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Diffusion quantum Monte Carlo calculations of the excited states of silicon

A. J. Williamson,* Randolph Q. Hood, R. J. Needs, and G. Rajagopal
Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 6 February 1998!

The band structure of silicon is calculated at theG, X, andL wave vectors using diffusion quantum Monte
Carlo ~DMC! methods. Excited states are formed by promoting an electron from the valence band into the
conduction band. We obtain good agreement with experiment for states around the gap region, and demonstrate
that the method works equally well for direct and indirect excitations, and that one can calculate many excited
states at each wave vector. This work establishes the fixed-node DMC approach as an accurate method for
calculating the energies of low-lying excitations in solids.
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I. INTRODUCTION

Electronic excitations play a crucial role in the physi
and chemistry of atoms, solids, and molecules. Calcula
excitation energies in large systems is a challenge for th
retical techniques, because an accurate description requi
realistic treatment of the electron correlations. The we
known Hartree-Fock~HF! method includes exchange but n
correlation effects, and therefore overestimates band g
and bandwidths by a large amount, while Kohn-Sh
density-functional calculations within the local densit
approximation~LDA ! underestimate band gaps. Here we
port a study of excitation energies in bulk silicon using t
diffusion quantum Monte Carlo~DMC! method.1,2 The DMC
method is very promising for applications to condens
matter because~i! it explicitly includes electron-electron cor
relation effects, and~ii ! it scales reasonably well with syste
size, with the computational cost increasing as the cube
the number of electrons.

It is now well established that DMC calculations can gi
an excellent description of electron correlations in t
ground state. The range of problems that could be addre
using DMC would be greatly increased if one could a
obtain accurate excitation energies. Furthermore, the D
method should be equally applicable to both strongly a
weakly correlated systems. However, calculating excitat
energies in condensed-matter systems is a formidable c
lenge to DMC techniques because they are 1/N effects, i.e.,
the fractional change in energy is inversely proportional
the number of electrons in the system. The precision of
calculation must therefore be sufficient to resolve this ene
change amid the statistical noise. The system must als
large enough to give a good description of the infinite so
which is a severe constraint for small-band-gap mater
such as our test material, silicon. So far, only a few DM
calculations of excitation energies in solids have been
ported. In particular, we note the eight-atom simulation c
calculations of an energy gap in a molecular nitrogen sol3

and the G258→X1c and G1n→X1c excitations in carbon
diamond.4 The excitations in these calculations were indire
in reciprocal space, so that the excited state is orthogona
the ground state by translational symmetry. In previous w
on solids,3–5 it was assumed that the standard DMC meth
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would give good results only for the lowest-energy state
each symmetry. However, in this paper we will show that
DMC method can be applied successfully to a wide range
excitations in solids.

We have chosen silicon for our study because~i! DMC
gives a good account of the ground state,6 ~ii ! electron cor-
relations significantly affect the band energies, and~iii ! re-
sults from other calculational methods, such as the LD
HF,7 and GW ~Refs. 8–11! approximations are well estab
lished, and a large amount of experimental data also ex
In this paper we explore the limits of the DMC method b
calculating excitations which are direct and indirect in rec
rocal space, and including several excitations at each w
vector.

It is important to distinguish between different types
excitation energy. In quasiparticle theory the quasipartic
correspond to the poles of the one-particle Green funct
and are equal to the energies for adding an electron to
system or subtracting one from it. The quasiparticle energ
have both real and imaginary parts, the latter giving the q
siparticle lifetime. These energies are measured in ph
emission and inverse photoemission experiments. For
minimum gap the imaginary part of the quasiparticle ene
is zero, and the quasiparticle has an infinite lifetime. In t
case the quasiparticle energy gap can be written asEg

5EN111EN2122EN , whereEN11, EN21, andEN are the
ground-state total energies of the (N11)-, (N21)-, and
N-electron systems. This energy gap is accessible wi
DMC methods, but we do not consider it here. In an optic
absorption experiment a different process occurs, in wh
an electron is excited from the valence to the conduct
band. In this case an exciton is formed, and the lowest e
tation energy is smaller thanEg by the exciton binding en-
ergy. In the calculations reported here we create excito
states by exciting electrons from a valence-band state in
conduction-band state. Although the exciton binding ene
is artificially increased by the finite size of our simulatio
cell, it is still small ~about 0.1 eV!, and therefore our result
are comparable with theoretical quasiparticle energies
experimental photoemission data. We remark that excito
properties are of significant interest in their own right, a
the ability to calculate both electron addition/subtraction e
12 140 © 1998 The American Physical Society
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ergies and excitonic energies is a significant advantage o
DMC method.

