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Stochastic model of plasma waves for a simple band structure in semiconductors
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We consider the application of a stochastic model of two-layer systems to a simple band structure in
semiconductors. The telegrapher’s equation for the probability density is recovered and the source term is
expressed as a function of the electron and hole concentrations. We derive the dispersion relation and we
discuss its correction terms with respect to the purely telegrapher’s description in fermion systems, for ex-
ample, a photoexcited electron-hole plasma in semiconductors@S0163-1829~98!02916-6#
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I. INTRODUCTION

Considerable literature on physical processes leadin
the telegrapher’s equation for the probability density or
temperature is presently available. Such an equation is
one akin to Maxwell-Cattaneo’s transport equation for
diffusion ~or probability! flux or the heat flux combined with
the mass or the energy balance equations.1–5 On the basis of
information theory a hydrodynamic model for dissipati
systems has been derived,1,2,6 which seems to give a goo
tool for a mesoscopic description, as, for instance, the
used in the framework of extended irreversible thermo
namics~EIT!.6–8 This thermodynamic theory considers th
usual dissipative fluxes or some higher-order fluxes as a
tional independent variables in a generalized entropy o
coming some paradoxes of local equilibrium theory, as
resulting infinite velocity of propagation of thermal and vi
cous signals and the negativeness of entropy production
some intervals of thermal or plasma waves.6–8

The random walk or the two-layer system is a simp
model whose particles jump between two states in disc
times in a one-dimensional lattice. Such a model has b
used in several domains of mathematical and phys
sciences.9–16 Our aim in the present work is to apply it to
simple band structure in semiconductors at three dimensi
The model was introduced as a model of diffusion in a nu
ber of biological and physical situations.10 Some generaliza
tions of this model taking into account inertial effects, as
persistent random walk, have been used in the so-called
lor dispersion and turbulent diffusion,11,12,5by Godoy to gen-
eralize the Landauer coefficient for the diffusion of electro
in one dimension at 0 K,16 by Kramers14 in a Fokker-Plank
equation in the presence of absorbing boundaries, and
Boughaleb and Gouyet15 to generalize the lattice gas mod
to the Kramers regime. In many situations the source te
are neglected and the evolution equation is described by
telegrapher’s equation.4,13 In this paper we include not only
the dissipative source, but also the Coulomb interaction.

Stochastic diffusion processes for discrete systems h
been applied to several thermophysical systems.9,17 In our
case, the first layer is the conduction band, containing mo
electrons, and the second one is the valence band of mo
holes. The drift-diffusion equation18 has been used particu
larly to describe hot electrons, and some collision proces
but the model suffers some criticisms at short times. Let
570163-1829/98/57~19!/12145~6!/$15.00
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mention that good tools may be obtained by taking into
count the full band structure in semiconductor materia
This subject is one of the relevant topics in the field of so
nonequilibrium theories in the spirit to include the hype
bolic theory ~nonparabolic bands! in the microscopic
phenomena.19 Furthermore, hydrodynamic models20–22 ob-
tained from higher moments of the Boltzmann transp
equation have been used to simulate microelectronic devi
In the present paper we consider the semiconductors f
another point of view. Our aim is to apply the stochas
model of the two-layer system to semiconductors, wh
leads to a microscopic approach to describe plasma wave
nonequilibrium situations.

We assume that the motion of particles in the ene
bands of semiconductors is similar to the so-called persis
random walk;5,9 in our case, the electrons move in the co
duction band with velocityve(k) and the holes in the valenc
band with the velocityvh(k). For example, in the paraboli
approximationve(k)5\k/me* andvh(k)5\k/mh* , wherek
is the wave vector andme* andmh* are the effective masse
of electron and hole, respectively. This parabolic theory
well known in the literature, but it is not accepted at hig
frequencies and low temperature, because fast phenom
appear and the particle mass varies with the microsco
energy.19 In order to give a good analysis, one has to inclu
the hyperbolic energy-momentum relation and to take i
account several energy levels. This latter case will not
considered in the present paper; we limit ourselves to app
stochastic two-layer model to semiconductor materials w
simple bands, where the velocity of carriers does not dep
on the position.

