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Resonant and nonresonant polarons in bulk InSb

P. Pfeffer
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland

~Received 3 November 1997!

The theory of polarons in weakly polar InSb-type narrow-gap semiconductors in the presence of a magnetic
field is developed, taking into account resonant and nonresonant contributions to the electron Green function
and a nonparabolicity of the conduction band both in the energies and wave functions. An ansatz for the
nonresonant correction to the Landau energies is proposed, and shown to lead to good results for upper and
lower polaron branches. It is demonstrated that the band nonparabolicity weakens the effective electron–optic-
phonon interaction. Experimental results of various authors concerning the cyclotron and the combined reso-
nances in bulk InSb in regions of resonant polarons are described. The theory accounts very well for the
available data.@S0163-1829~98!02219-X#
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I. INTRODUCTION

Resonant polarons in semiconductors, since their disc
ery in magneto-optical properties of InSb by Johnson a
Larsen,1 have been the subject of numerous experimental
theoretical investigations. The resonant behavior in the vic
ity of \vc'\vL , where the higher Landau level splits in
upper and lower polaron branches, is of particular interes
weakly polar semiconductors, as it allows one to determ
directly the polar coupling constanta. The polaron problem
offers some theoretical difficulties concerning an instabi
of the upper branch, a choice of the adequate formalism,
an importance of the nonresonant polaron correction to
ergies. As a result, there exist in the literature quite a f
misunderstandings on the subject.

Harper2 explained a broadening of the cyclotron res
nance line above the resonance\vc5\vL , observed by
Summers, Harper, and Smith.3 Using the Green-function for
malism, Korovin and Pavlov4 and Nakayama5 showed that a
pinning behavior of the upper branch is due to the imagin
part of the self-energy.~The Wigner-Brillouin perturbation
theory, which implicitly assumes the imaginary part of t
self-energy to vanish, leads to a nonphysical behavior of
upper branch.6! Swierkowski and Zawadzki7 considered
separately resonant and nonresonant contributions to the
laron energy, and showed that the ‘‘offset’’ effect near t
resonance~i.e., an energy shift ofa\vL between lower and
upper polaron branches!, claimed by some authors,8,9 does
not exist. This was confirmed in a more complete theory
Pfeffer and Zawadzki.10

A proper incorporation of the nonresonant polaron corr
tion into the resonant behavior turned out to be a nontriv
task. Lindemannet al., in Ref. 11, considering the lower po
laron branch, proposed to shift all levels by the Raileg
Schrödinger correction to the lowest Landau level. This r
sults in the so-called improved Wigner-Brillouin~IWB!
perturbation theory. The same procedure was adopted
Peeters and Devreese.12 Various improvements of the Green
function description were discussed by Pfeffer a
Zawadzki,10 and it was shown that Lindemannet al. ansatz
leads to good results for the resonant polaron behavio
GaAs ~both lower and upper branches!.
570163-1829/98/57~19!/12156~8!/$15.00
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The influence of band nonparabolicity on the polaron b
havior has to be taken into account in narrow-gap semic
ductors. The position of the resonancee12e0'\vL is di-
rectly affected by the structure of the conduction band
the dependence of the Landau energiesen on the magnetic
field. The nonparabolicity causes the resonance to occu
higher fields, which was recognized from the beginnin8

However, in narrow-gap materials the structure of the wa
functions also enters the polaron problem via the matrix
ements of the Frohlich interaction. This was first included
Swierkowski and Zawadzki7 ~cf. also Swierkowskiet al.,
Ref. 13!. Pfeffer and Zawadzki14 described an observabl
case of resonant interband polar interaction in the zero-
material Hg12xMnxTe, in which the initial electron state is
conduction Landau level, while the final state is a heavy-h
Landau level. Das Sarma and Mason,15 considering theB
50 case and neglecting the proper structure of the w
functions, predicted nonresonant large corrections due
band nonparabolicity. Larsen,16 taking into account the
proper band structure, showed that the corrections are
siderably smaller. Huant and Karrai,17 considering theB
Þ0 case within a three-levelk–p model for the conduction
band of InSb, showed that in the limit ofB→0 the nonreso-
nant polaron corrections related to the band nonparaboli
have a negligible influence on the effective mass at the b
edge. This result could be expected, since in weakly po
materials the nonresonant polaron contributions are v
small to begin with, and the band at the edge is paraboli

