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Energy barriers, structure, and two-stage melting of microclusters of vortices

Yu. E. Lozovik* and E. A. Rakoch
Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region, 142092 Russia

~Received 7 August 1997!

The melting of two-dimensional microclusters of ‘‘particles’’ with logarithmic repulsive interaction and
confined by an external parabolic potential is considered. The model describes the behavior of vortices in a
small island or grain of a type-II superconductor with a thickness smaller than the coherent length, vortices in
a rotating vessel with superfluid, or electrons in a semiconductor nanostructure, surrounded by a media with a
dielectric constant essentially smaller than that for the nanostructure. Shell configurations corresponding to the
local and global minima of the potential energy for microclusters~‘‘Periodic Table’’ for a two-dimensional
Thomson atom! are calculated, image potentials being taken into account. Due to image forces, configurations
with larger numbers of vortices in internal shells become more stable. Rearrangements of the structure due to
the anisotropy of confinement are studied. By the analysis of the temperature dependence of structure, radial,
and angular rms displacements, the melting of clusters is analyzed. Two-stage melting of microclusters of
vortices takes place: at lower temperaturerotatory reorientation of neighboring ‘‘crystalline’’ shells (‘‘orien-
tational melting’’) arises;at much greater temperatures the radial shell order disappears. Two-stage melting is
connected with the fact that barrier of shell rotationU2 is less than the barrier of intershell particle jumpU1,
the ratio U2 /U1 drops essentially for small microclusters. For clusters with a larger number of particles,
orientational melting takes place only for external pairs of shells. This last fact is connected with approximate
equality of barriersU1'U2 for inner shells.@S0163-1829~98!00101-5#
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I. INTRODUCTION.

The magnetic fieldH at Hc2
.H.Hc1

penetrates into the

type-II superconductors as Abrikosov vortices, which m
form in a low-temperature region~in the absence of center
of pinning! an ideal triangular lattice.1 The melting of the
vortex lattice and formation of a liquid vortex phase with t
increase of temperature may take place. This effect was
served for high-Tc superconductors~see review, Ref. 2, and
references therein!.

A very interesting problem arises concerning the struct
of the mesoscopic system with asmallnumber of vortices in
a superconducting island or grain. Such a system may
considered as a two-dimensional analog~compare with Ref.
3! of a classical Thomson atom.4 The latter system obey
laws of two-dimensional~2D! electrostatics. This model ca
describe also vortices in a rotating vessel with superfluid
electrons in a semiconductor dot surrounded by a subst
with an essentially smaller dielectric constant than that in
dot. A small system of vortices must behave as amicroclus-
ter. It means that a shell structure of the microcluster
vortices may abruptly change when we add only one vor
~one ‘‘particle’’! to the system. This structural sensitivity
the numberN of particles takes place untilN achieves some
value Ncr , when inside the cluster appears a region with
structure similar to that of the infinite phase~i.e., triangular
lattice for 2D system!. In other words atN.Ncr the transi-
tion from microcluster to amacroclusterof vortices must
take place~at much greater numberN, for ‘‘microparticles,’’
the number of vortices in the ‘‘volume’’ phase becom
greater than the number of ‘‘surface’’ vortices!. The most
interesting fact is that the melting of the microcluster m
have interesting specific features in comparison with
570163-1829/98/57~2!/1214~12!/$15.00
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melting of the macroscopic phase.3,5–7

In the present paper we study changes of the struc
with temperature and the melting of microclusters of vortic
in axial-symmetric systems. Microclusters of vortices hav
shell structure. The analog of the Periodic Table for a tw
dimensional Thomson atom is found. It is shown thatthe
melting of a 2D microcluster of vortices takes place in tw
stagesfor small N, in the first stage intershell~‘‘orienta-
tional’’ ! melting takes place, and at an essentially high
temperature the shell structure disappears. It occurs that
stage melting for small microclusters is connected with
fact that barriers of intershell rotation are smaller than ba
ers of jumps of particles between shells. We found that
microclusters consisting of two shells the ratio of potent
barriers corresponding to the relative rotation of shells and
jumps of particles is much smaller than this value for clust
with more than two shells. That is why the ratio of orient
tional and total melting temperatures is much smaller
microclusters than for studied macroclusters. For inter
shells of macroclusters this ratio has the order of 1 and
orientational melting takes place only for external shells.

The paper is organized as follows. In Sec. II we descr
physical realizations of logarithmic clusters. Section III
devoted to configurations of vortex clusters in global a
local minima of the potential energy and to the study
competition between the shell structure and the triangu
lattice when the number of particles is growing. In Sec.
results of the calculation of the intershell and the total me
ing of the vortex clusters are presented. In Sec. V the po
tial barriers of the relative rotation of shells and barriers
jumps of particles from one shell to another are analyz
We take into account image potentials in Sec. VI. Sect
VII is devoted to the confinement anisotropy effects. Conc
sions are presented in Sec. VIII.
1214 © 1998 The American Physical Society
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57 1215ENERGY BARRIERS, STRUCTURE, AND TWO-STAGE . . .
II. PHYSICAL MODEL

Let us consider an island of the type-II superconducto
a normal magnetic field. If the thickness of the islandd is
smaller than the length of coherencej(T) of the supercon-
ductor, then from the point of view of the superconducti
properties the island at temperatureT may be considered a
the two-dimensionalone. The magnetic field penetrates in
the system as two-dimensional~2D! vortices. The potentia
of the interaction between two 2D vortices has the form~see
Ref. 8!

U~r !52q2ln
r

a
, a!r !l' ,

U~r !52q2
l'

r
1const, r @l' , ~1!

whereq is the vortex ‘‘charge,’’ which is proportional to th
superfluid density;r is a distance between the vortices;a is a
radius of the core of a vortex,a;j(T);l'5l2/d is the pen-
etration depth of the normal magnetic field in a 2D sup
conductor,l is the London penetration depth of the magne
field into a three-dimensional superconductor. For exam
one hasl'.4 mm for islands with the thicknessd.100 Å
and forl.2000 Å.

