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Diffusion quantum Monte Carlo calculations of the excited states of silicon
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The band structure of silicon is calculated at theX, andL wave vectors using diffusion quantum Monte
Carlo (DMC) methods. Excited states are formed by promoting an electron from the valence band into the
conduction band. We obtain good agreement with experiment for states around the gap region, and demonstrate
that the method works equally well for direct and indirect excitations, and that one can calculate many excited
states at each wave vector. This work establishes the fixed-node DMC approach as an accurate method for
calculating the energies of low-lying excitations in solids.
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I. INTRODUCTION would give good results only for the lowest-energy state of
each symmetry. However, in this paper we will show that the
Electronic excitations play a crucial role in the physicsDMC method can be applied successfully to a wide range of
and chemistry of atoms, solids, and molecules. Calculatingxcitations in solids.
excitation energies in large systems is a challenge for theo- We have chosen silicon for our study becagigeDMC
retical techniques, because an accurate description requiregjves a good account of the ground staté) electron cor-
realistic treatment of the electron correlations. The well-relations significantly affect the band energies, &iid re-
known Hartree-FockHF) method includes exchange but not sults from other calculational methods, such as the LDA,
correlation effects, and therefore overestimates band gapsr’ and GW (Refs. 8—11 approximations are well estab-
and bandwidths by a large amount, while Kohn-Shamjshed, and a large amount of experimental data also exists.
density—funptional calculation_s within the local density- | this paper we explore the limits of the DMC method by
approximation(LDA) underestimate band gaps. Here we re-c5||ating excitations which are direct and indirect in recip-

port a study of excitation energies in bulk silicon using they,c5) space, and including several excitations at each wave
diffusion quantum Monte Carl(®OMC) method.*“ The DMC vector

method is very promising for applications to condensed- It is important to distinguish between different types of

matter because) it explicitly includes electron-electron cor- o S =
) o . excitation energy. In quasiparticle theory the quasiparticles
relation effects, andi) it scales reasonably well with system orrespond to the poles of the one-particle Green function
size, with the computational cost increasing as the cube of P P . pa '
and are equal to the energies for adding an electron to the

the number of electrons. . . . ) .
It is now well established that DMC calculations can givesystem or subtracting one from it. The quasiparticle energies

an excellent description of electron correlations in the@ve both real and imaginary parts, the latter giving the qua-
ground state. The range of problems that could be addressé#Particle lifetime. These energies are measured in photo-
using DMC would be greatly increased if one could also€Mission and inverse photoemission experiments. For the
obtain accurate excitation energies. Furthermore, the DMd@Ninimum gap the imaginary part of the quasiparticle energy
method should be equally applicable to both strongly ands zero, and the quasiparticle has an infinite lifetime. In this
weakly correlated systems. However, calculating excitatiortase the quasiparticle energy gap can be writtenEgs
energies in condensed-matter systems is a formidable cha=En;1+En-1—2Ey, WhereEy, 1, En—1, andEy are the
lenge to DMC techniques because they af¢ éffects, i.e., ground-state total energies of th&l¢1)-, (N—1)-, and

the fractional change in energy is inversely proportional toN-electron systems. This energy gap is accessible within
the number of electrons in the system. The precision of th®MC methods, but we do not consider it here. In an optical-
calculation must therefore be sufficient to resolve this energgbsorption experiment a different process occurs, in which
change amid the statistical noise. The system must also k@n electron is excited from the valence to the conduction
large enough to give a good description of the infinite solid,band. In this case an exciton is formed, and the lowest exci-
which is a severe constraint for small-band-gap materialsation energy is smaller thagy by the exciton binding en-
such as our test material, silicon. So far, only a few DMCergy. In the calculations reported here we create excitonic
calculations of excitation energies in solids have been restates by exciting electrons from a valence-band state into a
ported. In particular, we note the eight-atom simulation cellconduction-band state. Although the exciton binding energy
calculations of an energy gap in a molecular nitrogen solid, is artificially increased by the finite size of our simulation
and theT,5—X;. and I';,— X, excitations in carbon cell, it is still small(about 0.1 eV, and therefore our results
diamond? The excitations in these calculations were indirectare comparable with theoretical quasiparticle energies and
in reciprocal space, so that the excited state is orthogonal texperimental photoemission data. We remark that excitonic
the ground state by translational symmetry. In previous workproperties are of significant interest in their own right, and
on solids®~® it was assumed that the standard DMC methocthe ability to calculate both electron addition/subtraction en-
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ergies and excitonic energies is a significant advantage of thfactor, this procedure does not bias the DMC excitation en-
DMC method. ergies, which depend only on the nodal surfaces of the guid-
This paper is organized as follows. In Sec. |l we provideing wave functions.
a brief description of our calculational method. Section Ill is  Qur calculations are for many-body Bloch wave functions
a detailed discussion of the results of our study demonstrahaving definite values of the crystal momentum or wave vec-
ing the viability of the DMC method for accurately determin- or k. The Slater determinants were formed from the LDA
ing the low-lying excitation energies in solids. We conclude orpitals calculated at thE point of the Brillouin zone of the
with a summary in Sec. IV. simulation cell, which unfolds to thE, X, andL points of
the primitive Brillouin zone'’ The wave vector of a deter-
[l. CALCULATIONAL METHODS minant of these orbitals is equal to one of the X, or L

