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Impurity bands in photonic insulators
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A chain of impurity cells in a photonic insulator introduces impurity modes of the electromagnetic field over
a narrow band of frequencies. We introduce a model of this band in the manner of a tight-binding description
of impurity bands in semiconductors, and use it to describe waveguiding along the chain, and, in particular,
across a corner of 90°. We also point out the possibility of using impurity bands in photonic insulators to study
wave propagation along an effectively one-dimensional disordered chain.@S0163-1829~98!11919-7#
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I. INTRODUCTION

Photonic crystals are composite materials with a dielec
function that is a periodic function of the position. The p
riod of this variation or, equivalently, the lattice constant
the photonic crystal, will determine the frequency regio
where~absolute! gaps in the frequency spectrum of the ele
tromagnetic~EM! field will ~or might! occur. The theoretica
study of photonic crystals has advanced considerably o
the last few years1–4 and it is certain that if the appropriat
structures can be constructed, these will exhibit abso
gaps in the desired region of the EM spectrum.

On the experimental side, it is now possible to fabric
photonic crystals with frequency gaps in the region up
4THz ~Ref. 5! and further progress to higher frequencies
expected. For a recent review of the subject the reade
referred to Ref. 6.

One possible application of photonic crystals, sugges
by Yablonovitch7 is the possibility of a resonant cavity
which accepts an almost monochromatic mode of the
field within it.8,9 Such arises when the material within a un
cell of a photonic crystal exhibiting a gap is modified so as
produce a state of the EM field~a solution of Maxwell equa-
tions! with a frequencyṽ within the above gap, which is
localized within the modified cell~we shall refer to it as the
impurity cell! decaying exponentially outside that cell. Th
idea is that an emitter, e.g., an excited atom, capable of e
ting photons in the frequency region of the gap, placed in
above cavity will only emit the ‘‘right’’ frequency photons
permitted by the cavity. In practical applications one wou
of course like to transfer the emitted photons from their po
of creation to an appropriate receiver placed, one assume
another point in the photonic crystal at some distance fr
the initial point. One way of doing this would be to have
chain of impurity cells, each interacting with its neighbo
along the chain, transferring the EM energy along the w
This creates automatically a band of frequencies~we shall
refer to it as an impurity band!, which implies a widening of
the single frequency associated with the single impurity
complete description of a single impurity in a photonic cry
tal is complicated but it is possible.8,10 Planar defects in an
otherwise perfect crystal have also been considered.11 It is
570163-1829/98/57~19!/12127~7!/$15.00
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evident from the above calculations that an exact treatm
of wave propagation along a chain of impurity cells is
formidable theoretical problem. It is the purpose of t
present paper to introduce a simple model of impurity ph
tonic bands, which demonstrates some of the essential p
ics of the given problem. The model applies to photon
insulators which can be described by a real negative die
tric function e(v). The obvious example are metals in th
frequency region from the near infrared up to the plasm
frequency~in the visible or ultraviolet part of the EM spec
trum!. In these systems there is a small dissipation of ene
but in the noted region of frequency this is usually very sm
and can be neglected. So that, to a very good approxima
e(v) is real and negative in the above frequency regi
Artificial metals that appear to be well described by a r
negative dielectric function in the GHz band have recen
been proposed by Pendryet al.12 and our model may be ap
plicable to these as well.

Our model, apart from its usefulness in the study
waveguiding as suggested above, can also serve as a m
for the study of disorder in such systems: the impurity ce
along the chain can vary randomly in some of their prop
ties. It will be seen that the mathematical formalism whi
describes the propagation of EM waves along a chain
impurity cells is practically identical with that which de
scribes the transport of an electron along a chain of ato
and, therefore, known theoretical results for the electro
problem can be transferred to the photonic one. The adv
tage of the photonic situation, which has been pointed
already by other authors,13 is that correlation effects, which
complicate matters in the electronic situation, are absen
the photonic one. In the present paper we shall introduce
model and discuss some of its properties, especially in r
tion to waveguiding, but we shall reserve a more detai
analysis of the model in relation to disorder for a subsequ
paper. Waveguiding in photonic crystals has also been
cussed from a different point of view by Mekiset al.14

II. MODEL

We consider an extended~infinite! photonic insulator de-
scribed by a dielectric functione(v), which is a real nega-
12 127 © 1998 The American Physical Society
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12 128 57N. STEFANOU AND A. MODINOS
tive quantity. Moreover, we shall assume that over a limi
region of frequency of interest to us, we can replacee(v) by
a constantē,0. Impurity cells in the above insulator ar
nonabsorbing dielectric spheres of an appropriate dielec
constantes . The wave field at frequencyv in and around a
single sphere of radiusS is described by an electric-fiel
componentE(r)exp(2ivt), whereE(r) is given in the usual
manner as follows~see, e.g., Ref. 15!. Inside the sphere (r
,S) we have

E~r!5 (
l 51

`

(
m52l

l S i

ks
al m

E~ I !¹3 j l ~ksr !Xl m~ r̂!