Suppose that the radius of the superconductive isl
obeys the inequalityj!R!l'. In this case one can conside
the vortices as point particles which repulse under the lo
rithmic law. Stabilization of the concentration of vortices
superconductors in external magnetic field is taken into
count in this model by the effective external confining p
tential Uext(r )5ar i

2 or equivalently by homogeneous com
pensating incompressible background cha
r(r )522a52rvortex. It occurs that image forces for vor
tices ~see below! as a rule do not changequalitatively the
basic properties of the system.

So in the first approximation we have a model of t
two-dimensional~2D! cluster ofN classical particles repel
ling from each other due to the logarithmic la
U(r i j )52q2ln(rij /a) ~i.e., obeyed to 2D electrostatics law!
and confined by the external potentialUext(r i)5ar i

2 .
After the scaling transformations r→a1/2/qr;

T→(kB /q2)T; U→(1/q2)U the potential energy of the sys
tem @measured from theCN

2 ln(q/a1/2a)# is:

U52(
i . j

ln
r i j

a
1(

i
r i

2 . ~2!

We show that properties of clusters change qualitativ
only at sufficiently great anisotropy ofUeff(r ).

The system of classical particles with the potential~2! is a
two-dimensional analog of the classical three-dimensio
~3D! Thomson atom.4,9 Such a model approximately de
scribes not only vortices in a superconductive island, but a
vortices in arotating vesselwith superfluid He~see Refs.
10–15!. It also describes a cluster of electrons or holes i
semiconductor nanostructure~2D dot!, surrounded by a me
dia with a dielectric constante essentially smaller than tha
(eqdot) of the 2D dot. Effective logarithmic interaction tak
place at interelectron distancesr such thatD!r !D/k; D is
n

-

e,

d
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a

the thickness of nanostructure,k5e/eqdot; in this case image
charges originated from polarization of media near the in
face by carriers in the dot form charged lines~with the same
charge sign of carriers in dot! and this leads to the effectiv
logarithmic interaction between carriers. Note that ima
forces in the last case amplify interelectron effective rep
sion in comparison with bare Coulomb interaction and t
effect is favored for electron crystallization.

III. GROUND-STATE CONFIGURATIONS

By analogy with three-dimensionalCoulomb system
withoutexternal confining potential, but with external abru
boundaries, all particles with the logarithmic potential of r
pulsion in 2D system must locate on the external~one-
dimensional! boundary of the system. However in both sy
tems equilibrium of chargesinsidethe system is possible if a
compensating incompressible charged background~or
equivalent confining potential!, discussed above, is presen

To study ground-state configurations of particles we u
two methods: an accidental search of the minimum of
potential energy of the system and also Langevin dynam
Both methods give very close results. It is convenient to
polygons inscribed into circles as initial configurations, i.
clusters consisting of shells close to circles~see below!. We
alternated accidental movement of shells as awhole~at each
step one shell chosen accidentally moved accidentally! and
accidental movement of particles~at each step one particl
chosen accidentally moved accidentally!. A new configura-
tion of particles was taken if after the next step the incre
of the potential energydU of the system was smaller the
zero. The maximal value of the step was decreased f
531023 to 131026 in the dimensionless units. The ste
was decreased approximately 0.8–0.95 times every3

steps.
We found local and global~deepest of local ones! minima

of the potential. It occurs that small logarithmic cluste
~analogously to Coulomb ones, see Refs. 3, 5–7! have shell
structure at low temperatures. Shell structure of microcl
ters is connected with the axial~or almost axial! symmetry of
confinement. As one knows, a 2D crystal has a triangu
lattice. The region inside the cluster with triangular structu
arises only for clusters with a large number of partic
(N.100) as for Coulomb clusters3,5,6. Below we present the
results of computer simulations of the structure of the lo
rithmic clusters.

Figure 1 reveals that the character of the dependenc
the mean total, internal, and external potential energies
particle vs the number of particles is not far from linear on
Figure 1 shows smooth decreasing of mean total and inte
potential energies vs number of particlesN and the smooth
increasing of external potential energy vs number of partic
N. The total potential energy per particleE/N decreases vsN
for N<50.

In Table I the numbers of particles in shells and cor
sponding mean total potential energies@measured from the
valueCN

2 ln(q/a1/2a), see above# are represented for the glo
bal minima. The subsequent filling of shells reminds one
the formation of the Periodic Table of elements~one can
compare the filling of shells in the 2D classical system w
3D Coulomb interaction3!. WhenN<5 all particles locate in
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1216 57YU. E. LOZOVIK AND E. A. RAKOCH
one shell with the center at the center of the symmetry~at
minimum of the confining potential! and the particles are in
vertexes of a proper polygon. The number of particles on
different shells increases until the filling of each of the

FIG. 1. Potential energy of two-dimensional vortex clusters
particle ^Upot&/N as a function of numberN of particles.~1! Indi-
cates the total potential energy^Upot&/N; ~2! Indicates potential
energy of all interactions between particle
^U int&/N5(1/2N)(^Ui j &; ~3! indicates the external potential energ
^Uext&/N5 1/N a(r i

2 .
e

reaches some maximal value. ForN,50, the central shell
does not exceed five particles, the second shell does no
ceed 11 particles@in the case of an ideal two-dimension
crystal the distribution of particles on coordinate circles c
responds to~1,6,12, . . . )#. When all the shells are filled up to
their allowed maximal numbers of particles, a new shell a
pears: first only one new particle appears in the center of
system, then if one more particle is added two particles m
the central shell, etc. One particle in the center appears
when we add one particle to the system which has the c
figuration ~5, . . . ), twoparticles appear near the center f
the initial configuration ~1,7, . . . ) or ~1,8, . . . ), three
particles—for the initial configuration~2,8, . . . ), four
particles—for ~3,9, . . . ), five particles—for ~4,11, . . . ).
Analogous effects take place for Coulomb clusters.3,6,7

From the previous discussion one can see that we used
term ‘‘shell’’ not only in the case when it has a form of a
equilateral polygon. In work Ref. 12, which is devoted to 2
clusters of vortices in a rotating vessel with superfluid h
lium, numbers of particles in the shells were determined w
the help of the following criterion: two particles belong
the same shell if distances from them to the center of
system differed not more than 2% forN,50 and 5% for
N.50. But this determination seems to be rather not con
nient, because there is no universality for any number
particles. We use another definition of a shell. Let us de

r

TABLE I. Shell structure and potential energy of clusters of vortices.

