PHYSICAL REVIEW B VOLUME 57, NUMBER 19 15 MAY 1998-I

Correlation effects in the quasi-one-dimensional charged Bose condensate
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We describe correlation effects in the charged quasi-one-dimensional Bose condensate with parabolic con-
finement. Many-body effects are calculated with the sum-rule version of the Singwi, Tosi, Land, tmdi&jo
theory. We give numerical and analytical results for the local-field correction, the pair-distribution function, the
correlation energy, and the compressibility of the Bose condensate. The results are given as a function of the
Wigner-Seitz parameter;, and the wire-width parametér. The exact long-wavelength behavior of the plas-
mon dispersion is investigated using the compressibility sum [81&163-18208)04719-3

[. INTRODUCTION the electron gas in three dimensibhand one dimensiotf.
The sum-rule approach is based on an analytical expression

The random-phase approximatiGRPA) is a very useful for the LFC depending on three coefficients that are deter-
theory to describe dielectric properties of quantum liquids inmined self-consistently. For the one-dimensional electron
the high-density limit(rs<1 andrq is the Wigner-Seitz gas it has been shown recgﬁﬁynat the sum-rule version is
parameter® The local-field correctiofLFC) describes cor- N very good agreement with the full STLS thet?ry.
rections to the RPA due to many-body efféétand these In the following we use the sum-rule version of the STLS
corrections become important at intermediate and low partheory to describe correlation effects and collective modes in
ticle density ¢<=1). The LFC of a charged Bose condensate? guasi-one-dimensional Bose condensate with parabolic
describes correlation contributions to the dielectric function:confinement. Our motivation to study this system was initi-
each condensed particle is surrounded by a correlation hoR{€d from experimental progress in recent years on Bose con-
that modifies the response function. densation in atom .vapc.)i%'. In the condensate of neutral

The Singwi, Tosi, Land, and 9andef (STLS) theory for ~ atoms the interaction is of short-range nature. Collective
the LFC is an accurate theory that has been used to descriféedes according fo the Bogoliubov theory have been ob-
exchange and correlation effects in charged Fermi liquidsserved recently? The confinement potential in the experi-
This theory was used to obtain the LFC for an electron gas iffental setup used for the Bose condensation is very aniso-
three? two,® and oné dimensions. Ground-state energy andtropic. Such a configuration can be considered as quasi-one-
compressibility calculations compare favorably with Monte dimensional with a two-dimensional oscillator potential as
Carlo calculations. In the electron gas the ground-state erfhe confinement potential. The possibility of a Bose conden-
ergy is the sum of the kinetic energyf the system without ~Sation in one-dlmensmn_al systems_ was also studied theoreti-
interaction, the exchange energy, and the correlation energycally and a macroscopic occupation of the lowest energy
In the Bose condensate the kinetic energy of the free systeffate was reporte®. Therefore, we believe that the present
vanishes, because all particles have condensed into tfiBeoretical study of a quasi-one-dimensional charged Bose
lowest-energy staténo Pauli principlg¢. The exchange en- coqdensate in an oscillator confme_ment matchgs experimen-
ergy vanishes for the same reason: the static structure fact&¥ interest. In the near future it might be possible to study
definition of the ground-state energy of an electron gas th&xperimental test of our predictions, we hope that our study
ground-state energy of a Bose condensate is simply given H&lelps to understand better the differences concerning many-
the correlation energy. body effects between electron systems and boson systems.

In this paper we consider a Bose condensate with long- The paper is organized as follows: In Sec. Il we describe
range Coulomb interaction, where all particles have conihe model and the theory. Results for the LFC are given in
used before to study the three-dimensional BosdV and the correlation energy in Sec. V. We describe the
condensafe® and the two-dimensional Bose condengate. dielectric function and collective modes in Sec. VI. The dis-
The ground-state energy obtained by the STLS approach gussion of our results is in Sec. VII. We conclude in Sec.
in good agreement with Monte Carlo calculatibhd®and VI
hypernetted-chain calculatio$A sum-rule version of the
STLS approach has been used to calculate the LFC of the
Bose condensates in three and two dimensfofkis sum-
rule approach is somewhat simpler than the STLS approach We describe an interacting one-dimensional Bose gas in
and gives analytical results for the LFC. It was used to studyhe condensate phase by the Wigner-Seitz paranrgter

