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Dissipation of core-hole momentum by phonons in soft-x-ray radiation processes
from valence band to core level of wide-gap insulators

Tatsuya Minami and Keiichiro Nasu
Photon Factory, National Laboratory for High Energy Physics, The Graduate University for Advanced Studies,

1-1, Oho, Tsukuba, Ibaraki 305, Japan
~Received 4 February 1997!

The role of phonons in the soft-x-ray radiation process from a valence band to a core level in an insulator is
studied theoretically. A three-band system composed of a dispersionless core band, a conduction band, and a
valence band, with wide energy gaps between them, is taken as a typical example. Phonons with a finite
dispersion are assumed to couple weakly only with a hole in the core band~core hole!. Using this model, we
calculate the resonant second-order optical process composed of an excitation of an electron from the core
band to the conduction band by an incident x ray, and a subsequent transition from the valence band to the core
band by radiating another x ray. Without the phonons, the momentum of the core hole is expected to be well
defined by the resonance condition of the incident x ray. However, this momentum is dissipated by the
phonons. If the radiation occurs completely after this dissipation, we obtain a so-called luminescence, which is
independent of the incident x ray. In this case, the spectral shape fully reflects the density of states~DOS! of
the valence band. However, if the radiation occurs long before this dissipation effect, we obtain a resonant
Raman scattering that depends on the incident x ray. The spectral shape of this Raman scattering has a sharp
peak, quite different from the DOS. The relative intensity between these two components is determined by the
phonon dispersion, the lifetime of the core hole, and the core-hole–phonon coupling constant. From this
theoretical framework, we have concluded that there are various cases, i.e., Raman-dominant cases and
luminescence-dominant cases, as well as intermediate cases, in good agreement with various experimental
observations. The B 1s↔2p transitions of cubic BN are concluded to correspond to a luminescence-dominant
case.@S0163-1829~98!02619-8#
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I. INTRODUCTION

In the research field of soft-x-ray spectroscopy for soli
one of the most important problems is how to determine
density of states~DOS! of the valence band of each sol
correctly. The standard method to obtain information ab
this DOS is photoemission spectroscopy~PES!. In this
method, as is well known, a valence electron in a solid
emitted toward the outside of the solid after the excitation
an incident x ray. Analyzing the kinetic energy of this em
ted electron, we can finally determine the aforemention
DOS. Thus this method has already greatly contributed to
development of solid-state physics, and this situation will
be changed even in the future. However, PES has s
weaknesses, since the probe in this method is the em
electron itself. It must go through the surface of a solid b
fore it is detected, and, in some cases, the kinetic motion
this electron may be disturbed by this surface. Surfaces d
from one another, and hence the information of the DOS w
be blurred. Moreover, the whole experimental apparatus
this method must be kept in an ultrahigh vacuum to prev
the electron from being scattered by the atmosphere.

Recently, the soft-x-ray radiation spectroscopy~SXRS!
was proposed as an alternative method to determine
DOS. This method is mostly free from the aforemention
weaknesses, because its probe is the soft x ray radiated
a solid. Figure 1 schematically shows a set of optical p
cesses relevant to this SXRS. This is a resonant second-o
optical process, different form previous PES, which is a fir
570163-1829/98/57~19!/12084~10!/$15.00
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order optical process. At the first step of the SXRS, as sho
in Fig. 1, an electron is resonantly excited from a core ba
to a conduction band by an incident soft x ray. Thus
obtain a conduction electron and a vacancy~core hole! in the
core band which has no energy dispersion. At the sec
step, a valence electron, as well as an excited electron in
conduction band, can go down to the core band by radia
a secondary soft x ray. Throughout this paper, as show
Fig. 1, we focus only on the transition process from t
valence band to the core band, as well as on the aforem

FIG. 1. Schematic three-band system and the resonant sec
order optical process~left portion!. The spectrum of the x-ray ra
diation ~right portion!.
12 084 © 1998 The American Physical Society
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57 12 085DISSIPATION OF CORE-HOLE MOMENTUM BY . . .
tioned excitation process. Analyzing the energy distribut
of the radiated x ray, we obtain information about the DO
Generally speaking, this type of experimental measurem
is very difficult, because the intensity of the second-or
radiation is usually very weak. Nevertheless, this difficulty
removed gradually as the brilliance of the synchrotron rad
tion increases. At present, SXRS is becoming more and m
popular day by day.