Number of Shell Potential Number of Shell Potential
particles fillings energy particles fillings energy

1 1 0.0000003100 26 3,9,14 21.9405693102

2 2 5.00000031021 27 3,9,15 22.1561373102

3 3 8.91802331021 28 4,9,15 22.3842943102

4 4 1.0904573100 29 4,10,15 22.6259123102

5 5 9.76405231021 30 4,10,16 22.8810283102

6 1,5 4.35416931021 31 4,10,17 23.1492683102

7 1,6 27.51244231021 32 4,11,17 23.4313293102

8 1,7 22.5147463100 33 5,11,17 23.7274733102

9 1,8 24.9145103100 34 1,5,11,17 24.0373083102

10 2,8 28.1004143100 35 1,6,11,17 24.3616063102

11 3,8 21.2093333101 36 1,6,12,17 24.7003313102

12 3,9 21.6978583101 37 1,6,12,18 25.0535343102

13 4,9 22.2716103101 38 1,6,12,19 25.4209293102

14 4,10 22.9427933101 39 1,7,13,18 25.8031553102

15 4,11 23.7061183101 40 1,7,13,19 26.2004303102

16 5,11 24.5737073101 41 1,7,13,20 26.6123103102

17 1,5,11 25.5413083101 42 1,7,14,20 27.0394163102

18 1,6,11 26.6206923101 43 2,8,14,19 27.4816663102

19 1,6,12 27.8116553101 44 2,8,14,20 27.9396063102

20 1,6,13 29.1101993101 45 2,8,14,21 28.4126193102

21 1,7,13 21.0526963102 46 3,9,14,20 28.9015143102

22 1,7,14 21.2056833102 47 3,9,15,20 29.4061223102

23 1,8,14 21.3706473102 48 3,9,15,21 29.9265543102

24 2,8,14 21.5482033102 49 3,9,15,22 21.0462503103

25 3,8,14 21.7379683102 50 4,10,15,21 21.1014603103

107 3,9,15,21,27,32 27.1557303103

108 3,9,15,21,27,33 27.3166943103 192 3,9,15,21,27,33,39,4522.8345683104
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57 1217ENERGY BARRIERS, STRUCTURE, AND TWO-STAGE . . .
mine a shell as a convex polygon with a maximal number
particles~inside of which the previous shell locates! which
satisfies the following rule: the maximal distance from a p
ticle of this shell to the center of the system has to be l
than the minimal distance from a particle of a neighbor
external shell to the center of the system~this rule changes in
the case of anisotropical external potential—see Sec. V!.
As a result, the filling of shells in clusters, which we obta
from our calculations, resembles the rules of filling of she
in Thomson atom3,6,7. In particular on increasing the numbe
of particles, the number of shells cannot decrease, contra
Ref. 12.

As the confining potential is central symmetric, one c
expect for shells to be proper polygons which are inscrib
into circles. But in some cases in microclusters withN,50
the spontaneous breaking of the axial symmetry takes pl
It is most strongly revealed in clusters with two particles
the central shell@in 2D clusters withN510 for the configu-
ration ~2,8! and with N524 for the configuration~2,8,14!#.
In last cases the central shell induces the form of an elli
for the second shell.

An analytical calculation of radius and potential energy
the clusters consisting of one shell, or two shells with o
particle in the center, confirms the accuracy (;1029) of
computer simulations.

Figure 2 shows that the average distance^r & between par-
ticles increases monotonously with an increase in the num
of particles~derivatived,r ./dN decreasing vsN). But the
radiusR of the system is not a monotonous function ofN. If
we compare Fig. 2 and Table I, we can see that theradius of
system the R increases sharply when a new shell app
~when one added particle locates in the center!, or when we
add one particle to the central shell. If the cluster becom
more symmetric when we add only one particle then
radius of the system caneven decreasea little, as we can see
from Fig. 2. Not taking into account the mentioned fluctu
tions of the radius vsN, the size of the system increas
approximately proportionally toAN. Lattice perioda ~see
Sec. VI! takes approximately the constant value forN.9
~see Fig. 2!. The last two facts demonstrate the approxim

FIG. 2. The average distance between the particlesr and the
radius of the systemR as a function ofN particles.~1! The average
distance between the particles;~2! The radius of the system;~3! the
lattice perioda.
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constancy of the density of particles.
It should be noted that the search of the global minim

configurations requires great large accuracy for largeN ~not
less than 1027 at N;50 and not less than 1028 at N;100),
because of the existence of a large number of local min
with energies very close to that of the global minimum. F
example, atN549 the difference in energy between the gl
bal minimum~3,9,15,22! and the local minimum~3,9,16,21!
is only 431024% and atN5107 the difference between th
global ~3,9,15,21,27,32! and the local minimum
~3,9,15,22,27,31! is only 531025%.

IV. MELTING AND PHASE TRANSITIONS

We used the Monte Carlo method with an acciden
movement of shells as a whole and accidental movemen
particles for studying different physical quantities as fun
tions of temperature.

