu-
lation we neglect the matrix elements between the different
spin states, as given by Eggl) and (5). They are nonzero
(cf. Ref. 28, but are much smaller then those between the
states of the same spin.

After some manipulation, the resonant partiier 1 (both

has not been observed experimentally. The polaron corredower and upper polaron branches obtained in the form
tions to the effective mass are discussed in the next subse(pin is included

tion and in the Appendix.

; ahw
Resonant polaron correction E 1+ =7 \/E
The resonant polaron correction to thtéh LL can occur 5
for the phonon emission only by interaction with the lower » x?e X (yT+x+inp ) (AT—Bx?)2F*dx
levelsm< n (cf. Fig. 1). The second-order perturbation gives X 0 (Y +x)2+(7%)2
n—-1
[Mam(@)|? 1
r = EI =
En<E)—mZ=O§ EFT—(E (k) hag 19 +(7*+iy )| o= (16)

The phenomenological contributiol’ represents a residual Here x=Lq,v2, Q =y*—ip*, and S*=T'F*/hw,,
scattering not related to optic phonofadways present in a where
crysta), which eliminates a nonphysical divergence Eat

=E,+%w_, and gives a physically observed polaron be- Yy ={[(T*)%+(S7)2|Y2—T*/24172,
havior: at magnetic fields below the resonance, the lower
branch is dominant, whereas above the resonance the upper nE={[(T5)2+(SH)2]V24 T /2112,

branch takes over.

As already mentioned in the previous subsection, the enn which
ergieskE,, in Eqg. (9) should be final one§.e., they should
already be corrected by the electron-phonon interagtion F*=(E+ey— 05+ eg—hawy)l e,
Thus forn=1 the sum in Eqg.15) involves one termm
=0, in which the final energy includes only the nonresonant
correction: Eq(k,) = eg(k,) + 85°. For n=2, the sum in-
volves two termsn=0 and 1, in whichEy(k,) is calculated Further,
as above, while the final energ‘yl(kz) is calculated includ-

T =(E-¢; — 65— hw ) F lhw,.

ing both the nonresonant paﬁf , as well as the resonant A*=aZa; +2B;
one &7°°. As follows from Eq.(8), the appropriate nonreso- %a L
nant corrections also appear in the Green function. where
In the resonant part of the polaron correcti@rhich gives
the main observable effgctve include the real band struc- B*zbgbl*hw /4\/@,

ture of InSb, both in the energies and the wave functions. In

the energies it amounts to taking formul& and (3) for

em(K,). When calculating the matrix elemeri,,(q) with B™=byb; 3hw/4yDy Dy,

the complete wave function@) and (5), one takes into ac- . . . . .

count that the interaction part expig-r) as well as the inwhichay, by, andDy, are given in Egs(6) and(3).
envelope functions in Eqg4) and (5) are slowly varying For the leveln=2 the resonant correction comes from
within the unit cell, so the integrals over the crystal volumeboth lower levelsm=0 and m=1. We have =},=Rg
may be broken into those involving the slowly varying func- +R; , in which the first resonant part is
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. |ahop
= x> Yo +X+i75)(Ag —Bg Xx?)?F g dx
Xfo (70 +X)2+(m5)?

+(W§+i7§ﬂi hER
0

HereQ* =y, —ing andSy =T'Fy/hw., where
o ={[(To)?+(Sp)12-To /22,

wo ={(T)?+(S5) 12+ Tg 127

in which
+ + RS
Fo=(E+e€y — 0y teg—ho ) g,
+ + RS +
Further,
Aj=aja, +3B;,
where

By =bgb; fiw /4Dy D,

By =3bg b, fiwe/4yDy D, .

