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Impurity bands in photonic insulators
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A chain of impurity cells in a photonic insulator introduces impurity modes of the electromagnetic field over
a narrow band of frequencies. We introduce a model of this band in the manner of a tight-binding description
of impurity bands in semiconductors, and use it to describe waveguiding along the chain, and, in particular,
across a corner of 90°. We also point out the possibility of using impurity bands in photonic insulators to study
wave propagation along an effectively one-dimensional disordered dlsih63-182€08)11919-1

[. INTRODUCTION evident from the above calculations that an exact treatment
of wave propagation along a chain of impurity cells is a
Photonic crystals are composite materials with a dielectridormidable theoretical problem. It is the purpose of the
function that is a periodic function of the position. The pe-present paper to introduce a simple model of impurity pho-
riod of this variation or, equivalently, the lattice constant oftonic bands, which demonstrates some of the essential phys-
the photonic crystal, will determine the frequency regionsics of the given problem. The model applies to photonic
where(absoluté gaps in the frequency spectrum of the elec-insulators which can be described by a real negative dielec-
tromagnetid EM) field will (or might occur. The theoretical tric function e(w). The obvious example are metals in the
study of photonic crystals has advanced considerably overequency region from the near infrared up to the plasmon
the last few years* and it is certain that if the appropriate frequency(in the visible or ultraviolet part of the EM spec-
structures can be constructed, these will exhibit absolutérum). In these systems there is a small dissipation of energy
gaps in the desired region of the EM spectrum. but in the noted region of frequency this is usually very small
On the experimental side, it is now possible to fabricateand can be neglected. So that, to a very good approximation,
photonic crystals with frequency gaps in the region up toe(w) is real and negative in the above frequency region.
4THz (Ref. 5 and further progress to higher frequencies isArtificial metals that appear to be well described by a real
expected. For a recent review of the subject the reader isegative dielectric function in the GHz band have recently
referred to Ref. 6. been proposed by Pendey al'? and our model may be ap-
One possible application of photonic crystals, suggesteglicable to these as well.
by YablonovitcH is the possibility of a resonant cavity, Our model, apart from its usefulness in the study of
which accepts an almost monochromatic mode of the EMvaveguiding as suggested above, can also serve as a model
field within it.2° Such arises when the material within a unit for the study of disorder in such systems: the impurity cells
cell of a photonic crystal exhibiting a gap is modified so as toalong the chain can vary randomly in some of their proper-
produce a state of the EM field solution of Maxwell equa- ties. It will be seen that the mathematical formalism which
tions) with a frequencyw within the above gap, which is describes the propagation of EM waves along a chain of
localized within the modified celiwe shall refer to it as the impurity cells is practically identical with that which de-
impurity cell) decaying exponentially outside that cell. The scribes the transport of an electron along a chain of atoms
idea is that an emitter, e.g., an excited atom, capable of emifind, therefore, known theoretical results for the electronic
t|ng photons in the frequency region of the gap, p|a_ced in thé)rOblem can be transferred to the phOtOﬂiC one. The advan-
above Cavity will Only emit the “right” frequency photonS, tage of the phOtoniC Situation, which has been pOinted out
permitted by the cavity. In practical applications one wouldalready by other authors,is that correlation effects, which
of course like to transfer the emitted photons from their pointcomplicate matters in the electronic situation, are absent in
of creation to an appropriate receiver placed, one assumes, € photonic one. In the present paper we shall introduce the
another point in the photonic crystal at some distance froninodel and discuss some of its properties, especially in rela-
the initial point. One way of doing this would be to have ation to waveguiding, but we shall reserve a more detailed
chain of impurity cells, each interacting with its neighbors analysis of the model in relation to disorder for a subsequent
along the chain, transferring the EM energy along the wayPaper. Waveguiding in photonic crystals has also been dis-
This creates automatically a band of frequendiee shall cussed from a different point of view by Mekeg al**
refer to it as an impurity bandwhich implies a widening of
the single frequency associated with the single impurity. A
complete description of a single impurity in a photonic crys-
tal is complicated but it is possibfe® Planar defects in an We consider an extendéihfinite) photonic insulator de-
otherwise perfect crystal have also been considtrédis  scribed by a dielectric functioa(w), which is a real nega-
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tive quantity. Moreover, we shall assume that over a limited
region of frequency of interest to us, we can replage) by E(r)= Z E