Il. MODEL AND THEORY
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which is given byr,=1/(2Na*). N is the particle density The self-consistent calculation ofC;=Cy(rgs,b), C,

anda* =g _/m*e? is the effective Bohr radius defined with =C,(r,b), andC3=C5(rg,b) is obtained from the STLS

the background dielectric constant and with the boson equation forq—0, q=qq, andg—«: The coefficients de-

effective massn* and electric charge. For Planck’s con- pend onrg andb and are calculated using

stant we useh=27. The effective Rydberg is defined by

Ry* =1/(2m* a*?) and the screening wave number is given  f(gob/C;) o

by qO=2/(r§’2a*). C—ZZZL dx[ f(x)+x df(x)/dx][1—S(x)],
For the confinement model, we consider a Bose conden- (6)

sate free to move in thedirection and confined in thg,¢)

directions by a parabolic confinement potentid}(p,¢) 1 ®

= p?/8m* b*. b is the width parameter of the wire. A positive C.- ZJ dx[1—S(x)], (7

neutralizing background ensures a globad a local-charge 2 0

neutrality (jellium mode). The wave function in thép,p) 5 q

direction for the lowest-energy state is described by

®(p, o) cexd —p?/4b?]. Accordingly, the Fourier transform f(qeb[1— Ca+ 1/C2¥3)/C,
of the Coulomb-interaction potenti®(q) is given by 0 3 !
e? :f dx[(1—x/dgb)f(dob—x)
V(q)=2—8Lf(qb) (18 0
withe + (1+x/gb) f(dob+x) ][ 1= S(x)], ®

5 5 For details we refer the reader to Ref. 16, where we dis-
f(x)=2E;(x*)exp(x?). (1b)  cussed the equations for a one-dimensional electron gas.

E.(x) is related to the exponential-integral functnThe
width parameter of the wire enters the theory via the inter- lll. THE LOCAL-FIELD CORRECTION
action potential. The asymptotic behavior of the interaction

potential is given by The small and large wave-number behaviors of the LFC

can be expressed analytically in the large-density limit. Us-
f(x<1)=4 In(1/x)— 2C+4x2[In(1/x) +(1—C)/2], ing Eq.(2b) and replaci.ng the SS§(q) by Sgpa(q) in Egs.
(2a) (6) and(7), we can derive

whereC=0.577 is Euler's constait,and by 72T ( 1) 12172
4
Cire—0)=—F—Fr——; 9
f(x>1)=2/x*—2/x" (2b) 1(rs—0) I'(3)¥2%a* 12 V4 ©)
In the STLS approach the LFG(q) and the SSF5(q) and
are calculated in a self-consistent way. The self-consistency
is ensured by the STLS equation that conndg{g]) with 9 771/2br;/4
S(q).2 For a one-dimensional quantum liquid this equation is Cy(rg—0)= 35 A Ti2n (10
given by 27T (3)a
q(g—k)V(g—k) I' is Euler's gamma fléI/ZlCtIO?& We conclude thaG(q—0)

«r* and G(g—o)=r¥* in the smalle limit: the LFC for

the Bose condensate can be neglected in the high-density
For a Bose condensate the SSF is expressed in terms of th@it rs<1. However, the LFC becomes important at inter-

1 0
G(Q):mf_x dk—qzw[l—s(k)]- 3

LEC as mediate and low particle density. In Table | we give some
numerical results for the coefficien®; (i=1,2,3) calculated
1 in the sum-rule version of the STLS theory fora*. These
S(q):{1+4m*NV(q)[l—G(q)]/qZ}l’z' (4 coefficients are useful to express the LFC and the static

structure factor in an analytical form. We remember that the
With G(gq)=0 in Eq. (4) one obtains the static structure full STLS theory only gives numerical results. From these
factor Sgpa(q) within the RPA. The STLS result is given by coefficients one can easily check th@&g(r s— 0)s 1/r 2 and
the self-consistent numerical solution of E¢3) and (4). Cy(rs—0)ocr 4,