The resonant polarons in InSb were also considered
two-dimensional systems.18,19 The upper polaron branch in
such systems can be described without recourse to
Green-function formalism, since, because of the absence
kz dependence of the Landau levels, the real phonon em
sion does not occur also above the resonance~cf. below!.

In the present paper, we consider the influence of b
nonparabolicity in InSb~both concerning the energies an
the wave functions! within the Green-function formalism
which allows us to treat correctly both lower and upper p
laron branches. This is particularly important in narrow-g
materials since, due to the smallness of the effective m
the resonance condition\vc'\vL is reached at low mag
netic fields~Bres'3.7 T for InSb!. We pay due attention to
12 156 © 1998 The American Physical Society
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57 12 157RESONANT AND NONRESONANT POLARONS IN BULK InSb
the nonresonant polaron contributions, generalizing and s
plifying the procedure proposed in Ref. 11. The formalism
applied to various available experiments in InSb, which u
the present has been regarded to be the model narrow
semiconductor.

II. THEORY

In this section we present a general formulation of
polaron problem in InSb-type narrow-gap materials. T
electronic band structure of such semiconductors in the p
ence of an external magnetic field is described, and the F
lich electron-phonon interaction is introduced. Then the n
resonant and resonant polaron corrections to the elec
self-energy are derived.

Band structure and Frohlich interaction

The initial Hamiltonian for the problem reads

H5P2/2m01V0~r !1Hso1HF1Hph, ~1!

wherem0 is the free-electron mass,P5p1eA is the kinetic
momentum,A is the vector potential of magnetic field,V0 is
the periodic potential of the lattice,Hso is the spin-orbit in-
teraction,HF is the Frohlich interaction~assumed weak!, and
Hph is the free-phonon term. The first three terms descr
the band structure of the material in the presence of a m
netic field.

We describe the electron energies and wave function
InSb in the presence of a magnetic field within the thr
level P–p model, which explicitly takes into account theG6
conduction level, separated by the energy gapeg from theG8
~degenerate! valence level, which is in turn split by the spin
orbit energyD from theG7 valence level. The resultingP–p
set of eight coupled differential equations can be solv
exactly.20 For the electron energies satisfying the conditi
e!eg12D/3 one obtains the Landau-level~LL ! energies in
the form21

en
6~kz!52

eg

2
1F S eg

2 D 2

1egDn
6~kz!G1/2

, ~2!

where

Dn
6~kz!5\vcS n1

1

2D6
1

2
g0* mBB1

\2kz
2

2m0*
, ~3!

in which vc5eB/m0* is the cyclotron frequency,m0* is the
effective mass at the band edge,mB5e\/2m0 is the Bohr
magneton,g0* is the spin Lande factor at the band edge, a
6 signs correspond to effective spin-up and spin-do
states. The nonparabolicity of the conduction band is
pressed by the square root in Eq.~2!.

Specifying the Landau gauge for the vector potential
the magnetic field,A5(2By,0,0,), one looks for solutions
~the envelope functions! in the form f (r )5exp(ikxx
1ikzz)f(y). The wave functions for the above range of en
gies are~cf. Ref. 21!
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1S \vc~n11!
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\kz

ADn
1m0*

fnu6 , ~4!

wn
25an

2fnu21
)

2
bn

2S \vc~n11!

Dn
2 D 1/2

fn11u4

2
1

&
bn

2
\kz

ADn
2m0*

fnu52
1

2
bn

2S \vcn

Dn
2 D 1/2

fn21u6 ,

~5!

where fn@(y2kxL
2)/L# are the harmonic-oscillator func

tions, 1/L25eB/\ defines the magnetic radius, and the co
ficients are

~an
6!25

eg1en
6

eg12en
6 , ~bn

6!25
en

6

eg12en
6 . ~6!

