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Energy barriers, structure, and two-stage melting of microclusters of vortices
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The melting of two-dimensional microclusters of “particles” with logarithmic repulsive interaction and
confined by an external parabolic potential is considered. The model describes the behavior of vortices in a
small island or grain of a type-Il superconductor with a thickness smaller than the coherent length, vortices in
a rotating vessel with superfluid, or electrons in a semiconductor nanostructure, surrounded by a media with a
dielectric constant essentially smaller than that for the nanostructure. Shell configurations corresponding to the
local and global minima of the potential energy for microclusi€®eriodic Table” for a two-dimensional
Thomson atorhare calculated, image potentials being taken into account. Due to image forces, configurations
with larger numbers of vortices in internal shells become more stable. Rearrangements of the structure due to
the anisotropy of confinement are studied. By the analysis of the temperature dependence of structure, radial,
and angular rms displacements, the melting of clusters is analyzed. Two-stage melting of microclusters of
vortices takes place: at lower temperatuseatory reorientation of neighboring “crystalline” shells (“orien-
tational melting”) arises;at much greater temperatures the radial shell order disappears. Two-stage melting is
connected with the fact that barrier of shell rotatidn is less than the barrier of intershell particle jutdp,
the ratioU,/U; drops essentially for small microclusters. For clusters with a larger number of particles,
orientational melting takes place only for external pairs of shells. This last fact is connected with approximate
equality of barrierdJ,;~U, for inner shells[S0163-182¢08)00101-5

. INTRODUCTION. melting of the macroscopic pha$e:’
In the present paper we study changes of the structure
The magnetic fiel atH.,>H>H_ penetrates into the with temperature and the melting of microclusters of vortices

type-Il superconductors as Abrikosov vortices, which mustn axial-symmetric systems. Microclusters of vortices have a
form in a |ow_temperature regio‘ﬁn the absence of centers shell structure. The analog of the Periodic Table for a two-
of pinning an ideal triangular lattick. The melting of the dimensional Thomson atom is found. It is shown thiat
vortex lattice and formation of a liquid vortex phase with the Melting of a 2D microcluster of vortices takes place in two
increase of temperature may take place. This effect was otpt2gesfor small N, in the first stage intershelorienta-

served for hight. superconductorésee review, Ref. 2, and Fonal ) tmelt|trr1]g t?kﬁs tplac{‘e, a:jqd at an elstsentlallytr?l??er
references therejn emperature the shell structure disappears. It occurs that two-

A very interesting problem arises concerning the structur(?stage meltlng for small mlcroclust'ers is connected with thg
. X . . act that barriers of intershell rotation are smaller than barri-
of the mesoscopic system withsanallnumber of vortices in

ducting island in. Such ¢ bers of jumps of particles between shells. We found that for
a superconducting Island or grain. such a system may b oclysters consisting of two shells the ratio of potential
considered as a two-dimensional analogmpare with Ref.

; e barriers corresponding to the relative rotation of shells and to
3) of a classical Thomson atomThe latter system obeys j,mps of particles is much smaller than this value for clusters
laws of two-dimensional2D) electrostatics. This model can yith more than two shells. That is why the ratio of orienta-

describe also vortices in a rotating vessel with superfluid, ofignal and total melting temperatures is much smaller for
electrons in a semiconductor dot surrounded by a substanggicroclusters than for studied macroclusters. For internal
with an essentially smaller dielectric constant than that in thehells of macroclusters this ratio has the order of 1 and the
dot. A small system of vortices must behave asiaroclus-  orientational melting takes place only for external shells.

ter. It means that a shell structure of the microcluster of The paper is organized as follows. In Sec. Il we describe
vortices may abruptly change when we add only one vortexphysical realizations of logarithmic clusters. Section 1ll is
(one “particle”) to the system. This structural sensitivity to devoted to configurations of vortex clusters in global and
the numbeN of particles takes place untl achieves some local minima of the potential energy and to the study of
value N, when inside the cluster appears a region with acompetition between the shell structure and the triangular
structure similar to that of the infinite phagee., triangular lattice when the number of particles is growing. In Sec. IV
lattice for 2D system In other words aflN>N,, the transi- results of the calculation of the intershell and the total melt-
tion from microcluster to anacroclusterof vortices must ing of the vortex clusters are presented. In Sec. V the poten-
take placgat much greater numbé\t, for “microparticles,” tial barriers of the relative rotation of shells and barriers for
the number of vortices in the “volume” phase becomesjumps of particles from one shell to another are analyzed.
greater than the number of “surface” vortigesThe most We take into account image potentials in Sec. VI. Section
interesting fact is that the melting of the microcluster mayVIl is devoted to the confinement anisotropy effects. Conclu-
have interesting specific features in comparison with thesions are presented in Sec. VIII.
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IIl. PHYSICAL MODEL the thickness of nanostructules e/ €44q; in this case image
ncharges originated from polarization of media near the inter-
face by carriers in the dot form charged linggth the same
charge sign of carriers in doand this leads to the effective
logarithmic interaction between carriers. Note that image
forces in the last case amplify interelectron effective repul-
sion in comparison with bare Coulomb interaction and this
effect is favored for electron crystallization.