The paper is organized as follows: In Sec. II we pres
the mathematic formalism to be used, and in continuation
discuss the evolution equations from EIT. In Sec. III w
reproduce the telegrapher’s description, which correspo
in our case to the diffusion of electron and holes in semic
ductors, without recombinations. In Secs. IV and V we ta
into account the dissipative source and the Coulomb inte
tion, respectively, and we compare our results for the disp
sion relation and the propagation velocity with the ones c
responding to the purely telegrapher’s equation. In the
section we give some concluding remarks.

II. MATHEMATIC FORMALISM

Since in most physical applications one cannot distingu
between right- and left-moving particles, one can use
12 145 © 1998 The American Physical Society
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12 146 57M. ZAKARI
density probabilities to find electronsPe(r ,t,k) or holes
Ph(r ,t,k), in the positionr with the wave vectork, at timet,
under the hypothesis that the total probability and the part
flux take the form

P~r ,t,k!5Pe~r ,t,k!1Ph~r ,t,k!, ~1!

J~r ,t,k!5ve~k!Pe~r ,t,k!1vh~k!Ph~r ,t,k!. ~2!

According to Eqs.~1! and~2! the probability to find electrons
Pe(r ,t,k) and holesPh(r ,t,k) in the positionr , at time t,
with wave vectork may be written in terms ofP andJ as

Pe~r ,t,k!5@J~r ,t,k!2vh~k!P~r ,t,k!#•
ve~k!2vh~k!

uve~k!2vh~k!u2 ,

~3!

Ph~r ,t,k!52@J~r ,t,k!2ve~k!P~r ,t,k!#•
ve~k!2vh~k!

uve~k!2vh~k!u2
.

~4!

The evolution equations of probability densities for electro
and holes in the presence of Coulomb interaction are res
tively described by

]Pe~r ,t,k!

]t
1ve~k!•¹ r Pe~r ,t,k!

52(
k8

@r ee~k,k8!Pe~r ,t,k8!1r eh~k,k8!Ph~r ,t,k8!#

1E Keh~r2r 8,k!(
k8

@Pe~r 8,t,k8!1Ph~r 8,t,k8!#dr 8,

~5!

]Ph~r ,t,k!

]t
1vh~k!•¹ r Ph~r ,t,k!

52(
k8

@r he~k,k8!Pe~r ,t,k8!1r hh~k,k8!Ph~r ,t,k8!#

1E Khe~r2r 8,k!(
k8

@Ph~r 8,t,k8!1Pe~r 8,t,k8!#dr 8,

~6!

wherer i j (k,k8) are the microscopic rates of transition pro
ability between two energy levels~i , j stand for electrons and
holes!, and Keh(r2r 8,k) is the microscopic kernel assoc
ated with the Coulomb potentialV(r2r 8) of carrier-carrier
interaction. Due to the exchange between electron and
representations, one can assume thatKeh52Khe . Further-
more, the detailed balance is assumed,r i j (k,k8)5r i j d(k
2k8). Hereafter, we will consider a macroscopic situation
three-dimensional system, i.e.,P(r ,t)5(k(aPa(r ,t,k) and
J(r ,t)5(k(aJa(r ,t,k), a5e for electron anda5h for
holes.

Taking into account Eqs.~1! and~2!, a summation of Eqs
~5! and~6!, and after summation overk of the corresponding
expression, the balance equation of carrier particles yie
~see Appendix A!
le

s
c-

le

t

s

]P~r ,t !

]t
1¹ r•J~r ,t !52A•J~r ,t !2BP~r ,t !, ~7!

where

A5@~r ee1r he!2~r hh1r eh!#
ue2uh

uue2uhu2 , ~8!

B5@~r hh1r eh!ue2~r ee1r he!uh#•
ue2uh

uue2uhu2 , ~9!

whereue(h)5^ve(h)(k)& is the average velocity of electron
(e) and holes (h).