a constante<<0. Impurity cells in the above insulator are
nonabsorbing dielectric spheres of an appropriate dielectric H(O) E(+ N .
constantes. The wave field at frequenay in and around a J/(Kf)x/m(f)ﬂL a/m VXhy(kr)X,m(r)
single sphere of radiu$ is described by an electric-field

componenE(r)exp(—iwt), whereE(r) is given in the usual H<+)

manner as followgsee, e.g., Ref. 5Inside the spherer ( h/(Kr)X/m(r)
<S) we have

a/m VXJ/(Kr)X/m(r)

(2)

whereh is a spherical Hankel function. The first two terms
E) in the above equation describe an incident wave and the last
—a VX ] (k)X () two terms a scattered wave. The wave numkemn the
present case of negative dielectric constant is a purely imagi-

(1) nary numbex=iq=i w\/—e_eo,uo. Because of the spherical
symmetry of the scatterer we obtain

® /
En=2 2

+al Vi (k)X m(D) |,

wherexs= w+/ €esegtig, j » iS a spherical Bessel function, and E(+) T/aE(O)

X,m(r) is a vector spherical harmonic. We shall not write

down the explicit form for the corresponding magnetic-field aHH) —HgH 3)
/m / /m '

component, which can be obtained in the manner described
in Ref. 15. Outside the sphere the electric field is given by where

J AR = [r1/<f<r>]es joxr) - [rJ/(Ksr)]f
T (w)= (4

h/(Kr) [rJ/(Ksr)]e J k) S [rh/(Kr)]es
r=S

with a corresponding expression fof(w)."® In the case of  relevant quantities. We have thenat , a state of the EM
a single sphere in a homogeneous medium of negative dfield localized on the given sphere. The electric-field compo-

electric function there can be no incident WaveE(O) nent of this state is given by

=a=0 and, therefore, nontrivial states of the EM field,
of given /m, will exist at a frequency if 1 & -
g quency. E(r== E alJVxhy (igr)Xym(r) (8)
~ ~ q m=-
THw)== or T)(w)==. (5)
for r>S and
In what follows we shall assume that over a region of fre-
quency of interest to us, only the first of E@S) is satisfied i L _ .
and then only for’=1. Forw in the neighborhood ob, we E(n== Z VX j1(kel ) Xim(T) ©)
can then write KeMm=—1
for r<S, where q=q(w) and ks=«s(®). We note that,
-|-E(w)z L’vzi (6) asymptotically,h; (iqr)=iexp(=qr)/qr, as expected for a
wo-—o O localized state. The state described by E§sand(9) refers
to a sphere centered at the origin of the coordinates.
whereA is a real quantity, and Let us now consider a chain of spheres, and let us assume
that thenth sphere along the chain interacts with its nearest
TS, (0)=T(w)=0. (7)  neighbors along the chain. We then expect the resonance

of the single sphere to widen into a band of frequencies, and
The value of the constak in Eq. (6) is determined for a energy supplied at one part of the chain to spread throughout

given sphere as follows: near=w the denominator of - the chain. The wave outgoing from tin¢h sphere, centered
given by Eq.(4) has the formconstantw— ») and the nu- atRy,, will in this case be given by

merator can be approximated by its valuewatWe refer to .
the above approximation as the electric-dipole approxima- E(r="= a (MVXh(iar )X, (f 10
tion and we shall omit hereafter the supersciiptin the nl") q m:2—1 () (iarn)Xum(fn). (10
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wherer,=r—R, and we have dropped the superscript)(  (6) to describe the scattering by théh sphere A andw may
from the coefficiena(lfn) of Eq. (8). The wave(10) is deter- depend om in the general cagave obtain