1al m
H~ I ! j l ~ksr !Xl m~ r̂! D , ~1!

whereks5vAese0m0, j l is a spherical Bessel function, an
Xl m( r̂) is a vector spherical harmonic. We shall not wr
down the explicit form for the corresponding magnetic-fie
component, which can be obtained in the manner descr
in Ref. 15. Outside the sphere the electric field is given b
d

d,

re

a

d

ic

ed

E~r!5 (
l 51

`

(
m52l

l S i

k
al m

E~0!¹3 j l ~kr !Xl m~ r̂!

1al m
H~0! j l ~kr !Xl m~ r̂!1

i

k
al m

E~1 !¹3hl
1~kr !Xl m~ r̂!

1al m
H~1 !hl

1~kr !Xl m~ r̂! D , ~2!

wherehl
1 is a spherical Hankel function. The first two term

in the above equation describe an incident wave and the
two terms a scattered wave. The wave numberk in the
present case of negative dielectric constant is a purely im

nary numberk5 iq5 ivA2 ē e0m0. Because of the spherica
symmetry of the scatterer we obtain

al m
E~1 !5Tl

Eal m
E~0! ,

al m
H~1 !5Tl

Hal m
H~0! , ~3!

where
Tl
E~v!5F j l ~ksr !

]

]r
@r j l ~kr !#es2 j l ~kr !

]

]r
@r j l ~ksr !# ē

hl
1~kr !

]

]r
@r j l ~ksr !# ē2 j l ~ksr !

]

]r
@rh l

1~kr !#es

G
r 5S

~4!
o-

ume
est
e

and
out
with a corresponding expression forTl
H(v).15 In the case of

a single sphere in a homogeneous medium of negative
electric function there can be no incident wave:al m

E(0)

5al m
H(0)50 and, therefore, nontrivial states of the EM fiel

of given l m, will exist at a frequencyṽ if

Tl
E~ṽ !5` or Tl

H~ṽ !5`. ~5!

In what follows we shall assume that over a region of f
quency of interest to us, only the first of Eqs.~5! is satisfied
and then only forl 51. Forv in the neighborhood ofṽ, we
can then write

T1
E~v!.

A

v2ṽ
[

1

V
, ~6!

whereA is a real quantity, and

Tl 5” 1
E ~v!5Tl

H~v!50. ~7!

The value of the constantA in Eq. ~6! is determined for a
given sphere as follows: nearv5ṽ the denominator ofT1

E

given by Eq.~4! has the formconstant(v2ṽ) and the nu-
merator can be approximated by its value atṽ. We refer to
the above approximation as the electric-dipole approxim
tion and we shall omit hereafter the superscriptE in the
i-

-

-

relevant quantities. We have then, atv5ṽ, a state of the EM
field localized on the given sphere. The electric-field comp
nent of this state is given by

E~r!5
1

q̃
(

m521

1

a1m
~1 !¹3h1

1~ i q̃ r !X1m~ r̂! ~8!

for r .S and

E~r!5
i

k̃ s
(

m521

1

a1m
~ I ! ¹3 j 1~ k̃ sr !X1m~ r̂! ~9!

for r ,S, where q̃5q(ṽ) and k̃ s5ks(ṽ). We note that,
asymptotically,h1

1( i q̃ r ). iexp(2q̃r)/q̃r, as expected for a
localized state. The state described by Eqs.~8! and~9! refers
to a sphere centered at the origin of the coordinates.