The Luttinger-Kohn amplitudes are defined in Ref. 21, b
for our purposes it will suffice to know that they possess
periodicity of the lattice and are orthonormal within the un
cell.

The structure of the wave functions, as expressed by E
~4!, ~5!, and~6!, must be taken into account together with t
band nonparabolicity in a consistent polaron theory
narrow-gap semiconductors.

The Frohlich polar electron-phonon coupling is taken
the standard form

HF5C
1

q
~eiq•rbq1e2 iq•rbq

1!, ~7!

whereC5@a&\(\vL)3/22p/VAm0* #1/2. Herea is the polar
constant,q is the phonon wave vector,\vL is the energy of
the longitudinal-optic phonon, andV is the crystal volume.
Since in a narrow-gap semiconductor the electron mass
pends in general on its energy, the problem arises a
whether the constantC does not depend on electron energ
However, the definition of the polar coupling constanta in-
volves proportionality toAm0* ~cf. Mahan, Ref. 22!, so that
in reality the strength of electron-phonon interaction does
depend on the mass.@In fact, employing the initial formula-
tion ~1! it would make more sense to use in the definitions
a and ofC the free-electron massm0 , but this would lead to
unusual values ofa, so we keep the standard definitio
which, as stated above, does not influence the final resu#

We are interested in energies of the Landau staten at kz
50, perturbed by the polar interaction with other Land
states, accompanied by a virtual or real emission o
longitudinal-optic phonon at low temperatures. If the em
sion of phonons is real, the lifetime of an electron in t
initial state is finite. This requires the Green-function form
ism, involving both real and imaginary parts of the electr
self-energy. The electron energy is given by the maxima
the spectral functionAn(E)52(1/p)Im Gn(E), where
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Gn~E!51Y FE1 iG2S en1( n
r 1( n

nr D G , ~8!

is the Green function. HereG is the phenomenological leve
broadening not related to optic phonons~discussed later!, en

is the unperturbed electron energy,(n
nr is the nonresonan

correction, and(n
r is the resonant correction to the energ

The situation is shown schematically in Fig. 1.

Nonresonant polaron correction

According to the second-order perturbation theory,
nonresonant correction to thenth LL at kz50 is

( n
nr 5 (

m>n

`

(
q

uMnm~q!u2

En2@Em~kz!1\vL#
, ~9!

whereEm(kz) is the energy of themth level andMnm(q) are
the matrix elements of the Frohlich interaction~the phonon
emission part!.

One proves in a diagrammatical analysis of the pola
problem that in the self-energy calculation the energiesEm
should be final energies, i.e., they should already incl
corrections due to the electron-phonon interaction.23,24 We
write, in general,Em5em1dm , where em are the unper-
turbed energies anddm are the unknown corrections. For th
lowest level of the sum of Eq.~9! ~the most important one
for the perturbation! one deals withdn , and we propose to
takedm5dn for all m. Since for thenth LL in question one
can also writeEn5en1dn , the above approximation lead
to the cancellation ofdn in the denominators of formula~9!,
and the latter becomes simply the Raleigh-Schro¨dinger~RS!
perturbation series. Thus we obtain(n

nr5dn
RS. The RS theory

is known to give the best results for the nonreson
perturbations.22 The above ansatz generalizes the proposit
of the authors of Ref. 11, who tookdm5d0

RS for all m andn.
Further~only for the nonresonant part!, we take the para-

bolic approximation to electron energies, i.e.,en
6(kz)

'Dn
6(kz); cf. Eq. ~3!. We do the same for the wave func

FIG. 1. Landau levels vskz : ~a! below the polaron resonanc
\vc,\vL , and~b! above the polaron resonance\vc.\vL ~sche-
matically!. For \vc,\vL , all phonon emission transitions from
the level n51 at kz50 are virtual ~dashed arrows!. For \vc

.\vL , the phonon emission to then50 level is real~solid arrow!.
At \vc5\vL , the real phonon emission is resonant.
.
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tions, which amounts to assumingen
6(kz)!eg . This leaves

only the first terms in Eqs.~4! and ~5! with an
6'1.