Let us consider an island of the type-Il superconductor i
a normal magnetic field. If the thickness of the islashds
smaller than the length of coherené€rl) of the supercon-
ductor, then from the point of view of the superconductive
properties the island at temperatdranay be considered as
the two-dimensionabne. The magnetic field penetrates into
the system as two-dimension@D) vortices. The potential
of the interaction between two 2D vortices has the fdsee
Ref. 8 Ill. GROUND-STATE CONFIGURATIONS

r By analogy with three-dimensionalCoulomb system
U(r)=—g2n—, a<r<,, withoutexternal confining potential, but with external abrupt
a boundaries, all particles with the logarithmic potential of re-
pulsion in 2D system must locate on the exter(ahe-
U(r)= —qz)\—L+const, rSA, (1) dimensional boundary of the system. However in both sys-
r tems equilibrium of chargessidethe system is possible if a
compensating incompressible charged backgroufud
. o . - equivalent confining potentigldiscussed above, is present.
superfluid density is a distance between the vorticesis a To study ground-state configurations of particles we used

; - N =22/ i _

(reat\:j;;zr?f dtgetﬁo(;? t?]feanvc?r%eanr mé:a(Trzé)Eiic fi)e\l d/dirlsacher(;E er_two methods: an accidental search of the minimum of the
conductor)\pis the London enetrgtion depth of the ma nF(;ticpo'[ential energy of the system and also Langevin dynamics.
e - 1P P 9 Both methods give very close results. It is convenient to use
field into a three-dimensional superconductor. For example

~ . . : N polygons inscribed into circles as initial configurations, i.e.,
223 ?;?\\i_zgogg for islands with the thicknes$=100 A clusters consisting of shells close to circlese below We

. o Iternated accidental movement of shells aghale (at each
Suppose that the radius of the superconductive islan (

) _ . . tep one shell chosen accidentally moved accidentaliy
obeys the |nequaI|Ff< R<.M' In th's case one can consider accidental movement of particléat each step one particle
the vortices as point particles which repulse under the logazy J<o accidentally moved accidentallp new configura-

rithmic law. Stabllllzanon of the concentration of VOItiCes I 4 of particles was taken if after the next step the increase
superconductors in external magnetic field is taken into aCit the potential energyU of the system was smaller then
count in this model by the effective external confining po-

. 2 . zero. The maximal value of the step was decreased from
tential Ue(r) = arj or equivalently by homogeneous com- g, 15-3 15 1 107° in the dimensionless units. The step
pensating incompressible background

: charge, s decreased approximately 0.8-0.95 times every 10
p(r)=—2a=—pyorex- It OCcurs that image forces for vor- steps.

tices (see below as a rule do not changgualitatively the We found local and globatleepest of local ongsninima

basic properties of the system. of the potential. It occurs that small logarithmic clusters
So in the first approximation we have a model of the 3n510g0usly to Coulomb ones, see Refs. 3,)5hake shell
two-dimensional2D) cluster ofN classical particles repel- g cture at low temperatures. Shell structure of microclus-
ling  from Zeach other due to the logarithmic law ¢orq is connected with the axiair almost axial symmetry of
U(rij)=—qIn(r; /) (i.e., obeyed to 2D electrosétatms IBW  confinement. As one knows, a 2D crystal has a triangular
and confined by the external potentid,(r;) = ar; . lattice. The region inside the cluster with triangular structure
After the scaling transformations r—at'?/qr;  arises only for clusters with a large number of particles
T—(ks/q?)T; U—(1/g*)U the potential energy of the sys- (N=100) as for Coulomb clustet&® Below we present the

whereq is the vortex “charge,” which is proportional to the

tem [measured from th€}In(g/a*?a)] is: results of computer simulations of the structure of the loga-
rithmic clusters.
U= _2 Inri+2 ;2 @) Figure 1 reve_als that the character of the_ dependgnce of
= a T the mean total, internal, and external potential energies per

particle vs the number of particles is not far from linear one.
We show that properties of clusters change qualitativelyFigure 1 shows smooth decreasing of mean total and internal
only at sufficiently great anisotropy &f¢«(r). potential energies vs number of particldsand the smooth
The system of classical particles with the potent®ilis a  increasing of external potential energy vs number of particles
two-dimensional analog of the classical three-dimensionaN. The total potential energy per partid¢N decreases s
(3D) Thomson atort® Such a model approximately de- for N<50.
scribes not only vortices in a superconductive island, but also In Table | the numbers of particles in shells and corre-
vortices in arotating vesseith superfluid He(see Refs. sponding mean total potential energieseasured from the
10-19. It also describes a cluster of electrons or holes in avalue Cﬁ,ln(q/al’za), see abovpare represented for the glo-
semiconductor nanostructu¢(2D do?), surrounded by a me- bal minima. The subsequent filling of shells reminds one of
dia with a dielectric constart essentially smaller than that the formation of the Periodic Table of elemeritsne can
(€qd00 Of the 2D dot. Effective logarithmic interaction take compare the filling of shells in the 2D classical system with
place at interelectron distancesuch thaD<r<D/k; D is 3D Coulomb interactiof). WhenN<5 all particles locate in
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reaches some maximal value. R 50, the central shell
does not exceed five particles, the second shell does not ex-
ceed 11 particlesin the case of an ideal two-dimensional
crystal the distribution of particles on coordinate circles cor-
responds t@1,6,12 . . .)]. When all the shells are filled up to
their allowed maximal numbers of particles, a new shell ap-
pears: first only one new particle appears in the center of the
system, then if one more particle is added two particles make
the central shell, etc. One particle in the center appears only
when we add one patrticle to the system which has the con-
* figuration (5, . . . ), twoparticles appear near the center for
*e,2 the initial configuration (1,7,...) or (1,8,...), three

e particles—for the initial configuration(2,8,...), four
o 10 2 | 30 0 | 0 particles—for (3,9, ...), five particles—for (4,11,...).

N Analogous effects take place for Coulomb clustets.

FIG. 1. Potential energy of two-dimensional vortex clusters per From the previous discussion one can see that we used the
particle (U ,q)/N as a function of numbeN of particles.(1) Indi-  term “shell” not only in the case when it has a form of an
cates the total potential enerdy,.)/N; (2) Indicates potential equilateral polygon. In work Ref. 12, which is devoted to 2D
energy of all interactions between particles clusters of vortices in a rotating vessel with superfluid he-
(Uin/N=(1/2N)Z(U;;); (3) indicates the external potential energy lium, numbers of particles in the shells were determined with
(Ued/N=1/N aSr?. the help of the following criterion: two particles belong to

the same shell if distances from them to the center of the
one shell with the center at the center of the symmeédty system differed not more than 2% fo<<50 and 5% for
minimum of the confining potentiaand the particles are in  N>50. But this determination seems to be rather not conve-
vertexes of a proper polygon. The number of particles on thaient, because there is no universality for any number of
different shells increases until the filling of each of themparticles. We use another definition of a shell. Let us deter-

TABLE I. Shell structure and potential energy of clusters of vortices.