In the DMC method:? an imaginary time evolution of the wave vectors. The determinant for the ground-state guiding

Schralinger equation is used to evolve an ensemble of qvave function was con_structed from the valence_—band orbit-
N-dimensional electronic configurations toward the grounc®'S at thel’, X, andL points, and hak=0. The excited-state
state. Importance sampling is incorporated via a guidin@u'd_'”g wave functions were_formed by replacing an orbital
wave functiond. To make the calculations tractable we use!n €ither the up- or down-spin determinants of the ground-
the fixed-node approximation, in which the nodal surface oftate wave function by a conduction-band orbital.

the wave function is constrained to equal thatd®f The The computational demands of DMC calculations are
fixed-node DMC method generates the distributid?, ~ such that presently it is not feasible to calculate excitation
where W is the besi{lowest-energywave function with the energies with cells larger than our 16-atom cell, and there-
same nodes a®. The accuracy of the fixed-node approxi- fore it is important to consider the finite-size effects. The
mation can be tested on small systems, and normally leads finite-size effects can be divided into “independent-particle
very satisfactory resultsWe also use the short-time ap- finite-size effects” (IPFSE’S, which can be modeled by
proximation for the Green’s function, whose effect can beLDA calculations, and “Coulomb finite-size effects”
tested and made very small. We used a time step of 0.01&FSE’S, which arise from the explicit use of Coulomb in-
a.u., which gives small time-step errors in silicofihe av-  teractions between the particles. The HF, LDA, and DMC
erage number of configurations in the ensemble was 384, angtound-state energies for the 16-atom cell ard03.67,
between 1220 and 2125 moves of all the electrons in all the- 106.61, and—107.31(1) eV per atom, respectively. We
configurations were attempted, except for the ground statestimate finite-size errors in the ground-state calculations by
where 3848 moves were attempted. In all cases th@erforming calculations on simulation cells containing 250
acceptance-rejection ratio was greater than 99.7%. atoms(HF and LDA) and 128 atom$DMC), giving correc-

We used a fcc simulation cell containing 16 silicon atomsitions of —0.48, —1.31, and—1.02(3) eV per atom, respec-
employing periodic boundary conditions to reduce the finitejvely. The IPFSE’s are therefore quite large, being about 21
size effects. The Si" ions were represented by a norm- eV for the 16-atom cell used here. However, LDA calcula-
conserving nonlocal LDA pseudopotential, and the nonlocations performed for a number of simulation cell sizes show
energy was evaluated using the “locality approximatiof.” that the cancellation between the errors in the ground and
The nonlocal potential was sampled using the techniques @xcited states is so good that the resulting finite-size errors in
Ref. 13. Our guiding wave functions are of the Slater-the LDA excitation energies of the 16-atom cell are less than
Jastrow type, 0.1 eV. We expect a similar cancellation of errors in the

N DMC cancellations. In our DMC simulations, we also used a

e formulation of the electron-electron interaction within peri-
¢=D'D exp ;X(ri)_; u(rij) |, (1) odic boundary conditiof® which gives much smaller