Various experimental results have already been repo
by using the SXRS method. In these observed spectra
can clearly see two typical but rather different componen
One is a component whose peak in the spectra shifts as
incident x-ray energy changes. We call this the Raman c
ponent according to the conventional terminology for t
optics in the visible region. Another is a component who
spectral shape does not change, even if the incident ener
changed. We call this the luminescence. Intensity ratios
tween these two components change from solid to solid
the case of the B 1s↔2p transitions of cubic BN reported
by Agui et al., 1 and in the case of hexagonal BN reported
Jia et al., 2 the luminescence is dominant, and the resona
Raman component is very weak. Both components are c
parable, in the case of the Ti 2p↔3d transitions of TiO2
reported by Tezukaet al., 3 and also in the case of the C
2p↔3d transitions of CaSi and CaSi2 reported by Jiaet al. 4

On the other hand, in the case of the Mn 2p↔3d transitions
of MnO reported by Butorinet al., 5 the Raman componen
is dominant and the luminescence component canno
seen.

If we return to the case of cubic BN, an effect of th
coupling between the core hole and phonons is also cle
observed in the light absorption spectrum of the B 1s→2p
excitation region.6 This coupling is expected to play a ver
important role to make the luminescence dominant in t
case. There are many other cases7 wherein the core-hole–
phonon coupling is very important in the soft-x-ray spectr
copy.

In the present stage of theoretical studies for the SX
however, there is no systematic method to clarify why
whole spectral shape separates into Raman componen
luminescence component. It is also unknown how the inf
mation about the DOS is included in the spectral shape.
purpose of the present paper is to clarify these points th
retically. For this purpose, we will take a typical three-ba
system in an insulator. It is composed of a dispersionl
core band, a conduction band, and a valence band, with w
energy gaps between them. Phonons with a finite disper
are assumed to couple weakly with only the core hole crea
by the incident x ray. Using this model, we will calculate t
resonant second-order optical process, composed of an
tation of an electron from the core band to the conduct
band by the incident soft x ray, and a subsequent transi
from the valence band to the core band caused by radia
another soft x ray. When the energy of the incident x ray
given, the momentum of the core hole is well defined by
resonance condition, as easily seen from Fig. 1. However
momentum is dissipated by the interaction with the phono
The time required for this dissipation~dissipation time! is
determined only by the dispersion of the phonon ener
because the core band has no energy dispersion. If the x
radiation occurs after this dissipation is completed, we ob
n
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the luminescence, as schematically shown in Fig. 1. In
case, the spectral shape fully reflects the DOS, being in
pendent of the incident energy, while, if the radiation occ
long before this dissipation effect, we obtain the Ram
component. In this case, the spectral shape has a sharp
being much different from the DOS, and depends on
incident energy. The relative intensity between these t
components is determined by three factors: the dissipa
time, the strength of the core-hole–phonon coupling, and
lifetime of the core hole itself. From this theoretical fram
work, we will show that there are various cases, i.e., Ram
dominant cases, luminescence dominant cases, and inte
diate cases, in good agreements with various observed c
by recent experiments. The B 1s↔2p transitions of cubic
BN is concluded to correspond the luminescence-domin
case. In Sec. II, we will present our model Hamiltonian.

II. MODEL HAMILTONIAN

Let us consider a model composed of an electronic sys
interacting with photons and phonons. The total Hamilton
H of our system is written as

H[He1Hp1HL1HeL1Hep, ~2.1!

whereHe denotes the Hamiltonian of the electronic syste
based on the tight-binding picture, and is composed of
electron and holes.He is given as

He[«c(
l

cl
†cl1S «g

2
16TvD(

l
v l

†v l2Tv (
^ l ,l 8&

v l 8
† v l

1S «g

2
16TaD(

l
al

†al6Ta (
^ l ,l 8&

al 8
† al , ~2.2!

wherecl
† , v l

† , andal
† are creation operators of a core hole

valence hole, and a conduction electron, respectively, i
lattice site specified by a position vectorl . The lattice struc-
ture is taken to be a simple cubic. The unit of length is t
lattice constant.«c (.0) is an energy of the core hole
which is usually of the order of 100 eV.«g ~.0! is the
energy gap between the conduction and valence bands
the one-body energies are referenced from the center of
energy gap.Tv ~.0! andTa ~.0! denote the intersite trans
fer energies of the valence hole and the conduction elect
respectively, which are assumed not to be zero only betw
the neighboring two lattice sitesl and l 8. The symbol(^ l ,l 8&
denotes this conditional summation overl and l 8. When the
sign of the last term of Eq.~2.2! is 1, the energy gap be
comes indirect, while the minus sign corresponds to a dir
gap. This notation will be used hereafter. In this paper
treat a solid whose conduction- and valence-band-widths
wide enough, that is,Tv andTa are of the order of 1 eV. For
simplicity, all holes and electrons are assumed to be spinl
Throughout this paper, we also neglect the Coulombic in
actions between the electrons and the holes.