Number of Shell Potential Number of Shell Potential
particles fillings energy particles fillings energy
1 1 0.00000&x 10° 26 3,9,14 —1.94056% 107
2 2 5.00000x 101 27 3,9,15 —2.15613K 107
3 3 8.91802% 10 28 4,9,15 —2.384294 107
4 4 1.09045% 1¢° 29 4,10,15 —2.62591X 107
5 5 9.76405x 107! 30 4,10,16 —2.88102& 107
6 1,5 4.354169%10°* 31 4,10,17 —3.149268 107
7 1,6 —7.51244x 1071 32 4,11,17 —3.43132% 107
8 1,7 —2.514746<10° 33 511,17 —3.72747X 107
9 1,8 —4.91451x 1¢° 34 1,5,11,17 —4.03730& 107
10 2,8 —8.100414 1¢° 35 1,6,11,17 —4.361606< 107
11 3,8 —1.209333% 10 36 1,6,12,17 —4.70033K 107
12 3,9 —1.69785 10" 37 1,6,12,18 —5.053534& 107
13 4,9 —2.271610x 10 38 1,6,12,19 —5.42092% 107
14 4,10 —2.942793 10" 39 1,7,13,18 —5.803155 107
15 4,11 —3.706118< 10" 40 1,7,13,19 —6.200430x 107
16 5,11 —4.57370% 10 41 1,7,13,20 —6.612310< 107
17 1,511 —5.541308 10 42 1,7,14,20 —7.039416< 107
18 1,6,11 —6.62069X 10 43 2,8,14,19 —7.481666< 107
19 1,6,12 —7.811655 10 44 2,8,14,20 —7.939606< 107
20 1,6,13 —9.11019% 10 45 2,8,14,21 —8.41261X 107
21 1,7,13 —1.052696< 107 46 3,9,14,20 —8.901514 107
22 1,7,14 —1.205683 10? 47 3,9,15,20 —9.40612X 107
23 1,8,14 —1.37064% 107 48 3,9,15,21 —9.926554 107
24 2,8,14 —1.548203 107 49 3,9,15,22 —1.046250x 10°
25 3,8,14 —1.737968& 107 50 4,10,15,21 —1.101460x 10°
107 3,9,15,21,27,32 —7.15573(x 10°

108 3,9,15,21,27,33 —7.316694 10° 192 3,9,15,21,27,33,39,45— 2.83456& 10*
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FIG. 3. The radial square deviatid@r?) as a function of tem-
perature;N=37. (a) Low-temperature region. Radial square devia-
tion of the middle shell(b) High-temperature region. Total radial
square deviation.

FIG. 2. The average distance between the particlesmd the constancy of the density of particles.

radius of the systerR as a function oN particles.(1) The average It should be noted that the search of the global minimum
distance between the particlé®) The radius of the systeni3) the ~ configurations requires great large accuracy for ldgeot
lattice perioda. less than 107 at N~50 and not less than 16 at N~100),

because of the existence of a large number of local minima
mine a shell as a convex polygon with a maximal number ofwith energies very close to that of the global minimum. For
particles(inside of which the previous shell locajeshich  example, alN=49 the difference in energy between the glo-
satisfies the following rule: the maximal distance from a par-bal minimum(3,9,15,22 and the local minimun{3,9,16,21
ticle of this shell to the center of the system has to be less only 4x 10™ %% and atN= 107 the difference between the
than the minimal distance from a particle of a neighboringglobal (3,9,15,21,27,32 and the local minimum
external shell to the center of the systétmis rule changes in  (3,9,15,22,27,3\is only 5X 10 °%.
the case of anisotropical external potential—see Sec. VI
As a result, the filling of shells in clusters, which we obtain
from our calculations, resembles the rules of filling of shells

in Thomson atorh®”. In particular on increasing the number  \We used the Monte Carlo method with an accidental

of particles, the number of shells cannot decrease, contrary {ovement of shells as a whole and accidental movement of

Ref. 12. o o _ particles for studying different physical quantities as func-
As the confining potential is central symmetric, one cantions of temperature.

expect for shells to be proper polygons which are inscribed After ground-state configuration was achieved, the system

into circles. But in some cases in microclusters With'50  was heated up to the temperatux&, which was typically

the spontaneous breaking of the axial symmetry takes plac@om 1x 107 to 5x 103, and equilibrated at this tempera-

It is most strongly revealed in clusters with two particles intyre during 4< 10* Monte Carlo steps. Then physical quan-

the central shellin 2D clusters withN=10 for the configu- tities of the system were calculated by averaging over differ-

ration (2,8 and withN=24 for the configuration2,8,14].  ent (about 1x10°—1x10’) Monte Carlo configurations.

In last cases the central shell induces the form of an ellips@fter this the system was heated up again to the new tem-

for the second shell. _ _ perature (-2AT) using the described procedure, etc. We
An analytical calculation of radius and potential energy ofcajculated the following quantities:

the clusters consisting of one shell, or two shells with one
particle in the center, confirms the accuracy 10 °) of

IV. MELTING AND PHASE TRANSITIONS

2.5+

computer simulations. ’ .

Figure 2 shows that the average dista(igebetween par- 20 Vi o /
ticles increases monotonously with an increase in the number /
of particles(derivatived<r>/dN decreasing v§l). But the 151 /' 3 /
radiusR of the system is not a monotonous functionNof If 10* <ar’> 1/ 10°<sr"> /
we compare Fig. 2 and Table I, we can see thatr#uéus of 0 /Z/ 2 /
system the R increases sharply when a new shell appears // /
(when one added particle locates in the center when we > / " /
add one particle to the central shell. If the cluster becomes 00 . y e S ohesmesaszans A
more symmetric when we add only one particle then the ° S T 8 R

radius of the system cagven decreasa little, as we can see

from Fig. 2. Not taking into account the mentioned fluctua-  FG. 4. The radial square deviatigar2) as a function of tem-
tions of the radius Vg\l, the size of the SyStem increases perature;N:ll_ (a) Low-tempera’[ure region(l) Total radial
approximately proportionally ta/N. Lattice perioda (see square deviation(2) Radial square deviation of the external shell;
Sec. V) takes approximately the constant value fér-9 (3) radial square deviation of the internal shelb) High-
(see Fig. 2 The last two facts demonstrate the approximateemperature region.
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TABLE Il. Melting temperatures and potential barriers.
T, A Ui,

N=11. Orientational melting of the external shell relative 4.0<1077 25X 10° 2.32x10°°
to the internal one.

