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Stochastic model of plasma waves for a simple band structure in semiconductors
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We consider the application of a stochastic model of two-layer systems to a simple band structure in
semiconductors. The telegrapher’'s equation for the probability density is recovered and the source term is
expressed as a function of the electron and hole concentrations. We derive the dispersion relation and we
discuss its correction terms with respect to the purely telegrapher’'s description in fermion systems, for ex-
ample, a photoexcited electron-hole plasma in semiconducsirs63-18208)02916-9

I. INTRODUCTION mention that good tools may be obtained by taking into ac-

count the full band structure in semiconductor materials.

Considerable literature on physical processes leading téhis subject is one of the relevant topics in the field of some

the telegrapher’s equation for the probability density or fornonequilibrium theories in the spirit to include the hyper-
temperature is presently available. Such an equation is tHeC!iC theor% (nonparabolic bandsin the microscopic
one akin to Maxwell-Cattaneo’s transport equation for thephenomené. Furthermore, hydrodynamic mod&ls* ob-

o - . ... tained from higher moments of the Boltzmann transport
diffusion (or probability flux or the heat.f_lux combmed. with equation have been used to simulate microelectronic devices.
the mass or the energy balance equatfoR©n the basis of

. ; ' >~ = In the present paper we consider the semiconductors from
information theory a hydrodynamic model for dissipative b bap

h V&6 which : another point of view. Our aim is to apply the stochastic
systems has been derived, which seems to give @ good qqe| of the two-layer system to semiconductors, which

tool for a mesoscopic description, as, for instance, the onga4s to a microscopic approach to describe plasma waves in
used in the framework of extended irreversible thermodynonequilibrium situations.

namics (EIT).°~® This thermodynamic theory considers the \ve assume that the motion of particles in the energy
usual dissipative fluxes or some higher-order fluxes as addpands of semiconductors is similar to the so-called persistent
tional independent variables in a generalized entropy overrandom walk®® in our case, the electrons move in the con-
coming some paradoxes of local equilibrium theory, as thejuction band with velocity,(k) and the holes in the valence
resulting infinite velocity of propagation of thermal and vis- band with the velocity,, (k). For example, in the parabolic
cous signals and the negativeness of entropy production feipproximationve(k) =7%k/m} andvy(k) =#k/m} , wherek
some intervals of thermal or plasma wafe$. is the wave vector anth? andm} are the effective masses
The random walk or the two-layer system is a simpleof electron and hole, respectively. This parabolic theory is
model whose particles jump between two states in discreteell known in the literature, but it is not accepted at high
times in a one-dimensional lattice. Such a model has beeftequencies and low temperature, because fast phenomena
used in several domains of mathematical and physicahppear and the particle mass varies with the microscopic
sciences % Our aim in the present work is to apply it to a energy*® In order to give a good analysis, one has to include
simple band structure in semiconductors at three dimensionghe hyperbolic energy-momentum relation and to take into
The model was introduced as a model of diffusion in a num-@ccount several energy levels. This latter case will not be
ber of biological and physical situatioh$Some generaliza- considered in the present paper; we limit ourselves to apply a
tions of this model taking into account inertial effects, as thestochastic two-layer model to semiconductor materials with
persistent random walk, have been used in the so-called Tagimple bands, where the velocity of carriers does not depend
lor dispersion and turbulent diffusidi:25by Godoy to gen-  ©n the position. _
eralize the Landauer coefficient for the diffusion of electrons, 11€ Paper is organized as follows: In Sec. Il we present
in one dimension at 0 K8 by Kramerd? in a Fokker-Plank the mathematic formahsm to .be used, and in continuation we
equation in the presence of absorbing boundaries, and b scuss the evolution equ:':ltlons fr'or.n EIT. 'In Sec. Il we
Boughaleb and GouyEtto generalize the lattice gas model _eproduce the telegrap_hers description, which porresponds
to the Kramers regime. In many situations the source term our case to the diffusion of electron and holes in semicon-

are neglected and the evolution equation is described by th uctors, without rgcqmb!natlons. In Secs. IV and V we take
telegrapher’s equatich? In this paper we include not only Into account the dissipative source and the Coulomb interac-

the dissipative source, but also the Coulomb interaction. tion, respectively, and we compare our results for the disper-