After ground-state configuration was achieved, the sys
was heated up to the temperatureDT, which was typically
from 131027 to 531023, and equilibrated at this tempera
ture during 43104 Monte Carlo steps. Then physical qua
tities of the system were calculated by averaging over diff
ent ~about 13106213107) Monte Carlo configurations
After this the system was heated up again to the new t
perature (;2DT) using the described procedure, etc. W
calculated the following quantities:

FIG. 3. The radial square deviation^dr 2& as a function of tem-
perature;N537. ~a! Low-temperature region. Radial square dev
tion of the middle shell.~b! High-temperature region. Total radia
square deviation.

FIG. 4. The radial square deviation^dr 2& as a function of tem-
perature; N511. ~a! Low-temperature region.~1! Total radial
square deviation;~2! Radial square deviation of the external she
~3! radial square deviation of the internal shell.~b! High-
temperature region.



1218 57YU. E. LOZOVIK AND E. A. RAKOCH
TABLE II. Melting temperatures and potential barriers.

Tc L U1,2

N511. Orientational melting of the external shell relative
to the internal one.

4.031027 253105 2.3231026

N511. Total melting. 4.531023 222 3.7131022

N537. Orientational melting of the external shell relative
to the middle one.

8.031024 1250 2.3031023

N537. Orientational melting of the middle shell relative
to the internal one.

2.431023 417 1.6131022

N537. Total melting. 8.031023 125 6.6131022

N5107. Orientational melting of the external shell
relative to the neighbor one.

7.531023 133 3.031022

N5107. Total melting. 8.531023 118 5.831022
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~1! The total potential energyUpot.
~2! The total radial square deviation:

^dR2&5
1

N (
i 51

N
^r i

2&2^r i&
2

a2
~3!

and radial square deviations for each shell:

^dr 2&5
1

NR
(
i 51

NR ^r i
2&2^r i&

2

a2
, ~4!

where NR is a number of particles in the shell,a is the
average distance between the particles, and^ & denotes an
average over Monte Carlo configurations.

~3! The relative angular intrashell square deviations

^df int
2 &5

1

NR
(
i 51

NR ^~f i2f i 1
!2&2^~f i2f i 1

!&2

f0
2

~5!

FIG. 5. The relative angular intrashell square deviation^df1
2& as

a function of temperature;N537. ~1! Relative angular intrashel
square deviation of the external shell.~2! Relative angular intrashel
square deviation of the middle shell.~3! Relative angular intrashel
square deviation of the internal shell.
and the relative angular intershell square deviations

^dfext
2 &5

1

NR
(
i 51

NR ^~f i2f i 2
!2&2^~f i2f i 2

!&2

f0
2

, ~6!

where i 1 and i 2 indicate the nearest particle from the sam
shell and from the nearest-neighbor shell, respectiv
2f052p/NR is the angular interelectron distance for th
shell consisting ofNR particles. Only relative angular devia
tions are considered to exclude a rotation of the system
whole.

The temperature dependence of the total radial square
viation is shown in Fig. 3~b! for N537 and in Fig. 4~b! for
N511. The dependences of radial deviations on the temp
ture for all shells jump approximately at the same tempe
ture T5Tc1

~see Table II!.
One can see from Figs. 5 and 6~b!, that at the same tem

perature the relative angular intrashell square deviations
all shells also grow abruptly. It means, that atT5Tc1

the

cluster looses its ordered structure. AtT.Tc1
the number of

particles in shells begin to change, shells begin to int
change by particles, and shell structure blurs out. AtT@Tc1

FIG. 6. The relative angular intrashell square deviation^df1
2& as

a function of temperature;N511. ~a! Low-temperature region.~b!
High-temperature region.~1! Relative angular intrashell square d
viation of the external shell.~2! Relative angular intrashell squar
deviation of the internal shell.
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57 1219ENERGY BARRIERS, STRUCTURE, AND TWO-STAGE . . .
we cannot find any shell structure and the particles m
chaotically. So we interpretTc1

as the melting temperature o
the cluster.

We found the values of the dimensionless parame
L5Lc1

5q2/kBTc1
~see Table II!, corresponding to the melt

ing of the system (L51/T for q5kB51). For N537 the
value ofLc1

does not differ significantly from the valueLc ,
when the melting of the system with a large number of v
tices takes place (L5Lc.130). But, e.g., forN511 the
value of Lc1

5220.Lc , which is connected with a greate

role of the parabolic confinement for smallN, the circular-
like structure wins in the competition with 2D triangle la
tice.

One can see that the relative angularintershell square
deviations as functions of temperaturejump at much lower
temperature.The dependences of the relative angular int
shell square deviation from temperature for different pairs
shells break at different temperaturesTc2

~see Figs. 7, 8, and

Table II!. Thus atT5Tc2
neighboring shellsbeing ‘‘crystal-

line’’ inside and almost keeping their shaperotated rela-
tively with each other. Intershell accidental rotation~reorien-
tation! gives rise to the radial and intrashell angu
displacements. The last fact is more noticeable for sm

FIG. 7. The relative angular intershell square deviation^df2
2& as

a function of temperature;N537. ~a! Angular intershell square de
viation of the middle shell relative to the external shell.~b! Angular
intershell square deviation of the internal shell relative to the mid
shell.

FIG. 8. The relative angular intershell square deviation^df2
2& as

a function of temperature;N511.
e

r

-

-
f

ll

clusters and for internal shells of large clusters with hi
symmetry. For example, from Figs. 4~a! and 6~a! one can see
that radial deviations and relative angular intrashell dev
tions grow abruptly for all shells of cluster withN511 at the
temperatureTc2

, and from Fig. 3~a! one can see that radia

deviation for the second shell in a cluster withN537 slightly
jumps at the temperatureT5Tc2

. Soorientational meltingat

theT5Tc2
for corresponding pairs of shells takes place~this

phenomena seems to be typical for microclusters with a s
structure and for small number of particles!.