Let us now consider a chain of spheres, and let us ass
that thenth sphere along the chain interacts with its near
neighbors along the chain. We then expect the resonancṽ
of the single sphere to widen into a band of frequencies,
energy supplied at one part of the chain to spread through
the chain. The wave outgoing from thenth sphere, centered
at Rn , will in this case be given by

En~r!5
1

q (
m521

1

a1m~n!¹3h1
1~ iqr n!X1m~ r̂n!, ~10!
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wherern[r2Rn and we have dropped the superscript (1)
from the coefficienta1m

(1) of Eq. ~8!. The wave~10! is deter-
mined through the first of Eqs.~3!, by the wave incident on
the nth sphere, which is constituted by the waves outgo
from the (n21)th and the (n11)th spheres, given by Eq
~10! with n replaced by (n21) and (n11), respectively.
Expanding these waves about the center of thenth sphere
~the relevant formulas can be found in Ref. 15! and using Eq.
es

-

-

g

~6! to describe the scattering by thenth sphere (A andṽ may
depend onn in the general case! we obtain

V~n!aT~n!5U~Rn2Rn11!aT~n11!

1U~Rn2Rn21!aT~n21!, ~11!

whereaT(n) is the transpose of a row vectora(n) of three
componentsa1m(n), m521,0,1 andUmm8 is given by
U~R!5h0
1~ i q̃ R!S 1 0 0

0 1 0

0 0 1
D 2

h2
1~ i q̃ R!

2 S A4p

5
Y20~R̂! A12p

5
Y21~R̂! A24p

5
Y22~R̂!

A12p

5
Y21* ~R̂! 22A4p

5
Y20~R̂! 2A12p

5
Y21~R̂!

A24p

5
Y22* ~R̂! 2A12p

5
Y21* ~R̂! A4p

5
Y20~R̂!

D , ~12!

which is obviously a Hermitian matrix. We note that in Eq.~12! we have replacedq by q̃ , which is valid forv.ṽ in the spirit
of our approximation. We note also that

U~R!5U~2R! ~13!

because of the property of the spherical harmonics:Y2m(R̂)5Y2m(2R̂). If we assume all spheres to be in thexz plane with
a constant distanceR between the centers of successive spheres,U simplifies as follows:

U~R!5h0
1~ i q̃ R!S 1 0 0

0 1 0

0 0 1
D 2

h2
1~ i q̃ R!

2 S 1

2
~3 cos2 q21! 23

A2

2
sin q cosq

3

2
sin2 q

23
A2

2
sin q cosq 123 cos2 q 3

A2

2
sinq cosq

3

2
sin2 q 3

A2

2
sin q cosq

1

2
~3 cos2 q21!

D ~14!
-

whereq is the polar angle ofR.

III. INFINITE PERIODIC CHAIN OF SPHERES

In the case of an infinite linear chain of identical spher
V(n) andRn112Rn in Eq. ~11! are independent ofn. In this
case, using Bloch’s theorem, we can writea(n11)
5exp(ikR)a(n) and, therefore, Eq.~11! reduces to an eigen
value problem of a 333 matrix, as follows:

2 cos~kR! U~R!aT5VaT. ~15!

If the chain lies in thexz plane and makes an angleq with
thez axis, the matrixU(R), given by Eq.~14!, can be readily
diagonalized and we obtain from Eq.~15! two frequency
bands: one nondegenerate band (a) and one doubly degen
erate band (b) of halfwidths

Wa52h0
1~ i q̃ R!12h2

1~ i q̃ R!

5S 1

q̃R
1

1

~ q̃R!2D 6exp~2 q̃R!

q̃R
~16!
,

and

Wb52h0
1~ i q̃ R!2h2

1~ i q̃ R!

52S 11
1

q̃R
1

1

~ q̃R!2D 3exp~2 q̃R!

q̃R
, ~17!

respectively. Thus we obtain

Vm~k!5Wm cos~kR! ~18!

for m5a,b, with 2p,kR,p. The corresponding normal
ized eigenvectors~Bloch waves! for a givenq can be ex-
pressed in terms of the unit vectorsâ151/A2(1,0,21), â2

51/A2(1,0,1), andâ35(0,1,0) as follows:

âa
~q!5â3 cosq1â1 sin q,

âb
~q!5H â3 sin q2â1 cosq

â2 .
~19!
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12 130 57N. STEFANOU AND A. MODINOS
Each Bloch wave carries energy along the chain, which
determined by the component of the Poynting vector alo
the axis of the chain, integrated over a plane normal to
axis. In the Appendix we show that this quantity averag
over a period 2p/v is, for a given mode~a given Bloch
wave!, given by

I m5
1

4qRvm0

]Vm~k!

]k (
m521

1

ua1m;mu2. ~20!