The matrix elements in Eq.~9! are calculated using the
well-known formula for the harmonic-oscillator functions25

^m,kx ,kzue2 iqrun,0,0&

5d0,kz1qz
d0,kx1qx

Ceiw~m2n!eiL 2qxqy/2

3~2Lq' /& !m2nS n!

m! D
1/2

e2L2q'
2 /4

1

q
Ln

m2n~L2q'
2 /2!,

~10!

wherew is the asimuthal angle,q'
2 5qx

21qy
2 in the cylindric

coordinate system, andLn
m2n(L2q'

2 /2) are the associated La
guerre polynomials. Since the involvedq values are rather
small, the exponential function exp(2iq•r … is slowly varying
within the unit cell, so that one can take theu1 andu2 peri-
odic amplitudes in Eq.~4! and~5! out of the integral sign and
use their normalization.

For n50, formula~9! leads to

( 0
nr 52

CV

~2p!3 (
m50

`
1

m!

3E
0

` 1

q2

~Lq' /& !2me2L2q'
2 /2

~2e01em1\2qz
2/2m0* 1\vL!

dq.

~11!

The summation can be performed analytically, and the in
gration is carried out in the spherical coordinate system. T
final result is

( 0
nr 52

a\vL

Apb
E

0

` exp~2t/b!Atg~t!

AtAt21
dt, ~12!

where b5\vc /\vL , g(t)5 ln(At1At21) and t5t/(1
2e2t). Similarly, for n51 one obtains

( 1
nr 52

a\vL

2Apb
E

0

`

et~121/b!F f ~ t !2At

t21
1

At

t21

1
2~t2t !2t/~t21!

Att~t21!
g~t!Gdt, ~13!

where

f ~ t !5H ln~At1At21!/At21

arccosAt/A12t

for t>1
for t,1.

For n52,
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( 2
nr 52

a\vL

Apb
E

0

`

et~121/b!H f ~ t !

t21 F 15

16~ t21!22
3~et24!

8~ t21!

11G2
At

t21 F33226t18t2

16~ t21!2 1
~et24!~2t25!

8~ t21!
11G

1
At

t21 F tet~2t25!

8t~t21!
11G1

Atg~t!

At~t21!3/2 F 3tet

8t~t21!

1
t~t21!

tet 21G J dt, ~14!

where f (t) is defined as above.
In the limit of B→0, the complete nonresonant corre

tions for various LL’s give the polaron ‘‘binding energy
DE52a\vL ~the details are given in the Appendix!. For
n50 and 1, this was shown by Larsen,26 and for arbitraryn
by Peeters and Devreese12 ~cf. also Huant and Karrai, Ref
17!. In weakly polar materials this shift is very small, and
has not been observed experimentally. The polaron cor
tions to the effective mass are discussed in the next sub
tion and in the Appendix.

Resonant polaron correction

The resonant polaron correction to thenth LL can occur
for the phonon emission only by interaction with the low
levelsm,n ~cf. Fig. 1!. The second-order perturbation give

( n
r ~E!5 (

m50

n21

(
q

uMnm~q!u2

E1 iG2@Em~kz!1\vc#
. ~15!

The phenomenological contributioniG represents a residua
scattering not related to optic phonons~always present in a
crystal!, which eliminates a nonphysical divergence atE
5Em1\vL , and gives a physically observed polaron b
havior: at magnetic fields below the resonance, the lo
branch is dominant, whereas above the resonance the u
branch takes over.7

As already mentioned in the previous subsection, the
ergiesEm in Eq. ~9! should be final ones~i.e., they should
already be corrected by the electron-phonon interactio!.
Thus for n51 the sum in Eq.~15! involves one termm
50, in which the final energy includes only the nonreson
correction: E0(kz)5e0(kz)1d0

RS. For n52, the sum in-
volves two termsm50 and 1, in whichE0(kz) is calculated
as above, while the final energyE1(kz) is calculated includ-
ing both the nonresonant partd1

RS, as well as the resonan
oned1

res. As follows from Eq.~8!, the appropriate nonreso
nant corrections also appear in the Green function.

