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Correlation effects in the quasi-one-dimensional charged Bose condensate
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We describe correlation effects in the charged quasi-one-dimensional Bose condensate with parabolic con-
finement. Many-body effects are calculated with the sum-rule version of the Singwi, Tosi, Land, and Sjo¨lander
theory. We give numerical and analytical results for the local-field correction, the pair-distribution function, the
correlation energy, and the compressibility of the Bose condensate. The results are given as a function of the
Wigner-Seitz parameterr s and the wire-width parameterb. The exact long-wavelength behavior of the plas-
mon dispersion is investigated using the compressibility sum rule.@S0163-1829~98!04719-5#
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I. INTRODUCTION

The random-phase approximation~RPA! is a very useful
theory to describe dielectric properties of quantum liquids
the high-density limit ~r s!1 and r s is the Wigner-Seitz
parameter!.1 The local-field correction~LFC! describes cor-
rections to the RPA due to many-body effects2,3 and these
corrections become important at intermediate and low p
ticle density (r s>1). The LFC of a charged Bose condensa
describes correlation contributions to the dielectric functi
each condensed particle is surrounded by a correlation
that modifies the response function.

The Singwi, Tosi, Land, and Sjo¨lander4 ~STLS! theory for
the LFC is an accurate theory that has been used to des
exchange and correlation effects in charged Fermi liqu
This theory was used to obtain the LFC for an electron ga
three,4 two,5 and one6 dimensions. Ground-state energy a
compressibility calculations compare favorably with Mon
Carlo calculations. In the electron gas the ground-state
ergy is the sum of the kinetic energy~of the system without
interaction!, the exchange energy, and the correlation ene
In the Bose condensate the kinetic energy of the free sys
vanishes, because all particles have condensed into
lowest-energy state~no Pauli principle!. The exchange en
ergy vanishes for the same reason: the static structure fa
~SSF! of the free-boson system is equal to unity. Using t
definition of the ground-state energy of an electron gas
ground-state energy of a Bose condensate is simply give
the correlation energy.

In this paper we consider a Bose condensate with lo
range Coulomb interaction, where all particles have c
densed into the lowest-energy state. The STLS approach
used before to study the three-dimensional Bo
condensate7–9 and the two-dimensional Bose condensat8

The ground-state energy obtained by the STLS approac
in good agreement with Monte Carlo calculations10–13 and
hypernetted-chain calculations.14 A sum-rule version of the
STLS approach has been used to calculate the LFC of
Bose condensates in three and two dimensions.8 This sum-
rule approach is somewhat simpler than the STLS appro
and gives analytical results for the LFC. It was used to stu
570163-1829/98/57~19!/12119~8!/$15.00
n

r-
e
:
le

ibe
s.
in

n-

y.
m
he

tor
e
e

by

-
-
as
e
.
is

he

ch
y

the electron gas in three dimensions15 and one dimension.16

The sum-rule approach is based on an analytical expres
for the LFC depending on three coefficients that are de
mined self-consistently. For the one-dimensional elect
gas it has been shown recently16 that the sum-rule version is
in very good agreement with the full STLS theory.6

In the following we use the sum-rule version of the STL
theory to describe correlation effects and collective mode
a quasi-one-dimensional Bose condensate with parab
confinement. Our motivation to study this system was in
ated from experimental progress in recent years on Bose
densation in atom vapors.17,18 In the condensate of neutra
atoms the interaction is of short-range nature. Collect
modes according to the Bogoliubov theory have been
served recently.19 The confinement potential in the exper
mental setup used for the Bose condensation is very an
tropic. Such a configuration can be considered as quasi-
dimensional with a two-dimensional oscillator potential
the confinement potential. The possibility of a Bose cond
sation in one-dimensional systems was also studied theo
cally and a macroscopic occupation of the lowest ene
state was reported.20 Therefore, we believe that the prese
theoretical study of a quasi-one-dimensional charged B
condensate in an oscillator confinement matches experim
tal interest. In the near future it might be possible to stu
the Bose condensation of charged atoms. Independent o
experimental test of our predictions, we hope that our stu
helps to understand better the differences concerning m
body effects between electron systems and boson syste

The paper is organized as follows: In Sec. II we descr
the model and the theory. Results for the LFC are given
Sec. III. We calculate the pair-distribution function in Se
IV and the correlation energy in Sec. V. We describe
dielectric function and collective modes in Sec. VI. The d
cussion of our results is in Sec. VII. We conclude in Se
VIII.