N=11. Total melting. 451078 222 3.71x 1072
N=237. Orientational melting of the external shell relative 8.0x10°4 1250 2.3x10°3
to the middle one.

N=37. Orientational melting of the middle shell relative 2.4x10°3 417 1.62x10°?
to the internal one.

N=37. Total melting. 8.610°3 125 6.61x 10 2
N=107. Orientational melting of the external shell 7.5x1073 133 3.0x10°?
relative to the neighbor one.

N=107. Total melting. 8.510°3 118 5.8<10°2

(1) The total potential energy ;.
(2) The total radial square deviation:

N 2 2
1o (=)
SR)=—) —— 3
(OR)=J2 — 3
and radial square deviations for each shell:
N 2 2
1 & Ar)—(r;
<5r2>:N_2 < |> 2< |> , (4)
Ri=1 a

where Ng is a number of particles in the sheb, is the
average distance between the particles, anhddenotes an
average over Monte Carlo configurations.

(3) The relative angular intrashell square deviations

1 NR (=i )D)—((di—¢i))?
2\_ 1 1
<6¢im>_ NRZl ¢§

41 /g/o/'/.
2] B IO
Las"
Odvsasesasa s s ot . ;
4 6 8 10 12
10°T

FIG. 5. The relative angular intrashell square deviatién?) as
a function of temperature=37. (1) Relative angular intrashell
square deviation of the external shél) Relative angular intrashell
square deviation of the middle shdlB) Relative angular intrashell
square deviation of the internal shell.

and the relative angular intershell square deviations

<5¢§xt> = N_RE

1

e (1= ¢i)2) = ((hi— i)

=1

wherei, andi, indicate the nearest particle from the same
shell and from the nearest-neighbor shell, respectively,
2¢9=2w/Ng is the angular interelectron distance for the
shell consisting ofNg particles. Only relative angular devia-

tions are considered to exclude a rotation of the system as a

whole.

The temperature dependence of the total radial square de-

viation is shown in Fig. &) for N=37 and in Fig. 4b) for

N=11. The dependences of radial deviations on the tempera-

ture for all shells jump approximately at the same tempera-
ture T=T,, (see Table I\

One can see from Figs. 5 an¢f that at the same tem-
perature the relative angular intrashell square deviations for
all shells also grow abruptly. It means, that'laft:Tc1 the
cluster looses its ordered structure. e T, the number of
particles in shells begin to change, shells begin to inter-
change by patrticles, and shell structure blurs OUtTAT

34

B>

FIG. 6. The relative angular intrashell square deviatién?) as
a function of temperaturél=11. (a) Low-temperature regior(b)
High-temperature regior{l) Relative angular intrashell square de-
viation of the external shell2) Relative angular intrashell square
deviation of the internal shell.
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FIG. 7. The relative angular intershell square deviaié®s) as "
a function of temperaturéy=37. (a) Angular intershell square de- -505.4 . ‘ . R
viation of the middle shell relative to the external shed). Angular 0 2 4 6 8 10
intershell square deviation of the internal shell relative to the middle 10° T
shell.

FIG. 9. Total potential energflJ ..y of a two-dimensional vor-

we cannot find any shell structure and the particles movde* Cluster as a function of temperatuhé:= 37.

chaotically. So we interpréf; as the melting temperature of . . .
the cluster ! clusters and for internal shells of large clusters with high

. . symmetry. For example, from Figs(a} and Ga) one can see
A:V\[/f L"”Q/dk t.Pe (\ézls?ri\bcl)é I;hsor?ggegr?:]ﬁr?lefc?thp:ﬁg;f ®fhat radial deviations and relative angular intrashell devia-
, e, - 47 Kele, ' P 9 tions grow abruptly for all shells of cluster with=11 at the
anIJ of tfhf system A:-lfg for q.f:_ kazlll)c- ForhN:3I7 the temperatureT, , and from Fig. a) one can see that radial
value ol dqes not differ signi |c§1nty rom the valu, deviation for the second shell in a cluster wMlix= 37 slightly
when the melting of the system with a large number of VOjumps at the temperatufe= TCz' Soorientational meltingat

tices takes place (=A,=130). But, e.g., foN=11 the theTzTc2 for corresponding pairs of shells takes plattes

value of A, =220> A, which is connected with a greater ) i )

role of the L arabolic confinement for small the circular- phenomena seems to be typical for microclusters with a shell

. paranolit . . - structure and for small number of particles

like structure wins in the competition with 2D triangle lat- . :

tice We also studied temperature dependences of radial and
i relative angular intrashell and intershell deviations for

One can see that the relative angulatershell square = : . )
- : . N=107 and found that they jump approximately simulta-
deviations as functions of temperatyjtenp at much lower N 3 .
; . neously afT. =8.5X10 . Only the dependence of relative
temperature The dependences of the relative angular inter- 1

shell square deviation from temperature for different pairs ofngular intershell deviation of the external shell relative to

shells break at different temperatufBs (see Figs. 7, 8, and the previous one jumps at lower temperature
. .2 . T..=7.5x10 3. So orientational melting foN=107 takes

Table Il). Thus atT=T,_ neighboring shellbeing “crystal- €2 . i

line” inside and almoszt keeping their shapetated rela- place only for the external pair of shells which are connected

tively with each otherintershell accidental rotatiofneorien- with the triangular structure of the internal region of macro-
; . . . . clusters.
tation) gives rise to the radial and intrashell angular