The physical situation of the system is described ass
ing the following restrictions:~i! At time t0 (t050) the ex-
trinsic semiconductor@Pe(r ,t,k)ÞPh(r ,t,k)# is excited by
an external source. The laser pulse is considered sufficie
intense to produce mobile independent electrons and ho
~ii ! After a lapse of time, the system tries to return to t
equilibrium state by electron-hole recombinations. In the
laxational approximation, the rapid recombination is prop
tional to P/tR , wheretR is the relaxation time correspond
ing to the process. This means that for short times we
neglect a termA•J, by takingA equal to zero, i.e., we sup
pose thatr ee1r he5r hh1r eh , which agrees with the hypoth
esis of Eqs.~14!–~16!. Then Eq.~7! reduces to

]P~r ,t !

]t
1¹ r•J~r ,t !52BP~r ,t !, ~10!

with B2151/(r ee1r he)5tR is the recombination relaxation
time.

The equation for the flux, which is the sum of Eq.~5!
multiplied by @ve(k)# and Eq.~6! multiplied by @vh(k)# and
after summation overk, takes the form~see Appendix B!

t
]J~r ,t !

]t
1J~r ,t !1D¹ r P~r ,t !

52tu¹ r•J~r ,t !1tEP~r ,t !

1tu8E K~r2r 8!P~r 8,t !dr 8, ~11!

whereu5ue1uh , u85ue2uh , and the parametersC andE
are expressed in Appendix B. The relaxation timet and the
diffusion coefficientD are identified as

t5
1

C
, ~12!

D52tueuh . ~13!

The left-hand side~LHS! of Eq. ~11! corresponds to a
Maxwell-Cattaneo equation for the fluxJ, and the right-hand
side ~RHS! represents some nonlocal terms. These la
terms are the main aim of this paper to describe plas
waves in particular systems. Generally, the RHS of Eq.~11!
contains not only the nonlocal effects but also nonline
ones. Whenue52uh5v ~v constant!, we recover the results
of Ref. 9, which describes a thermodynamic and stocha
diffusion in two-layer systems.
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57 12 147STOCHASTIC MODEL OF PLASMA WAVES FORA . . .
For the sake of simplicity, we suppose that diagonal e
ments of (r ) i j are equal and very important with respect
others; this means that the transmission coefficients are m
important than the reflection ones, i.e.,r ee5r hh , r eh5r he ,
and r eh!r ee. Therefore, the parameters of the system
simplified as

B5~r ee1r he!.
1

t
, ~14!

C5~r ee2r eh!5
1

t
, ~15!

E52r ehu. ~16!

Taking into account Eq.~10!, we can transform Eq.~11!
in terms of the probability concentration as

t
]2P~r ,t !

]t2 1
]P~r ,t !

]t
2D¹ r

2P~r ,t !

5t
]F~r ,t !

]t
1F~r ,t !1tu8•¹ r

3E K~r2r 8!P~r 8,t !dr 8, ~17!

where the dissipative sourceF(r ,t) is identified as

F~r ,t !52BP~r ,t !2u•¹ r P~r ,t !. ~18!

From the evolution equation~17! some concluding remark
can be drawn, particularly in the reaction-diffusion system
The LHS of Eq.~17! corresponds to the telegrapher’s equ
tion, which has been used to describe the particle diffusio
many physical situations, and the RHS may be decompo
in two parts: the first two terms represent a particle reac
or a particle supplier described by the sourceF in neutral
systems, and the last one corresponds to the Coulomb i
action.

III. TELEGRAPHER’S DESCRIPTION

In order to compare with the results of the next sectio
we reproduce, briefly, an analytical solution and physi
description of the well-known telegrapher’s equation.4,9,17

Recently Godoy and Garcı´a-Colı́n showed that this equatio
is in general not valid in two and three dimensions for cr
talline solids23 by using a second-order Markov process
phase space. In our case lateral scattering probabilities
neglected, then Fick’s and Maxwell-Cattaneo’s laws are
isfied in two-dimensional~2D! and 3D. In fact, when the
RHS in Eq.~17! is neglected, or in other words, in the lim
in which very long wavelengths predominate, we obtain
purely telegrapher’s equation, and its dispersion relation
the (v,Q) space is written as

v21
i

t
v2

D

t
Q250, ~19!

wherev is the thermal wave or plasma wave frequency a
Q is the wave vector. Analytical solution to this latter equ
tion takes the form
-
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v652
i

2t
6

1

2t
A2114DtQ2. ~20!