We also studied temperature dependences of radial
relative angular intrashell and intershell deviations
N5107 and found that they jump approximately simult
neously atTc1

58.531023. Only the dependence of relativ
angular intershell deviation of the external shell relative
the previous one jumps at lower temperatu
Tc2

57.531023. So orientational melting forN5107 takes
place only for the external pair of shells which are connec
with the triangular structure of the internal region of macr
clusters.

The typical values of the parameterL, relating to the
orientational melting for different pairs of shells are mu
greater than that for the total melting for microclusters a
have the same order for macroclusters~see Table II!.

One can see from Fig. 9 that the dependence of the
tential energy vs temperature increases almost linearly
smoothly ~e.g., for clusterN537). That is why we canno
use this dependence for the search of the melting temp
ture.

V. POTENTIAL BARRIERS FOR INTERSHELL
ROTATION AND FOR JUMP OF A PARTICLE

FROM ONE SHELL TO ANOTHER

The rotation of shells is the lowest excitation in the ca
of small clusters. The simplest estimation for the barrier
intershell rotation may be obtained~taking into account the
essential ‘‘relaxation’’ of particles due to the rotation
shells! using the following procedure. Let us initially fix al
particles of the cluster except particles in one shell and ro

e

FIG. 9. Total potential energŷUpot& of a two-dimensional vor-
tex cluster as a function of temperature;N537.
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1220 57YU. E. LOZOVIK AND E. A. RAKOCH
the last shell relative to other shells on the angledf. Then
let us fix only the anglef1 of one particle from a rotating
shell and the anglef2 of one particle from the neighborin
‘‘resting’’ shell. After that we find the minimum of the po
tential energy for other (2N22) variables@N variable radii
r and (N22) variable anglesf# by the accidental searc
method or by Langevin dynamics. Both methods give v
close results. Let us remember the minimal potential ene
of the system at fixedf1 andf2. Then we shall repeat thi
procedure, changingf5f12f2 until one shell will rotate
relative to another at the angle 2p. So we calculate the tota
potential energyU as a function of a rotating anglef of one
shell and the potential barrier of rotation.

The calculated dependence of the potential energyU on
the angle of relative revolution of shells for clusters cons
ing of two shellsf may be approximated by the simp
expression

U5
U8

2 F12cosS 2pf

f8
D G , ~7!

whereU8 and f8 are the barrier height and the period, r
spectively. But for largerN this dependence is more comp
cated~see Fig. 10!.

For comparison one can find also the potential barrier
a jump of a particle from one shell to another which is co
nected with the radial~total! melting of shells. Let us use th
following procedure for its calculation. Let us initially fix a
particles of the cluster except one particle (M ) at the con-
figuration which corresponds to the global minimum of t
potential energy and let us move this particleM in the direc-
tion of its position at the local minimum of the potenti
energy at a radial stepdr . Then we fix a final distancer from
this particle to the center of the system and find the minim
of the total potential energy of the system as a function
(2N21) variables@(N21) variablesr andN variablesf#
by the accidental search method or by Langevin dynam
Let us remember the minimal potential energy of this syst

FIG. 10. Total potential energyUpot of a two-dimensional vor-
tex cluster as a function of the angle of shells rotation;N537. ~1!
The external shell rotates relative to the middle one;~2! The middle
shell rotates relatively to the internal one.
y
y

-

r
-

f

s.

at fixedr . Then we shall repeat this procedure until the s
tem will have the configuration of the local minimum of th
potential energy. So one can find the dependence of pote
energy from coordinater of the particle~which changes its
own shell to another one! and so we find the potential barrie
of the jump of the particle.16

We found the potential barriers for rotationU2 and for a
jump of a particle from one shell to anotherU1 by the meth-
ods described above for the clusterN511 @in the global
minimum the cluster has the configuration~3,8!, and in the
local minimum—the configuration~2,9!# and for the cluster
N537 @in the global minimum the cluster has the config
ration ~1,6,12,18!, in the local minimum—the configuration
~1,7,12,17!# and for the clusterN5107 @in the global mini-
mum the cluster has the configuration~3,9,15,21,27,32!, and
in the local minimum—the configuration~3,9,15,22,27,31!#.
It is shown that orientational barriers are essentially less t
the radial ones~see Table II! for N511,37 and are slightly
less forN5107. This fact along with the jump of the relativ
angular intershell deviation is the argument for the possi
ity of orientational melting in 2D microclusters of vortices

The ratios of potential barriers of rotation and jump a
equal in order of value to the ratios of temperatures of o
entational and total melting for the same number of partic
(U2 /U1;Tc2

/Tc1
). Besides, the ratio of potential barriers

rotation for different pairs of shells is proportional to th
ratio of temperatures of orientational melting for these pa
of shells ~see Table II!. These facts lead to the conclusio
that two-stage melting in shell microclusters has the origin
the great difference between barriers of shell reorienta
and intershell one-particle exchange~analogous situation
takes place for Coulomb microclusters where orientatio
melting occurs, see Ref. 6!. This gives one the possibility o
predicting the existence of two-stage melting in shell clu
ters.

VI. IMAGE POTENTIAL EFFECTS

Now we shall investigate the influence of image potenti
on the structure and on the melting of vortex clusters. Pot
tial energies of the vortex system in a vessel with neu
superfluid or in superconductor island with small radiusR
(j,R,l' , see Sec. II! may be found from the solution o
a two-dimensional Laplace equation with zero boundary c
ditions. So the interaction of vortices with the border reduc
to the interaction of vortices with their own images and w
images of other vortices.

It is easy to show that if a vortex with chargeq is located
at the point (r ,a), then its image charge2q is located at the

FIG. 11. Image charges.
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point (R2/r ,a) and in the center of a circular system~see
Fig. 11!. In this case the resulting potential obeyed t
Laplace equation and the boundary conditions.