: : X The typical values of the parametdr, relating to the
displacements. The last fact is more noticeable for small . ; ) . ;
orientational melting for different pairs of shells are much

greater than that for the total melting for microclusters and

8_
have the same order for macroclustésse Table ).
s One can see from Fig. 9 that the dependence of the po-
5 tential energy vs temperature increases almost linearly and

smoothly (e.g., for clusteN=237). That is why we cannot
use this dependence for the search of the melting tempera-

ture.
4 /
* V. POTENTIAL BARRIERS FOR INTERSHELL
2 ./ ROTATION AND FOR JUMP OF A PARTICLE
/ FROM ONE SHELL TO ANOTHER
/ The rotation of shells is the lowest excitation in the case
0 +—o—p—s—p—af . . of small clusters. The simplest estimation for the barrier for
0 2 1;7 ; 6 8 intershell rotation may be obtaindthking into account the

essential “relaxation” of particles due to the rotation of
shellg using the following procedure. Let us initially fix all
particles of the cluster except particles in one shell and rotate

FIG. 8. The relative angular intershell square deviatién3) as
a function of temperaturéyl=11.
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& at fixedr. Then we shall repeat this procedure until the sys-
N tem will have the configuration of the local minimum of the
potential energy. So one can find the dependence of potential
-505.355 ————— 77— energy from coordinate of the particle(which changes its
00 o1 02 b 03 04 08 own shell to another onand so we find the potential barrier
of the jump of the particlé®
FIG. 10. Total potential energy , of a two-dimensional vor- We found the potential barriers for rotatidh, and for a

tex cluster as a function of the angle of shells rotatiir; 37. (1)  jump of a particle from one shell to anothgy by the meth-
The external shell rotates relative to the middle q@The middle  ods described above for the clustde=11 [in the global
shell rotates relatively to the internal one. minimum the cluster has the configurati@8), and in the
local minimum—the configuratio2,9)] and for the cluster
the last shell relative to other shells on the angle. Then  N=37 [in the global minimum the cluster has the configu-
let us fix only the anglap; of one particle from a rotating ration (1,6,12,18, in the local minimum—the configuration
shell and the angle, of one particle from the neighboring (1,7,12,17] and for the clusteN=107[in the global mini-
“resting” shell. After that we find the minimum of the po- mum the cluster has the configurati$9,15,21,27,32 and
tential energy for other (94— 2) variableg N variable radii  in the local minimum—the configuratiof8,9,15,22,27,3].
r and (N—2) variable anglesp] by the accidental search It is shown that orientational barriers are essentially less than
method or by Langevin dynamics. Both methods give verythe radial onegsee Table )l for N=11,37 and are slightly
close results. Let us remember the minimal potential energiess forN=107. This fact along with the jump of the relative
of the system at fixed; and ¢,. Then we shall repeat this angular intershell deviation is the argument for the possibil-
procedure, changingg= ¢;— ¢, until one shell will rotate ity of orientational melting in 2D microclusters of vortices.
relative to another at the angler2 So we calculate the total The ratios of potential barriers of rotation and jump are
potential energyJ as a function of a rotating angte of one  equal in order of value to the ratios of temperatures of ori-
shell and the potential barrier of rotation. entational and total melting for the same number of particles
The calculated dependence of the potential enéfgyn (U2/U1~TC2/T01). Besides, the ratio of potential barriers of
the angle of relative revolution of shells for clusters consistyotation for different pairs of shells is proportional to the
ing of two shells¢ may be approximated by the simple ratio of temperatures of orientational melting for these pairs

expression of shells(see Table I\. These facts lead to the conclusion
) that two-stage melting in shell microclusters has the origin in
U 27 the great difference between barriers of shell reorientation
U=—|1-co§ —| |, (7) . . .
2 ' and intershell one-particle exchandanalogous situation

, , ) ) ) takes place for Coulomb microclusters where orientational
whereU’ and ¢’ are the barrier height and the period, re- melting occurs, see Ref).6This gives one the possibility of

spectively. But for largeN this dependence is more compli- predicting the existence of two-stage melting in shell clus-
cated(see Fig. 1D ters.

For comparison one can find also the potential barrier for
a jump of a particle from one shell to another which is con-
nected with the radiaftotal) melting of shells. Let us use the
following procedure for its calculation. Let us initially fix all Now we shall investigate the influence of image potentials
particles of the cluster except one partic )X at the con- on the structure and on the melting of vortex clusters. Poten-
figuration which corresponds to the global minimum of thetial energies of the vortex system in a vessel with neutral
potential energy and let us move this partiblein the direc-  superfluid or in superconductor island with small radiRis
tion of its position at the local minimum of the potential (§<R<A\, , see Sec. )imay be found from the solution of
energy at a radial stefr. Then we fix a final distancefrom  a two-dimensional Laplace equation with zero boundary con-
this particle to the center of the system and find the minimunditions. So the interaction of vortices with the border reduces
of the total potential energy of the system as a function ofo the interaction of vortices with their own images and with
(2N—1) variables (N—1) variablesr andN variablesg] images of other vortices.
by the accidental search method or by Langevin dynamics. Itis easy to show that if a vortex with charges located
Let us remember the minimal potential energy of this systenat the point ¢, «), then its image charge q is located at the

VI. IMAGE POTENTIAL EFFECTS
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point (R?%/r,a) and in the center of a circular systefsee  global minimum instead of th&2,8,14.2) configuration.
Fig. 11. In this case the resulting potential obeyed theSuch a rearrangement can take place for sbimehen in the
Laplace equation and the boundary conditions. first approximationwith omitted image potentialpotential
The potential energy of the vortex cluster taking into ac-energies in the global and in the nearest local minimum be-
count all interactions including interactions of vortices with gin to differ a little, the larger number of particles in the

“own” and “neighboring” images has the form internal shells being in the local minimum rather than the
global one(e.g., forN=20). However energies in different
q? 2 E | uizujznL 1-2u;ujcoq ¢i— ¢)) minima coincide very seldom. So almost all configurations in
U ——— n .. . .
2| <~ ui2+u]-2—2uiujcos{¢i— ) the global minima do not change at fixétand varyingR

(see Table II).
Note, that the part of the potential energy corresponding

+aR?2Y, u?, (8) to Eq.(2) increases when image potentials are taken into
i account. This is connected with an increase of the average
distance between particles, which occurs due to the attraction
of particles to the boundary of a cluster, i.e., to own image
' charges. The role of image potentials decreases for large val-
ues of R. Near the cluster boundary repulsion of vortices
weakens due to the attraction of vortices to image charges of
) partners. Because of the attraction of vortices to the center of
_ _2 S in ufuf+1-2u;u;co8 i — ¢)) the cluster they tend to compress near the center.