For small values ofQ (Q, 1
2 A1/tD), the frequency is

purely imaginary. But, for higher values (Q> 1
2 A1/tD), the

real part of Eq.~11! is derived as

v656
1

2t
A2114DtQ2. ~21!

This equation describes the propagation of thermal pulse
plasma waves in the context of Maxwell-Cattaneo. If t
relaxation time tends to infinity, the propagation veloc
vp→AD/t5Auueuhu, which is finite. In Secs. IV and V we
will see how the dispersion relation and the propagation
locity should be modified by the dissipative source and C
lomb interaction effect, respectively. A similar equation
Eq. ~17! without dissipative source has been derived fro
information theory to study second sound in photoexci
plasma in semiconductors.1,2 Furthermore, if we replace the
concentration probability by the quasitemperature of car
system, Eq.~17! implies a damped propagation in nonequ
librium study. When the relaxation time is equal to ze
~classical theory!, the propagation velocity is infinite. The
we recover the classical transport description, namely, F
rier’s law for the heat flux and Fick’s law for the diffusio
flux.

IV. DISSIPATIVE SOURCE

The evolution equation of diffusion with dissipativ
source or reaction-diffusion systems is governed by the c
servation law and the relaxational relation with memory.24,25

Here, we want to take into account additional nonlocal
fects of dissipative sourceF @i.e. in this caseV(x)50, and
F52BP(r ,t)2u•¹ r P(r ,t)#. The dispersion relation corre
sponding to this situation, described by the evolution eq
tion ~17!, takes the form

v21F i

t
1 iB1u•QGv2FD

t
Q21

B

t
2

i

t
u•QG50,

~22!

and its analytical solution is written as

v652
1

2 F i S 1

t
1BD1u•QG6 1

2 H F i S 1

t
1BD1u•QG2

1
4

t
@DQ21B2 iu•Q#J 1/2

. ~23!

We observe that for vanishing dissipative sourceF ~i.e., B
50 and u50!, we recover the telegrapher’s descriptio
which corresponds to the diffusion of particles in two-lay
systems, with velocityv and 2v in each energy level,
respectively.9

From Eq.~23! and taking into account Eqs.~14!–~16!, we
derive the real part of the frequency as
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12 148 57M. ZAKARI
v6~real!52 1
2 u•Q6 1

2 A@u2cos2~u!14uue•uh#Q2,
~24!

whereu•Q5uQ cos(u). Due to the restrictions, Eqs.~14!–
~16!, this frequency expression does not depend on the re
ation time. When the average velocityu and the wave vecto
take the same direction@cos(u)51#, the physical situation is
dominated by the individual excitations of electrons or hol

vpl,e
2 5ue

2Q2, ~25!

vpl,h
2 5uh

2Q2, ~26!

whereue(h)5^ve(h)& is the average random velocity of ele
trons~e! and holes~h!. In a general situation@cos(u)Þ0#, and
taking into account Eq.~24!, the propagation velocity is
modified as vp5 1

2 zu cos(u)1Au2cos2(u)14uue•uhuz. As
mentioned above, for vanishing electric potential and dis
pative source, we recover the results of the well-known
legrapher’s description.

V. COULOMB INTERACTION INCLUDED

In this section we treat the Coulomb interaction cons
ered in the evolution equation~11!. Taking into account Fou-
rier transformation, the dispersion relation of Eq.~17! in
(v,Q) space takes the form

v21F i

t
1 iB1u•QGv2

1

t
@DQ21B2 iu•Q#1 iu8•QK̃~Q!

50, ~27!

where K̃(Q)5aṼ(Q) is the Fourier transformation of th
kernel expressionK(r ), corresponding to the electric poten
tial V(r ) and a is a parameter to be determined. The fr
quency is written as

v652
1

2 S 2i

t
1u•QD6

1

2 H S 2i

t
1u•QD 2

14FD

t
1

B

t
2

i

t
u•Q2 iu8•QK̃~Q!G J 1/2

. ~28!