Stochastic diffusion processes for discrete systems hav%'On relation and the propagation velocity with the ones cor-

been applied to several thermophysical syst&fdn our resp_onding to the purely telegrapher’s equation. In the last
case, the first layer is the conduction band, containing mobil§€Ction We give some concluding remarks.

electrons, and the second one is the valence band of mobile
holes. The drift-diffusion equatidfi has been used particu-
larly to describe hot electrons, and some collision processes, Since in most physical applications one cannot distinguish
but the model suffers some criticisms at short times. Let ubetween right- and left-moving particles, one can use the

IIl. MATHEMATIC FORMALISM
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density probabilities to find electronB(r,t,k) or holes
Py(r,t,k), in the positiorr with the wave vectok, at timet,
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under the hypothesis that the total probability and the particle

flux take the form

P(r,t,k)=Pg(r,t,k)+Pu(r,t,k), (D)

J(r,t,k)=ve(k)Pg(r,t,K) +vo(k)Pn(r,t,k). 2

According to Eqs(1) and(2) the probability to find electrons
P(r,t,k) and holesP,(r,t,k) in the positionr, at timet,
with wave vectork may be written in terms oP andJ as

Ve(K) —Vn(k)

Pe(r.t.k) =[3(r.tk) —v(k)P(r k)] o= o
)

Ve(K) —vn(k)

Pr(rtk) ==Xt k) —ve(KP(r k)] T A
(@)

JP(r,t
%)-er-‘](r,t):—A-J(r,t)—BP(r,t), (7
where
. Ue— Up
A_[(ree+rhe)_(rhh+reh)] |U _uh|21 (8)
e
Ue— Up
B:[(rhh+reh)ue_(ree+rhe)uh]' |U _uh|2a (9)
e

whereueny = (vem)(K)) is the average velocity of electrons
(e) and holes ).

The physical situation of the system is described assum-
ing the following restrictions(i) At time t, (t;=0) the ex-
trinsic semiconductof P(r,t,k) # P, (r,t,k)] is excited by
an external source. The laser pulse is considered sufficiently
intense to produce mobile independent electrons and holes.
(i) After a lapse of time, the system ftries to return to the
equilibrium state by electron-hole recombinations. In the re-
laxational approximation, the rapid recombination is propor-

The evolution equations of probability densities for electrongional to P/ 7, wherery is the relaxation time correspond-
and holes in the presence of Coulomb interaction are respefng to the process. This means that for short times we can

tively described by

dP(r,t,k)

ot +Ve(k)'vrpe(rat,k)

== [Fed kK )Po(r,t,k" )+ ok Kk )Pp(r,t,k")]
k!

+f Ken(r—r",K) > [Po(r’,t,k" ) +Py(r’,t,k")]dr’,
k!
(5

&Ph(r,t,k)

ot +vp(K) -V, Py(r,t,k)

== [Fne(kk )Pe(r,t,k" )+ (kK ) PR(r,t,k")]
k/

+j Khe(r—r’,k)E [Ph(r',t,k")+Pg(r’,t,k")]dr’,
k/

(6)

wherer;;(k,k") are the microscopic rates of transition prob-
ability between two energy levels,j stand for electrons and
holeg, and K (r—r’,k) is the microscopic kernel associ-

ated with the Coulomb potentidl(r—r’) of carrier-carrier

interaction. Due to the exchange between electron and hole

representations, one can assume gi{=— K. Further-
more, the detailed balance is assumeg(k,k’)=r;;6(k

neglect a termA- J, by takingA equal to zero, i.e., we sup-
pose that .o+ rpe=rnhntren, Which agrees with the hypoth-
esis of Eqs(14)—(16). Then Eq.(7) reduces to

JP(r,t)
at

+V,-J(r,t)=—BP(r,t), (10
with B™1=1/(r ¢e+ r'no) = 7 is the recombination relaxation
time.