T i< Ui2+ u12—2uiujcos(¢i—¢j) We mve;ﬂgated the meltlng of .cluster.s with 37 and 11
particles with the interaction modified by image forces. We
found that the character of melting does not change. One can
also observe two-stage melting connected with jumps of ra-
dial and angular deviations. But the temperatures of orienta-
Neglecting the image charges yields the potential energy ifional and total melting change a little in comparison with
the form (2). unmodified interaction. Really, e.g., in the case of clusters,

We calculated equilibrium structure of vortex clusters byconsisting of 37 particles, the temperatures of orientational
taking into account image forces fbi=1, .. .,50, and taking and total melting become closer, but in the case of 11 par-
the parameteR according to the following rule. ticles theymove awaysee Table IV. The matter is that in a

We introduced the effective radius of cluster cluster with 37 particles the configuration of the system in
Ro=Rextt (Rexi— Rmia)/2, WhereR,, is an average radius of the global minimum is (1,6,12,18), and that in the local one
the external shell anR,,4 is that of the neighboring shelin  is (1,7,12,17), i.e., in the local minimum in comparison with
a cluster consisting of one shel,y;=0). The procedure the global one more particles locate in the internal shell. That
described above is fulfilled without taking into account im-is why the difference in energy between the local and the
age charges. Then we calculated the average distance hglobal minima decreases if image charges are taken into ac-
tween neighboring particles in the cluster, i.e., lattice perioccount. Consequently the radial barrier for a jump of particles

R
+> In(l—ui2)+nlng
I

whereu;=r;/R.

After scaling transformations and omitting the term
which does not depend an, one has the following expres-
sion for the potential energy:

1 1
+ EZ In(1—u?)+R2Y, u?+ SninR. 9)
| I

a between these minima decreases. Therefore the ratio between
total and orientational melting temperatures decreases.
1 \/;Ro The opposite situation occurs in clusters with 11 particles.
a= \/_;: N (100 |n this case in the global minimum (3,8) in comparison with

the local one (2,9) more patrticles are in the internal shell.

wherep is the particle density in the cluster. The dependencé&onsequently the difference between the potential energies
a(N) is presented in Fig. 2. After that for simplicity we inlocal and global minima increases due to image potentials,
choose the parametd® [a new size of the cluster which and the ratio of total and orientational melting temperatures
enters the expression for the potential eng@yto be equal Increases.
to R=Ry+a. We have also calculated potential barriers relative to a

In Table Il we give radii of clusters, total potential ener- rotation of shells and to a jump of particles between shells
gies, and also parts of potential energies, calculated accorfior N=37 and 11(see Table IV. We found that image po-
ing to Eq.(2) (i.e., without image potentialsThe configu- tentials decrease the difference of potential barriers of rota-
rations in the global minima foR chosen as above are the tion of shells and that of the jump of a particle between
same as without taking into account image charges. All conshells in the case of cluster with 37 particles. However, the
figurations corresponding to the local and global minima ofcorresponding value increases for the cluster with 11 par-
the potential energy foN=1,...,50 arestudied, and as a ticles in accordance with the results of the melting simula-
result we revealed the following effect of the image poten-tions (compare Tables Il and IV
tials. The configurations with a larger number of vortices in
in'.:e.rnal shells become more Stab(ée.,. Corresponding VII. INFLUENCE OF CONFINEMENT ANISOTROPY
minima become deeperSo, for example, in a cluster with
45 particles rearrangement of shell structure due to image Above we considered the central-symmetrical confine-
potentials takes place: a local minimum with a larger num-mentU,=3;rZ. In this section we shall consider the aniso-
bers of vortices in the internal shel8,8,14,20 becomes a tropic conﬂnement
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TABLE lIl. Shell structure and potential energy of clusters of vortices with image potentials being taken
into account.