Formulas analogous to Eqs.~11! and~18! are well known
in the study of electron energy bands in crystals by the tig
binding method. This allows us to transfer already kno
results from the electronic to the photonic problem. It is e
dent, for example, that the transfer of energy along a ch
implies a certain widening of the resonance frequency a
ciated with a single impurity sphere, for otherwise the gro
velocity dvm /dk associated with this transfer vanishes. W
shall return to this analogy in relation to disorder in Sec.

IV. TRANSMISSION OF LIGHT ACROSS A CORNER

It follows from Eq.~19! that â2 is an eigenvector ofU(R),
for any direction ofR in thexz plane. Consequently, accord
ing to Eq. ~11!, a mode of this type is totally transmitte
through a chain of identical spheres in thexz plane however
it bends~the direction ofRn112Rn may change arbitrarily!
from sphere to sphere, provided that the distance betw
successive spheres remains constant.

We now consider a chain of identical equidistant sphe
stretching from (0,2`) to (0,0) along thez axis and then
from (0,0) to (̀ ,0) along thex axis as shown in Fig. 1.

Let us consider the transmission of a modeâ3. A Bloch
wave of this type propagating along thez leg of the chain has
a frequency within the nondegenerate band. At the corne
is partly reflected and partly transmitted into thex leg of the
chain, propagating in the positivex direction as a Bloch
wave of the doubly degenerate band. To find the correspo
ing transmission coefficient we proceed as follows: we
sign a valuea(0)5(0,1,0) to a sphere~the zeroth sphere! of
the x leg and, because we are considering a Bloch wave
the doubly degenerate band,a(1)5exp(2ifb)a(0), where
fm5kR is to be determined for the given frequency fro

FIG. 1. Waveguiding across a 90°-corner.
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Eq. ~18! for m5a,b. Accordingly, the field at theNth
sphere ~the sphere at the corner! is given by a(N)
5exp(2iNfb)a(0). We obtain the field at the (N11)th
sphere using Eq. ~11!. The result is: a(N11)
5(Wb /Wa)exp(2i(N11)fb)a(0). We then iterate the re-
currence relation~11! along thez leg of the chain starting
from a(N), a(N11). This generates a sequence, the gen
term of which can be expressed in terms of the type
Chebyshev polynomials,16 and in this way we obtain the field
at the (N1M11)th sphere,

a~N1M11!5S Wb

Wa
exp@2 i ~N11!fb#

sin Mfa

sin fa

2exp~2 iNfb!
sin ~M21!fa

sin fa
Da~0!.

~21!

This field matches continuously a wave traveling to the rig
of amplitudea(in) ~incident wave! and a wave traveling to the
left, of amplitudea~r! ~reflected wave!. At two neighboring
spheres we havea(N1M11)5a(in)(N1M11)1a~r!(N
1M11) and a(N1M12)5a(in)(N1M12)1a~r!(N1M
12). On the other hand, Bloch’s theorem implies:a(in)(N
1M11)5a(in)(N1M12)exp(ifa) and a~r!(N1M11)
5a~r!(N1M12)exp(2ifa). Therefore, the amplitudes o
the reflected and the incident waves can be readily obta
from a(N1M11) anda(N1M12), given by Eq.~21! and,
as it turns out, their magnitudes are independent ofN andM ,
as expected. After calculatinga(in) anda~r! in the above man-
ner we obtain the energy fluxes associated with the incid
and reflected waves using Eq.~20!. The transmitted flux is
calculated in the same way from the given transmitted wa
Finally we obtain for the ratiot(V) of the transmitted to the
incident flux, and for the ratior (V) of the reflected to the
incident flux the following formulas:

t~V!5
4AWa

22V2AWb
22V2

~AWa
22V21AWb

22V2!2
,

r ~V!5
~AWa

22V22AWb
22V2!2

~AWa
22V21AWb

22V2!2
. ~22!

It can be readily verified thatt(V)1r (V)51, as it must.
The same results are obtained for a mode of typeâ1.

In Fig. 2 we show the two bandsVm(k), m5a,b for a
specific example corresponding toq̃R53 calculated from
Eqs.~16!, ~17!, and~18!, and the corresponding transmissio
coefficient for an incident wave of modeâ1 or â3 calculated
from the first of Eqs.~22!.