In Eq. ~2.1!, Hp denotes the Hamiltonian of photon, and
given as

Hp[(
k

vkbk
†bk , ~2.3!
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12 086 57TATSUYA MINAMI AND KEIICHIRO NASU
wherebk
† is the creation operator of a photon with a wa

vector k and an energyvk (\51). Throughout this paper
we also omit the polarization of the photon for simplicit
The symbolHL denotes the Hamiltonian of the phonon, a
is given as

HL[(
q

VqBq
†Bq , ~2.4!

whereBq
† is the creation operator of a phonon with a wa

vectorq and an energyVq . As a typical example of phonon
dispersion, we take an optical phonon with a central ene
V and with a width 6g. In this case,Vq is given as

Vq5V1g@cos~qx!1cos~qy!1cos~qz!#, ~2.5!

whereqx , qy , andqz denote the Cartesian components ofq.
In the cases of various solids referenced in Sec. I,Vq is
about 0.2 eV or less. This energy is negligibly small co
pared with «c , while its wave vectorq can take various
values in the first Brillouin zone of this simple cubic lattic
and will play an important role.

In Eq. ~2.1!, HeL denotes the linear coupling between t
core hole and the phonon, and is given as

HeL[2N21/2(
l ,q

VqSq
1/2e2 iq• lcl

†cl~Bq
†1B2q!, ~2.6!

whereSq is a dimensionless coupling constant between
core hole and the phonon.N denotes the total number o
lattice sites in the solid. Here we should note that (6g)21 is
the dissipation time of the phonon.8 It is a time within which
localized wave packets of phonons generated throughHeL
around at a certain site, propagate and dissipate all ove
solid.

In the present paper, we treat only the case where h
~or electron-! phonon couplings are weak, that is,N21(qSq
.1. In this weak case, according to Migdal’s theorem,
effects of coupling on the conduction electron and vale
hole are very small, since they have wide energy bands
the case of the core hole, however, even if this interactio
weak, it becomes very important because the core hole
no bandwidth. From this point of view, we have neglect
the couplings of phonons with the conduction electron a
valence hole.

In Eq. ~2.1!, Hep denotes the electron-photon interactio
and is given as

Hep[N21/2(
k,l

~bke
2 ik• l1bk

†eik• l !$@Mac~k!al
†cl

†

1M vc~k!clv l
†#1H.c.%. ~2.7!

Mac(k) andM vc(k) are the transition dipole matrix elemen
between the core and conduction bands, and between
valence and the core bands, respectively.

Let us now denote the state of the electron-photon sys
by ux&&, which is a direct product of the photon partunk1

,nk2
&

and the electronic partuw) as

ux&&5unk1
,nk2

&uw), ~2.8!
y
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wherein the photon part is denoted by the number repre
tation.nk1

is the number of the incident photon with a wav

vector k1 and an energyv1. nk2
denotes a number of th

radiated photon with a wave vectork2 and an energyv2. The
lowest state of the electronic part is the electron-h
vacuum. We denote it byu0)), and itsenergy is zero. The
excited stateuf lk) with a core hole and a conduction electro
is defined as

uf lk)[ak
†cl

†u0)), ak
†[N21/2(

l
e2 ik• lal

† , ~2.9!

whereak
† is the Fourier transform ofal

† with a wave vectork.
Thus the conduction electron with a wave vectork is defined,
and its energy«a(k) is given as

«a~k![S «g

2
16TaD62Ta@cos~kx!1 cos~ky!1 cos~kz!#.

~2.10!

The excited stateucKk), which has a valence hole and
conduction electron with a total wave vectorK, is defined as

ucKk)[ak
†vK2k

† u0)), vk
†[N21/2(

l
e2 ik• lv l

† .

~2.11!

Herevk
† is the Fourier transform ofv l

† with a wave vectork.
Thus the valence hole with a wave vectork is also defined,
and its energy«v(k) is given as

«v~k![S «g

2
16TvD22Tv@cos~kx!1 cos~ky!1cos~kz!#.

~2.12!

To make the latter formulation convenient, we now defi
the effective Hamiltonian of the core-hole–phonon coup
system. We can write the effective Hamiltonian (Hg) of the
phonon without the core hole as

Hg5HL . ~2.13!

The effective Hamiltonian (Hexl) of the phonon, with a core
hole at sitel , is given as

Hexl5HL2N21/2(
q

VqSq
1/2e2 iq• l~Bq

†1B2q!. ~2.14!

In Sec. III, we will calculate the transition rate of th
aforementioned resonant second-order optical process.

III. TRANSITION RATE OF THE RESONANT
SECOND-ORDER OPTICAL PROCESS

We denote the initial state of the electron-photon syst
by u i &&, and its energy byEi . Using the notation introduced
in Eq. ~2.8!, we can rewrite it as

u i &&5u1,0&u0)). ~3.1!