This paper is organized as follows. In Sec. II we provi
a brief description of our calculational method. Section III
a detailed discussion of the results of our study demons
ing the viability of the DMC method for accurately determi
ing the low-lying excitation energies in solids. We conclu
with a summary in Sec. IV.

II. CALCULATIONAL METHODS

In the DMC method,1,2 an imaginary time evolution of the
Schrödinger equation is used to evolve an ensemble o
N-dimensional electronic configurations toward the grou
state. Importance sampling is incorporated via a guid
wave functionF. To make the calculations tractable we u
the fixed-node approximation, in which the nodal surface
the wave function is constrained to equal that ofF. The
fixed-node DMC method generates the distributionFC,
whereC is the best~lowest-energy! wave function with the
same nodes asF. The accuracy of the fixed-node approx
mation can be tested on small systems, and normally lead
very satisfactory results.2 We also use the short-time ap
proximation for the Green’s function, whose effect can
tested and made very small. We used a time step of 0
a.u., which gives small time-step errors in silicon.6 The av-
erage number of configurations in the ensemble was 384,
between 1220 and 2125 moves of all the electrons in all
configurations were attempted, except for the ground s
where 3848 moves were attempted. In all cases
acceptance-rejection ratio was greater than 99.7%.

We used a fcc simulation cell containing 16 silicon atom
employing periodic boundary conditions to reduce the fin
size effects. The Si41 ions were represented by a norm
conserving nonlocal LDA pseudopotential, and the nonlo
energy was evaluated using the ‘‘locality approximation.’12

The nonlocal potential was sampled using the technique
Ref. 13. Our guiding wave functions are of the Slat
Jastrow type,

F5D↑D↓exp F(
i 51

N

x~r i !2(
i , j

N

u~r i j !G , ~1!

where there areN electrons in the simulation cell,x is a
one-body function,u is a two-body correlation factor which
depends on the relative spins of the two electrons, andD↑

andD↓ are Slater determinants of up- and down-spin sing
particle orbitals. We used a Fourier series expansion for
x function, which was constrained to have the full symme
of the diamond structure and contains six free paramet
The parallel- and antiparallel-spinu functions were con-
strained to obey the cusp considitions,14 and contained a
polynomial part with 11 free parameters, as described in R
15. The guiding wave function contained a total of 28 p
rameters, whose optimal values were obtained by minim
ing the variance of the energy using 105 statistically inde-
pendent electron configurations,16,15 which were regenerate
several times during the minimization procedure. The o
mal parameter values were obtained for the ground-s
wave function, and were used for the excited states as w
Because the parameters occur only in the nodeless Jas
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factor, this procedure does not bias the DMC excitation
ergies, which depend only on the nodal surfaces of the g
ing wave functions.

Our calculations are for many-body Bloch wave functio
having definite values of the crystal momentum or wave v
tor k. The Slater determinants were formed from the LD
orbitals calculated at theG point of the Brillouin zone of the
simulation cell, which unfolds to theG, X, andL points of
the primitive Brillouin zone.17 The wave vector of a deter
minant of these orbitals is equal to one of theG, X, or L
wave vectors. The determinant for the ground-state guid
wave function was constructed from the valence-band or
als at theG, X, andL points, and hask50. The excited-state
guiding wave functions were formed by replacing an orbi
in either the up- or down-spin determinants of the groun
state wave function by a conduction-band orbital.