The second resonant part is

RE— ahw (>
! 2B Jo
xze’xz(yf+x+i97f)(Af—fo +Crx%2Frdx
X + +
(y1 +X) %+ (n1)?
+ .+ 1
+(my Hiy)l ar

HereQ*=y; —in;, S; =I'F;/fo., where
yi ={I(T5)?+ (S0P - Ty 122,
m1 ={[(TD)?+(SD)?1 2+ Ty /22,
in which
Fi=(E+e — 85 0+ eg—ho)l e,
Ti=(E—e; — 8 5~ hw )Filho.
Further,
Al =2B],

A;=2aja, +5b; b, iw./\D, D,,

where

P. PFEFFER 57

Bi =aja, +3b; b, iw/2y/D; D,
B; =a;a, +9b; by Aw /2D D5,
C;=b;b;hwl/4{D;D;,

C; =3b; b, hw/4\D; D .

The limiting case of the parabolic energy band is obtained,
taking in the above formulaa, =1, b; =0, ande,=c°.

The polaron energies for Lh=1 are obtained as maxima
of the spectral density function

1 rs
Af(E)=— : (19)

7 (E-e 0PI
whereA; andI'; are real and imaginary parts of the self-
energy, as given by E@8). The spectral density function for

LL n=2 is obtained in a similar way.

In the practical description of the data one first uses the
relation mg,=mg /(1— «/6) in order to determine the band
effective masang from the experimental mass at the band
edge (m} being a hypothetical mass related to the band
structure; cf. the Append)x Then the band parameters are
adjusted to describe the band mass. Finally, one includes the
nonresonant and resonant polaron corrections. This automati-
cally gives the theoretical mass at the band edge equal to its
experimental valueng,=mg . In InSb the nonresonant po-
laron correctiona/6 is very small compared to unity.

Ill. RESULTS

In various experiments performed on InSb, one deals with
different initial and final electron states coupled by the pho-
non emission. In the cyclotron resonance at low tempera-
tures, the initial state is™ and the final state is Q. In this
direct arrangement one cannot easily follow the resonant re-
gion, since the optical absorption near the resonahee
=€/ — ey ~hw_ is dominated by the reststrahlen band. The
upper polaron branch is much wider than the lower one. As a
result, the precision of the data above the resonance is not as
good as that below.

To calculate the unperturbed energies in the conduction
band we use the model of Pidgeon and BréWwmhich in-
cludes, in addition to the three levels, contributions of other
bands within thek? terms. In the spherical approximation
(which we usg this model is slightly more precise than the
three-level modelcf. Ref. 30, but it gives the same struc-
ture of the wave functions as that used abfefe Egs. (4),

(5), and (6)], so that our derivations are valid without any
changes. We use the following band parameters for InSb:
E,=0.2352eV, A=0.803eV, y;=3.25 y=0.35 «
=—1.3,N;=—0.55, andF=—0.2. As to the value oEp0
=2myP3/%2, we adjust it slightly to describe different ex-
periments(see below.

The cyclotron resonance data may be presented in two
equivalent ways. One either plots directly the cyclotron en-
ergyE; —Eg or the cyclotron effective mass} , defined as
heB/m =E] —E, . For the lower polaron branch, the satu-
ration of the energf; —E, near the valugi o, for mag-
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[ A [
L9r 1 =8
: InSb ] s
o 1.8} _
£ i ] £
SO =
g 1.7 ]
8 16' : _4r h(a)[_
1.5 -
1.4} :
AN N R T T RAPE T S OL. .
T 3 3.5 4 4.5

FIG. 3. Cyclotron energy for conduction electrons in I(Spin-

FIG. 2. Cyclotron mass of conduction electrons in InSpin-up ~ down transitions vs magnetic field. Circles are the experimental
transition$ vs magnetic field. Experimental data: circles are afterdata of McCombe and KaplaiiRef. 34. The dashed line is calcu-
McCombe, Bishop, and Kaplafref. 31), squares after Huaet al. lated ignoring the electron-phonon interaction. The solid lines are
(Ref. 32, and triangles after Zawadzki, Klahn, and MefRef. 33. calculated including polaron corrections. It can be seen that the
The dashed line is calculated ignoring the electron-phonon interaaipper and lower polaron branches saturate at the optic-phonon en-
tion. The solid lines are calculated including polaron correctionsergy of# w =23.7 meV.
with the use ofi w =23.7 meV andx=0.02.