Meanwhile, we denote the intermediate state and its ene
by um&& andEm . This stateum&& is rewritten as

um&&5u0,0&uf lk). ~3.2!
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Similarly, we denote the final state and its energy byu f && and
Ef . This stateu f && is rewritten as

u f &&5u0,1&ucKk). ~3.3!

Using these notations, we can now define the density ma
r0 of the initial state of the total system at timet50 as

r0[u i &&
e2bHg

Tr@e2bHg#
^^ i u, ~3.4!

whereb[1/(kBT), kB is Boltzmann’s constant, andT is the
temperature. The symbol Tr denotes the trace with respe
phonons. The time evolution of the density matrixr(t) at
time t, started from this initial state, can be formally denot
as

r~ t ![e2 iHtr0eiHt . ~3.5!

The transition probabilityP(v1 ,v2 ,t) from the initial state
to the final state at timet is given as

P~v1 ,v2 ,t ![TrF(
f

^^ f ur~ t !u f &&G . ~3.6!

Expandinge2 iHt andeiHt with respect toHep up to second
order, we obtain

P~v1 ,v2 ,t !5E
0

t

dt1E
0

t1
dt2E

0

t

dt18E
0

t18dt28

3TrF(
f

^^ f uHep~ t1!Hep~ t2!r0

3Hep~ t28!Hep~ t18!u f &&G , ~3.7!

where

Hep~ t ![eiH 8tHepe
2 iH 8t, H8[He1Hp1HL1HeL .

~3.8!

Using Eqs.~2.13!, ~2.14!, ~3.1!, and~3.2!, we can rewrite Eq.
~3.7! as

P~v1 ,v2 ,t !5(
f

(
m,m8

^^ f uHepum&&^^muHepu i &&

3^^ i uHepum8&&^^m8uHepu f &&

3E
0

t

dt1E
0

t1
dt2E

0

t

dt18E
0

t18dt28

3eiE f ~ t12t18!1 iEm~ t22t1!2 iEm8~ t282t18!2 iEi ~ t22t28!

3^e2 iH exl 8~ t282t18!eiH g~ t12t18!eiH exl ~ t22t1!

3e2 iH g~ t22t28!&. ~3.9!

Here l and l 8 denote sites in which the core hole is gen
ated, and the symbol^•••& denotes the average with respe
to Hg ,
ix

to

-
t

^•••&[
Tr@•••e2bHg#

Tr@e2bHg#
. ~3.10!

Changing the set of time variables from (t1, t2, t18 , t28) to (x,
s, t, t8) as

x[
t11t18

2
, s[t12t18 , t[t22t1 , t8[t282t18 ,

~3.11!

we can rewriteP(v1 ,v2 ,t) for large t, as

P~v1 ,v2 ,t !5(
f

(
m,m8

^^ f uHepum&&^^muHepu i &&

3^^ i uHepum8&&^^m8uHepu f &&

3tE
2t

t

dsE
0

t

dtE
0

t

dt8

3ei ~Ef2Ei !s1 i ~Em2Ei !t2 i ~Em82Ei !t8

3^eiH gt8e2 iH exl 8t8eiH gseiH exlte2 iH gte2 iH gs&.

~3.12!

It is well known that the transition rateR(v1 ,v2) is defined
by the relation

R~v1 ,v2![
]P~v1 ,v2 ,t !

]t U
t→`

, ~3.13!

and substituting Eq.~3.12! into its right-hand side, we obtain

R~v1 ,v2!5(
f

(
m,m8

^^ f uHepum&&^^muHepu i &&^^ i uHepum8&&

3^^m8uHepu f &&E
2`

`

dsE
0

`

dtE
0

`

dt8

3ei ~Ef2Ei !s1 i ~Em2Ei !t2 i ~Em82Ei !t8

3^eiH gt8e2 iH exl 8t8eiH gseiH exlte2 iH gte2 iH gs&.

~3.14!

Now let us calculate the phonon part in Eq.~3.14!. For this
purpose, we use the following time-ordered exponen
forms:

eiH gt8e2 iH exl 8t85T1expF2 i E
0

t8
du8DHl 8~u8!G ,

~3.15!

eiH gseiH exlte2 iH gte2 iH gs5T2expF i E
0

t

duDHl~u1s!G ,
~3.16!

whereDHl(u) is defined as
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DHl~u![eiH guDHle
2 iH gu,

DHl[2N21/2(
q

VqSq
1/2e2 iq• l~Bq

†1B2q!. ~3.17!

The symbolsT1 and T2 in Eqs. ~3.15! and ~3.16! denote
positive and negative time orderings, respectively. From E
~3.15! and ~3.16!, the phonon part in Eq.~3.14! is rewritten
as
s.

^eiH gt8e2 iH exl 8t8eiH gseiH exlte2 iH gte2 iH gs&

5K T1expF2 i E
0

t8
du8DHl 8~u8!G

3T2expF i E
0

t

duDHl~u1s!G L . ~3.18!