The equation for the flux, which is the sum of E&)
multiplied by[ve(k)] and Eq.(6) multiplied by[v,(k)] and
after summation ovek, takes the formsee Appendix B

aJ(r,t)
at

T

+J(r,t)+DV,P(r,t)

=—7uV,-J(r,t)+ 7EP(r,1)
+ru’f K(r—=r")P(r’,t)dr’, (11

whereu=u.+u,, U’ =uU.— U, and the parametefd andE

are expressed in Appendix B. The relaxation timand the
diffusion coefficientD are identified as

(12

D=-— Tueuh . (13)

The left-hand sidgLHS) of Eq. (11) corresponds to a

—k'"). Hereafter, we will consider a macroscopic situation atMaxwell-Cattaneo equation for the fluk and the right-hand

three-dimensional system, i.&(r,t)=%,3,P,(r,t,k) and
J(r,t)=2,ZJda(r,t,k), a=e for electron anda=h for
holes.

Taking into account Eq4$1) and(2), a summation of Eqs.
(5) and(6), and after summation ovérof the corresponding

side (RHS represents some nonlocal terms. These latter
terms are the main aim of this paper to describe plasma
waves in particular systems. Generally, the RHS of @d)
contains not only the nonlocal effects but also nonlinear
ones. Whem.= —u,=v (v constany, we recover the results

expression, the balance equation of carrier particles yieldsf Ref. 9, which describes a thermodynamic and stochastic

(see Appendix A

diffusion in two-layer systems.
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For the sake of simplicity, we suppose that diagonal ele- i 1 .
ments of ¢);; are equal and very important with respect to we=— 5t V- 1+4D7Q% (20
others; this means that the transmission coefficients are more

important than the reflection ones, i.€.e=rpn, reh="he> 1 .
and ro,<r... Therefore, the parameters of the system ard O Small values ofQ (Q<3v1/7D), the frequency is

simplified as purely imaginary. B_ut, for_ higher valueQ& 3 \/1/7D), the
real part of Eq(11) is derived as

1
B=(ree+rhe)z;, (14 1
wiZiZ_ J=1+4D Q% (21
1
C:(ree_reh):;r (15

This equation describes the propagation of thermal pulses or
plasma waves in the context of Maxwell-Cattaneo. If the
E=—repu. (16)  relaxation time tends to infinity, the propagation velocity
vp—D/7=\uguy], which is finite. In Secs. IV and V we
will see how the dispersion relation and the propagation ve-
locity should be modified by the dissipative source and Cou-

Taking into account E¢(10), we can transform Eq11)
in terms of the probability concentration as

PP(rt)  aP(r,t) X lomb intergction e_ffe_ct, r_espectively. A similar eq_uation to
T + n DV.P(r,t) Eq. (17).W|thout dissipative source has been derived frpm
information theory to study second sound in photoexcited
IF(r,) plasma in semiconductot. Furthermore, if we replace the
=T +F(r,t)+7u’ -V, concentration probability by the quasitemperature of carrier
system, Eq(17) implies a damped propagation in nonequi-
librium study. When the relaxation time is equal to zero
XJ K(r—r")P(r’,t)dr’, (170 (classical theory the propagation velocity is infinite. Then
we recover the classical transport description, namely, Fou-
where the dissipative sourdg(r,t) is identified as rier's law for the heat flux and Fick’s law for the diffusion
F(r,t)=—BP(r,t)—u-V,P(r,t). (18 flux.