In the resonant part of the polaron correction~which gives
the main observable effect! we include the real band struc
ture of InSb, both in the energies and the wave functions
the energies it amounts to taking formulas~2! and ~3! for
em(kz). When calculating the matrix elementsMnm(q) with
the complete wave functions~4! and ~5!, one takes into ac-
count that the interaction part exp(2iq•r ) as well as the
envelope functions in Eqs.~4! and ~5! are slowly varying
within the unit cell, so the integrals over the crystal volum
may be broken into those involving the slowly varying fun
c-
ec-

-
r

per

n-

t

In

tions f and quickly varying periodic Luttinger-Kohn ampli
tudesui . One can then use the orthonormality relations
ui , and they disappear from the final results. The ma
elements of exp(2iq•r ) between various harmonic oscilla
tors are calculated according to Eq.~10!. It turns out that the
structure of the wave functions~4! and ~5! leads to the de-
crease of the matrix elements, as compared to those in w
only the first terms in Eqs.~4! and ~5! are accounted for. In
more physical terms, the band nonparabolicity leads to we
ening of the electron-phonon interaction. This feature h
already been noticed in the calculation of electron mobi
in InSb; cf. Ref. 27.@It should be emphasized that this resu
is in contradiction with the conclusions of Huant and Kar
~Ref. 17! who stated that the band nonparabolicity makes
effect of electron-phonon interaction stronger.# In the calcu-
lation we neglect the matrix elements between the differ
spin states, as given by Eqs.~4! and ~5!. They are nonzero
~cf. Ref. 28!, but are much smaller then those between
states of the same spin.

After some manipulation, the resonant part forn51 ~both
lower and upper polaron branches! is obtained in the form
~spin is included!

( 16
r 52Fa\vL

Ab

3E
0

` x2e2x2
~g61x1 ih6!~A62B6x2!2F6dx

~g61x!21~h6!2

1~h61 ig6!GG 1

V6 . ~16!

Here x5Lq'&, V65g62 ih6, and S65GF6/\vc ,
where

g65$@~T6!21~S6!2#1/22T6/2%1/2,

h65$@~T6!21~S6!2#1/21T6/2%1/2,

in which

F65~E1e0
62d0

RS1eg2\vL!/eg ,

T65~E2e0
62d0

RS2\vL!F6/\vc .

Further,

A65a0
6a1

612B1
6 ,

where

B15b0
1b1

1\vc/4AD0
1D1

1,

B25b0
2b1

23\vc/4AD0
2D1

2,

in which am
6 , bm

6 , andDm
6 are given in Eqs.~6! and ~3!.

For the leveln52 the resonant correction comes fro
both lower levels m50 and m51. We have (2

r 5R0
6

1R1
6 , in which the first resonant part is
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R0
652Fa\vL

2Ab

3E
0

` x4e2x2
~g0

61x1 ih0
6!~A0

62B0
6x2!2F0

6dx

~g0
61x!21~h0

6!2

1~h0
61 ig0

6!GG 1

V0
6 . ~17!

HereV65g0
62 ih0

6 andS0
65GF0

6/\vc , where

g0
65$@~T0

6!21~S0
6!2#1/22T0

6/2%1/2,

h0
65$@~T0

6!21~S0
6!2#1/21T0

6/2%1/2,

in which

F0
65~E1e0

62d0
RS1eg2\vL!/eg ,

T0
65~E2e0

62d0
RS2\vL!F0

6/\vc .

Further,

A0
65a0

6a2
613B0

6 ,

where

B0
15b0

1b2
1\vc/4AD0

1D2
1,

B0
253b0

2b2
2\vc/4AD0

2D2
2.