For further calculation, we can use the cumulant expans
method.9 Because the interaction is linear, we can termin
this cumulant expansion up to the second order, and ob
the following exact result:
for-
K T1expF2 i E
0

t8
du8DHl 8~u8!GT2expF i E

0

t

duDHl~u1s!G L
5expF2E

0

t8
du18E

0

u18du28^DHl 8~u18!DHl 8~u28!&GexpF2E
0

t

du1E
0

u1
du2^DHl~u2!DHl~u1!&G

3expF E
0

t8
du8E

0

t

du^DHl 8~u8!DHl~u1s!&G . ~3.19!

Hereafter, we will be concerned only with the absolute zero temperature. Executing further calculations in each exp@•••# under
this condition, we obtain

K T1expF2 i E
0

t8
du8DHl 8~u8!GT2expF i E

0

t

du DHl~u1s!G L
5e22Se2 iW~t2t8!expFN21(

q
SqeiVqtGexpFN21(

q
Sqe2 iVqt8G

3expFN21(
q

Sqe2 iq•~ l 2 l 8!eiVqs~eiVqt21!~e2 iVqt821!G , ~3.20!

whereS andW are the Huang-Rhys factor and the lattice relaxation energy, respectively, and they are defined as

S[N21(
q

Sq , W[N21(
q

SqVq . ~3.21!

So far, we have calculated the phonon part in Eq.~3.14!, while we can also calculate the electron-photon part straight
wardly from Eqs.~2.9!, ~2.10!, ~2.11!, ~2.12!, ~3.1!, ~3.2!, and~3.3!. Consequently, we can obtain

R~v1 ,v2!5
1

N3
uM vc~k2!Mac~k1!u2e22SE

2`

`

dsE
0

`

dtE
0

`

dt8(
K,k

(
D

ei ~k12k22K !•D

3ei [«a~k!1«v~K2k!1v22v1]s1 i [«a~k!1«c2W2v1] t2 i [«a~k!1«c2W2v1] t8

3expFN21(
q

SqeiVqtGexpFN21(
q

Sqe2 iVqt8GexpFN21(
q

Sqe2 iq•DeiVqs~eiVqt21!~e2 iVqt821!G ,
~3.22!

D[ l 2 l 8. ~3.23!
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Let us consider the significance of the summation oveD
in Eq. ~3.22!. The symbolsl and l 8 denote the sites from
which the secondary photon is radiated. Therefore, te
containingD express the phase difference of the photon
diated from each site. Since our system is a quantu
mechanical one, we do not know in which site the core h
is created and annihilated. What we finally obtain are o
the conduction electron, the valence hole, and the radi
photon, all of which are in the lattice with a translation
symmetry. For this reason, we must take all possible in
mediate states into account as well as the mutual interfere
ft
le
tr
s
-
-

e
y
ed
l
r-
ce

among them. This interference effect is taken into accoun
the summation overD, and determines the spectral shape
this secondary radiation.

Expanding the last line of Eq.~3.22! with respect toSq ,
and executing the integration overs of the first line, we
obtain a multiphonon expansion form forR(v1 ,v2) as

R~v1 ,v2![uM vc~k2!Mac~k1!u2(
n50

`

Rn~v1 ,v2!,

~3.24!
R0~v1 ,v2!5
1

N3(K,k
(
D

ei ~k12k22K !•DU (
m50

`
e2SSm

m! E
2`

`

dV8Dm~V8!E
0

`

dtei [«a~k!1«c2W1V82v1] tU2

3d@«a~k!1«v~K2k!1v22v1#, ~3.25!

Rn~v1 ,v2!5
1

N3

1

n! (
q1 , . . . ,qn

S N2n)
i 51

n

Sqi D(K,k
(
D

ei S k12k22K2(
i 51

n

qi D •DU (
m50

`
e2SSm

m! E
2`

`

dV8Dm~V8!

3E
0

`

dtei [«a~k!1«c2W1V82v1] tF)
i 51

n

~eiVqi
t21!GU2

dF«a~k!1«v~K2k!1(
i 51

n

Vqi
1v22v1G ~n51,2, . . .!,

~3.26!
ton
c-

ses
ger

ple,
are
whereRn denotes a rate of the transition process which le
n phonons in the final state, as well as the conduction e
tron, the valence hole, and the photon. Here we have in
duced am-fold phonon density functionDm(V) as

Dm~V![E
2`

`

dV18•••E
2`

`

dVm8 F)
i 51

m

D~V i8!G
3dS V2(

i 51

m

V i8D ~m51,2, . . .!, ~3.27!

D~V![
1

SN(q
Sqd~V2Vq!, ~3.28!
s
c-
o-

D0~V![d~V!. ~3.29!