The computational demands of DMC calculations a
such that presently it is not feasible to calculate excitat
energies with cells larger than our 16-atom cell, and the
fore it is important to consider the finite-size effects. T
finite-size effects can be divided into ‘‘independent-partic
finite-size effects’’ ~IPFSE’s!, which can be modeled by
LDA calculations, and ‘‘Coulomb finite-size effects’
~CFSE’s!, which arise from the explicit use of Coulomb in
teractions between the particles. The HF, LDA, and DM
ground-state energies for the 16-atom cell are2103.67,
2106.61, and2107.31(1) eV per atom, respectively. W
estimate finite-size errors in the ground-state calculations
performing calculations on simulation cells containing 2
atoms~HF and LDA! and 128 atoms~DMC!, giving correc-
tions of 20.48,21.31, and21.02(3) eV per atom, respec
tively. The IPFSE’s are therefore quite large, being about
eV for the 16-atom cell used here. However, LDA calcu
tions performed for a number of simulation cell sizes sh
that the cancellation between the errors in the ground
excited states is so good that the resulting finite-size error
the LDA excitation energies of the 16-atom cell are less th
0.1 eV. We expect a similar cancellation of errors in t
DMC cancellations. In our DMC simulations, we also used
formulation of the electron-electron interaction within pe
odic boundary conditions18 which gives much smaller
CFSE’s than the standard Ewald form.19 However, the
CFSE’s also tend to cancel in the excitation energies, and
obtained almost identical results using our interaction a
the Ewald interaction.

Each of the guiding wave functions we use contains so
spin contamination, i.e., they are not eigenstates ofŜ2 but are
admixtures of different spin components. We have inve
gated the effect of this spin contamination by calculating
G258→X1c excitation energy using a spin-contaminat
single determinant and a two-determinant spin-singlet w
function.20 These calculations gave energies differing by le
than the statistical noise of 0.2 eV. The exciton binding e
ergy in our calculations is enhanced, because the excito
confined to the simulation cell. Following Ref. 3, we use t
Mott-Wannier formula to approximate the binding energy
the localized exciton, giving 0.1 eV, which is smaller tha
the statistical noise in our calculations. Finally, we inves
gated the effect on the DMC energy of using single-parti
orbitals which had been relaxed by performing LDA calc
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12 142 57WILLIAMSON, HOOD, NEEDS, AND RAJAGOPAL
lations in the presence of the excitation. The result
changes in the excitation energies were smaller than the
tistical noise.

III. RESULTS AND ANALYSIS

In Table I we give our results for the 27 excitations stu
ied, together with HF,GW, and LDA data. The characteris
tics of the HF,GW, and LDA excitation energies are we
known. TheGW approximation gives extremely good exc
tation energies for weakly correlated systems such as sili
while the LDA excitation energies are too small by 0.7–1
eV, and the HF excitation energies are much too large.
agreement between the DMC andGW excitation energies is
good for the low-energy excitations, but poorer for t
higher-energy excitations. The percentagea i j of the correla-
tion energy retrieved by our DMC calculation for the sta
formed by exciting an electron from single-particle orbitai
to j is

a i j 5
EDMC

i j 2EHF
i j 1a0Ec

0

Eexact
i j 2EHF

i j 1Ec
0

3100. ~2!

The values ofEDMC
i j andEHF

i j are given in Table I. We esti
mate the correlation energy for the ground stateEc

0 to be

TABLE I. Excitation energies in eV calculated with the DMC
HF, GW, and LDA methods. The wave vector of the excited-st
wave function is denoted byk. The statistical error bars on th
DMC energies are60.2 eV.

Excitation k DMC HF ~Ref. 7! GW ~Ref. 11! LDA

G1v→G28 G 18.05 27.9 15.84 15.14
G1v→G15 G 17.38 26.9 15.31 14.50
G1v→L1c L 16.27 25.4 14.14 13.39
G1v→X1c X 14.93 24.2 13.38 12.58
G258→L3 L 4.75 8.7 4.25 3.31
G258→G15 G 3.82 8.0 3.36 2.55
G258→L1c L 2.35 6.5 2.19 1.44
G258→X1c X 1.34 5.3 1.43 0.63
X1v→G15 X 12.42 20.5 11.31 10.36
X1v→X1c* L 10.37 17.8 9.38 8.44
X4→G15 X 6.91 12.7 6.29 5.39
X4→G28 X 7.92 13.7 6.82 6.03
X4→L1c L 5.71 11.2 5.12 4.28
X4→X1c G 5.12 10.0 4.36 3.47
X4→X1c* L 4.86 10.0 4.36 3.47
L28→L3* X 15.60 24.1 13.95 12.92
L28→G15 L 14.75 23.4 13.06 12.16
L1v→L3* X 12.29 19.8 11.39 10.30
L1v→G15 L 11.55 19.1 10.50 9.54
L1v→L1c G 10.80 17.6 9.33 8.43
L1v→L1c* X 9.87 17.6 9.33 8.43
L38→G28 L 6.00 11.0 5.14 4.38
L38→L3* X 5.76 10.7 5.50 4.50
L38→G15 L 4.96 10.0 4.61 3.74
L38→L1c G 3.90 8.5 3.44 2.63
L38→L1c* X 3.82 8.5 3.44 2.63
L38→X1c L 2.83 7.3 2.68 1.82
g
ta-