Number Cluster Shell Potential U [Eq. (2)]
of particles radius fillings energy o

2 1.690 2 2.06624810° 5.002660< 10 *
3 2.147 3 5.474308 10° 8.918136¢10°*
4 2.452 4 1.00590% 10 1.09045& 1¢°
5 2.689 5 1.581382 10 9.76405% 1071
6 3.166 1,5 2.46370810" 4.354170x 10°*
7 3.313 1,6 3.27886210" —7.51244% 1071
8 3.450 1,7 4.20667210" —2.514746<10°
9 3.579 1,8 5.24642410" —4.91451x 1¢°
10 3.461 2,8 6.01842010" —8.100226< 1¢°
11 3.586 3,8 7.21906510" —1.209331 10
12 3.690 3,9 8.48598010" —1.697854 10
13 3.820 49 9.92464710" —2.271610< 10
14 3.911 4,10 1.137704107 —2.942793% 10"
15 3.998 4,11 1.292338107 —3.706116< 10"
16 4.114 5,11 1.466207107 —4.57370% 10"
17 4.141 1,511 1.619906010 —5.54130% 10
18 4.265 1,6,11 1.818184107 —6.620691x 10
19 4.341 1,6,12 2.0082%110? —7.811655 10
20 4.411 1,6,13 2.205592107 —9.11019% 10
21 4521 1,7,13 2.4324K710 —1.052696< 107
22 4.586 1,7,14 2.647526107 —1.20568% 107
23 4.691 1,8,14 2.89533510° —1.37064K 107
24 4.736 2,8,14 3.11736710 —1.548200x 107
25 4.788 3,8,14 3.351895107 —1.73796 K 10?
26 4.886 3,9,14 3.627600107 —1.940568 107
27 4.944 3,9,15 3.884950107 —2.156120x 1¢?
28 4.994 49,15 4.14514610°7 —2.38429X 107
29 5.088 4,10,15 4.451034107 —2.62590X 10?
30 5.145 4,10,16 4.7357921 07 —2.88102% 107
31 5.199 4,10,17 5.0280K7L0? —3.14926 K 107
32 5.286 411,17 5.36019410° —3.431325% 107
33 5.335 511,17 5.665284107 —3.72747K 107
34 5.385 1,5,11,17 5.9802%4.07 —4.03729% 107
35 5.434 1,6,11,17 6.302288.07 —4.36159% 107
36 5.518 1,6,12,17 6.675049.07 —4.70033(x 107
37 5.567 1,6,12,18 7.015988.07 —5.053534 107
38 5.616 1,6,12,19 7.368547.07 —5.42092K 107
39 5.696 1,7,13,18 7.767083L0° —5.08315% 107
40 5.743 1,7,13,19 8.1330%9.0? —6.200425 107
41 5.788 1,7,13,20 8.5050%2.07 —6.61230X 107
42 5.864 1,7,14,20 8.933134107 —7.039416< 107
43 5.913 2,8,14,19 9.330197.07 —7.48621X 107
44 5.957 2,8,14,20 9.727682.07 —7.93959&< 107
45 6.003 3,8,14,20 1.0137x94.0° —8.41269% 107
46 6.051 3,9,14,20 1.0557%20° —8.90151X 10?
47 6.123 3,9,15,20 1.103188.0° —9.40612(x 1¢?
48 6.166 3,9,15,21 1.1465%8.0° —9.92655% 107
49 6.208 3,9,15,22 1.190482.0° —1.04625(x 10°

al
o

6.255 4,10,15,21 1.2358971.0° —1.101458 10°
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TABLE IV. Melting temperatures and potential barri€hsage potentials being taken into account

Te A Ui,
N=11. Orientational melting of the external shell relative 2.5x1077 40X 10° 1.9x10°6
to the internal one.
N=11. Total melting. 46103 250 4.1x10°?
N=37. Orientational melting of the external shell relative 8.0x 104 1250 1.68 102
to the middle one.
N=37. Orientational melting of the middle shell relative 2.6x1073 385 1.54< 1072
to the internal one.
N=37. Total melting. 7.%10°3 133 6.56<10 2

5 5 (see Table V. It is clear from Sec. V that if barriers of
Ue= 72 X2+ (2—9) 2 V2, (11)  relative shells rotation become larger then barriers of jumps
' ' of particles, than one-stage melting occurs. One can see from

where 0= y<2 (y=1 corresponds to the isotropic case Table VI that for a small anisotropy degree=0.89 the ratio

Below we discuss changes of the equilibrium structure of/2/U1 decreases, consequently; /T, —also decreases,
vortex clusters induced by confinement anisotrofy. this which does not agree with the prediction above. This effect
section we do not consider image potentiae calculate ~can be explained by the displacement of the potential energy
equilibrium configurations by the method described abovdor global minimum vsy from the configuration 1,6,12,18,
(see Sec. I)l. Now we use polygons inscribed into ellipses close to the triangular lattice fragment, to the configuration
(not in circles as initial configurations. 6,12,19, which does not look like a fragment of a triangular

We have studied configurations in local and globallattice. However at further increase of the anisotropy degree
minima of the potential energy fod=7,11,37 vortices with
a different anisotropy parameterin Eq. (11) and found the TABLE V. Shell structure and potential energy of clusters of
following effects. vortices with confinement anisotropy being taken into account.

(1) The more anisotropy degree, the mgtebal minima  HereLx means line which consists afvortices; 2*Ty means two
displace into configurations with a smaller number of par-tails, each of which consists gfvortices.
ticles in the internal shells and with a smaller number of

shells.Shells become “flat” and close to polygons, inscribed Number of - Anisotropy _Shell Potential
into ellipses. We must change the definition of the shellparticles parametey fillings energyU
given apnc;ve. NZ?W the ' largest ~ value  of , 1.00 16 _751244% 10"
g \/(2—|y)SI ¢i+tr1 COS ¢; tfr(])r par'ucles”of teach srllell must]c - 0.89 1.6 8.89130K 10
e arger an e  smalles value of 5 067 16 —13685K 10P
riV(2—y)sirf¢; + y cos ¢; for particles being external rela- _
i : i ' ; ) 7 0.50 1,6 4172614 10°
tive to this shell.(Because of confinement anisotropy the
. . 7 0.40 1,6 —6.02906 10°
maximal valuer; for particles of each shell may be much
larger than the minimal valug for particles belonging to the ! 0.33 7 ~ 7802550108
extgemal shel ug forp ging 7 0.18 17 ~ 1.41669% 10"
(2) At strong confinement anisotropy an internal shell cantt égg ig :i;g?igi 1§
have two tails, directed along the axiy (if y<1, i.e.,, : ’ ' 0
y<2— 1) or can simply convert into atraight line(in these 11 0.67 2,9 —1.566826¢ 101
cases the cluster usually consists of one or two shéllse 11 0.50 11 —2.08275x1
same rearrangement takes place for the cluster consisting ot 0.40 11 —2.56079% 10"
one shell. 11 0.33 11 —2.98330% 10"
(3) The more confinement anisotropy, the less number o¥l 0.18 L11 —4.54873% 10"
local minimathe cluster with a givemN has. At very strong 37 1.00 1,6,12,18  —5.053534 107
anisotropy a degree cluster has only one minimum—a7 0.89 6,12,19 ~5.095770< 107
straight line. 37 0.67 L4,13,20 —5.45636X 107
One can follow the effects described above in Table V. 37 0.50 15,22 —6.03787K 107
Let us consider changes of the vortex cluster melting wittB7 0.40 9-2*T2,24 —6.58000% 107
the increase of the confinement anisotropy degree. One ca7 0.33 L9,28 —7.06478x 107
predict that at sufficiently strong anisotropy of confinement3z 0.18 37 —8.84031K 107
the orientational melting must vanish and the melting be37 0.10 3B-2*T3 —1.073160x 10°
comes one-stage. For the confirmation of this hypothesis we7 0.06 17-2*T10  —1.23732%K 10°
study potential barriers of shells rotatibhy and of jumps of 37 0.03 L37 —1.468088< 10°