The wave vectors of the incident and the radiated pho
k1 andk2 are sufficiently small compared with that of ele
trons and phonons. Therefore, we can approximatek15k2
50, hereafter. We also introduce the energy width (2gR) of
the core hole, and this width includes all the decay proces
of the core hole such as the radiative decay and the Au
decay, phenomenologically. ThisgR does not include all the
possible decay processes of the excited state. For exam
nonradiative decay processes of the conduction electron
omitted. After taking the summation overD in Eqs. ~3.25!
and ~3.26!, and using thisgR , we finally obtain
R0~v1 ,v2!5
1

N(
k
U (

m50

`
e2SSm

m! E
2`

`

dV8Dm~V8!E
0

`

dtei [«a~k!1«c2W1V82v11 igR] tU2

d@«a~k!1«v~2k!1v22v1#,

~3.30!

Rn~v1 ,v2!5
1

N21nn!
(

q1 , . . . ,qn
S )

i 51

n

Sqi D(K,k
dS K1(

i 51

n

qi D
3U (

m50

`
e2SSm

m! E
2`

`

dV8Dm~V8!E
0

`

dt ei [«a~k!1«c2W1V82v11 igR] tF)
i 51

n

~eiVqi
t21!GU2

3dF«a~k!1«v~K2k!1(
i 51

n

Vqi
1v22v1G . ~3.31!
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HereR0 denotes the rate of the no-phonon process. Oncev1

is given, as schematically shown in Fig. 1, the momenta
the core hole and the conduction electron are determine
the resonant condition@«a(k)1«c2v1#.0. This condition
comes from the integral overt in Eq. ~3.30!. Therefore, the
valence electron which can go down to the core band is
uniquely determined. Consequently,v2 itself is also deter-
mined by thed function in Eq.~3.30!. This process does no
contain the dissipation of the core-hole momentum at
while Rn denotes the rate of then-phonon process. In the
first line of Eq.~3.31!, we have ad function which is absen
in the case of Eq.~3.30!. It implies the total momentum
conservation, and means that the momentum of the c
hole, determined by the aforementioned resonance condi
dissipates throughout the solid by then phonons. For these
reasons, the competition between the dissipation time of
phonons and the lifetime of the core hole play an import
role in the spectral shape of the radiated photon.

One may ask why the core hole, which is well localiz
within each atomic core, can have such a definite mom
tum. The answer is as follows. Since the core hole at e
site is created by the same photon, the phase relation am
the sites is well defined by the aforementioned resonant c
dition. In this situation it can be regarded that the core h
has a definite momentum. When the core hole disappea
new photon will be radiated. However, the new photon
herits this phase relation faithfully, and results in se
interference as explained before in connection with E
~3.22! and ~3.23!. If this photon is radiated before the cor
hole momentum dissipates, the rate of this process is den
mainly by R0. Therefore, in this case, the spectrum of t
radiated photon mainly contributes to the Raman compon
and shows a sharp peak unlike the DOS, as shown in Fig
If the photon is radiated after the dissipation is complet
however, the rate is mainly denoted by(n51

` Rn . In this case,
the core hole is almost equally distributed throughout
momentum space.

If we change our viewpoint from momentum space to r
space, we can understand that a phonon wave packet is
erated at a certain site, propagates to other sites, and d
pates throughout the solid. Thus the energy of the core h
in this site decreases, as shown in Eq.~3.21!. Therefore, the
phase relation mentioned above disappears. Even in
case, this energy lowering (W) of the core hole is very dif-
ficult to observe, since it is sufficiently smaller than that
the x ray. A valence electron with any momentum is no
ready to go down to the core band, since the aforementio
phase relation has disappeared. Consequently, the spec
fully reflects the DOS, and results in the luminescen
shown in Fig. 1. The above-mentioned points are the es
tial concepts of the resonant second-order optical proces
the core-hole region, and are clarified by our theory for
first time, to our knowledge. We should note that this situ
tion is entirely different from the case of the photoelectr
emission by the soft-x-ray excitation of the core electron.
this case, the excitations started from each site are c
pletely orthogonal, and cannot interfere each with oth
since a core hole created at a certain site survives even in
final state. In Sec. IV, we will present our numerical resu
for the transition rate.
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IV. NUMERICAL RESULTS

For practical calculations, as mentioned above, we
two types of band gaps: indirect and direct. As we will sho
below, this difference is very important. Cubic BN has
indirect band gap, and hexagonal BN a direct band gap. A
typical example for both cases,«g , Tv , andTa are set at 5,
0.5, and 0.5 eV, respectively. The transition dipole mat
elementsMac(k1) and M vc(k2) are approximated to be in
dependent of the wave vectors of photons. As for the pho
dispersion,V and g are set at 0.08 and 0.0233 eV, as
typical example.Sq is assumed to be independent ofq, and is
set at 1.5, as an example of weak coupling. Due to this sm
Sq , numerical calculations forR(v1 ,v2) in Eqs. ~3.24!,
~3.30!, and~3.31! can be terminated up tom53 andn52.