A rather interesting interpretation of the above result c
be obtained by a simple model similar to that proposed
Mekis et al.14 In the case, say, of anâ3 incident mode of
frequencyv, the incident and reflected waves in thez leg of
the chain are propagating Bloch waves with a group veloc
va5dva /dk, determined from the slope of the nondegen
ate banda at v. Similarly, the transmitted Bloch wave in th
x leg of the chain propagates with a group velocity,vb
5dvb /dk, determined from the slope of the doubly dege
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57 12 131IMPURITY BANDS IN PHOTONIC INSULATORS
erate bandb at v. We can then view the transmissio
through the corner as follows: theâ3 mode, propagating with
a wave vectorka(v)5na(v)/c in a homogeneous effectiv
medium of refractive indexna(v)5c/va(v), is partly trans-
mitted into a different homogeneous effective medium
refractive index nb(v)5c/vb(v), with a wave vector
kb(v)5nb(v)/c, wherec is the velocity of light in vacuum.
The transmission and reflection coefficients for this sim
scattering problem are well known; we havet54kakb /(ka
1kb)2, r 5(ka2kb)2/(ka1kb)2. Substituting into these
equations the effective wave vectorska ,kb as described
above, we recover Eqs.~22!.

In the case of a corner of arbitrary angle or, for that m
ter, of a number of such corners, we proceed in similar m
ner. However, in the general case, starting with a singleâ1

or â3, transmitted mode in thex leg of the chain, the recur
rence relation~11! finally leads to a field that mixes thes
two modes. At a sphereN8 in thez leg of the chain, the field
has in general the form of a linear combination ofâ1 andâ3,

FIG. 2. ~a! Nondegenerate~thin line! and doubly degenerat

~thick line! bands of an infinite chain of spheres withq̃R53. ~b!

Transmittance of anâ1 or â3 mode across the corner of Fig. 1.
x.
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er
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-

a~N8!5ca~N8!â31cb~N8!â1 , ~23!

where the coefficientscm satisfy the recurrence relation

cm~N811!52 cosfm cm~N8!2cm~N821! ~24!

for m5a,b. This field matches continuously an incident a
a reflected wave, as we have previously described; the o
difference is that now the incident and reflected waves
linear combinations of two Bloch waves, associated with
modesâ1 andâ3, respectively. By using an appropriate line
combination of transmitted waves we can obtain the des
single incident mode and the corresponding transmission
reflection coefficients for this mode as in the case of the 9
bend.

V. THE CASE OF DISORDER

We shall consider only the case of a linear chain
spheres~stretching along thez axis!. In this case the matrix
defined by Eq.~14! is a diagonal matrix and one obtain
three decoupled equations in the place of Eq.~11!. The cor-
responding solutions, denoted bym521,0,1, have the form
a1m;m(n)5am(n)dmm , and each satisfies an equation as f
lows:

V~n!am~n!5xm~Rn2Rn11!am~n11!

1xm~Rn2Rn21!am~n21!, ~25!

where

x61~R!5h0
1~ i q̃ R!2

h2
1~ i q̃ R!

2
,

x0~R!5h0
1~ i q̃ R!1h2

1~ i q̃ R!. ~26!

Equation~25! can be rewritten, for any givenm, as follows:
S a~n!

a~n11!
D 5S 0 1

2x21~Rn2Rn11!x~Rn2Rn21! x21~Rn2Rn11!V~n!D S a~n21!

a~n! D [T(n)S a~n21!

a~n!
D , ~27!
f

ish
e-
d
e-
in

eri-
ve
age
ers
ne.
and we have dropped the indexm for the sake of clarity in
the presentation.T(n) is referred to as the transfer matri
For an ordered chain this is independent ofn and one obtains

S a~n1n821!

a~n1n8! D 5TnS a~n821!

a~n8! D . ~28!

In a disordered chainT(n) changes randomly from site t
site. This may occur either because we have spheres of
domly varying size and/or dielectric function~this affectsA
and ṽ) or because the separation between the sph
changes randomly from site to site. Now, the treatment
n-

es
f

randomness on the basis of Eq.~27! has attracted a lot o
attention; it is well documented~see, e.g., Ref. 17! and in
this respect we have nothing to add here. The point we w
to make is the following. So far the treatment of on
dimensional disorder@based on Eq.~27!# has been advance
as a model for electronic motion in effectively on
dimensional systems. A disordered chain of impurity cells
a photonic insulator provides a basis for an alternative v
fication of existing theoretical results in relation to wa
propagation in disordered media, which has the advant
that electron-electron correlation, which complicates matt
in the electronic problem, does not arise in the photonic o
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12 132 57N. STEFANOU AND A. MODINOS
VI. CONCLUSION

In conclusion we may say that the formulas provided c
be used to study the propagation of light along a chain
impurity cells~a waveguide! in an extended photonic insula
tor described by a real negative dielectric function. Our f
malism also provides a basis for the study of Anderson
calization and related problems along a disordered chain
such cells.