Within the sum-rule approach of the STLS theory the The LFC is shown in Fig. 1 for a Bose condensate of
LFC is given in analytical form and is parametrized by threewidth parameteb=a* and for various values af,: G(q) is
coefficients, which are calculated self-consistently. As foriarge at low-particle densityr(=4) while G(q) becomes
the electron gas in one dimensiBrwe use for the Bose small for high density s=0.1). Note that the situation is

condensate the parametrization different in the high-density limit of a Fermi liquid where
G(q—)=1 due to exchange effects.
G(q)=r a*  f([g?b®— C3do|q|b®+q5b?/C5]"?) The static structure factor is shown in Fig. 2 fora*
D=Ts 7 C, f(gb) ' and various values of;. The effects of the LFC in the static

(5) structure factor are estimated by comparir®f{q) to
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TABLE I. CoefficientsC,, C,, andC; for the LFC of a Bose 1E
condensate of width parametbr=a* for different values of the
Wigner-Seitz parameter, .

I's G C, Cs

0.01 7.080 0.1617 0.042 94 = 05

0.02 5.910 0.1945 0.058 94 7

0.03 5.323 0.2171 0.070 25

0.04 4.946 0.2350 0.079 09 Bosons

0.06 4.465 0.2632 0.092 53

0.08 4.157 0.2857 0.102 53 \ | b=a®

0.1 3.937 0.3048 0.1104 04 1 2 3

0.2 3.344 0.3755 0.1338 gb

0.3 3.058 0.4272 0.145 4 )

4 AL L s foce o
gg ESZ; 823;8 812;2 sate of vx_/idth parametdr=a* and forr =0.1, 04 1, and 4. The

’ ’ ’ : dashed lines represent the RPA results describeSzby(q).

1 2.461 0.6600 0.1593

2 2.319 0.9064 0.1494 We obtaingrpa(2) by replacingS(q) by Sgpa(q) in Eq.
3 2.346 1.140 0.1381 (12). From Egs.(7) and(11) we can write the PDFg(z=0)
4 2.446 1.382 0.128 6 in terms ofC2 asl6

6 2.767 1.910 0.1157

8 3.181 2.495 0.1085 9(z=0)=1-ra*/mbC;. (12)
10 3.637 3.118 0.1041 The high-density behavior ajzpa(z=0) is obtained from
20 5.856 6.387 0.087 7

Srea(Q): these effects are negligible at large particle density

Egs.(10) and(12) as

Ul 712 4% 2
322" (7)“a* aa

gRPA(ZZOars_’()):l_gﬁzbz—rs . (13

(r¢=0.1) while they become important in diluted systems

(rg=4).

IV. THE PAIR-DISTRIBUTION FUNCTION

The pair-distribution functiofPDPF g(z) expresses the
probability to find a particle at a distanzen the presence of
a particle atz=0.? g(z) is related to the static structure
factor through the Fourier transform relation by

1 )
g(Z)=1—m fo dqgcogqz)[1-S(q)]. (11

! I I I I
Bosons

b=a*
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FIG. 1. Local-field correctiorG(q) vs wave numbeq calcu-

g(z=0), grpa(z=0), and Eq(13) are represented in Fig. 3
for b=a*. At large density, the correlation hole is small and
g(z=0) is correctly described by Eq13). The random-
phase approximation becomes wrong at low density:
Orea(z=0) is strongly negative at intermediate and large
values ofrg. Some results for the PDE(z=0) are also
given in Table Il for various values af; andb. The corre-
lation hole increases with decreasing wire widithand de-
creasing particle density. Note thgtz=0) becomes slightly
negative at very low density in the STLS approximation.
In Fig. 4 the PDF is shown versus distarcéor b=a*

and forrg=1 and 4. The screening lengthgd/is a suitable

9(z=0)

-0.4 ! \ .
1072 107! 100

s

FIG. 3. Pair-distribution functiom(z=0) vs Wigner-Seitz pa-
rameterrg calculated within the sum-rule version of the STLS
theory (solid line) and in the random-phase approximatiolashed

lated within the sum-rule version of the STLS theory for a Boseline) for b=a*. The dotted line represents the high-density limit

condensate of width paramete+a* and forrg=0.1, 0.4, 1, and 4.

