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Three-point bounds and other estimates for strongly nonlinear composites
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A variational procedure due to Ponte Castaiaet al.[Phys. Rev. B46, 4387(1992] is used to determine
three-point bounds and other types of estimates for the effective response of strongly nonlinear composites
with random microstructures. The variational procedure makes use of estimates for the effective properties of
“linear comparison composites” to generate corresponding estimates for nonlinear composites. Several
equivalent forms of the variational procedure are derived. In particular, it is shown that the mean-field theory
of Wanet al.[Phys. Rev. B4, 3946(1996 ], which also makes use of a linear comparison composite, together
with a certain “decoupling approximation,” leads to results that are precisely identical to those that can be
obtained from the earlier variational procedure. Finally, three-point bounds and other estimates are computed
for power-law composites with cell-type microstructures, and the results are compared with random resistor
network simulations available from the literatuf80163-182@08)03619-4

I. INTRODUCTION mate corresponding to the Hashin-Shtrikman lower bound
for the effective conductivity could also be interpreted as a
The computation of the effective properties of inhomoge-rigorous lower bound for the effective nonlinear conductivity
neous media is a classical problem that has attracted the aif the class of all two-phase statistically isotropic power-law
tention of numerous investigators in many different fields.composites. In addition, it has been shéithat the varia-
However, most of the efforts to date have concentrated otional procedure is capable of reproducing exactly the esti-
the effective properties dinear systems. In particular, the mates of Zeng, Bergman, Hui, and StrélUtbr weakly non-
problem of estimating the effective conductivifgr, analo- linear composites, as well as the Hashin-Shtrikman bounds
gously, the effective dielectric constamif a linear compos-  of Talbot and Willi$ for composites with arbitrary nonlin-
ite conductor(or dielectrig has played a central role in this earity. However, the variational procedtifds in agreement
endeavor-? By comparison, the study afonlinear hetero-  only to first order in contrast with the small-contrast pertur-
geneous systems has not received nearly as much atténtiobation results of Blumenfeld and Bergntarfor strongly
in spite of its relative importance in the context of manynonlinear composites. A general procedure that reproduces
different physical phenomena, including dielectric break-the small-contrast perturbation estimates of Blumenfeld and
down, burning out of fuses, and laser phenomena. AdditionaBergmarn® exactly to second-order in the contrast has been
examples could be given in the realms of electric, magneticproposed recently by Ponte Castda and co-workers.Un-
and other physical and mechanical properties of matter.  fortunately, this “second-order” procedure cannot be used to
The aim of this paper is to make use ofvariational  obtain bounds.
procedure originally developed by Ponte Casata and In this paper, new three-point bounds of the Béfappe
co-workers>* to obtain three-point bounds and other esti-are given for power-law composites. For this purpose, use is
mates for strongly nonlinear composite conductors. Thanade of a simplified form of the Beran bounds, due to
variational procedure allows the estimation of the effectiveMilton.* The results are compared with the random resistor
energy-density function of a nonlinear composite with anetwork(RRN) simulations of Lee and Yt by making use
given random microstructure in terms of the effective prop-of the result of Millet® to estimate the three-point Milton
erties of a fictitious “linear comparison composite” with parameters for composites wigymmetric cellmicrostruc-
precisely the same microstructure as the nonlinear composdres, which are akin to the RRN microstructures. Compari-
ite. This means thaany estimate for the effective properties sons with the EMA, MGA and other bounds and estimates
of the “linear comparison composite” can be used to generare also given.
ate a corresponding estimate for the nonlinear composite. In A secondary aim of this work is to make connections with
particular, explicit estimates of the Maxwell-Gari¢GA)  the recent work of Hui and collaboratdrswho also devel-
and effective mediuth (EMA) type have been givénfor  oped estimates for strongly nonlinear composites making use
power-law dielectrics with statistically isotropic distributions of corresponding estimates for linear composites. Their ap-
of perfectly conducting and insulating inclusions. Similarly, proach involves a certain decoupling approximativft, to-
MGA-type estimates have also been git/dar two-phase gether with a well-known resdit to estimate the second
power-law composites in terms of simple one-dimensionamoment of the electric field in the linear comparison com-
optimization problemgwhich are equivalent to the solution posite. Thus, it is shown that the approach of Hui and
of one nonlinear algebraic equatjorBecause of a well- collaborators’*®in general leads tprecisely the samesti-
known connection between the linear MGA estimates ananates as the variational approach of Ponte Castarand
Hashin-Shtrikmah bounds, the nonlinear MGA-type esti- co-workers* (and not just to second-order in the contrast, as
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noted by Hui and collaboratdr$. One distinct advantage of
the variational approach of Ponte Casda and
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and wherec" = (4"} is the volume fraction of phageand
the symbol( )" is used to denote a volume average over