The solid lines are calculated including polaron corrections
netic fields above the resonance is equivalent to a stronfpr the 1™ level. We emphasize that this is the most complete
increase of the cyclotron mass. For the upper branch, thdata of McCombe and Kaplafi,which require the optic-
saturation of the energ; —Eg near the valugio, for ~ phonon energy ok =23.7 meV, as explicitly seen in Fig.
fields below the resonance corresponds to a strong decrea8e
of the mass. Finally, Fig. 4 shows the results of Koteles and Datars

In Fig. 2, we show the results of three different experi-for the cyclotron resonand€R) masses in InSb, taken at the
ments on the cyclotron resonance in InSh. Near the polarofemperature off =48 K, which allowed the authors to ob-
resonance; — e; ~fw, , the cyclotron mass for the lower serve four different CR transitions. The strongest polaron
branch shows the strong increase mentioned above. THfect is seen for the 1—2" transition, involving the reso-
dashed line indicates the increase of the mass resulting froMant polaron ofe, — ey ~fw  , which occurs at about half
the band nonparabolicity. This line is calculated taking theof the field corresponding to the resonange— e ~fiw, .
value of Ep =23.19 eV, which results in the band-edge The transition T —2~ is also affected by the resonance

massm? =0.01358n, and the Lande factog* =—51.04. €2 — € ~hw_, butto a lesser degree since, due to band's
The solid lines are calculated including the nonresonant and

resonant polaron corrections with the use of the polar con- 17
stant «=0.02 and the optic-phonon energyiw, ’ - InSb o
=23.7 meV. The last value is somewhat lower than the gen- . _ o
erally accepted energy 24.4 meV, but we find that it is C 9
needed to describe all the data of our interest. It can be seen L
that the theory accounts well for the experimental results
although, due to the reststrahlen band, there are no data
points in the region of actual resonance.

This deficiency is overcome in the data of McCombe and
Kaplan3* who investigated the combined resonance transi- 1.5
tion 0" — 1~. This allows one to follow the 1 Landau level
through the resonant rangg — ¢, ~fw, without the rest-
strahlen problems, since the optical enefgy=7% w.+fiwg
(wherefiwg is the spin-flip contributionis higher than the 1.4
reststrahlen energfw, ; see Fig. 3. The dashed line indi- 0
cates the unperturbed energy— e; . This energy is sensi- B(T)

tlve;odtr:e Splntﬁpht'[lr:g a‘%d, lnzcirggr t\c/) ObE?"?] th_e betsht fit, FIG. 4. Cyclotron masses of conduction electrons in InSb at
we had 10 use the value @p = 21.92 eV, Which gives t€  _ 45 ¢ for four cyclotron resonance transitions vs magnetic field.

massmg =0.01433n, and the spin factogy = —48.26. The  Circles are experimental data of Koteles and Dat®es. 35. Solid
other band parameters are the same as those given aboliges are calculated including the polaron corrections.
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nonparabolicity, for a given magnetic field the energy TABLE I. Calculated nonresonant polaron corrections to the
—€; is smaller thane; —€; , so that atB=1.6 T one is Landau levelsn=0, 1, and 2 ak,=0 vs f=fwc/ho . In al
further away from the resonance. The solid lines are calcuS@SeSAE.=—ahw,S,. The entriesSy, S,, ands, are nonreso-

lated including polaron effects and takirgp =22.82 ey, ~ Nant corrections given by EqeL2), (13), and(14), as used for the
0 calculation of resonant behavior. The entrBE)s, S;, andsS, are

which corresponds ton; =0.013 7o andg* = —50.22.(1t (ot level shifts in the vicinity 0fB~0, which also include the
is known that with increasing temperature the effective masgteraction with the leveh=0 (for S}), and with the levelsi=0
of electrons in InSb decreasg$he description of the data is and 1(for Sb); see text.