The potential energy of the vortex cluster taking into a
count all interactions including interactions of vortices w
‘‘own’’ and ‘‘neighboring’’ images has the form

U5
q2

2 F(
i

(
j , i

ln
ui

2uj
21122uiujcos~f i2f j !

ui
21uj

222uiujcos~f i2f j !

1(
i

ln~12ui
2!1nln

R

aG1aR2(
i

ui
2 , ~8!

whereui5r i /R.
After scaling transformations and omitting the term

which does not depend onr i , one has the following expres
sion for the potential energy:

U5
1

2(i
(
j , i

ln
ui

2uj
21122uiujcos~f i2f j !

ui
21uj

222uiujcos~f i2f j !

1
1

2(i
ln~12ui

2!1R2(
i

ui
21

1

2
nlnR. ~9!

Neglecting the image charges yields the potential energ
the form ~2!.

We calculated equilibrium structure of vortex clusters
taking into account image forces forN51, . . .,50, and taking
the parameterR according to the following rule.

We introduced the effective radius of clust
R05Rext1(Rext2Rmid)/2, whereRext is an average radius o
the external shell andRmid is that of the neighboring shell~in
a cluster consisting of one shellRmid50). The procedure
described above is fulfilled without taking into account im
age charges. Then we calculated the average distance
tween neighboring particles in the cluster, i.e., lattice per
a:

a5
1

Ar
5

ApR0

AN
, ~10!

wherer is the particle density in the cluster. The depende
a(N) is presented in Fig. 2. After that for simplicity w
choose the parameterR @a new size of the cluster whic
enters the expression for the potential energy~9!# to be equal
to R5R01a.

In Table III we give radii of clusters, total potential ene
gies, and also parts of potential energies, calculated acc
ing to Eq. ~2! ~i.e., without image potentials!. The configu-
rations in the global minima forR chosen as above are th
same as without taking into account image charges. All c
figurations corresponding to the local and global minima
the potential energy forN51, . . . ,50 arestudied, and as a
result we revealed the following effect of the image pote
tials. The configurations with a larger number of vortices
internal shells become more stable~i.e., corresponding
minima become deeper!. So, for example, in a cluster with
45 particles rearrangement of shell structure due to im
potentials takes place: a local minimum with a larger nu
bers of vortices in the internal shell~3,8,14,20! becomes a
-

,

in

be-
d

e

rd-

-
f

-

e
-

global minimum instead of the~2,8,14.21! configuration.
Such a rearrangement can take place for someN, when in the
first approximation~with omitted image potentials! potential
energies in the global and in the nearest local minimum
gin to differ a little, the larger number of particles in th
internal shells being in the local minimum rather than t
global one~e.g., forN520). However energies in differen
minima coincide very seldom. So almost all configurations
the global minima do not change at fixedN and varyingR
~see Table III!.

Note, that the part of the potential energy correspond
to Eq. ~2! increases when image potentials are taken i
account. This is connected with an increase of the aver
distance between particles, which occurs due to the attrac
of particles to the boundary of a cluster, i.e., to own ima
charges. The role of image potentials decreases for large
ues of R. Near the cluster boundary repulsion of vortic
weakens due to the attraction of vortices to image charge
partners. Because of the attraction of vortices to the cente
the cluster they tend to compress near the center.

We investigated the melting of clusters with 37 and
particles with the interaction modified by image forces. W
found that the character of melting does not change. One
also observe two-stage melting connected with jumps of
dial and angular deviations. But the temperatures of orien
tional and total melting change a little in comparison w
unmodified interaction. Really, e.g., in the case of cluste
consisting of 37 particles, the temperatures of orientatio
and total melting become closer, but in the case of 11 p
ticles theymove away~see Table IV!. The matter is that in a
cluster with 37 particles the configuration of the system
the global minimum is (1,6,12,18), and that in the local o
is (1,7,12,17), i.e., in the local minimum in comparison wi
the global one more particles locate in the internal shell. T
is why the difference in energy between the local and
global minima decreases if image charges are taken into
count. Consequently the radial barrier for a jump of partic
between these minima decreases. Therefore the ratio betw
total and orientational melting temperatures decreases.

The opposite situation occurs in clusters with 11 particl
In this case in the global minimum (3,8) in comparison w
the local one (2,9) more particles are in the internal sh
Consequently the difference between the potential ener
in local and global minima increases due to image potenti
and the ratio of total and orientational melting temperatu
increases.

We have also calculated potential barriers relative to
rotation of shells and to a jump of particles between sh
for N537 and 11~see Table IV!. We found that image po-
tentials decrease the difference of potential barriers of ro
tion of shells and that of the jump of a particle betwe
shells in the case of cluster with 37 particles. However,
corresponding value increases for the cluster with 11 p
ticles in accordance with the results of the melting simu
tions ~compare Tables II and IV!.

VII. INFLUENCE OF CONFINEMENT ANISOTROPY

Above we considered the central-symmetrical confin
mentUext5( i r i

2 . In this section we shall consider the anis
tropic confinement
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TABLE III. Shell structure and potential energy of clusters of vortices with image potentials being
into account.