-

n,

e

about260 eV per simulation cell, and we estimate the fra
tion of the ground-state correlation energy retrieved by
DMC calculation,a0, to be in the range 90–100 %. For th
purposes of this comparison we use theGW energies from
Ref. 11 forEexact

i j because of the incompleteness and unc
tainty of the experimental data. We note that the variousGW
calculations for silicon9–11 are in excellent agreement wit
one another, and are also in good agreement with the a
able experimental data. The experimental data are repo
as band energies, so that to form the excitation energies
have to take differences between the experimental val
which adds to the uncertainties. When we present our res
for band energies, we will compare with the experimen
data, which is given in Table II.

The values ofa i j given by this analysis slowly decreas
with increasing excitation energy, so that for the largest
citation energies thea i j are 2–3 percentage points small
than for the smallest excitation energies. This conclusion
insensitive to the values ofEc

0 and a0. This suggests the
following rationale for our results. The HF excitation ene
gies are much too large because the correlation energ
neglected. The fraction of the correlation energy retrieved
our DMC calculations slowly decreases with increasing
citation energy. However, because the contribution of
correlation increases rapidly with increasing excitation e
ergy, the DMC excitation energies are somewhat too lar
This analysis indicates that the residual errors in the DM
excitation energies, are mostly due to the errors in the no
surfaces of the excited-state guiding wave functions rat
than in the ground state, and that the quality of the no
surfaces falls with increasing excitation energy.

To study whether the DMC method works for direct e
citations, we considered pairs of excitations where a sing
particle orbital with a particular wave vector is remove
from the determinant and replaced~i! by a higher-energy
orbital at the same wave vector, and~ii ! by an equivalent
higher-energy orbital at a different wave vector. For e

e
TABLE II. Band energies of silicon in eV. The statistical erro

bars on the DMC energies are60.2 eV.

Band DMCa HFb GWc LDAa Empd Experimente

G258 0.00 0.0 0.00 0.00 0.00 0.00
G15 3.70 8.0 3.36 2.55 3.42 3.40,3.05
G28 4.57 9.0 3.89 3.19 4.10 4.23,4.1
G1 213.58 218.9 211.95 211.95 212.36 212.560.6
X1c 1.51 5.3 1.43 0.63 1.17 1.25
X4 23.35 24.7 22.93 22.84 22.86 23.360.2,22.9
X1v 28.79 212.5 27.95 27.81 27.69
L1c 2.51 6.5 2.19 1.44 2.23 2.460.15,2.1
L3 4.55 8.7 4.25 3.31 4.34 4.1560.1
L38 21.32 22.0 21.25 21.19 21.23 21.260.2,21.5
L1v 27.81 211.1 27.14 26.99 26.96 26.760.2
L28 211.05 215.4 29.70 29.61 29.55 29.360.4

aThis work.
bReference 7.
cReference 11.
dReference 21.
eFrom the compilation given in Ref. 11.
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ample, when calculating theX4→X1c excitation energy, we
replace anX4 orbital at a particularX point by anX1c orbital
at the sameX point to give a direct excitation, while for th
X4→X1c* excitation we replace theX4 orbital with an X1c

orbital from a differentX point, giving an indirect excitation
We have investigated three such direct2indirect excitation
pairs, and found reasonable consistency between the re
We have calculated a total of six direct (G2point! excita-
tions, and the level of accuracy is indistinguishable from t
for indirect excitations, showing that the DMC method c
be applied to direct excitations. In addition, we have succe
fully calculated a total of ten excitation energies at theX
point and 11 at theL point, which demonstrates that th
DMC method works for higher excitations as well.