mined through the first of Eq$3), by the wave incident on

the nth sphere, which is constituted by the waves outgoing Q(na’(n)=U(R,—Ry;p)a’(n+1)

from the (h—1)th and the §+ 1)th spheres, given by Eq. T

(10) with n replaced by K—1) and (+1), respectively. FU(Ry=Ry-p)ai(n=1), (12)
Expanding these waves about the center ofritte sphere  wherea'(n) is the transpose of a row vecta(n) of three
(the relevant formulas can be found in Ref) &88d using Eq. components;,(n), m=—1,0,1 andU,,,, is given by

|
4 . 127 . 24 .
\/ ?Yzo( R) \/ ?Y21( R) ?Yﬂ( R)
L~ 12 ~ 4 R 12 .
_hz(lzqR) \/?’T 51(R) —2\/?7TY20(R) - \/TWYu(R) . (12
28w . 127 . . 47 .
\/?YZQ(R) ~ V5 YR \/?YZ(’(R)

which is obviously a Hermitian matrix. We note that in Efj2) we have replaced bya, which is valid foro=w in the spirit
of our approximation. We note also that

U(R)=h{ (igR)

o O -
o — O
= O O

U(R)=U(—R) (13

because of the property of the spherical harmonigs;(R) = Yo(—R). If we assume all spheres to be in the plane with
a constant distand@ between the centers of successive sphadesimplifies as follows:

1 2 3
5(3 cog 9—1) —3% sin 9 cos® = st 9

2
1 00
_ hs (TR V2 - V2
U(R)=h{ (igR) 010 -2 3= sin ¥ cos & 1-3cog ¢ 3= sind cosy (14)
0 0 1
3 V2 1
= sir? o 3—sind cosd =(3cog ¥—1)
2 2 2
|
where} is the polar angle oR. and
IIl. INFINITE PERIODIC CHAIN OF SPHERES Wj=2hg (igR)—hj (igR)
In the case of an infinite linear chain of identical spheres, 1 1 \3exg—qR)
Q(n) andR,;;— R, in Eq.(11) are independent af. In this =—|lt=—+—=7 = , (17)
case, using Bloch's theorem, we can wri@n+1) qR (aR) qR
=exp(kR)a(n) and, therefore, Eq11) reduces to an eigen- respectively. Thus we obtain
value problem of a &3 matrix, as follows: y:
2 cogkR) U(R)a"=0a'. (15 Q,(k)=W, cos(kR) (18

If the chain lies in thexz plane and makes an angiewith ~ for u=a,B, with — m<kR<. The corresponding normal-
thez axis, the matrixJ(R), given by Eq.(14), can be readily ~ized eigenvector¢Bloch waves for a given ¢ can be ex-
diagonalized and we obtain from E¢L5) two frequency pressed in terms of the unit vectoag=1/y2(1,0~1), a,

bands: one nondegenerate baad @nd one doubly degen- =1/,2(1,0,1), an(ﬁsz(oyl,o) as follows:
erate band 8) of halfwidths

. o~ a"=a, cos¥+a, sin I,
W,=2h, (igR)+2h, (igR)

1 1 as sin 9—2a, cos &

6exp — qR)
—t+t—=
gqR (gR)?

qRrR

(16) ay)= (19)

a.
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N+M+2 N+M+1 N+1 N Eq. (18 for u=a,B. Accordingly, the field at theNth
. . ‘ ‘ R sphere (the sphere at the corneris given by a(N)
z =exp(—iN¢ga(0). We obtain the field at the N+1)th
3 sphere using Eg. (11). The result is: a(N+1)
(in) ‘ N-1 =(Wg/W,)exp(—i(N+1)pga(0). We then iterate the re-
) : currence relatior(11) along thez leg of the chain starting
- froma(N), a(N+1). This generates a sequence, the general
‘ 1 term of which can be expressed in terms of the type-Il
Chebyshev polynomiaf$,and in this way we obtain the field
‘ at the N+ M + 1)th sphere,
0
(tr)l : W, _ sinM ¢,
: aN+M+1)= Waexq I(N+1)¢g] Sin o,
xl _ sin(M—1)¢,
—exp(—iNgg)———F|a0).
FIG. 1. Waveguiding across a 90°-corner. Sin ¢,
(21