Orea (z=0, rs—0) as given in Eq(13).
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TABLE II. Pair-distribution functiong(z=0) in the sum-rule version of the STLS theory tora*/5,
a*/2,a*, 2a*, and for various values df;.

9(z=0) 9(z=0) 9(z=0) 9(z=0)
rs b=a*/5 b=a*/2 b=a* b=2a*
0.1 0.800 4 0.8598 0.8956 0.9236
0.2 0.689 6 0.7760 0.8305 0.8744
0.3 0.603 6 0.7080 0.7765 0.8329
0.4 0.5326 0.6497 0.7291 0.7960
0.6 0.4195 0.5518 0.6477 0.7312
0.8 0.3328 0.4714 0.5783 0.6747
1 0.264 4 0.4036 0.5177 0.6241
2 0.078 5 0.1810 0.2976 0.4277
3 0.0151 0.0705 0.1624 0.2895
4 —0.0045 0.0176 0.0786 0.1886
6 —0.007 4 —0.0132 0.0000 0.0614
8 —0.002 3 —0.0122 —0.0208 —0.0021
10 0.001 93 —0.0060 —0.0210 —0.0294
20 0.007 75 0.0090 0.0033 —0.0211

length scale to describe the correlation hgl€z) approaches Base condensate is obtained from a wave nunalpercou-

unity for qyz~ 10 independently of ;. At intermediate dis- pling constant integral of the static structure fattor

tance (16<qyz<30), g(z) passes through a smooth maxi-

mum and a smooth minimum before approaching unity. For a* (1 o

a very large distancey(z) behaves approximately as ecol l)/RY" = — 5 jo dr fo dq f(gb)[1—S(q.A)].
(15

— 2 5/
9(z2—)=1-Al(do2)* + O(1/(Go2) ™). (14) S(g,\) in Eq. (15) is the SSF for the coupling constanor
for the interaction potentia¥(g,A) =AV(q). In other words,

Note that this analytical expression is not an exact resultpne has to calculate the LFC for each value of the coupling
Equation(14) was obtained by fitting our numerical results constant to obtaire,(rs). The \ integration in Eq.(15)
for g(z). Nevertheless, Eq(14) accurately describes the pecomes trivial if the LFC is neglected. One obtains the cor-
PDF for 1G<qgoz<10", see the inset in Fig. 4. The coeffi- relation energy in the random-phase approximatidd as
cient A in Eq. (14) is given in Table Ill forb=a* and

various values of 4. a* [ or(ga*)?
Ecor,RPA(rs)/Ry =- om JO dq f(qb)l 1+ f(q—b)
V. THE GROUND-STATE ENERGY
. e f(qb) |\
The correlation energy per particfeshich is identical to X[1-|1+ r(qT)z . (16
S

the ground-state energy per partjclef a one-dimensional
From Egs.(2b) and(16) we can derive the high-density be-

1 1.005 ;
! ' Bosonsl havior of &¢; rpa @s
08 b=a®
‘ —1.000 ) a* 1I(p%*%
r«—0)/Ry*=—-—B+ rs .
2 €corrpAFs—0)/RY 575 B3 o1 s
N 0995 & (179
7 04 7
’ TABLE lll. Coefficient A for the pair-distribution function at
0990 large interparticle distanceas given in Eq(14) for b=a* and for
02 various values of 5.
| 902 | l
0 0 S 30 20 300985 ls A
%07 0.1 0.142
FIG. 4. Pair-distribution functiog(z) vs interparticle distance 0.4 0.268
in the sum-rule version of the STLS theory for=a* and forrg 1 0.410
=1 and 4. The inset describes the large-distance behavior given by 4 0.817
Eqg. (14) (solid lineg and by the sum-rule version of the STLS 10 1.14

theory (solid dots.
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T | ] condensates. We note that the correlation enéityy inter-
-02— 7 action energyis negative and monotonous as a function of
rs.
The compressibilityc of a quantum liquid is an important
physical quantity that contains information about many-body
effects. The compressibility of an interacting one-
dimensional Bose condensate is obtained from its correlation
energy per particle,,, and given by?