: CFSE’s than the standard Ewald fofth.However, the
where there ard\ electrons in the simulation celly is a  CFSE's also tend to cancel in the excitation energies, and we
one-body functiony is a two-body correlation factor which obtained almost identical results using our interaction and
depends on the relative spins of the two electrons, @hd the Ewald interaction.
andD' are Slater determinants of up- and down-spin single- Each of the guiding wave functions we use contains some
particle orbitals. We used a Fourier series expansion for thepin contamination, i.e., they are not eigenstates?dfut are
x function, which was constrained to have the full symmetryadmixtures of different spin components. We have investi-
of the diamond structure and contains six free parameterglated the effect of this spin contamination by calculating the
The parallel- and antiparallel-spin functions were con- I',5—X,. excitation energy using a spin-contaminated
strained to obey the cusp considitioffsand contained a single determinant and a two-determinant spin-singlet wave
polynomial part with 11 free parameters, as described in Refunction?® These calculations gave energies differing by less
15. The guiding wave function contained a total of 28 pa-than the statistical noise of 0.2 eV. The exciton binding en-
rameters, whose optimal values were obtained by minimizergy in our calculations is enhanced, because the exciton is
ing the variance of the energy using *16tatistically inde-  confined to the simulation cell. Following Ref. 3, we use the
pendent electron configuratiot'® which were regenerated Mott-Wannier formula to approximate the binding energy of
several times during the minimization procedure. The optithe localized exciton, giving 0.1 eV, which is smaller than
mal parameter values were obtained for the ground-statthe statistical noise in our calculations. Finally, we investi-
wave function, and were used for the excited states as welgated the effect on the DMC energy of using single-particle
Because the parameters occur only in the nodeless Jastrawbitals which had been relaxed by performing LDA calcu-
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TABLE |. Excitation energies in eV calculated with the DMC, TABLE Il. Band energies of silicon in eV. The statistical error

HF, GW, and LDA methods. The wave vector of the excited-statebars on the DMC energies are0.2 eV.

wave function is denoted bi. The statistical error bars on the

DMC energies are-0.2 eV. Band DMG HF® GW LDA® EmpY Experimenf
Excitaion k DMC HF(Ref.7 GW (Ref.1) LDA Lz 000 00 000 000 000 000

5 370 80 336 255 342 3.403.05
ry,—ry I' 18.05 27.9 15.84 1514 1, 457 90 389 319 410 4.2341
r,—ry I 1738 26.9 1531 1450 71, -13.58-18.9-11.95 —11.95 —12.36 —12.5+0.6
Fy—Llyee L 1627 25.4 14.14 1339 x,, 151 53 143 063 117 125
Fy—Xee X 1493 24.2 13.38 1258 x, -335 —-47 -293 -284 -286 —3.3+0.2-2.9
Fpg—Ls L 475 8.7 4.25 331 x,, -879-125 -7.95 -7.81 -7.69
Fpg—I'ys I 3.82 8.0 3.36 255 |, 251 65 219 144 223 2#0.1521
Fpg—Llye L 235 6.5 2.19 144 |, 455 87 425 331 434 41901
Fog—Xe X 134 5.3 1.43 063 |, -132 -20 -125 -119 -123 -12+02-15
Xp—Tis X 1242 20.5 11.31 1036 |, -7.81-111 -7.14 -6.99 -6.96 —6.7+0.2
X;, =Xy, L 1037 17.8 9.38 844 |, -1105-154 -9.70 —961 -955 -9.3+0.4
X4—T1s X 691 12.7 6.29 5.39
X;—Ty X  7.92 13.7 6.82 6.03  “This work.
X,—~L, L 571 11.2 5.12 4.28 ERefefence 7.
Xs—X;e T 512 10.0 4.36 347  Reference 11.
X, X5, L 486 10.0 4.36 347  [Reference2l. =
L, L% X 15.60 241 13.95 12.92  From the compilation given in Ref. 11.
L,y—Iy L 1475 23.4 13.06 12.16
Ly, —L3 X 12.29 19.8 11.39 10.30 about—60 eV per simulation cell, and we estimate the frac-
L,,—Is L 1155 19.1 10.50 9.54 tion of the ground-state correlation energy retrieved by the
Ly,—L;,e T 10.80 17.6 9.33 8.43 DMC calculation,«, to be in the range 90-100 %. For the
L,—Ly, X 987 17.6 9.33 8.43  purposes of this comparison we use B& energies from
Ly —T L  6.00 11.0 5.14 438 Ref. 11 forEJ,, because of the incompleteness and uncer-
Ly —L% X 576 10.7 5.50 450 tainty of the experimental data. We note that the variGws
Ly—Ts L 4.96 10.0 4.61 3.74 calculations for silicofr** are in excellent agreement with
Ly—Lyc T 3.90 8.5 3.44 2.63 one another, and are also in good agreement with the avail-
Ly —L%, X  3.82 8.5 3.44 263 able experimental data. The experimental data are reported
Ly —X,e L 283 7.3 268 182 as band energies, so that to form the excitation energies, we