II. MODEL AND THEORY

We describe an interacting one-dimensional Bose ga
the condensate phase by the Wigner-Seitz parameterr s ,
12 119 © 1998 The American Physical Society
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12 120 57A. GOLD AND L. CALMELS
which is given byr s51/(2Na* ). N is the particle density
anda* 5«L /m* e2 is the effective Bohr radius defined wit
the background dielectric constant«L and with the boson
effective massm* and electric chargee. For Planck’s con-
stant we useh52p. The effective Rydberg is defined b
Ry* 51/(2m* a* 2) and the screening wave number is giv
by q052/(r s

1/2a* ).
For the confinement model, we consider a Bose cond

sate free to move in thez direction and confined in the~r,w!
directions by a parabolic confinement potentialUc(r,w)
5r2/8m* b4. b is the width parameter of the wire. A positiv
neutralizing background ensures a globaland a local-charge
neutrality ~jellium model!. The wave function in the~r,w!
direction for the lowest-energy state is described
F(r,w)}exp@2r2/4b2#. Accordingly, the Fourier transform
of the Coulomb-interaction potentialV(q) is given by

V~q!5
e2

2«L
f ~qb! ~1a!

with6

f ~x!52E1~x2!exp~x2!. ~1b!

E1(x) is related to the exponential-integral function.21 The
width parameter of the wire enters the theory via the int
action potential. The asymptotic behavior of the interact
potential is given by

f ~x!1!54 ln~1/x!22C14x2@ ln~1/x!1~12C!/2#,
~2a!

whereC50.577 is Euler’s constant,21 and by

f ~x@1!52/x222/x4. ~2b!

In the STLS approach the LFCG(q) and the SSFS(q)
are calculated in a self-consistent way. The self-consiste
is ensured by the STLS equation that connectsG(q) with
S(q).3 For a one-dimensional quantum liquid this equation
given by6

G~q!5
1

2pN E
2`

`

dk
q~q2k!V~q2k!

q2V~q!
@12S~k!#. ~3!

For a Bose condensate the SSF is expressed in terms o
LFC as

S~q!5
1

$114m* NV~q!@12G~q!#/q2%1/2. ~4!

With G(q)50 in Eq. ~4! one obtains the static structur
factorSRPA(q) within the RPA. The STLS result is given b
the self-consistent numerical solution of Eqs.~3! and ~4!.

Within the sum-rule approach of the STLS theory t
LFC is given in analytical form and is parametrized by thr
coefficients, which are calculated self-consistently. As
the electron gas in one dimension16 we use for the Bose
condensate the parametrization

G~q!5r s

a*

pbC2

f ~@q2b22C3q0uqub21q0
2b2/C1

2#1/2!

f ~qb!
.

~5!
n-

y

-
n
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s
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r

The self-consistent calculation ofC15C1(r s ,b), C2
5C2(r s ,b), andC35C3(r s ,b) is obtained from the STLS
equation forq→0, q5q0 , andq→`: The coefficients de-
pend onr s andb and are calculated using

f ~q0b/C1!

C2
52E

0

`

dx@ f ~x!1x d f~x!/dx#@12S~x!#,

~6!

1

C2
52E

0

`

dx@12S~x!#, ~7!

and

f ~q0b@12C311/C1
2#1/2!/C2

5E
0

`

dx@~12x/q0b! f ~q0b2x!

1~11x/q0b! f ~q0b1x!#@12S~x!#, ~8!

For details we refer the reader to Ref. 16, where we d
cussed the equations for a one-dimensional electron gas

III. THE LOCAL-FIELD CORRECTION

The small and large wave-number behaviors of the L
can be expressed analytically in the large-density limit. U
ing Eq. ~2b! and replacing the SSFS(q) by SRPA(q) in Eqs.
~6! and ~7!, we can derive

C1~r s→0!5
p2G~ 1

4 !1/2b1/2

G~ 3
4 !3/2a* 1/2r s

1/4
~9!

and

C2~r s→0!5
9

32

p1/2brs
1/4

21/4G~ 7
4 !2a*

. ~10!