A. Indirect-gap case

Figures 2–4 show the spectra of the indirect-gap ca
Each curve is normalized so that its integrated intensity
unity. Hereafter, we denote the dissipation time of a phon
by tp , and the lifetime of the core hole bytR . In terms ofg
andgR , these are given astp5(6g)21 andtR5(2gR)21. In
Fig. 2, the spectra are calculated by setting 2gR50.01 eV,
that is,tp is shorter thantR . In this figure, arrows indicate
the incident x-ray energy, and the specially outlined lar
arrow indicates the energy of resonance with the conduct
band edge. Spectra of the low-energy off-resonance c
have a sharp peak centered atv1211 eV. The reason of such
profile is as follows. The spectrum of this case is compo
only of the Raman component, because the x ray is radia
through the virtual processes. Furthermore, the total rate
this process is composed almost ofR0, because other rate
(Rn ,n51,2, . . . ) are for higher-order perturbation pro
cesses. For these reasons, the spectrum shows a joint de

FIG. 2. R(v1 ,v2) as a function ofv1 and v2, of the indirect
gap.«g55 eV, Ta50.5 eV, Tv50.5 eV, and 2gR50.01 eV. The
arrow indicatesv1. The specially outlined arrow is the beginning o
the resonance. Each spectrum is normalized so that its integr
intensity is unity. The shaded curve is the DOS.
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of states between the conduction electron and the vale
hole under the condition that their total wave vectorK, de-
fined in connection with Eq.~2.11!, is zero. In the case of th
present band structure, the energy difference between
duction and valence bands with the same wave vecto
always 11 eV. Therefore, the total energy of the electr
hole pair left at the final state is always 11 eV, too. Th
situation is schematically shown in Fig. 5. On the other ha
spectra of the resonance, shown in Fig. 2, are composed
small Raman component and a large luminescence com
nent which fully reflects the DOS. The Raman compon
moves across the luminescence component from the
energy to high-energy side as the incident energy increa
just as shown in Fig. 2.

Let us turn to Fig. 3. In this case, the spectra are ca
lated by setting 2gR50.06 eV, that is,tR andtp are almost
comparable. In the case of resonance, the intensity of
luminescence component becomes comparable to that o
Raman component. In the case of Fig. 4, the spectra

FIG. 3. Same as Fig. 2, but with 2gR50.06 eV.

FIG. 4. Same as Fig. 2, but with 2gR50.2 eV.
ce

n-
is
-

,
f a
o-
t
-

es,

-

e
he
re

calculated by setting 2gR50.2 eV, and hence,tp is longer
than tR . Even in the resonance cases, we can see tha
intensity of the luminescence component becomes m
smaller than that of the Raman component.

Let us now show a relation amongtp , tR , and the spec-
tral shape, qualitatively. As shown in Fig. 1, the excited st
created by the incident x ray has two decay channels. On
a radiative decay channel and the other is the dissipa
channel by the phonons. The total decay rate is (tR

21

1tp
21), and a partial intensity for the dissipation channel

tp
21/(tR

211tp
21). The rest becomestR

21/(tR
211tp

21), and
this is nothing but a partial intensity for the radiative dec
channel. The former partial intensity is equal to the lumin
cence component, and the rest is the Raman one. Thus
Raman component becomes dominant, astR becomes
shorter. Our calculated results are consistent with this th
rem. Let us finally mention theSq dependence of the spectr
Even if tp is shorter thantR , the Raman component be
comes dominant asSq decreases from 1.5 to 0.

B. Direct-gap case

Figures 6–8 show the spectra of the direct-gap cases
Fig. 6, the spectra are calculated by setting 2gR50.01 eV,
and hence,tp is shorter thantR . Spectra of the low-energy
off-resonance case are broadened and range fromv1217 eV
to v125 eV. The reason of such profile is as follows. T
energy difference between conduction and valence ba
with the same wave vector is distributed from 5 to 17 e
unlike the indirect-gap case. Therefore, a total energy of
electron-hole pair left at the final state also ranges from 5
17 eV. Thus the spectra have a broad profile, and this si
tion is shown schematically in Fig. 9. In the resonance ca
shown in upper curves of Fig. 6, spectra are composed of
small Raman and the large luminescence components, w
also fully reflects the DOS. The Raman component mo
across the luminescence from the high- to low-energy s
as the incident energy increases, contrary to the aforem
tioned indirect cases. This type of behavior of the Ram

FIG. 5. Schematic diagram of the low-energy off-resonance
the indirect gap~left portion!. The spectrum of the x-ray radiatio
~right portion!.
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component was reported by Carlisleet al. 10 in their experi-
ment on the C 1s↔2p transitions of graphite.