The 27 entries in Table I correspond to transitions
tween seven valence2band and five conduction2band en-
ergy levels. To obtain DMC band energiese i , we performed
a least2squares fit to the DMC data by minimizin
S@EDMC

i j 2(e i2e j )#2 with respect to thee i , where the sum
is over the 27 excitation energiesEDMC

i j listed in Table I. The
resulting band energies are given in Table II together w
other theoretical data and with experimental data. For gre
clarity the DMC band energies are plotted in Fig. 1 toget
with an empirical pseudopotential band structure,21 which is
in good agreement with the available experimental data.
energies at the top of the valence band have been alig
The DMC band energies are very much better than the
values because of the inclusion of correlation effects. For
lower part of the valence band the DMC energies lie con
tently 1 – 1.5 eV below the empirical pseudopotentialGW
and experimental data. The DMC band energies around
gap region are in good agreement with the empirical pseu
potentialGW and experimental data.

FIG. 1. The DMC band structure~filled circles with error bars!.
As a guide to the eye, we also show empirical pseudopotential
~Ref. 21! ~solid lines!.
lts.
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The success of our excitation energy calculations is v
encouraging. To appreciate why our calculations are so s
cessful, we must consider the fixed2node DMC algorithm in
more detail. First we consider ground2state calculations.
The fixed2node DMC energy is a variational bound on th
exact ground2state energy, and if the nodal surface of t
guiding wave function is exact then the resulting fixed2node
DMC energy is also exact.22 The exact ground2state wave
function ‘‘tiles the configuration space,’’ which means th
all nodal pockets are related by permutation symmetr23

Normally one chooses guiding wave functions which a
have the tiling property, and consequently the DMC simu
tion may be performed in any subset of the nodal pocke

For excited states the situation is somewhat different
the fixed2node constraint could be removed, the algorith
would, in the limit of a long simulation, give the groun
2state energy. However, the key point is that the fix
2node approximation prevents this collapse, and allows
to obtain good approximations for excited2state energies
One can readily show that if the nodal surface of the guid
wave function is exactly that of thenth eigenstate, then the
fixed2node DMC procedure gives the exact energy of
nth eigenstate, regardless of whether the guiding wave fu
tion overlaps with lower2energy states. However, if we us
a guiding wave function that does not have the exact no
surface of the excited state we are modeling, the resul
DMC energy may not be above the exact energy of that s
because of the possibility of mixing in lower2energy states
with the same symmetry.

Another complication arises from the fact that the nod
pockets of approximate excited2state wave functions may
be inequivalent. Therefore, as the DMC simulation procee
the population of configurations in some nodal pockets w
dominate over others, and in principle the results could
pend on which of the pockets were occupied at the star
the simulation. An illustration of this type of behavior for th
first excited state of an electron in an infinite square wel
given on page 186 of Ref. 2, which shows the DMC ene
decreasing linearly with the magnitude of the error in t
nodal position.

Although there are significant differences betwe
ground2 and excited2state fixed2node DMC calculations,
the criterion for obtaining good energies is the same, i.e.,
nodal surface of the guiding wave function must be of go
quality. Our results demonstrate that the nodal surfaces f
determinants of LDA orbitals are fully adequate for calcul
ing excitation energies around the gap region in silicon,
give poorer results for higher excitation energies. It w
therefore be necessary to optimize the nodal surfaces o
guiding wave functions to obtain more accurate estimate
the higher excitation energies. We note that a DMC calcu
tion by Grimeset al.24 for an excited state of the hydroge
molecule with the same symmetry as the ground state
gave a good excitation energy. This result lends further s
port to our contention that the fixed2node DMC method can
be applied to a wide range of excited states.

IV. SUMMARY

In conclusion, the DMC method is a stable and accur
method for calculating low2lying excitation energies in sol

ta
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12 144 57WILLIAMSON, HOOD, NEEDS, AND RAJAGOPAL
ids. The fixed2node approximation works to our advantag
by preventing collapse to lower2energy states. The accurac
of the excited2state energies is determined by the quality
the nodal surfaces of the guiding wave functions. We ha
obtained good values for the low2lying excitation energies,
including direct and indirect excitations, and including se
eral excitations at each wave vector, which indicates that
nodal surfaces of our guiding wave functions are of go
quality. We have demonstrated that DMC calculations can
used to calculate direct excitations, which is important b
cause it allows us to obtain excitation energies when ther
no underlying translational symmetry. The fixed2node
e
y
of
ve

v-
the
d
be
e-
is

DMC method provides a unified framework for calculatin
accurate ground2 and excited2state energies.
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