The second resonant part is

R1
652Fa\vL

2Ab
E

0

`

3
x2e2x2

~g1
61x1 ih1

6!~A1
62B1

6x21C1
6x4!2F1

6dx

~g1
61x!21~h1

6!2

1~h1
61 ig1

6!GG 1

V1
6 . ~18!

HereV65g1
62 ih1

6 , S1
65GF1

6/\vc , where

g1
65$@~T1

6!21~S1
6!2#1/22T1

6/2%1/2,

h1
65$@~T1

6!21~S1
6!2#1/21T1

6/2%1/2,

in which

F1
65~E1e1

62d1
res2d1

RS1eg2\vL!/eg ,

T1
65~E2e1

62d1
res2d1

RS2\vL!F1
6/\vc .

Further,

A1
152B1

1 ,

A1
252a1

2a2
215b1

2b2
2\vc /AD1

2D2
2,

where
B1
15a1

1a2
113b1

1b2
1\vc/2AD1

1D2
1,

B1
25a1

2a2
219b1

2b2
2\vc/2AD1

2D2
2,

C1
15b1

1b2
1\vc/4AD1

1D2
1,

C1
253b1

2b2
2\vc/4AD1

2D2
2.

The limiting case of the parabolic energy band is obtain
taking in the above formulasan

651, bn
650, andeg5`.

The polaron energies for LLn51 are obtained as maxim
of the spectral density function

A1
6~E!52

1

p

G1
6

~E2e1
62D1

6!21~G1
6!2 , ~19!

whereD1
6 and G1

6 are real and imaginary parts of the se
energy, as given by Eq.~8!. The spectral density function fo
LL n52 is obtained in a similar way.

In the practical description of the data one first uses
relation mpol* 5mb* /(12a/6) in order to determine the ban
effective massmb* from the experimental mass at the ba
edge ~mb* being a hypothetical mass related to the ba
structure; cf. the Appendix!. Then the band parameters a
adjusted to describe the band mass. Finally, one includes
nonresonant and resonant polaron corrections. This autom
cally gives the theoretical mass at the band edge equal t
experimental valuempol* 5m0* . In InSb the nonresonant po
laron correctiona/6 is very small compared to unity.

III. RESULTS

In various experiments performed on InSb, one deals w
different initial and final electron states coupled by the ph
non emission. In the cyclotron resonance at low tempe
tures, the initial state is 11 and the final state is 01. In this
direct arrangement one cannot easily follow the resonant
gion, since the optical absorption near the resonance\v
5e1

12e0
1'\vL is dominated by the reststrahlen band. T

upper polaron branch is much wider than the lower one. A
result, the precision of the data above the resonance is n
good as that below.

To calculate the unperturbed energies in the conduc
band we use the model of Pidgeon and Brown,29 which in-
cludes, in addition to the three levels, contributions of oth
bands within thek2 terms. In the spherical approximatio
~which we use! this model is slightly more precise than th
three-level model~cf. Ref. 30!, but it gives the same struc
ture of the wave functions as that used above@cf. Eqs.~4!,
~5!, and ~6!#, so that our derivations are valid without an
changes. We use the following band parameters for In
Eg50.2352 eV, D50.803 eV, g153.25, ḡ50.35, k
521.3, N1520.55, andF520.2. As to the value ofEP0

52m0P0
2/\2, we adjust it slightly to describe different ex

periments~see below!.
The cyclotron resonance data may be presented in

equivalent ways. One either plots directly the cyclotron e
ergyE1

12E0
1 or the cyclotron effective massm0* , defined as

\eB/m0* 5E1
12E0

1 . For the lower polaron branch, the sat
ration of the energyE1

12E0
1 near the value\vL for mag-
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netic fields above the resonance is equivalent to a str
increase of the cyclotron mass. For the upper branch,
saturation of the energyE1

12E0
1 near the value\vL for

fields below the resonance corresponds to a strong decr
of the mass.