G is Euler’s gamma function.21 We conclude thatG(q→0)
}r s

5/4 andG(q→`)}r s
3/4 in the small-r s limit: the LFC for

the Bose condensate can be neglected in the high-de
limit r s!1. However, the LFC becomes important at inte
mediate and low particle density. In Table I we give som
numerical results for the coefficientsCi ( i 51,2,3) calculated
in the sum-rule version of the STLS theory forb5a* . These
coefficients are useful to express the LFC and the st
structure factor in an analytical form. We remember that
full STLS theory only gives numerical results. From the
coefficients one can easily check thatC1(r s→0)}1/r s

1/4 and
C2(r s→0)}r s

1/4.
The LFC is shown in Fig. 1 for a Bose condensate

width parameterb5a* and for various values ofr s : G(q) is
large at low-particle density (r s54) while G(q) becomes
small for high density (r s50.1). Note that the situation is
different in the high-density limit of a Fermi liquid wher
G(q→`)5 1

2 due to exchange effects.3

The static structure factor is shown in Fig. 2 forb5a*
and various values ofr s . The effects of the LFC in the stati
structure factor are estimated by comparingS(q) to
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57 12 121CORRELATION EFFECTS IN THE QUASI-ONE- . . .
SRPA(q): these effects are negligible at large particle dens
(r s50.1) while they become important in diluted system
(r s54).

IV. THE PAIR-DISTRIBUTION FUNCTION

The pair-distribution function~PDF! g(z) expresses the
probability to find a particle at a distancez in the presence o
a particle atz50.1,2 g(z) is related to the static structur
factor through the Fourier transform relation by

g~z!512
1

pN E
0

`

dq cos~qz!@12S~q!#. ~11!

TABLE I. CoefficientsC1 , C2 , andC3 for the LFC of a Bose
condensate of width parameterb5a* for different values of the
Wigner-Seitz parameterr s .

r s C1 C2 C3

0.01 7.080 0.1617 0.042 94
0.02 5.910 0.1945 0.058 94
0.03 5.323 0.2171 0.070 25
0.04 4.946 0.2350 0.079 09
0.06 4.465 0.2632 0.092 53
0.08 4.157 0.2857 0.102 53
0.1 3.937 0.3048 0.110 4
0.2 3.344 0.3755 0.133 8
0.3 3.058 0.4272 0.145 4
0.4 2.881 0.4701 0.151 8
0.6 2.667 0.5420 0.157 9
0.8 2.542 0.6039 0.159 6
1 2.461 0.6600 0.159 3
2 2.319 0.9064 0.149 4
3 2.346 1.140 0.138 1
4 2.446 1.382 0.128 6
6 2.767 1.910 0.115 7
8 3.181 2.495 0.108 5

10 3.637 3.118 0.104 1
20 5.856 6.387 0.087 7

FIG. 1. Local-field correctionG(q) vs wave numberq calcu-
lated within the sum-rule version of the STLS theory for a Bo
condensate of width parameterb5a* and forr s50.1, 0.4, 1, and 4.
y

We obtain gRPA(z) by replacingS(q) by SRPA(q) in Eq.
~11!. From Eqs.~7! and ~11! we can write the PDFg(z50!
in terms ofC2 as16

g~z50!512r sa* /pbC2 . ~12!

The high-density behavior ofgRPA(z50) is obtained from
Eqs.~10! and ~12! as

gRPA~z50,r s→0!512
32

9

21/4G~ 7
4 !2a* 2

p3/2b2 r s
3/4. ~13!

g(z50), gRPA(z50), and Eq.~13! are represented in Fig. 3
for b5a* . At large density, the correlation hole is small an
g(z50) is correctly described by Eq.~13!. The random-
phase approximation becomes wrong at low dens
gRPA(z50) is strongly negative at intermediate and lar
values of r s . Some results for the PDFg(z50) are also
given in Table II for various values ofr s andb. The corre-
lation hole increases with decreasing wire widthb and de-
creasing particle density. Note thatg(z50) becomes slightly
negative at very low density in the STLS approximation.

In Fig. 4 the PDF is shown versus distancez for b5a*
and for r s51 and 4. The screening length 1/q0 is a suitable

FIG. 2. Static structure factorS(q) vs wave numberq calculated
within the sum-rule version of the STLS theory for a Bose cond
sate of width parameterb5a* and for r s50.1, 0.4, 1, and 4. The
dashed lines represent the RPA results described bySRPA(q).