-04

*
€cor/Ry

-06

.............. i Bosons
-08F —
| | | )
1073 1072 10" 100 10! E _ rs deco (18)
kK 2a* drZ’

s

FIG. 5. Correlation energy per particle vs calculated within From our results f(_)ECOY,RPA(_rS—)()) we er|y_e> the analytical
the sum-rule version of the STLS theotsolid line and in the ~P€havior for the high-density compressibility as
random-phase approximatiqdashed ling for b=a*. The dotted 14 3/%.3/2. 3/
line represents the high-density limit, zpArs—0) as given in _ 32 2173 I's
Eq. (17) KRPA(rs_’O)__ 12+ 1720w " (19
e I'(z)%a* "Ry
B is a constant that depends on the detailed form of th&Ve conclude thak is always negative for a one-dimensional
interaction potential and is given by charged Bose condensate and has a larger absolute value in
dilute systems and in thick wires. In Table V we give some
numerical results for the compressibility for different width

B= fo dx f(x)=5.568 33. (17 parameteb and Wigner-Seitz parameteg.

The correlation energy per particle verayss shown in
Fig. 5 forb=a* in the sum-rule version of the STLS theory
and in the random-phase approximation. The high-density The plasmon dispersion,(q) of a one-dimensional Bose
behavior within the RPA is also shown in this figure. The condensate is given by the dynamical dielectric function
correlation energy is overestimated in the random-phase ap{q,w) as
proximation at low carrier density: Fds=a* andr =10

VI. DIELECTRIC FUNCTION

we obtaing.,=—0.235KRy* while the RPA givesey, rpa £(q,wp(q))=0. (20)

=—0.3359Ry*. Figure 5 indicates that the validity range of ]

Eq. (17) is given byr<0.01. £(q,w) depends on the LFC and is expressed as
Numerical results for the correlation energy per particle V(Q)Xe(0, )

are given in Table IV for various values of andb: &, is e(quw)=1+ 0)%0(Q, @ 21)

less important for thick quantum wires and for dilute Bose 1-V(9)G(q)Xe(q, )’

TABLE IV. Correlation energy per particle, in units of the effective Rydbergy* in the sum-rule
version of the STLS theory fdo=a*/5, a*/2, a*, 2a*, and for various values of;.

- scor/Ry* - scor/Ry* - scor/Ry* - scor/Ry*
rs b=a*/5 b=a*/2 b=a* b=2a*
0.1 2.076 1.058 0.6066 0.3363
0.2 1.839 0.9701 0.5679 0.3202
0.3 1.696 0.9154 0.5434 0.3099
0.4 1.592 0.8751 0.5252 0.3021
0.6 1.443 0.8159 0.4981 0.2905
0.8 1.335 0.7720 0.4778 0.2817
1 1.250 0.7367 0.4614 0.2745
2 0.9752 0.6186 0.4055 0.2500
3 0.8121 0.5426 0.3685 0.2336
4 0.6992 0.4856 0.3398 0.2207
6 0.5510 0.4030 0.2956 0.2004
8 0.4574 0.3456 0.2620 0.1841

10 0.3928 0.3029 0.2354 0.1704
12 0.3454 0.2703 0.2139 0.1585
14 0.3089 0.2445 0.1961 0.1482

20 0.2370 0.1917 0.1578 0.1241
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TABLE V. Compressibility « (in units of a*/Ry*) in the sum-rule version of the STLS theory for
=a*/5,a*/2,a*, 2a*, and for various values of;.

— kRy*/a* — kRy*/a* — kRy*/a* — kRy*/a*
rs b=a*/5 b=a*/2 b=a* b=2a*
0.25 1.50 5.86 9.60 23.40
0.5 2.92 7.79 17.64 42.31
0.75 4.29 11.28 25.22 59.80
1 5.60 14.68 32.56 76.50
15 8.01 21.15 46.74 108.6
2 10.16 26.99 60.17 139.4
2.5 12.07 32.25 73.11 169.6
3 13.92 36.77 84.75 198.5
3.5 15.70 40.56 95.67 227.4
4 17.53 44.00 105.0 254.3
4.5 19.45 46.99 113.0 280.3
5 21.45 49.81 119.8 304.3
55 23.54 52.60 125.6 326.0
6 25.76 55.51 130.5 344.6
7 30.55 61.18 138.3 377.8
8 35.80 67.54 145.6 400.3
9 41.55 74.47 152.2 416.0
10 47.75 82.06 159.8 426.7
where the density-density response functyf{q,») of the B=—Cl2+ ria*/Ry* K. 27

noninteracting Bose condensate is written, see Ref. 23, as

o2 Our results forB calculated from Eq(27) and using Table V
(ga*) (22 @ given in Table VI for various values of andb.
(qa*)*—(w/Ry*)? The long-wavelength plasmon dispersion for the quasi-
one-dimensional electron gas is also given by &4). The