have to take differences between the experimental values,
which adds to the uncertainties. When we present our results
lations in the presence of the excitation. The resultingfor band energies, we will compare with the experimental
changes in the excitation energies were smaller than the stdata, which is given in Table II.
tistical noise. The values ofw;; given by this analysis slowly decrease
with increasing excitation energy, so that for the largest ex-
IIl. RESULTS AND ANALYSIS citation energies they; are 2—-3 percentage points smaller
than for the smallest excitation energies. This conclusion is
In Table I we give our results for the 27 excitations stud-jnsensitive to the values &2 and «,. This suggests the
ied, together with HFGW, and LDA data. The characteris- f|jowing rationale for our results. The HF excitation ener-
tics of the HF,GW, and LDA excitation energies are well gies are much too large because the correlation energy is
known. TheGW approximation gives extremely good exci- peglected. The fraction of the correlation energy retrieved by
tation energies for weakly correlated systems such as silicoRy,r pMC calculations slowly decreases with increasing ex-
while the LDA excitation energies are too small by 0.7-1.0¢jtation energy. However, because the contribution of the
eV, and the HF excitation energies are much too large. Thggrelation increases rapidly with increasing excitation en-
agreement between the DMC aGdV excitation energies i grgy, the DMC excitation energies are somewhat too large.
good for the low-energy excitations, but poorer for theThis analysis indicates that the residual errors in the DMC
higher-energy excitations. The percentageof the correla-  excitation energies, are mostly due to the errors in the nodal
tion energy retrieved by our DMC calculation for the stategyrfaces of the excited-state guiding wave functions rather
formed by exciting an electron from single-particle orbital than in the ground state, and that the quality of the nodal

to]is surfaces falls with increasing excitation energy.
i i 0 To study whether the DMC method works for direct ex-
_ Epmc— Efet a0k ,  citations, we considered pairs of excitations where a single-
YT o g g < 100. @ particle orbital with a particular wave vector is removed
Eexact EHF+ Ec

- - from the determinant and replacé€d by a higher-energy
The values ofE},c andE} are given in Table I. We esti- orbital at the same wave vector, afit) by an equivalent
mate the correlation energy for the ground stﬁfeto be higher-energy orbital at a different wave vector. For ex-
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The success of our excitation energy calculations is very
encouraging. To appreciate why our calculations are so suc-
cessful, we must consider the fixedode DMC algorithm in
more detail. First we consider groundtate calculations.
The fixed-node DMC energy is a variational bound on the
exact ground-state energy, and if the nodal surface of the
guiding wave function is exact then the resulting fixetbde
DMC energy is also exaéf The exact groundstate wave
function “tiles the configuration space,” which means that
all nodal pockets are related by permutation symmetry.
Normally one chooses guiding wave functions which also
have the tiling property, and consequently the DMC simula-
tion may be performed in any subset of the nodal pockets.

For excited states the situation is somewhat different. If
the fixed-node constraint could be removed, the algorithm
would, in the limit of a long simulation, give the ground
—state energy. However, the key point is that the fixed
—node approximation prevents this collapse, and allows us
to obtain good approximations for excitedtate energies.
One can readily show that if the nodal surface of the guiding
wave function is exactly that of theth eigenstate, then the
fixed—node DMC procedure gives the exact energy of the
L A r A X nth eigenstate, regardless of whether the guiding wave func-
) . . tion overlaps with lower-energy states. However, if we use

FIG. .1' The DMC band structurilled C!r.des with error ba'?s a guiding vF\J/ave function thatggloes not have the exact nodal
As a guide to the eye, we also show empirical pseudopotential data . : .
(Ref. 21) (solid lines. surface of the excited state we are modeling, the resulting