FIG. 3. Pair-distribution functiong(z50) vs Wigner-Seitz pa-
rameter r s calculated within the sum-rule version of the STL
theory ~solid line! and in the random-phase approximation~dashed
line! for b5a* . The dotted line represents the high-density lim
gRPA ~z50, r s→0! as given in Eq.~13!.
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TABLE II. Pair-distribution functiong(z50) in the sum-rule version of the STLS theory forb5a* /5,
a* /2, a* , 2a* , and for various values ofr s .

r s

g(z50)
b5a* /5

g(z50)
b5a* /2

g(z50)
b5a*

g(z50)
b52a*

0.1 0.800 4 0.8598 0.8956 0.9236
0.2 0.689 6 0.7760 0.8305 0.8744
0.3 0.603 6 0.7080 0.7765 0.8329
0.4 0.532 6 0.6497 0.7291 0.7960
0.6 0.419 5 0.5518 0.6477 0.7312
0.8 0.332 8 0.4714 0.5783 0.6747
1 0.264 4 0.4036 0.5177 0.6241
2 0.078 5 0.1810 0.2976 0.4277
3 0.015 1 0.0705 0.1624 0.2895
4 20.004 5 0.0176 0.0786 0.1886
6 20.007 4 20.0132 0.0000 0.0614
8 20.002 3 20.0122 20.0208 20.0021

10 0.001 93 20.0060 20.0210 20.0294
20 0.007 75 0.0090 0.0033 20.0211
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length scale to describe the correlation hole:g(z) approaches
unity for q0z'10 independently ofr s . At intermediate dis-
tance (10,q0z,30), g(z) passes through a smooth max
mum and a smooth minimum before approaching unity.
a very large distance,g(z) behaves approximately as

g~z→`!512A/~q0z!21O„1/~q0z!5/2
…. ~14!

Note that this analytical expression is not an exact res
Equation~14! was obtained by fitting our numerical resul
for g(z). Nevertheless, Eq.~14! accurately describes th
PDF for 102,q0z,104, see the inset in Fig. 4. The coeffi
cient A in Eq. ~14! is given in Table III for b5a* and
various values ofr s .

V. THE GROUND-STATE ENERGY

The correlation energy per particle~which is identical to
the ground-state energy per particle! of a one-dimensiona

FIG. 4. Pair-distribution functiong(z) vs interparticle distancez
in the sum-rule version of the STLS theory forb5a* and for r s

51 and 4. The inset describes the large-distance behavior give
Eq. ~14! ~solid lines! and by the sum-rule version of the STL
theory ~solid dots!.
r

lt.

Base condensate is obtained from a wave numberand cou-
pling constant integral of the static structure factor16

«cor~r s!/Ry* 52
a*

2p
E

0

1

dlE
0

`

dq f~qb!@12S~q,l!#.

~15!

S(q,l) in Eq. ~15! is the SSF for the coupling constantl or
for the interaction potentialV(q,l)5lV(q). In other words,
one has to calculate the LFC for each value of the coup
constant to obtain«cor(r s). The l integration in Eq.~15!
becomes trivial if the LFC is neglected. One obtains the c
relation energy in the random-phase approximation as22

«cor,RPA~r s!/Ry* 52
a*

2p E
0

`

dq f~qb!H 11
2r s~qa* !2

f ~qb!

3F12S 11
f ~qb!

r s~qa* !2D 1/2G J . ~16!

From Eqs.~2b! and ~16! we can derive the high-density be
havior of «cor,RPA as

«cor,RPA~r s→0!/Ry* 52
a*

2pb
B1

1

3

G~ 1
4 !2a* 3/2

21/4p3/2b3/2 r s
1/4.

~17a!

by

TABLE III. Coefficient A for the pair-distribution function at
large interparticle distancez as given in Eq.~14! for b5a* and for
various values ofr s .

r s A

0.1 0.142
0.4 0.268
1 0.410
4 0.817

10 1.14



th

ry
si
he
a

of

cle

se

of

t
dy
e-
tion

l

al
ue in
e

th

ion

57 12 123CORRELATION EFFECTS IN THE QUASI-ONE- . . .
B is a constant that depends on the detailed form of
interaction potential and is given by

B5E
0

`

dx f~x!55.568 33. ~17b!