particlesU, for the example of a cluster with 37 vortices
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TABLE VI. Potential barriers of vortex cluster with=37 with  pairs of shells having different temperatures. At higher tem-
different confinement anisotropy. is anisotropy parameteld,, is  peratures the shell structure disappears. In this connection it
barrier of rotation of the external shell relative to the middle shell,would be very interesting to discover experimentally new
U,y is the barrier of rotation of the middle shell relative to the orientational melting of microclusters of vortices, for ex-
internal shellU, is barrier of the jump of a particle between shells. ample, by observation of vortices using a layer of magneto-
optical material, local magnetization of which is studied with
Y Uja Uop U, the help of a polarizational microscofie this case observa-
tion of reorientation of shells of vortices is possible in a real

-3 —2 -2
(1)'28 i'iz 18,4 ;'ZZXX 18,2 g'golxx 18,2 time) or by scanning tunneling microscope or with the help
' ' s ' _, ' L, of decorating. Results of this study can be also applied to the
0.67 11K 107 6.6710 3.04x 107 imperfect two-dimensional vortex crystal. There are effects
0.50 9.47% 102 — 4.64x10 2

of pinning of a vortex crystal at the boundaries of grains and
at the imperfections in the host material. These imperfections
may play the role of centers of confinement potential. Short-

21/0;Ost"’g'orgeb\%tr;]e:ﬁeberceodqgiOlﬁrggr thaén_rg:\t()jllealwonses,fg\r/h|cr}ange order near the imperfections can have the structure of
9 P olee ) clusters and can melt orientationally prior to the whole crys-

y=0.67 In a cluster with 37 vortices only the orlentatlone_ll tal melting. For larger microclusters orientational melting

melting of the external shell relative to the middle one is,,qq place only for external pairs of shells due to the trian-
possible and the orientational melting of the middle shell lar struct £l lust
relative to the internal one is impossible, and {6t 0.50 the guiar STUCIUTe Of farge clusters. ;
ientational iting is | ibl ’ : (3) The potential barriers of rotation of shells one relative
oru;z_n a;}onathm(i Ingltl_s |m|c:(0tShS| zeD' ' luster h | to another occur to be essentially smaller for small micro-
0 show that mefting ot the Vortex cluster has only ., siers than the barriers corresponding to jumps of a particle
one stage for the cases of strong confmemgnt amsotrqpy om one shell to another but for larger microclusters they
caIcuIated_ te_mperature dependen_ces OT radial and_relatlve e approximately equal. This fact relates to the two-stage
glulsr ldew_at'ons f]?:%,: 0,?0 [tgolnf|gurat|on(f15,2c21) tlr? ttrt]ﬁ melting of a small microcluster, particularly, to the smallness
global minimum of the potentia _ener];y\Ne ound thattne = ¢ o temperature of orientational melting in comparison
dependences of radial and relative angular intrashell and iNVith the total(“radial” ) melting of a small microcluster
tershell d‘?‘g'a“ons. jump at the same temper_ature (4) We calculated all configurations corresponding to the
Tc=4.5X10"" That is v_vhy we can say that our preQ|ct|o.ns local and global minima of the potential energy for
were true and the melting of a 2D vortex cluster with high,_ 1, ...,50. Configurations with more vortices in the inter-

aniliotr:op)llgzo.slo hastogeﬂ?t?gge. | isot d nal shells become more stable due to image potentials. We
should be also noted that Tor very 1arge anisotropy 0€yq g that aimost all configurations in the global minima do

gree of confinement the melting of a cluster does not OCCU, ot change at fixed and varyingR. We investigated the

pecause '.[he clusf[er becqmes a one—d|m.en5|onal system. Trﬁ%lting and potential barriers in microclusters by taking into
is why with the increasing of the confinement anisotropy o

. . count image potentials and found that the two-stage char-
degree two-stage melting changes to one-stage melting a ter of melting does not change, but differences between
then melting vanishes. X

melting temperatures change. These changes are connected
with variations of potential barriers of rotation of shells and
VIIl. CONCLUSIONS that of jumps of particles due to image potentials.

(2) It is shown that two-dimensional microclusters of par- (5) We investigated rearrangements of the cluster struc-

ticles, which are repelled according to a logarithmic law and!"® due_to different degre_e_s of c_onfmem_ent anisotropy. For
confined by a parabolic potential, have the shell structure aimall anisotropy global minima displace into configurations

low temperatures. The configurations of the system in thé(vith a smaller number of particles in the internal shells and
i with a smaller number of shells. At strong confinement an-

local and global minima of the potential energy are found., " the int | shell h wiails. directed al
Physical realizations of the considered model are: vortices i otropy the internal shell can have Mauls, directed along
e long axis or can even convert itself intstaaight line If

a small island of a superconductor or in a rotating vessel withh ) _ > ;
a superfluid, and also electrons in a semiconductor nanc}he clqster consists of one sh_ell, it becomee-_d|men5|onal_
structure surrounded by an environment with small dielectri@S anisotropy rises. Calqulatmn .Of the barrlelrs of relative
constant. rotation of shells and barriers fpr jumps of .partlcles b(—?tween

(2) The temperature dependences of the potential energ .’hells shoyv thaa_t some confl_nement anisotropy orienta-
the radial, and the relative angular intrashell and intershel ional melting vanisheand melting becomes one stage.
deviations from equilibrium positions for logarithmic clus-
ters are investigated in detail. As a result the melting of the
system is studied. It is shown that the melting has two stages: This work was partially supported by grants from the
at first (at lower temperaturgeordered shells start rotating INTAS Russian Foundation of Basic Research and “Physics
one relative to anothethe orientational meltingf different  of Solid Nanostructures.”
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