From the evolution equatiofl7) some concluding remarks
can be drawn, particularly in the reaction-diffusion systems.
The LHS of Eq.(17) corresponds to the telegrapher’s equa- The evolution equation of diffusion with dissipative
tion, which has been used to describe the particle diffusion isource or reaction-diffusion systems is governed by the con-
many physical situations, and the RHS may be decomposeskrvation law and the relaxational relation with memth$?

in two parts: the first two terms represent a particle reactiorHere, we want to take into account additional nonlocal ef-
or a particle supplier described by the soufeen neutral  fects of dissipative sourck [i.e. in this case/(x)=0, and
systems, and the last one corresponds to the Coulomb inte= —BP(r,t) —u-V,P(r,t)]. The dispersion relation corre-
action. sponding to this situation, described by the evolution equa-

tion (17), takes the form

IV. DISSIPATIVE SOURCE

Ill. TELEGRAPHER’'S DESCRIPTION

In order to compare with the results of the next sections, w2+ E Q2+ E_ ! u-Q
we reproduce, briefly, an analytical solution and physical T T T
description of the well-known telegrapher’s equaticrt’ (22
Recently Godoy and GaeiColn showed that this equation
is in general not valid in two and three dimensions for crys-and its analytical solution is written as
talline solid$® by using a second-order Markov process in
phase space. In our case lateral scattering probabilities are 11 /1 1

[i(;+B i%”i ~+B

=0,

w—

i
—+iB+u-
T u Q

2

neglected, then Fick's and Maxwell-Cattaneo’s laws are sat- w.=— =

5 +u-Q

+u-Q

isfied in two-dimensional2D) and 3D. In fact, when the
RHS in Eq.(17) is neglected, or in other words, in the limit 4 12
in which very long wavelengths predominate, we obtain the + - [DQ%*+ B—iu~Q]] . (23
purely telegrapher’'s equation, and its dispersion relation in T

the (w,Q) space is written as o o ]
We observe that for vanishing dissipative soufcéi.e., B

, D =0 and u=0), we recover the telegrapher’s description,
ot~ 0= —Q°=0, (19 which corresponds to the diffusion of particles in two-layer
systems, with velocityy and —v in each energy level,
wherew is the thermal wave or plasma wave frequency andespectively’
Q is the wave vector. Analytical solution to this latter equa- From Eq.(23) and taking into account Eq&l4)—(16), we
tion takes the form derive the real part of the frequency as
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w-(rea)=—1u-Q* 3\[u%cog(6) +4|u.- u,]Q?,

. n ~ ~
(24) =i g KQ=aV(@Q, (31)

whereu- Q=uQ cos(). Due to the restrictions, Eq$14)—

(16), this frequency expression does not depend on the relaxvhere n=n¢+n,, is the total particle number aneh=m,
ation time. When the average velocityand the wave vector +my, is the sum of electron and hole effective masses. Put-
take the same directidrcos(@)=1], the physical situation is ting in order Eq.(29) for the expression of, we obtain
dominated by the individual excitations of electrons or holes,

w3 o= U2Q?, (25) [w(rea) +3u-Q1*= w2 +v5 Q% (32

w3 h=U2Q2, (26)  With vy= Vi ul2cos2(6)+|ue-uy| the effective thermal
speed.

whereugp) =(Ve(n)) is the average random velocity of elec-  Recently Bingham, Mendarca, and Daw&bpresented a
trons(e) and holegh). In a general situatiopcos(@)#0], and  general description of the nonlinear dispersion relation of
taking into account Eq(24), the propagation velocity is electron plasma waves in a plasma with intense radiation,
modified as v,=z|u cos@)+u“cos(6)+4Jue-uy||. As  using the Kinetic equation of the Klimontovich type for the
mentioned above, for vanishing electric potential and dissiphotons or plasmons. Our result for the dispersion relation
pative source, we recover the results of the well-known teobtained from a stochastic model for photoexcited electron-
legrapher’s description. hole in semiconductors, without coupling with the photons
beam, agrees with that of Ref. 26. Such a result seems to
underline the connection between Kinetic theory and the
present stochastic model.