The correlation energy per particle versusr s is shown in
Fig. 5 for b5a* in the sum-rule version of the STLS theo
and in the random-phase approximation. The high-den
behavior within the RPA is also shown in this figure. T
correlation energy is overestimated in the random-phase
proximation at low carrier density: Forb5a* and r s510
we obtain«cor520.2354Ry* while the RPA gives«cor,RPA
520.3355Ry* . Figure 5 indicates that the validity range
Eq. ~17! is given byr s,0.01.

Numerical results for the correlation energy per parti
are given in Table IV for various values ofr s andb: «cor is
less important for thick quantum wires and for dilute Bo

FIG. 5. Correlation energy per particle vsr s calculated within
the sum-rule version of the STLS theory~solid line! and in the
random-phase approximation~dashed line! for b5a* . The dotted
line represents the high-density limit«cor,RPA(r s→0) as given in
Eq. ~17!.
e

ty

p-

condensates. We note that the correlation energy~the inter-
action energy! is negative and monotonous as a function
r s .

The compressibilityk of a quantum liquid is an importan
physical quantity that contains information about many-bo
effects. The compressibility of an interacting on
dimensional Bose condensate is obtained from its correla
energy per particle«cor and given by1,2

1

k
5

r s

2a*
d2«cor

drs
2 . ~18!

From our results for«cor,RPA(r s→0) we derive the analytica
behavior for the high-density compressibility as

kRPA~r s→0!52
32 21/4p3/2b3/2r s

3/4

G~ 1
4 !2a* 1/2Ry*

. ~19!

We conclude thatk is always negative for a one-dimension
charged Bose condensate and has a larger absolute val
dilute systems and in thick wires. In Table V we give som
numerical results for the compressibility for different wid
parameterb and Wigner-Seitz parameterr s .

VI. DIELECTRIC FUNCTION

The plasmon dispersionvp(q) of a one-dimensional Bose
condensate is given by the dynamical dielectric funct
«(q,v) as1

«„q,vp~q!…50. ~20!

«(q,v) depends on the LFC and is expressed as2

«~q,v!511
V~q!X0~q,v!

12V~q!G~q!X0~q,v!
, ~21!
TABLE IV. Correlation energy per particle«cor in units of the effective RydbergRy* in the sum-rule
version of the STLS theory forb5a* /5, a* /2, a* , 2a* , and for various values ofr s .

r s

2«cor /Ry*
b5a* /5

2«cor /Ry*
b5a* /2

2«cor /Ry*
b5a*

2«cor /Ry*
b52a*

0.1 2.076 1.058 0.6066 0.3363
0.2 1.839 0.9701 0.5679 0.3202
0.3 1.696 0.9154 0.5434 0.3099
0.4 1.592 0.8751 0.5252 0.3021
0.6 1.443 0.8159 0.4981 0.2905
0.8 1.335 0.7720 0.4778 0.2817
1 1.250 0.7367 0.4614 0.2745
2 0.9752 0.6186 0.4055 0.2500
3 0.8121 0.5426 0.3685 0.2336
4 0.6992 0.4856 0.3398 0.2207
6 0.5510 0.4030 0.2956 0.2004
8 0.4574 0.3456 0.2620 0.1841

10 0.3928 0.3029 0.2354 0.1704
12 0.3454 0.2703 0.2139 0.1585
14 0.3089 0.2445 0.1961 0.1482
20 0.2370 0.1917 0.1578 0.1241
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TABLE V. Compressibilityk ~in units of a* /Ry* ! in the sum-rule version of the STLS theory forb
5a* /5, a* /2, a* , 2a* , and for various values ofr s .

r s

2kRy* /a*
b5a* /5

2kRy* /a*
b5a* /2

2kRy* /a*
b5a*

2kRy* /a*
b52a*

0.25 1.50 5.86 9.60 23.40
0.5 2.92 7.79 17.64 42.31
0.75 4.29 11.28 25.22 59.80
1 5.60 14.68 32.56 76.50
1.5 8.01 21.15 46.74 108.6
2 10.16 26.99 60.17 139.4
2.5 12.07 32.25 73.11 169.6
3 13.92 36.77 84.75 198.5
3.5 15.70 40.56 95.67 227.4
4 17.53 44.00 105.0 254.3
4.5 19.45 46.99 113.0 280.3
5 21.45 49.81 119.8 304.3
5.5 23.54 52.60 125.6 326.0
6 25.76 55.51 130.5 344.6
7 30.55 61.18 138.3 377.8
8 35.80 67.54 145.6 400.3
9 41.55 74.47 152.2 416.0

10 47.75 82.06 159.8 426.7
as
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where the density-density response functionX0(q,v) of the
noninteracting Bose condensate is written, see Ref. 23,

X0~q,v!54m* Na* 2
~qa* !2

~qa* !42~v/Ry* !2 . ~22!