DMC energy may not be above the exact energy of that state

because of the possibility of mixing in loweenergy states
ample, when calculating th¥,— X, excitation energy, we with the same symmetry.
replace arX, orbital at a particulaX point by anX; orbital Another complication arises from the fact that the nodal
at the sameX point to give a direct excitation, while for the pockets of approximate excitedtate wave functions may
X4— X7, excitation we replace thX, orbital with anX;.  be inequivalent. Therefore, as the DMC simulation proceeds,
orbital from a differentX point, giving an indirect excitation. the population of configurations in some nodal pockets will
We have investigated three such direntdirect excitation ~dominate over others, and in principle the results could de-
pairs, and found reasonable consistency between the resulggnd on which of the pockets were occupied at the start of
We have calculated a total of six diredf € point) excita-  the simulation. An illustration of this type of behavior for the
tions, and the level of accuracy is indistinguishable from thafirst excited state of an electron in an infinite square well is
for indirect excitations, showing that the DMC method cangiven on page 186 of Ref. 2, which shows the DMC energy
be applied to direct excitations. In addition, we have succesglecreasing linearly with the magnitude of the error in the
fully calculated a total of ten excitation energies at the nodal position.
point and 11 at the. point, which demonstrates that the  Although there are significant differences between
DMC method works for higher excitations as well. ground- and excited-state fixed-node DMC calculations,

The 27 entries in Table | correspond to transitions bethe criterion for obtaining good energies is the same, i.e., the
tween seven valenedand and five conductierband en- hodal surface of the guiding wave function must be of good
ergy levels. To obtain DMC band energies we performed quality. Our results demonstrate that the nodal surfaces from
a least-squares fit to the DMC data by minimizing fjetermilnar_lts of LDA_ orbitals are fully adquatg for.c.alculat—
S[Elyc— (€~ €)12 with respect to thes;, where the sum N excitation energies around the gap region in silicon, but
is over the 27 excitation energigd, . listed in Table I. The ~9ive poorer results for hlghe'r excitation energies. It will
resulting band energies are given in Table Il together witHherefore be necessary to optimize the nodal surfaces of the
other theoretical data and with experimental data. For great&1iding wave functions to obtain more accurate estimates of
clarity the DMC band energies are plotted in Fig. 1 togethefN® higher excitation energies. We note that a DMC calcula-
with an empirical pseudopotential band strucfreshich is tion by Gr|rr_1eset al“* for an excited state of the hydrogen
in good agreement with the available experimental data. ThE'0lecule with the same symmetry as the ground state also
energies at the top of the valence band have been aligne8@Ve @ good excitation energy. This result lends further sup-
The DMC band energies are very much better than the HPOrt t0 our contention that the fixechode DMC method can
values because of the inclusion of correlation effects. For th€ applied to a wide range of excited states.
lower part of the valence band the DMC energies lie consis-
tently 1 — 1.5 eV below the empirical pseudopoten@Galv
and experimental data. The DMC band energies around the
gap region are in good agreement with the empirical pseudo- In conclusion, the DMC method is a stable and accurate
potentialGW and experimental data. method for calculating lowlying excitation energies in sol-

Energy (eV)

IV. SUMMARY
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ids. The fixed-node approximation works to our advantage DMC method provides a unified framework for calculating
by preventing collapse to lowerenergy states. The accuracy accurate ground and excited-state energies.

of the excited-state energies is determined by the quality of
the nodal surfaces of the guiding wave functions. We have
obtained good values for the lewying excitation energies,
including direct and indirect excitations, and including sev- We thank Matthew Foulkes for helpful conversations. Fi-
eral excitations at each wave vector, which indicates that theancial support was provided by the Engineering and Physi-
nodal surfaces of our guiding wave functions are of goodcal Sciences Research Courtil.K.). Our calculations were
quality. We have demonstrated that DMC calculations can beerformed on the CRAYT3D at the Edinburgh Parallel
used to calculate direct excitations, which is important be-Computing Center, and the Hitachi SR2201 located at the
cause it allows us to obtain excitation energies when there i€ambridge HPCF. G.R. acknowledges support from Hitachi
no underlying translational symmetry. The fixedode  Ltd.
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