The one-dimensional plasmon dispersion is obtained frongoefficient for a charged Fermi liquid with parabolic con-
Eq. (20) in the analytical forrf® finement is given b¥f

wp(Q)/RY* =ga*{f(qb)[1-G(q))/rs+(ga*)?}2

Xo(Q,w)=4m*Na*?

(23 B=m16r— Cl2—f(qb—0)G(q—0)/4. (28

In the long-wavelength limit, this equation becomes This density behavior is different from the Bose condensate

wy(q—0) 2 result[compare Eq(25) with Eq. (28)]. We note that the
%T=mqa*[ln(l/qb)+ﬂ]l’2 (29 one-dimensional plasmon dispersion for fermions has re-
S

cently been measured by Raman spectroscopy in doped

where the constan® depends on the detailed interaction po- GaAs quantgm wire§4 _ _
tential V(q—0) and on the LFG5(gq—0). For a parabolic The static density-density response functiofy(q)

confinement modeB is given by =4m*N/qg? determines the static dielectric functier(q)
=g(q,0=0) by
B=—C/2—f(qb—0)G(q—0)/4. (25)
Note that the LFC reduces the plasmon energy: Vs(@)=1— 4m* NV(q)/of 29
B<Brpa=—CI2. 0= A NGV

One method to calculatg would be to use our results for

the LFC as given in Table I. This method is not the best one\ete, that 4n* NV(q)/q2= f(qb)/rs(qa*)2. For small wave

because the STLS approach does not fulfill the compressibihympers one finds 2(q—0)= — G(gq— 0)<0. Within the

ity sum rule and overestimates the short wave number LFCGRpa  with G(q)=0 one finds 1¢gpa(q—0)

For this reason it is better to calculgBewith the compress- = g2/4m* NV(g—0)>0. Our numerical results for 4(q)

ibility sum rule and using the results fargiven in Table V. g q are shown in Fig. 6 for different values of. With

The compressibility sum rule expresses Zthe long wavelengtfhcreasing  the inverse dielectric function becomes increas-

LFC in terms of the compressibilitye.” For the one- j,q1y negative for small and intermediate wave numbers and

dimensional Bose condensate one gets approaches t(q—o)=1 for large wave numbers. The re-

a2 sults shown in Fig. 6 have been obtained within the sum-rule

V(@—0)G(g—0)=~1MN"«. (26) version of the STLS approach. The negative value efdy

Using Eqgs.(25) and(26) we obtain is, for this reason, overestimated and a more accurate value
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TABLE VI. Coefficient g for the long-wavelength plasmon dispersion lfor a*/5, a*/2, a*, 2a*, and
for various values of 5.

-8B -8B -B -8B
rs b=a*/5 b=a*/2 b=a* b=2a*
0.25 0.3304 0.2993 0.2951 0.2913
0.5 0.3744 0.3207 0.3028 0.2945
0.75 0.4199 0.3385 0.3109 0.2980
1 0.4673 0.3567 0.3193 0.3017
15 0.5696 0.3950 0.3367 0.3093
2 0.6823 0.4368 0.3551 0.3173
2.5 0.8064 0.4824 0.3741 0.3255
3 0.9350 0.5334 0.3948 0.3339
35 1.069 0.5906 0.4167 0.3425
4 1.201 0.6522 0.4410 0.3515
45 1.330 0.7196 0.4679 0.3609
5 1.454 0.7905 0.4974 0.3708
55 1.574 0.8637 0.5295 0.3814
6 1.686 0.937 0.5644 0.3931
7 1.892 1.090 0.6430 0.4183
8 2.076 1.236 0.7282 0.4485
9 2.238 1.376 0.8209 0.4833
10 2.383 1.507 0.9145 0.5230

of the short-range wave number behavior of(fy—0) can band is, for instance, described by the wave function

be obtained by using the compressibility sum rule. ®(p,p)cp exy —p?lab®lexd =ip]. The excited subbands
play an important role in the quasi-one-dimensional electron

gas: the one-subband model is only valid at low-patrticle den-
sity where the Fermi energyg is lower than the intersub-