good apart from small discrepancies fot 31" and O
—17 transitions, not related to polarons. In their original g S S S S, S
theoretical description, Koteles and Dafarssed the Wigner
Brillouin perturbation theory, neglecting the band nonpara- 0-001 ~ 1.00008 ~ 0.9867 ~ 1.00025  0.978  1.0004
bolicity and the nonresonant polaron corrections. This over- 001 1.0008 0.962  1.0025 0.940  1.0042

simplified treatment forced the authors to employ the much 0-05  1.004 0929  1.0129 0.889  1.0220
too high value ofo=0.041. The resulting description is good 0.1 1.008 0.912 1.0265 0.861  1.0467
for the two lower transitions and poor for the two higher 0.3 1.024 0.887 0.819
ones. 0.5 1.040 0.880 0.804
In summary, we described resonant and nonresonant po9.7 1.055 0.881 0.798
laron corrections to the Landau energies in bulk InSb, and 0.9 1.070 0.884 0.796
applied the results to various existing experimental data. The1.0 1.077 0.886 0.796
theory takes into account the nonparabolic band structure of1.1 1.084 0.888 0.797
the material both in the electron energies and the wave func-1.3 1.098 0.894 0.799
tions. It is found that the structure of the wave functions 15 1.111 0.900 0.803
makes the effect of the electron-phonon interaction weaker.q 7 1.124 0.906 0.807
The theoretical analysis is applied to the observable polaron, g 1.136 0.915 0.812
behavior of the Landau |EVE|S:+1 1, 2+, and 2. We 2.0 1.142 0.916 0.814

achieve a very good description of the polaron behavior in
all cases. The band parameters of InSb have to be slightly

adjusted to describe the nonperturbed energies of Landau

levels, which suggest that various experimental data are ndfSonance, doe_s not exielf. Refs. 8 and 9 The nonreso-
completely consistent with each other. nant polaron shifts depend only weakly on magnetic fiefd

Table | and Ref. 1D

Second, it can be seen that in the limit Bf-0 the S}
correction(which contains the interaction with all higher lev-

| am pleased to acknowledge elucidating discussions witlels) correctly converges to unity. This corresponds to the
Professor Wlodek Zawadzki. This work was supported injowering of the energy bAE= — afiw, . On the other hand,
part by the Polish Committee for Scientific Research undefor s, and'S, this is not the case. The reason is that in the
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Grant No. 2P03B13911. expression forS; one omits the interaction with the=0
level, while in that forS, one omits the interactions with
APPENDIX =0 and 1 levels. The entrigd, and S, include the omitted

Here we consider numerical values of the nonresonarfontributions, which in the limit oB— 0 are nonresonant. It
polaron corrections to the Landau energies, and draw sonfen be seen tha&; ands; converge to unity, as they should.
conclusions. The entri%, Sl, andsz quote the values of As a function of magnetIC field the level=1 is shifted

strictly nonresonant parts as given by E¢2), (13), and downwards more than the It_avei= 0. The same may be sa{d
(14), respectively. aboutn=2 and 1 levels. This reflects the polaron correction

First, we observe that in the region of magnetic fieldsto the effective mass. Comparing the numerical values one

corresponding to the polaron resonaree,~% w, , the non- ~ obtains that the corrected massnig,=mg/(1— a/6). This
resonant corrections do not undergo any jumps. As a cons@grees with the results of analytical calculatibrié carried
quence, the energy behavior near the resonance is completeiyt for the limit of B—0. It should be mentioned that, in
governed by the resonant contribution. Thus the “offset” spite of the fact that in the resonant parts we include the
effect, i.e., an upward shiiE= a# w, of the upper polaron nonresonant shifts of the levels, fax<0.2, the quantities,;
branch with respect to the lower branch in the vicinity of andS, depend negligibly on the value of.
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