For vanishing values of electric potentialṼ(Q) we recover
Eq. ~22!. Furthermore, for neglected dissipative sour
F(r ,t) and vanishing electric potential, we obtain the tele
rapher’s description, Eq.~19!. Using Eqs.~14!–~16!, the real
part of v is given by

v6~real!52 1
2 u•Q6Avop

2 1$@ 1
2 u cos~u!#21D/t%Q2.

~29!

Compared with the results of Ref. 1 for the expression
optical plasma

vop
2 5

n

m
Q2Ṽ~Q!, ~30!

we can identify the parametera and the kernel expression a
x-

,

i-
-

-

-

-

f

a5 i
n

m

Q2

uu•Qu
, K̃ ~Q!5aṼ~Q!, ~31!

where n5ne1nh is the total particle number andm5me
1mh is the sum of electron and hole effective masses. P
ting in order Eq.~29! for the expression ofv, we obtain

@v~real!1 1
2 u•Q#25vop

2 1v th
2 Q2, ~32!

with v th5A 1
4 uuu2cos2(u)1uue•uhu the effective thermal

speed.
Recently Bingham, Mendarca, and Dawson26 presented a

general description of the nonlinear dispersion relation
electron plasma waves in a plasma with intense radiat
using the Kinetic equation of the Klimontovich type for th
photons or plasmons. Our result for the dispersion relat
obtained from a stochastic model for photoexcited electr
hole in semiconductors, without coupling with the photo
beam, agrees with that of Ref. 26. Such a result seem
underline the connection between Kinetic theory and
present stochastic model.

VI. CONCLUSIONS

The last equation shows the corrections to the dispers
relation in fermion systems. Let us mention that the abo
results for the acoustic and optic plasma are observed
discussed in the literature.27,28 Analogous development ha
been used for an extended quantum hydrodyna
approach29 in other contexts to demonstrate the necessity
EIT at high frequency. In this paper we introduced a dis
pative source@Eq. ~18!#, and Coulomb interaction corre
sponding to the electric potential in the evolution equat
~11!, which was neglected in many previous works. In S
V, as in Sec. IV, we derived a plasma frequency and a sp
of propagation. Then, we compared our results with resp
to the telegrapher’s equation. This means that nonlinear
nonlocal effects are included in the theory of EIT by t
generalized Maxwell-Cattaneo equation~11! or modified te-
legrapher’s equation~17!.

In summary, we applied a stochastic model of two ene
levels for a photoexcited electron-hole plasma in semic
ductors, and we discussed the effects of dissipative so
and Coulomb interaction in the dispersion relation and r
dom ~or thermal! speed of propagation. Our corrections a
notable, particularly in the reaction-diffusion systems and
the microscopic approximation in semiconductors.
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APPENDIX A: DERIVATION OF NONCONSERVATION
EQUATION „7…

In the Boltzmann-like equations~5! and ~6! a detailed
balance principle is assumed, i.e.,r i j (k,k8)5r i j d(k2k8).
This means that

(
k8

@r ee~k,k8!Pe~r ,t,k8!1r eh~k,k8!Ph~r ,t,k8!#

5r eePe~r ,t,k!1r ehPh~r ,t,k!, ~A1!

(
k8

@r he~k,k8!Pe~r ,t,k8!1r hh~k,k8!Ph~r ,t,k8!#

5r hePe~r ,t,k!1r hhPh~r ,t,k!. ~A2!

Furthermore, if we assume that electron and hole sp
va(k) do not depend explicitly on the positionr , then we can
rewrite the evolution equations~5! and ~6! in the following
forms:

]Pe~r ,t,k!

]t
1¹ r•@ve~k!Pe~r ,t,k!#

52@r eePe~r ,t,k!1r ehPh~r ,t,k!#

1E Keh~r2r 8,k!(
k8

P~r 8,t,k8!dr 8, ~A3!

]Ph~r ,t,k!

]t
1¹ r•@vh~k!Ph~r ,t,k!#

52@r hePe~r ,t,k!1r hhPh~r ,t,k!#

1E Khe~r2r 8,k!(
k8

P~r 8,t,k8!dr 8. ~A4!