The one-dimensional plasmon dispersion is obtained fr
Eq. ~20! in the analytical form23

vp~q!/Ry* 5qa* $ f ~qb!@12G~q!#/r s1~qa* !2%1/2.
~23!

In the long-wavelength limit, this equation becomes

vp~q→0!

Ry*
5

2

r s
1/2 qa* @ ln~1/qb!1b#1/2 ~24!

where the constantb depends on the detailed interaction p
tential V(q→0) and on the LFCG(q→0). For a parabolic
confinement modelb is given by

b52C/22 f ~qb→0!G~q→0!/4. ~25!

Note that the LFC reduces the plasmon ener
b,bRPA52C/2.

One method to calculateb would be to use our results fo
the LFC as given in Table I. This method is not the best o
because the STLS approach does not fulfill the compress
ity sum rule and overestimates the short wave number L
For this reason it is better to calculateb with the compress-
ibility sum rule and using the results fork given in Table V.
The compressibility sum rule expresses the long wavelen
LFC in terms of the compressibilityk.2 For the one-
dimensional Bose condensate one gets

V~q→0!G~q→0!521/N2k. ~26!

Using Eqs.~25! and ~26! we obtain
m

:

e
il-
.

th

b52C/21r s
2a* /Ry* k. ~27!

Our results forb calculated from Eq.~27! and using Table V
are given in Table VI for various values ofr s andb.

The long-wavelength plasmon dispersion for the qua
one-dimensional electron gas is also given by Eq.~24!. The
coefficientb for a charged Fermi liquid with parabolic con
finement is given by16

b5p2/16r s2C/22 f ~qb→0!G~q→0!/4. ~28!

This density behavior is different from the Bose condens
result @compare Eq.~25! with Eq. ~28!#. We note that the
one-dimensional plasmon dispersion for fermions has
cently been measured by Raman spectroscopy in do
GaAs quantum wires.24

The static density-density response functionX0(q)
54m* N/q2 determines the static dielectric function«(q)
5«(q,v50) by

1/«~q!512
4m*NV~q!/q2

114m*NV~q!@12G~q!#/q2 . ~29!

Note, that 4m* NV(q)/q25 f (qb)/r s(qa* )2. For small wave
numbers one finds 1/«(q→0)52G(q→0),0. Within the
RPA with G(q)50 one finds 1/«RPA(q→0)
5q2/4m* NV(q→0).0. Our numerical results for 1/«(q)
vs q are shown in Fig. 6 for different values ofr s . With
increasingr s the inverse dielectric function becomes increa
ingly negative for small and intermediate wave numbers a
approaches 1/«(q→`)51 for large wave numbers. The re
sults shown in Fig. 6 have been obtained within the sum-r
version of the STLS approach. The negative value of 1/«(q)
is, for this reason, overestimated and a more accurate v



57 12 125CORRELATION EFFECTS IN THE QUASI-ONE- . . .
TABLE VI. Coefficient b for the long-wavelength plasmon dispersion forb5a* /5, a* /2, a* , 2a* , and
for various values ofr s .

r s

2b
b5a* /5

2b
b5a* /2

2b
b5a*

2b
b52a*

0.25 0.3304 0.2993 0.2951 0.2913
0.5 0.3744 0.3207 0.3028 0.2945
0.75 0.4199 0.3385 0.3109 0.2980
1 0.4673 0.3567 0.3193 0.3017
1.5 0.5696 0.3950 0.3367 0.3093
2 0.6823 0.4368 0.3551 0.3173
2.5 0.8064 0.4824 0.3741 0.3255
3 0.9350 0.5334 0.3948 0.3339
3.5 1.069 0.5906 0.4167 0.3425
4 1.201 0.6522 0.4410 0.3515
4.5 1.330 0.7196 0.4679 0.3609
5 1.454 0.7905 0.4974 0.3708
5.5 1.574 0.8637 0.5295 0.3814
6 1.686 0.937 0.5644 0.3931
7 1.892 1.090 0.6430 0.4183
8 2.076 1.236 0.7282 0.4485
9 2.238 1.376 0.8209 0.4833

10 2.383 1.507 0.9145 0.5230
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of the short-range wave number behavior of 1/«(q→0) can
be obtained by using the compressibility sum rule.