Each Bloch wave carries energy along the chain, which is

determined by the component of the Poynting vector along S field matg:;eg continuously a wave traveling to the right,
the axis of the chain, integrated over a plane normal to thi®f @mplitudea (|r}c§|dent wave and a wave traveling to the
axis. In the Appendix we show that this quantity averagedeft: of amplitudea (reflected wave At two neighboring
over a period #/w is, for a given mode(a given Bloch SPheres we havea(N+M+1)=a™(N+M+1)+a”(N
wave, given by +M+1) and a(N+M+2)=a™(N+M+2)+a"(N+M

+2). On the other hand, Bloch’s theorem implie§™ (N
1 00,k 1 +M+1)=aM(N+M+2)exp{¢,) and a”(N+M+1)
= 2aR e > lam,l® (200 =a"(N+M+2)exp(ig,). Therefore, the amplitudes of

qRwmo m=-1 the reflected and the incident waves can be readily obtained

froma(N+M+1) anda(N+ M +2), given by Eq(21) and,

Formulas analogous to Eqd.]) and(18) are well known as it turns out, their magnitudes are independeM ahdM,

in the study of electron energy bands in crystals by the tight- - (in) ® i
binding method. This allows us to transfer already known®> expected. After calculatirgj”™ anda” in the above man

results from the electronic to the photonic problem. It is evi-Ner W€ obtain the energy fluxes associated with the incident

q .and reflected waves using E@O). The transmitted flux is
ent, for example, that the transfer of energy along a chain ; . .
implies a certain widenina of the resonance frequency ass calculated in the same way from the given transmitted wave.
np i . . 9 - y ci:inally we obtain for the ratia({2) of the transmitted to the
ciated with a single impurity sphere, for otherwise the 9roUR . cigent flux, and for the ratio (1) of the reflected to the
velocity dw , /dk associated with this transfer vanishes. We. '

shall return to this analogy in relation to disorder in Sec. V_mmdent flux the following formulas:

AW, - 02 YW5—-0?
(VWi— 02+ (W5-02)?’

IV. TRANSMISSION OF LIGHT ACROSS A CORNER t(Q)=

It follows from Eq.(19) thata, is an eigenvector of(R),
for any direction ofR in thexz plane. Consequently, accord- (VW2 —Q2— \/Wé_QZ)Z
ing to Eqg. (11), a mode of this type is totally transmitted r(Q)= , = > ="
through a chain of identical spheres in theplane however (\/Wa_Q + \/WB_Q )
it bends(the direction ofR,,;— R, may change arbitrarily It can be readily verified that(Q))+r(Q)=1, as it must.
from sphere to sphere, provided that the distance betweeljhe same results are obtained for a mode (;f fpe

successive spheres remains constant. In Fig. 2 h h band@ (K o f
We now consider a chain of identical equidistant spheres, N Fig- 2 we show the two banda,(k), u=a,p for a

stretching from (0 <) to (0,0) along thez axis and then specific example corresponding tpR=3 calculated from
from (0,0) to ¢¢,0) along thex axis as shown in Fig. 1. Egs.(16), (17), and(18), and the corresponding transmission
Let us consider the transmission of a m(ﬁéeA Bloch coefficient for an incident wave of mocfg or ég calculated
wave of this type propagating along théeg of the chain has from the first of Eqs(22).
a frequency within the nondegenerate band. At the corner it A rather interesting interpretation of the above result can
is partly reflected and partly transmitted into téeg of the ~ be obtained by a simple model similar to that proposed by
chain, propagating in the positive direction as a Bloch Mekis et all* In the case, say, of aa; incident mode of
wave of the doubly degenerate band. To find the correspondrequencyw, the incident and reflected waves in théeg of
ing transmission coefficient we proceed as follows: we asthe chain are propagating Bloch waves with a group velocity,
sign a valuea(0)=(0,1,0) to a spheré&he zeroth sphejeof v,=dw,/dk, determined from the slope of the nondegener-
the x leg and, because we are considering a Bloch wave cfte bandr at . Similarly, the transmitted Bloch wave in the
the doubly degenerate band(l)=exp(-i¢ga(0), where x leg of the chain propagates with a group velocity,
¢,=kRis to be determined for the given frequency from =dwz/dk, determined from the slope of the doubly degen-