APPENDIX

We consider an infinite, linear and periodic chain of d
electric spheres~along thez axis! in a medium of negative
dielectric constantē . The electric and magnetic fields in th
region between thenth and the (n11)th spheres are given in
the electric-dipole approximation by

E~r!5
1

q (
m521

1

@a1m~n!¹3h1
1~ iqr n!X1m~ r̂n!

1a1m~n11!¹3h1
1~ iqr n11!X1m~ r̂n11!#,

H~r!5Aē e0

m0
(

m521

1

@a1m~n!h1
1~ iqr n!X1m~ r̂n!

1a1m~n11!h1
1~ iqr n11!X1m~ r̂n11!#, ~A1!

where rn , rn11 are site-centered coordinates:rn5(ri ,zn).
Between thenth and the (n11)th spheres we have:zn
2zn115R. We are interested in thez component of the
Poynting vector averaged over a period 2p/v and integrated
over a plane normal to the chain at a point between thenth
and the (n11)th spheres. We denote this quantity byI . We
have

I 5
1

2
ReE d2r i@E~r!3H* ~r!#z . ~A2!

We shall employ the identity

hl
1~kr !Xl m~ r̂!5

~2 i ! l

2pk
E d2pi

Ak22pi
2
Xl m~ p̂6!exp~ ip6

•r!

~A3!

with p65pi6 ẑA(k22pi
2) where the plus and minus sign

are used forz.0 andz,0, respectively. We note that in th
present casek5 iq is an imaginary number and that, ther
fore, cosqp6 and sinqp6 in an ordinary spherical harmoni
Yl m(p̂6) are to be replaced by6A(q21pi

2)/q and

2 ip i /q, respectively. Other than that,Xl m(p̂6) are given by
standard formulas~see, e.g., Ref. 15!.
n
f

-
-
of

Expanding the fields~A1! in plane waves by the use o
Eq. ~A3!, substituting the resulting expression in Eq.~A2!
and using the orthogonality of the plane wave
*d2r iexp@i(pi2pi8)•ri#5(2p)2d(pi2pi8), we obtain

I 5
1

2q2vm0

Re(
m,m8

S a1m~n!a1m8
* ~n11!

3E d2pi

q21pi
2 $@p13X1m~ p̂1!#3X1m8

* ~ p̂2!%z

3exp~2RAq21pi
2!1a1m~n11!a1m8

* ~n!

3E d2pi

q21pi
2 $@p23X1m~ p̂2!#3X1m8

* ~ p̂1!%z

3exp~2RAq21pi
2!D . ~A4!

In writing Eq. ~A4! we have dropped all terms proportiona
to a1m(n)a1m8

* (n) anda1m(n11)a1m8
* (n11) since the con-

tribution of these terms toI turns out to be of the form
Re$Imaginary quantity% and therefore vanishes identically
Rewriting the vector products in Eq.~A4! according to the
identity a3(b3c)5b(a•c)2c(a•b) and substituting in the
resulting formula the explicit expressions forX1m(p̂6) in cy-
lindrical coordinates, we can finally perform thepi integra-
tion analytically. In the case of propagating Bloch wave
whena1m(n11)5exp(ikR)a1m(n), we obtain

I 5
1

4qvm0
F ~ ua121~n!u21ua11~n!u2!

3S 11
1

qR
1

1

~qR!2D 3exp~2qR!

qR
sin ~kR!

2ua10~n!u2S 1

qR
1

1

~qR!2D 6exp~2qR!

qR
sin ~kR!G .

~A5!

In the spirit of our approximation~Sec. II! we replaceq by q̃
within the square brackets of Eq.~A5!. By comparing with
Eqs. ~16!, ~17!, and ~18! we can then easily verify that, for
given m5a,b, Eq. ~A5! gives

I m5
1

4qRvm0

]Vm~k!

]k (
m521

1

ua1m;mu2, ~A6!

whereua1m;mu5ua1m;m(n)u is independent ofn.
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