In Fig. 2, we show the results of three different expe
ments on the cyclotron resonance in InSb. Near the pola
resonancee1

12e0
1'\vL , the cyclotron mass for the lowe

branch shows the strong increase mentioned above.
dashed line indicates the increase of the mass resulting
the band nonparabolicity. This line is calculated taking
value of EP0

523.19 eV, which results in the band-edg

massmb* 50.01355m0 and the Lande factorg* 5251.04.
The solid lines are calculated including the nonresonant
resonant polaron corrections with the use of the polar c
stant a50.02 and the optic-phonon energy\vL
523.7 meV. The last value is somewhat lower than the g
erally accepted energy 24.4 meV, but we find that it
needed to describe all the data of our interest. It can be
that the theory accounts well for the experimental res
although, due to the reststrahlen band, there are no
points in the region of actual resonance.

This deficiency is overcome in the data of McCombe a
Kaplan,34 who investigated the combined resonance tran
tion 01→12. This allows one to follow the 12 Landau level
through the resonant rangee1

22e0
2'\vL without the rest-

strahlen problems, since the optical energy\v5\vc1\vs
~where\vs is the spin-flip contribution! is higher than the
reststrahlen energy\vL ; see Fig. 3. The dashed line ind
cates the unperturbed energye1

22e0
1 . This energy is sensi

tive to the spin splitting and, in order to obtain the best
we had to use the value ofEP0

521.92 eV, which gives the

massmb* 50.01433m0 and the spin factorg0* 5248.26. The
other band parameters are the same as those given a

FIG. 2. Cyclotron mass of conduction electrons in InSb~spin-up
transitions! vs magnetic field. Experimental data: circles are af
McCombe, Bishop, and Kaplan~Ref. 31!, squares after Huantet al.
~Ref. 32!, and triangles after Zawadzki, Klahn, and Merkt~Ref. 33!.
The dashed line is calculated ignoring the electron-phonon inte
tion. The solid lines are calculated including polaron correctio
with the use of\vL523.7 meV anda50.02.
g
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The solid lines are calculated including polaron correctio
for the 12 level. We emphasize that this is the most compl
data of McCombe and Kaplan,34 which require the optic-
phonon energy of\vL523.7 meV, as explicitly seen in Fig
3.

Finally, Fig. 4 shows the results of Koteles and Datar35

for the cyclotron resonance~CR! masses in InSb, taken at th
temperature ofT548 K, which allowed the authors to ob
serve four different CR transitions. The strongest pola
effect is seen for the 11→21 transition, involving the reso-
nant polaron ofe2

12e0
1'\vL , which occurs at about hal

of the field corresponding to the resonancee1
12e0

1'\vL .
The transition 12→22 is also affected by the resonanc
e2

22e1
2'\vL , but to a lesser degree since, due to ban

r

c-
s

FIG. 3. Cyclotron energy for conduction electrons in InSb~spin-
down transitions! vs magnetic field. Circles are the experimen
data of McCombe and Kaplan~Ref. 34!. The dashed line is calcu
lated ignoring the electron-phonon interaction. The solid lines
calculated including polaron corrections. It can be seen that
upper and lower polaron branches saturate at the optic-phonon
ergy of \vL523.7 meV.

FIG. 4. Cyclotron masses of conduction electrons in InSb aT
548 K for four cyclotron resonance transitions vs magnetic fie
Circles are experimental data of Koteles and Datars~Ref. 35!. Solid
lines are calculated including the polaron corrections.
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12 162 57P. PFEFFER
nonparabolicity, for a given magnetic field the energye2
2

2e1
2 is smaller thane2

12e1
1 , so that atB51.6 T one is

further away from the resonance. The solid lines are ca
lated including polaron effects and takingEP0

522.82 eV,

which corresponds tomb* 50.013 77m0 andg* 5250.22.~It
is known that with increasing temperature the effective m
of electrons in InSb decreases.! The description of the data i
good apart from small discrepancies for 01→11 and 02

→12 transitions, not related to polarons. In their origin
theoretical description, Koteles and Datars35 used the Wigner
Brillouin perturbation theory, neglecting the band nonpa
bolicity and the nonresonant polaron corrections. This ov
simplified treatment forced the authors to employ the mu
too high value ofa50.041. The resulting description is goo
for the two lower transitions and poor for the two high
ones.