V. COULOMB INTERACTION INCLUDED

In this section we treat the Coulomb interaction consid-
ered in the evolution equatiqdl). Taking into account Fou-
rier transformation, the dispersion relation of E47) in VI. CONCLUSIONS

(0,Q) space takes the form The last equation shows the corrections to the dispersion

1 relation in fermion systems. Let us mention that the above
0= [DQ2+B—iu-Q]+iu’-QR(Q) results for the acoustic and optic plasma are observed and

2
+ ; . .
@ discussed in the literatufé?® Analogous development has

i
—+iB+u-
T u Q

_ been used for an extended quantum hydrodynamic
=0, (27 approack’ in other contexts to demonstrate the necessity of

~ = . : . EIT at high frequency. In this paper we introduced a dissi-
where K(Q) =aV(Q) is the Fourier transformation of the 46 sourcelEq. (18)], and Coulomb interaction corre-

kernel expressioK(r), corresponding to the electric poten- go4nding to the electric potential in the evolution equation
tial V(r)_ and_a is a parameter to be determined. The fre-(ll)’ which was neglected in many previous works. In Sec.
quency Is written as V, as in Sec. IV, we derived a plasma frequency and a speed
of propagation. Then, we compared our results with respect
to the telegrapher’s equation. This means that nonlinear and
nonlocal effects are included in the theory of EIT by the
2 generalized Maxwe%li%attaneo equatidrl) or modified te-
O_in.OK legrapher’s equatiofil?).
u-Q-iu QK(Q)H - (29 In summary, we applied a stochastic model of two energy
- levels for a photoexcited electron-hole plasma in semicon-
For vanishing values of electric potentd(Q) we recover ductors, and we discussed the effects of dissipative source
Eqg. (22). Furthermore, for neglected dissipative sourceand Coulomb interaction in the dispersion relation and ran-
F(r,t) and vanishing electric potential, we obtain the teleg-dom (or therma) speed of propagation. Our corrections are
rapher’s description, Eq19). Using Eqs(14)—(16), the real  notable, particularly in the reaction-diffusion systems and in
part of w is given by the microscopic approximation in semiconductors.

2i )2
?'FU-Q

D B i

_+___
T T T

+4

w.(rea) = —3u- Q= \wi,+ {[ 1 cog )1+ D/ 7} Q2 ACKNOWLEDGMENTS
(29

) ) The author is indebted to Professor R. Luzzi and Profes-
Compared with the results of Ref. 1 for the expression ofsor o' R. Vasconcellos for helpful discussions and the warm

optical plasma hospitality extended to him by their group at the Unicamp
University of Campinas. He also thanks Professor D. Jou and

2 N o= Dr. J. Camacho of the Autonomous University of Barcelona
@op™ V(Q), (30 for valuable discussions on the topic of the stochastic model

in two-layer systems. Financial support from the Generalitat
we can identify the parameterand the kernel expression as de CatalunydRef. 1996BEAI30030%is also acknowledged.



57 STOCHASTIC MODEL OF PLASMA WAVES FORA . .. 12 149

This work was partially supported by DGICYT of the Span-  Hereafter, we shall consider a macroscopic situation at
ish Ministry of Education and Science under Grant No. PB-three-dimensional system and we substitute the microscopic

94/0718. quantities by the macroscopic ones defined as
APPENDIX A: DERIVATION OF NONCONSERVATION
= +
EQUATION () P(r0 =20 [Po(rtk)+Py(rtk)l, (A7)
In the Boltzmann-like equationt) and (6) a detailed
balance principle is assumed, i.€;;(k,k")=r;o(k—k"). J(rt) =2, [Ve(K)Pe(r,t,K) +Vi(K)Ph(r,t,k)]
This means that k
=UePe(r, 1) +UnPp(r,t), (A8)

ree(K, k' )Po(r,t,K")+ron(k,k’)Py(r,t,k’ ) ) )
% Lredl JPel JH Tl Pl )] whereu,=(v,) is the average velocity. The summation of

Eqg. (A6) overk takes the form
:reepe(r1t1k)+rehph(rvtak)a (Al) q ( )

d
2 [rhe(K K Po(r t,k" ) +rpn(k, K" ) Pr(r,t,k")] 5t P(r,t)+V,-J(r,t)
k!