Due to the exchange between electron and hole repres
tions, we can assume that their corresponding microsc
kernels are equal with opposite kernels are equal with op
site sign, i.e.,Keh52Khe5K. The summation of Eqs.~A3!
and ~A4! is written as

]

]t
@Pe~r ,t,k!1Ph~r ,t,k!#1¹ r•@ve~k!Pe~r ,t,k!

1vh~k!Ph~r ,t,k!#

52~r ee1r he!e~r ,t,k!2~r eh1r hh!h~r ,t,k!. ~A5!

Taking into account Eqs.~1! and ~2!, we can transform the
last equation as

]

]t
P~r ,t,k!1¹ r•J~r ,t,k!52~r ee1r he!Pe~r ,t,k!

2~r eh1r hh!Ph~r ,t,k!.

~A6!
-

ed

ta-
ic
o-

Hereafter, we shall consider a macroscopic situation
three-dimensional system and we substitute the microsc
quantities by the macroscopic ones defined as

P~r ,t !5(
k

@Pe~r ,t,k!1Ph~r ,t,k!#, ~A7!

J~r ,t !5(
k

@ve~k!Pe~r ,t,k!1vh~k!Ph~r ,t,k!#

5uePe~r ,t !1uhPh~r ,t !, ~A8!

whereua5^va& is the average velocity. The summation
Eq. ~A6! over k takes the form

]

]t
P~r ,t !1¹ r•J~r ,t !

52@~r ee1r he!2~r eh1r hh!#

3
ue2uh

uue2uhu2
J~r ,t !2@~r hh1r eh!ue

2~r ee1r he!uh#•
ue2uh

uue2uhu2
P~r ,t !. ~A9!

Replacing in the right-hand side of Eq.~A9! the coefficients
of J and P by A and B, respectively, we obtain a noncon
servation equation~7!.

APPENDIX B: DERIVATION OF EVOLUTION
EQUATION „11…

The summation of evolution equation for electron E
~A3! multiplied by ve(k) and the corresponding one fo
holes, Eq.~A4!, multiplied byvh(k) takes the form

]J~r ,t,k!

]t
1¹ r@ve

2~k!Pe~r ,t,k!1vh
2~k!Ph~r ,t,k!#

52@ve~k!r ee1vh~k!r he#Pe~r ,t,k!2@ve~k!r he

1vh~k!r hh#Ph~r ,t,k!1@ve~k!2vh~k!#

3E Keh~r2r 8,k!(
k8

P~r 8,t,k8!]dr 8. ~B1!

We use the following definitions well known in the litera
ture:

uaPa~r ,t !5(
k

va~k!Pa~r ,t,k…, ~B2!

ua
2Pa~r ,t !5Var~va!~k!1(

k
va

2~k!Pa~r ,t,k!, ~B3!

where Var(va) is the variance ofva , a refers to electrons or
holes. From information theory Var(va)5 3

2 manakbTa , with
ma , na , andTa the mass, density, and absolute temperat
of particle a, respectively. Assuming that¹ r@Var(ve)
1Var(vh)#50, and the microscopic kernels are equal w
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opposite signeKeh52Khe5K, as mentioned in Appendix
A, the summation overk of Eq. ~B1! is written as

]J~r ,t !

]t
1¹ r@~ue1uh!J~r ,t !2ueuhP~r ,t !#

52CJ~r ,t !1EP~r ,t !1u8E K~r2r 8!P~r 8,t !dr 8,

~B4!

whereu5ue1uh , u85ue2uh , and the parametersC andE
take the following expressions:
u

d

C5@~r eeue1r heuh!2~r ehue1r hhuh!#•
ue2uh

uue2uhu2
,

~B5!

E5@uh•~r eeue1r heuh!2ue•~r ehue1r hhuh!#
ue2uh

uue2uhu2 .

~B6!

After multiplying by 1/C and putting in order Eq.~B4! we
obtain Eq. ~11!, namely, a generalized Maxwell-Cattane
equation.
in

ces

,

tt.
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