Number Cluster Shell Potential U @Eq. ~2!#

of particles radius fillings energyUpot

2 1.690 2 2.0662433100 5.00266031021

3 2.147 3 5.4743053100 8.91813631021

4 2.452 4 1.0059013101 1.0904583100

5 2.689 5 1.5813823101 9.76405331021

6 3.166 1,5 2.4637083101 4.35417031021

7 3.313 1,6 3.2788623101 27.51244231021

8 3.450 1,7 4.2066713101 22.5147463100

9 3.579 1,8 5.2464243101 24.9145103100

10 3.461 2,8 6.0184203101 28.1002263100

11 3.586 3,8 7.2190653101 21.2093313101

12 3.690 3,9 8.4859803101 21.6978543101

13 3.820 4,9 9.9246473101 22.2716103101

14 3.911 4,10 1.1377013102 22.9427933101

15 3.998 4,11 1.2923383102 23.7061163101

16 4.114 5,11 1.4662073102 24.5737073101

17 4.141 1,5,11 1.6199003102 25.5413073101

18 4.265 1,6,11 1.8181843102 26.6206913101

19 4.341 1,6,12 2.0082313102 27.8116553101

20 4.411 1,6,13 2.2055923102 29.1101993101

21 4.521 1,7,13 2.4324773102 21.0526963102

22 4.586 1,7,14 2.6475263102 21.2056833102

23 4.691 1,8,14 2.8953353102 21.3706473102

24 4.736 2,8,14 3.1173673102 21.5482003102

25 4.788 3,8,14 3.3518953102 21.7379673102

26 4.886 3,9,14 3.6276003102 21.9405683102

27 4.944 3,9,15 3.8849593102 22.1561203102

28 4.994 4,9,15 4.1451463102 22.3842923102

29 5.088 4,10,15 4.4510343102 22.6259023102

30 5.145 4,10,16 4.7357923102 22.8810233102

31 5.199 4,10,17 5.0280773102 23.1492673102

32 5.286 4,11,17 5.3601943102 23.4313253102

33 5.335 5,11,17 5.6652843102 23.7274713102

34 5.385 1,5,11,17 5.9802143102 24.0372973102

35 5.434 1,6,11,17 6.3022683102 24.3615953102

36 5.518 1,6,12,17 6.6750493102 24.7003303102

37 5.567 1,6,12,18 7.0159653102 25.0535343102

38 5.616 1,6,12,19 7.3685473102 25.4209273102

39 5.696 1,7,13,18 7.7670033102 25.0831533102

40 5.743 1,7,13,19 8.1330193102 26.2004253102

41 5.788 1,7,13,20 8.5050123102 26.6123023102

42 5.864 1,7,14,20 8.9331343102 27.0394163102

43 5.913 2,8,14,19 9.3301973102 27.4862123102

44 5.957 2,8,14,20 9.7276023102 27.9395983102

45 6.003 3,8,14,20 1.0137193103 28.4126953102

46 6.051 3,9,14,20 1.0557123103 28.9015123102

47 6.123 3,9,15,20 1.1031983103 29.4061203102

48 6.166 3,9,15,21 1.1465483103 29.9265533102

49 6.208 3,9,15,22 1.1904023103 21.0462503103

50 6.255 4,10,15,21 1.2358973103 21.1014583103
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TABLE IV. Melting temperatures and potential barriers~image potentials being taken into account!.

Tc L U1,2

N511. Orientational melting of the external shell relative
to the internal one.

2.531027 403105 1.931026

N511. Total melting. 4.031023 250 4.131022

N537. Orientational melting of the external shell relative
to the middle one.

8.031024 1250 1.6831023

N537. Orientational melting of the middle shell relative
to the internal one.

2.631023 385 1.5431022

N537. Total melting. 7.531023 133 6.5631022
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where 0<g<2 (g51 corresponds to the isotropic case!.
Below we discuss changes of the equilibrium structure

vortex clusters induced by confinement anisotropy.~In this
section we do not consider image potentials.! We calculate
equilibrium configurations by the method described abo
~see Sec. III!. Now we use polygons inscribed into ellipse
~not in circles! as initial configurations.

We have studied configurations in local and glob
minima of the potential energy forN57,11,37 vortices with
a different anisotropy parameterg in Eq. ~11! and found the
following effects.

~1! The more anisotropy degree, the moreglobal minima
displace into configurations with a smaller number of pa
ticles in the internal shells and with a smaller number
shells.Shells become ‘‘flat’’ and close to polygons, inscribe
into ellipses. We must change the definition of the sh
given above. Now the largest value o
r iA(22g)sin2f i1g cos2f i for particles of each shell mus
be larger than the smallest value
r iA(22g)sin2f i1g cos2f i for particles being external rela
tive to this shell.~Because of confinement anisotropy t
maximal valuer i for particles of each shell may be muc
larger than the minimal valuer i for particles belonging to the
external shell.!

~2! At strong confinement anisotropy an internal shell c
have two tails, directed along the axisy ~if g,1, i.e.,
g,22g) or can simply convert into astraight line~in these
cases the cluster usually consists of one or two shells!. The
same rearrangement takes place for the cluster consistin
one shell.

~3! The more confinement anisotropy, the less numbe
local minimathe cluster with a givenN has. At very strong
anisotropy a degree cluster has only one minimum
straight line.

One can follow the effects described above in Table V
Let us consider changes of the vortex cluster melting w

the increase of the confinement anisotropy degree. One
predict that at sufficiently strong anisotropy of confineme
the orientational melting must vanish and the melting
comes one-stage. For the confirmation of this hypothesis
study potential barriers of shells rotationU2 and of jumps of
particlesU1 for the example of a cluster with 37 vortice
f

e

l

f

ll

n

of

of

a

h
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t
-
e

~see Table VI!. It is clear from Sec. V that if barriers o
relative shells rotation become larger then barriers of jum
of particles, than one-stage melting occurs. One can see
Table VI that for a small anisotropy degreeg50.89 the ratio
U2 /U1 decreases, consequentlyTc2

/Tc1
also decreases

which does not agree with the prediction above. This eff
can be explained by the displacement of the potential ene
for global minimum vsg from the configuration 1,6,12,18
close to the triangular lattice fragment, to the configurat
6,12,19, which does not look like a fragment of a triangu
lattice. However at further increase of the anisotropy deg

TABLE V. Shell structure and potential energy of clusters
vortices with confinement anisotropy being taken into accou
HereLx means line which consists ofx vortices; 2*Ty means two
tails, each of which consists ofy vortices.