=—[(reetrne) = (rentrnn]

=IpePe(r,t,K) +1pPR(r,t,K). (A2)
Ue— Uy
Furthermore, if we assume that electron and hole speed XWZ () —[(rhntren)Ue
.. . e h
V,(k) do not depend explicitly on the positionthen we can
rewrite the evolution equation®) and (6) in the following Ue— Up,
forms: —(reethe)Unl- Tho—un2 |2P(f,t)- (A9)
e h
IP(r,t,k) Replacing in the right-hand side of EGA9) the coefficients
ot + V- [Ve(K)Pe(r,t,k)] of J and P by A andB, respectively, we obtain a noncon-

servation equatiof7).
= —[recPe(r,t,K) +repPp(r,t,k)]

+f Keh(r—r’,k)E P(r’,t,k")dr’, (A3) APPENDIX B: DERIVATION OF EVOLUTION
Kk’ EQUATION (1)
IPR(r,t,k) The summation of evolution equation for electron Eq.
o T Ve lva(KPh(r. 1K) ] (A3) multiplied by ve(k) and the corresponding one for

holes, Eq.(A4), multiplied by v, (k) takes the form
:_[rhepe(rlt!k)+rhhph(rlt!k)]
0J(r,t,k)

+f Kne(r—r'",k) > P(r',t,k")dr’.  (A4) ot
‘ — — [Ve(K)T et Vi(K) el Pol T, t.K) — [Ve(K)F e

+V, [02(K)Pe(r,t,k) +v2(K)Ph(r,t,k)]

Due to the exchange between electron and hole representa-

tions, we can assume that their corresponding microscopic +VR(K)r ] Pr(r,t,K) +[Ve(k) = vp(K)]
kernels are equal with opposite kernels are equal with oppo-
site sign, i.e.Kon=— Kpe=K. The summation of EqQ$A3) xf Ken(r—r',k)> P(r',t,k")]dr’. (B1)
and(A4) is written as K’
d We use the following definitions well known in the litera-
o1 LPe(r LK) +Pp(rt k) J+ Ve [Ve(K) Pe(r, t,k) ture:
+ Vv, (k)Py(r,t,k
n(k)Ph(r.tk] uapa(r,t)=; Va(K)P4(1,t,k), (B2)
:_(ree+rhe)e(rvtak)_(reh+rhh)h(r=trk)- (AS)
Taking into account Eq91) and (2), we can transform the 5 5
last equation as Uapa(f,t)=Var(Va)(k)+; Va(K)P4(r,t,k), (B3)
(9 . .
Pt K4V, J(rtk)=— n P.(r.t.k where Varf{,) is the variance o¥,, a refers to electrons or
gt PLKIFV LK== (oot The) Pe(r LK) holes. From information theory Varg) = $m,n k,T,, with

m,, n,, andT, the mass, density, and absolute temperature
of particle a, respectively. Assuming thaV, [Var(ve)
(AB6) +Var(v,)]=0, and the microscopic kernels are equal with

—(Fent rhp) Pr(r,tk).
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opposite signeK.,= — K=K, as mentioned in Appendix

A, the summation ovek of Eqg. (B1) is written as

aJ(r,t)
at

+V,[(Ug+up)J(r,t) —uusP(r,t)]

=—CJ(r,t)+EP(r,t)+u’f K(r=r")P(r’,t)dr’,

(B4)

whereu=u.+ Uy, U =uU.— U, and the paramete@ andE
take the following expressions:

M. ZAKARI
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Ue— Up
C:[(reeue+rheuh)_(rehue+rhhuh)]' |U _uh|?v
e
(B5)
Ue— Up
E=[Up- (reeUet Ihelp) —Ue: (repUet Mpplp) | TU— U2
e
(B6)

After multiplying by 1/C and putting in order Eq(B4) we
obtain Eq.(11), namely, a generalized Maxwell-Cattaneo
equation.
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