(22
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FIG. 2. (a) Nondegeneratéthin line) and doubly degenerate
(thick line) bands of an infinite chain of spheres wﬁR=3. (b)

Transmittance of aa, or a; mode across the corner of Fig. 1.

erate bandB at w. We can then view the transmission
through the corner as follows: tllg mode, propagating with
a wave vectok,(w)=n,(w)/c in a homogeneous effective
medium of refractive inder ,(w)=c/v (w), is partly trans-
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a(N")=c,(N")ag+cs(N")ay, (23)

where the coefficients,, satisfy the recurrence relation

cu(N"+1)=2cos¢, c,(N')—c,(N'—-1) (29

for w= a,B. This field matches continuously an incident and

a reflected wave, as we have previously described; the only
difference is that now the incident and reflected waves are
linear combinations of two Bloch waves, associated with the

modesa, andag, respectively. By using an appropriate linear
combination of transmitted waves we can obtain the desired
single incident mode and the corresponding transmission and
reflection coefficients for this mode as in the case of the 90°
bend.

V. THE CASE OF DISORDER

We shall consider only the case of a linear chain of
spheregstretching along the axis). In this case the matrix
defined by Eq.(14) is a diagonal matrix and one obtains
three decoupled equations in the place of 8q). The cor-

mitted into a different homogeneous effective medium of’€sponding solutions, denoted y=—1,0,1, have the form

refractive index ng(w)=cl/vg(w), with a wave vector
kg(w)=ng(w)/c, wherec is the velocity of light in vacuum.

aim; () =a,(n)dy,, and each satisfies an equation as fol-
lows:

The transmission and reflection coefficients for this simple

scattering problem are well known; we hate 4k kz/(k,
+kg)?, r=(k,—kpg)?(k,+kg)? Substituting into these
equations the effective wave vectoks ,k; as described
above, we recover Eq§22).

Q(na,(n)=xu(Ryi—Rqi1)a,(n+1)

In the case of a corner of arbitrary angle or, for that mat-

ter, of a number of such corners, we proceed in similar man-

ner. However, in the general case, starting with a sirgyle,

or 53, transmitted mode in the leg of the chain, the recur-
rence relation(11) finally leads to a field that mixes these
two modes. At a spherid’ in thez leg of the chain, the field

has in general the form of a linear combinatioré@fandég,

:<

and we have dropped the indexfor the sake of clarity in
the presentationT(n) is referred to as the transfer matrix.
For an ordered chain this is independenhafnd one obtains

a(n+n'—1)
ant |-

a(n) 0

a(n+1)

a(n’—1)

a(n’) (28

_Xil(Rn_RnJrl)X(Rn_Rnfl) X

+xu(Ri—Ry-pa,(n—-1), (25
where
.~ h3(igR)
x=1(R)=hg (iGR) ————,
xo(R)=hg (igR)+h; (igR). (26)

Equation(25) can be rewritten, for any given, as follows:

1
Y(Ry=Rn+1)Q(n)

a(n—1)
a(n)

a(n—1)
a(n)

), (27

) =T(n)

randomness on the basis of HQ7) has attracted a lot of
attention; it is well documente(see, e.g., Ref. )7and in
this respect we have nothing to add here. The point we wish
to make is the following. So far the treatment of one-
dimensional disorddibased on Eq(27)] has been advanced
as a model for electronic motion in effectively one-
dimensional systems. A disordered chain of impurity cells in

a(n+n’)
In a disordered chaiff(n) changes randomly from site to a photonic insulator provides a basis for an alternative veri-
site. This may occur either because we have spheres of rafieation of existing theoretical results in relation to wave
domly varying size and/or dielectric functigthis affectsA propagation in disordered media, which has the advantage
and @) or because the separation between the spherdbat electron-electron correlation, which complicates matters
changes randomly from site to site. Now, the treatment ofn the electronic problem, does not arise in the photonic one.
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VI. CONCLUSION Expanding the field$Al) in plane waves by the use of