Number of Anisotropy Shell Potential
particles parameterg fillings energyUpot

7 1.00 1,6 27.51244231021

7 0.89 1,6 28.89130131021

7 0.67 1,6 22.1368513100

7 0.50 1,6 24.1726143100

7 0.40 1,6 26.0290613100

7 0.33 l7 27.8025503100

7 0.18 l7 21.4166983101

11 1.00 3,8 21.7093333101

11 0.89 2,9 21.2517533101

11 0.67 2,9 21.5668263101

11 0.50 11 22.0827523101

11 0.40 11 22.5607933101

11 0.33 11 22.9833093101

11 0.18 L11 24.5487323101

37 1.00 1,6,12,18 25.0535343102

37 0.89 6,12,19 25.0957703102

37 0.67 L4,13,20 25.4563633102

37 0.50 15,22 26.0378773102

37 0.40 912*T2,24 26.5800073102

37 0.33 L9,28 27.0647803102

37 0.18 37 28.8403173102

37 0.10 3112*T3 21.0731603103

37 0.06 1712*T10 21.2373293103

37 0.03 L37 21.4680883103
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g rotation barriers become larger than radial ones, wh
does agree with the prediction above~see Table VI!. So for
g50.67 in a cluster with 37 vortices only the orientation
melting of the external shell relative to the middle one
possible and the orientational melting of the middle sh
relative to the internal one is impossible, and forg50.50 the
orientational melting is impossible.

To show that melting of the 2D vortex cluster has on
one stage for the cases of strong confinement anisotropy
calculated temperature dependences of radial and relative
gular deviations forg50.50 @configuration~15,22! in the
global minimum of the potential energy#. We found that the
dependences of radial and relative angular intrashell and
tershell deviations jump at the same temperat
Tc54.531023. That is why we can say that our prediction
were true and the melting of a 2D vortex cluster with hi
anisotropyg50.50 has one stage.

It should be also noted that for very large anisotropy
gree of confinement the melting of a cluster does not oc
because the cluster becomes a one-dimensional system.
is why with the increasing of the confinement anisotro
degree two-stage melting changes to one-stage melting
then melting vanishes.

VIII. CONCLUSIONS

~1! It is shown that two-dimensional microclusters of pa
ticles, which are repelled according to a logarithmic law a
confined by a parabolic potential, have the shell structur
low temperatures. The configurations of the system in
local and global minima of the potential energy are foun
Physical realizations of the considered model are: vortice
a small island of a superconductor or in a rotating vessel w
a superfluid, and also electrons in a semiconductor na
structure surrounded by an environment with small dielec
constant.

~2! The temperature dependences of the potential ene
the radial, and the relative angular intrashell and inters
deviations from equilibrium positions for logarithmic clu
ters are investigated in detail. As a result the melting of
system is studied. It is shown that the melting has two sta
at first ~at lower temperatures! ordered shells start rotatin
one relative to another,the orientational meltingof different

TABLE VI. Potential barriers of vortex cluster withN537 with
different confinement anisotropy.g is anisotropy parameter,U2a is
barrier of rotation of the external shell relative to the middle sh
U2b is the barrier of rotation of the middle shell relative to th
internal shell,U1 is barrier of the jump of a particle between shel

g U2a U2b U1

1.00 2.3131023 1.6031022 6.6031022

0.89 1.1431024 5.8431022 5.0131022

0.67 1.1731022 6.6731022 3.0431022

0.50 9.4731022 — 4.6431022
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pairs of shells having different temperatures. At higher te
peratures the shell structure disappears. In this connectio
would be very interesting to discover experimentally ne
orientational melting of microclusters of vortices, for e
ample, by observation of vortices using a layer of magne
optical material, local magnetization of which is studied w
the help of a polarizational microscope~in this case observa
tion of reorientation of shells of vortices is possible in a re
time! or by scanning tunneling microscope or with the he
of decorating. Results of this study can be also applied to
imperfect two-dimensional vortex crystal. There are effe
of pinning of a vortex crystal at the boundaries of grains a
at the imperfections in the host material. These imperfecti
may play the role of centers of confinement potential. Sho
range order near the imperfections can have the structur
clusters and can melt orientationally prior to the whole cr
tal melting. For larger microclusters orientational meltin
takes place only for external pairs of shells due to the tri
gular structure of large clusters.

~3! The potential barriers of rotation of shells one relati
to another occur to be essentially smaller for small mic
clusters than the barriers corresponding to jumps of a par
from one shell to another but for larger microclusters th
are approximately equal. This fact relates to the two-st
melting of a small microcluster, particularly, to the smallne
of the temperature of orientational melting in comparis
with the total~‘‘radial’’ ! melting of a small microcluster.

~4! We calculated all configurations corresponding to t
local and global minima of the potential energy f
N51, . . .,50. Configurations with more vortices in the inte
nal shells become more stable due to image potentials.
found that almost all configurations in the global minima
not change at fixedN and varyingR. We investigated the
melting and potential barriers in microclusters by taking in
account image potentials and found that the two-stage c
acter of melting does not change, but differences betw
melting temperatures change. These changes are conn
with variations of potential barriers of rotation of shells a
that of jumps of particles due to image potentials.

~5! We investigated rearrangements of the cluster str
ture due to different degrees of confinement anisotropy.
small anisotropy global minima displace into configuratio
with a smaller number of particles in the internal shells a
with a smaller number of shells. At strong confinement a
isotropy the internal shell can have twotails, directed along
the long axis or can even convert itself into astraight line. If
the cluster consists of one shell, it becomesone-dimensional
as anisotropy rises. Calculation of the barriers of relat
rotation of shells and barriers for jumps of particles betwe
shells show thatat some confinement anisotropy orient
tional melting vanishesand melting becomes one stage.
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