In summary, we described resonant and nonresonant
laron corrections to the Landau energies in bulk InSb, a
applied the results to various existing experimental data.
theory takes into account the nonparabolic band structur
the material both in the electron energies and the wave fu
tions. It is found that the structure of the wave functio
makes the effect of the electron-phonon interaction wea
The theoretical analysis is applied to the observable pola
behavior of the Landau levels: 11, 12, 21, and 22. We
achieve a very good description of the polaron behavio
all cases. The band parameters of InSb have to be slig
adjusted to describe the nonperturbed energies of Lan
levels, which suggest that various experimental data are
completely consistent with each other.
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APPENDIX

Here we consider numerical values of the nonreson
polaron corrections to the Landau energies, and draw s
conclusions. The entriesS0

t , S1 , andS2 quote the values o
strictly nonresonant parts as given by Eqs.~12!, ~13!, and
~14!, respectively.

First, we observe that in the region of magnetic fie
corresponding to the polaron resonance\vc'\vL , the non-
resonant corrections do not undergo any jumps. As a co
quence, the energy behavior near the resonance is compl
governed by the resonant contribution. Thus the ‘‘offse
effect, i.e., an upward shiftDE5a\vL of the upper polaron
branch with respect to the lower branch in the vicinity
om
u-

s

l
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h
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n
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tly
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ot

th
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e-
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’

resonance, does not exist~cf. Refs. 8 and 9!. The nonreso-
nant polaron shifts depend only weakly on magnetic field~cf.
Table I and Ref. 10!.

Second, it can be seen that in the limit ofB→0 the S0
t

correction~which contains the interaction with all higher lev
els! correctly converges to unity. This corresponds to t
lowering of the energy byDE52a\vL . On the other hand
for S1 and S2 this is not the case. The reason is that in t
expression forS1 one omits the interaction with then50
level, while in that forS2 one omits the interactions withn
50 and 1 levels. The entriesS1

t andS2
t include the omitted

contributions, which in the limit ofB→0 are nonresonant. I
can be seen thatS1

t andS2
t converge to unity, as they should

As a function of magnetic field the leveln51 is shifted
downwards more than the leveln50. The same may be sai
aboutn52 and 1 levels. This reflects the polaron correcti
to the effective mass. Comparing the numerical values
obtains that the corrected mass ismpol* 5mb* /(12a/6). This
agrees with the results of analytical calculations12,17 carried
out for the limit of B→0. It should be mentioned that, i
spite of the fact that in the resonant parts we include
nonresonant shifts of the levels, fora,0.2, the quantitiesS1

t

andS2
t depend negligibly on the value ofa.

TABLE I. Calculated nonresonant polaron corrections to t
Landau levelsn50, 1, and 2 atkz50 vs b5\vc /\vL . In all
casesDEn52a\vLSn . The entriesS0

t , S1 , andS2 are nonreso-
nant corrections given by Eqs.~12!, ~13!, and~14!, as used for the
calculation of resonant behavior. The entriesS0

t , S1
t , and S2

t are
total level shifts in the vicinity ofB'0, which also include the
interaction with the leveln50 ~for S1

t !, and with the levelsn50
and 1~for S2

t !; see text.

b S0
t S1 S1

t S2 S2
t

0.001 1.000 08 0.9867 1.000 25 0.978 1.000
0.01 1.0008 0.962 1.0025 0.940 1.0042
0.05 1.004 0.929 1.0129 0.889 1.0220
0.1 1.008 0.912 1.0265 0.861 1.0467
0.3 1.024 0.887 0.819
0.5 1.040 0.880 0.804
0.7 1.055 0.881 0.798
0.9 1.070 0.884 0.796
1.0 1.077 0.886 0.796
1.1 1.084 0.888 0.797
1.3 1.098 0.894 0.799
1.5 1.111 0.900 0.803
1.7 1.124 0.906 0.807
1.9 1.136 0.915 0.812
2.0 1.142 0.916 0.814
-
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