We have used a parabolic confinement potential to deband energyAE,;,. This is not the case for the one-
scribe correlation effects in the quasi-one-dimensional Bosdimensional Bose condensate: all particles have condensed
condensate. This choice is important: the short-distance innto the lowest subband independently of the density and the
teraction potentiaM(z—0) and our quantitative results as one-subband model is always valid.
given in our tables depend on the model. The qualitative In this paper we presented some analytical results
results are, however, independent of the detailed form of theithin the RPA, valid for high density. The results for
Coulomb interaction potential. Orra(0.rs—0), &corrpArs—0), krpa(rs—0), and Brpa=

In real confined systems, the confinement potential gives- C/2 are exact and might be helpful for experimenters when
rise to a ground subband and to several excited subband8ose condensation in charged systems has been obtained. In
For the parabolic confinement model, the first excited subthe low-density regime the ground-state energy is modified
by many-body effects described by the LFC.

In Table VII we compare for electrons and bosons the
interaction energy. It is clear that with increasing Wigner-
Seitz parameter the differences between bosons
(&int= €con) @nd electrons ;= .o+ €¢,) disappear: the sta-
tistical differences between bosons and electrons become ir-
relevant. Similar results have been found in three and two
dimensions®?® From the results shown in Table VII we
conclude that in the low-density limit the correlation energy

VII. DISCUSSION

1/e{q)

TABLE VII. Interaction energy per particle for bosons and for
electrons(Ref. 16 with b=a*. The interaction energy is given by
Eint= Ecort Eex- FOr bosons the relatiog,,= €., holds.

boson electron electron
0 / 2 Is €nt/RY* €nt/RY* €/ RY*
q/q
° 1 —0.4614 —0.5442 —0.0220
FIG. 6. Inverse dielectric function &(q) within the sum-rule 10 —0.2354 —0.2382 —0.0856
version vs wave numbey for different values ofrg. The result 20 —-0.1578 —0.1579 —0.0639

within the RPA is shown as the dashed line fgr=5.
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in the Bose condensate behaves as the interaction energy in VIII. CONCLUSION

Fermi systems? We derive We studied the effects of the long-range Coulomb inter-

_ * _ action in a one-dimensional Bose condensate within the
Eoolls—)/RY 0.92In2a%rs exri(3 C)/Z]Wb}/gsd) mean-field theory (RPA). Many-body effects described
within the local-field correction are discussed. The LFC is

In the low-density limit the correlation energy is logarithmi- given by an analytical expression depending on three coeffi-
cally enhancedeo(rs— =)= —In(rg/r; compared to three- cients, which have been calculated self-consistently. Numeri-
and two-dimensional systems whesg(r— o) —1/r. cal and analytical results have been given for the pair-

We used a jellium model where the positive neutralizingdistribution function, the correlation energy, and the
background ensures a glotzid a local-charge neutrality. In  compressibility. The exact long-wavelength behavior of the
real one-dimensional confined systems, one has to take infgasmon dispersioricollective modes has been calculated
account a local non-neutrality in directions perpendicular tousing the compressibility sum rule. The present paper on
the wire axis. This non-neutrality is responsible for a Hartregmany-body effects within the STLS approach for a Bose
energy that modifies the ground-state enéfyy. condensate, together with our results for electrpns in Rgf. 16,

The STLS approach correctly describes the ground-stateompletes our study of many-body effects in quasi-one-
energy of charged quantum liquids. However, this theorydimensional systems.
overestimates the small wave numbers LFC and it is better to

use another method to obta®(q— 0) with accuracy. This ACKNOWLEDGMENTS
can be done within the Vashishta and Singwi theSmyhich The “Laboratoire de Physique des Solides” is “Labora-
has recently been used to calculate the LFC of a threetoire associ@u Centre National de la Recherche Scientifique

dimensional charged Bose condensate. (CNRS.”
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