As tR becomes short relative totp , the Raman compo
nent becomes dominant in the spectra, as shown in Fig
and 8. However, theSq dependence of these spectra are sa
as the indirect cases.

Let us now turn to the nature of the total integrated inte
sity I (v1), which is defined as

I ~v1![E
2`

`

dv2R~v1 ,v2!. ~4.1!

Figure 10 showsI (v1) as a function ofv1. This result shows
I (v1) suddenly increase as the resonance condition is s
fied.

It should be noted that, in such an off-resonance region
v1,

FIG. 7. Same as Fig. 6, but with 2gR50.06 eV.

FIG. 6. The spectra in the case of the direct gap with 2gR

50.01 eV.
the
. 7
e

-

is-

of

u«g/21«c2v1u@gR ,W,V8,

I (v1), given from Eqs.~3.30!, ~3.31!, and~4.1!, simply be-
comes

I ~v1!}
1

~«g/21«c2v1!2
.

Therefore, its behavior is almost independent ofgR , and is
also common to both direct and indirect cases.

V. CONCLUSION AND DISCUSSION

So far, we have clarified the dynamics of the core-h
momentum dissipation due to phonons in the soft-x-ray
diation processes from the valence band to the core level.
have also clarified how the DOS of the valence band is
flected in the SXRS spectra, and why these spectra sep
into Raman and luminescence components.

The spectra of the low-energy off-resonance case
composed only of the Raman component. They reflect
joint density of states of the conduction and valence ba
under the condition that the total momentum (K) of the
electron-hole pair left at the final state is zero. We can
obtain sufficient information about the DOS from the spec
of the low-energy off-resonance case. In the resonance c
on the other hand, the spectra are composed of Raman
luminescence components. Only the latter fully reflects
DOS.

The intensity ratios between the two components, i.e.,
luminescence and Raman, are determined by three fac
the dissipation time (tp) of a phonon, the lifetime (tR) of the
core hole, and the strength (S) of the core-hole–phonon in
teraction. We can obtain various cases, i.e., the Ram
dominant case, the luminescence-dominant case, and th
termediate cases. WhentR is shorter thantp , the intensity of
the Raman component becomes greater than that of the
minescence component. However, iftR and tp are compa-
rable, the intensity of the Raman component becomes c
parable with that of the luminescence component. On

FIG. 8. Same as Fig. 6, but with 2gR50.2 eV.
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other hand, iftR is longer thantp , the intensity of the lu-
minescence component becomes higher than that of the
man components. Thus we can obtain various situations.
Raman-dominant situation seems to be realized in the
2p↔3d transitions of MnO reported in Ref. 5. The interm
diate situation is realized in the Ti 2p↔3d transition of TiO2
reported in Ref. 3, and also in the Ca 2p↔3d transition of
CaSi and CaSi2 reported in Ref. 4. On the other hand, th
luminescence-dominant situation is realized in the B 1s↔2p
transition of cubic BN reported in Ref. 1, and the hexago
BN transition reported in Ref. 2. Additionally, the behavi
of the Raman component in the direct-gap cases is real
in the C 1s↔2p transition of graphite reported in Ref. 10

Let us discuss the broken symmetry of the translatio
invariance of the lattice, due to a creation of the core hole
we have a core hole in a certain cite (l ), this state is com-
pletely orthogonal to a state with a core hole in another
( l 8). In this case, we have a well-defined broken symme
In our second-order optical process, however, the core
is created and subsequently annihilated, and what we fin
obtain are a conduction electron, a valence hole and a r
ated photon, all of which are in the lattice. Consequently,

FIG. 9. Schematic diagram of the low-energy off-resonance
the direct gap~left portion!. The spectrum of the x-ray radiation
~right portion!.
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translational symmetry is recovered at the final state.
Let us now consider differences between the reson

second-order optical process in the x-ray region and
of the visible region. The optical process which we discus
in this paper is essentially the same as that of the vis
region.11 However, in the visible region, the radiative life
time of the intermediate state is about 1029 s. Since this
lifetime is much longer than the dissipation time of the ph
non, the intensity of the luminescence is usually much str
ger than that of the resonant Raman scattering. For this
son, the competition betweentR and tp is a distinctive
feature which appears most typically in the present soft-x-
region.

Finally, the following problems are left unsolved, and a
targets of our future studies: core exciton effects,12 valence
exciton effects, cases with strongS, many-band~more than
three! cases, and multielectron excitation effects. To stu
mechanisms determining an intensity ratio between Rayle
and Raman scattering is also a problem to be dealt with
our future work.
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FIG. 10. I (v1) as a function ofv1. The outlined arrow is the
beginning of the resonance.
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