VII. DISCUSSION

We have used a parabolic confinement potential to
scribe correlation effects in the quasi-one-dimensional B
condensate. This choice is important: the short-distance
teraction potentialV(z→0) and our quantitative results a
given in our tables depend on the model. The qualitat
results are, however, independent of the detailed form of
Coulomb interaction potential.

In real confined systems, the confinement potential gi
rise to a ground subband and to several excited subba
For the parabolic confinement model, the first excited s

FIG. 6. Inverse dielectric function 1/«(q) within the sum-rule
version vs wave numberq for different values ofr s . The result
within the RPA is shown as the dashed line forr s55.
-
e

n-

e
e

s
ds.
-

band is, for instance, described by the wave funct
F(r,w)}r exp@2r2/4b2#exp@6iw#. The excited subband
play an important role in the quasi-one-dimensional elect
gas: the one-subband model is only valid at low-particle d
sity where the Fermi energy«F is lower than the intersub
band energyDE12. This is not the case for the one
dimensional Bose condensate: all particles have conde
into the lowest subband independently of the density and
one-subband model is always valid.

In this paper we presented some analytical res
within the RPA, valid for high density. The results fo
gRPA(0,r s→0), «cor,RPA(r s→0), kRPA(r s→0), andbRPA5
2C/2 are exact and might be helpful for experimenters wh
Bose condensation in charged systems has been obtaine
the low-density regime the ground-state energy is modifi
by many-body effects described by the LFC.

In Table VII we compare for electrons and bosons t
interaction energy. It is clear that with increasing Wigne
Seitz parameter the differences between bos
(«int5«cor) and electrons («int5«cor1«ex) disappear: the sta
tistical differences between bosons and electrons becom
relevant. Similar results have been found in three and
dimensions.10,25 From the results shown in Table VII w
conclude that in the low-density limit the correlation ener

TABLE VII. Interaction energy per particle for bosons and f
electrons~Ref. 16! with b5a* . The interaction energy is given b
«int5«cor1«ex. For bosons the relation«int5«cor holds.

r s

boson
eint /Ry*

electron
eint /Ry*

electron
ecor /Ry*

1 20.4614 20.5442 20.0220
10 20.2354 20.2382 20.0856
20 20.1578 20.1579 20.0639
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in the Bose condensate behaves as the interaction ener
Fermi systems.16 We derive

«cor~r s→`!/Ry* 520.92 ln$2a* r s exp@~32C!/2#pb%/r s .
~30!

In the low-density limit the correlation energy is logarithm
cally enhanced«cor(r s→`)}2 ln(rs)/rs compared to three
and two-dimensional systems where«cor(r s→`)}21/r s .

We used a jellium model where the positive neutralizi
background ensures a globalanda local-charge neutrality. In
real one-dimensional confined systems, one has to take
account a local non-neutrality in directions perpendicular
the wire axis. This non-neutrality is responsible for a Hart
energy that modifies the ground-state energy.16

The STLS approach correctly describes the ground-s
energy of charged quantum liquids. However, this the
overestimates the small wave numbers LFC and it is bette
use another method to obtainG(q→0) with accuracy. This
can be done within the Vashishta and Singwi theory,26 which
has recently been used to calculate the LFC of a th
dimensional charged Bose condensate.9
s

la
in

to
o
e

te
y
to

e-

VIII. CONCLUSION

We studied the effects of the long-range Coulomb int
action in a one-dimensional Bose condensate within
mean-field theory ~RPA!. Many-body effects described
within the local-field correction are discussed. The LFC
given by an analytical expression depending on three co
cients, which have been calculated self-consistently. Num
cal and analytical results have been given for the p
distribution function, the correlation energy, and t
compressibility. The exact long-wavelength behavior of t
plasmon dispersion~collective modes! has been calculated
using the compressibility sum rule. The present paper
many-body effects within the STLS approach for a Bo
condensate, together with our results for electrons in Ref.
completes our study of many-body effects in quasi-o
dimensional systems.
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