In conclusion we may say that the formulas provided canEq' (A3), substituting the resulting expression in HA2)

. ) : nd using the orthogonality of the plane waves:
be used to study the propagation of light along a chain of 2 Y - 2 L .
impurity cells(a waveguidgin an extended photonic insula- Jdrexdi(p =) - ril=(2m)"5(p —pj), we obtain

tor described by a real negative dielectric function. Our for-

malism also provides a basis for the study of Anderson lo- _ Re a.(ma* (n+1
calization and related problems along a disordered chain of 20%wmg n% (M) )
such cells.
[P X X5 TX X ()
APPENDIX @+ p? P X A1m(P 1m (P )5z
We consider an infinite, linear and periodic chain of di- B 7> *
electric spheregalong thez axis) in a medium of negative xXexp(—Ryg“+pj) +aim(n+1)ai,(n)
dielectric constant. The electric and magnetic fields in the d2p” . )
region between theth and the 0+ 1)th spheres are given in X f S5 1P X Xam(P)IX XL (P},
the electric-dipole approximation by Q"+ pj
1
1 R 2, 2
E(N=75 2 [un(MVXh; (98 Xan(Fr) X eXp—RVA™+PY) |- (A4)
m=—1
+agm(N+ 1) VX (1qr s ) Xam(Frs )], In writing Eq. (A4) we have dropped all terms proportional

to a;m(n)a;y,,, (n) anda;,(n+1)aj,, (n+1) since the con-
e 1 A tribution of these terms td turns out to be of the form
HN=V— 2 [amm(nh; (iar)Xm(Ty) Re{lmaginary quantity and therefore vanishes identically.
Mo m=-1 Rewriting the vector products in E§A4) according to the
.. - identity ax (bx c)=Db(a-c)—c(a-b) and substituting in the
Fam(+ Dy (A ) Xim(Te )] (A resulting formula the explicit expressions #6;,(p™) in cy-
wherer,, r,., are site-centered coordinates,=(r|,z,). lindrical coordinates, we can finally perform tipg integra-
Between thenth and the (+1)th spheres we havez, tion analytically. In the case of propagating Bloch waves,
—-z,.1=R. We are interested in the component of the whena;,(n+1)=expikR)a;(n), we obtain
Poynting vector averaged over a periott/2 and integrated
over a plane normal to the chain at a point betweenntthe
and the 6+ 1)th spheres. We denote this quantity IoywWe

(|ag—1(M]?+|a(n)|?)

I =
4qwug

have
1 1 1 \3exg—qgR) .
|=§Ref d2r|[E(r) X H* (1)],. (A2) X 1+Q_R+(qR)2 aR sin (kR)
We shall employ the identity lagml?| = 1 )Gexp(—qR) sin (KR) |
. (=D d%p R @R? "
hJ (k)X /m(F) = cr) (A5)

X,/ m(P*)exp(ip
2m i pf 3 - ~
(A3) In the spirit of our approximatio(Sec. 1) we replaceg by q

. - ) i within the square brackets of EA5). By comparing with
with p==p+2y(«x“—p|°) where the plus and minus signs gqs (16), (17), and(18) we can then easily verify that, for
are used foz>0 andz< 0, respectively. We note that in the ; — i

S g | given u=a,B, Eq. (A5) gives

present case=iq is an imaginary number and that, there-

fore, cosd,+ and sind,- in an ordinary spherical harmonic 1 a0 (k) 1
~ 4 _ M

Y, m(p*) are to be replaced byt (q+pf)/q and I“_4qu,U«o oK mzl |a1m; /%, (A6)
—ipy/q, respectively. Other than that, ,(p™) are given by
standard formulagsee, e.g., Ref. 15 where|a . ,|=|aim: ,(n)| is independent of.
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