co-workers” is that the resulting estimates are given in thephaser. This variational formulation of the conductivity

form of bounds for the effective energy function of the com-

problem for the composite is equivalent to the standard

posite, and thus implicitly contains more information thanpoundary-value-problem formulation in terms of the equa-

the corresponding approach of Hui and collaborat6ré.in

passing, it is also shown that the approach of Hui an

collaborators’1®

tions V-J=0 and VXE=0, together with the uniform

- cboundary conditionp=—E-x on J(, where ¢ is the elec-
is closely related(and therefore also rostatic potential.

equivalent to a “modified secant” approach first proposed

The main advantage of the variational formulation is that

by Suquet’ for nonlinear elastic systems. Other recent workshe effective behavior of the nonlinear composite is then

of interest include the papers of Gao and’tas well as the
articles of Levy and Bergmait;?* Sali and Bergmaf® and
Palenberg and Felderhtf.

characterized in terms of only one scalar variable, namely,

W. The main difficulty associated with the computation of
the effective energy function of the compositd) lies in the

The nonlinear composite conductor occupies a region iy that the exact fields are extremely difficult to determine
space(), and its constitutive behavior is characterized by an, general. However, approximate methods have been devel-

energy-density functiow, depending on the position vector
x and the electric fieldg, such that the current field is
given by

ow

J(X)= E

(x,E). (1)

It is assumed that the composite conductor is made Uy of
homogeneous, isotropic phases, so that

N
WxE)= 2 674 (E), (2)

=
where (") and ¢(") denote, respectively, the indicator func-
tion of phaser and its isotropic potential. The functioms”
(r=1,...N) are such thap(”=1 if x is in phaser and 0
otherwise. The functiong(") are taken to be convex in the
magnitude of the electric fielE=|E| and are assumed to be
such thatp")(E)=0 and thatp(”(0)=0. A commonly used
form for the phase potentials is

1
¢(r)(E)=mX(r)|E|”+l, 3)

where (" is the nonlinear conductivity and the nonlinearity

exponenm is taken to be between 0 and The special case
whenn=1 corresponds to a linear conductor.
It is knowr? that theeffectiveconstitutive behavior of the

oped to address this problem in the contextiméar consti-
tutive behavior for the composite. In the following, a varia-
tional principle that allows for the use of known estimates
for linear composites to obtain corresponding estimates for
nonlinear composites is recalled.

Il. THE VARIATIONAL PRINCIPLE

Following an analogous development for nonlinearly elas-
tic solids?® Ponte Casfaeda“ proposed a variational
method to estimate the effective energy functionsaflin-
ear composite conductors in terms of the energy functions of
appropriately choserlinear composite conductors. Such
“linear comparison composites” are defined by the qua-
dratic energy-density function

WO(X!E) = %O-O(X) E2! (7)
whereoy(X) is the conductivity of the fictitious linear com-
posite conductor.

Under the hypothesis that the potentigls) of the non-
linear composite are convex @&, it can be shownthat

¢"(E)=max{3,E*=v" (o)},

00=0

®

where

composite conductor may be expressed in terms of the aver-

ages of the fields]=(J) andE=(E), where angular brack-
ets are used to denote volume averages €yeria

AW
“—(E).

JE

J= @)

v (og)=max{zooE*— ¢"(E)}. (€)
E

This representation is based on Legendre duality for the
function ") defined byf(")(E?)= ¢((E). In fact, (" (E)
=(f)y** (E?) andv V(o) =f"* (30p), wheref* denotes

In this relation, the effective energy-density function of thethe Legendre transform of. Note that if the ") are

compositeW is most easily described in terms of the mini-

mum energy principle

N
W(E)zmin(w(x,E))zmin[E c(”<¢(”(E)>(”], (5)

EeK Eek(r=1

whereK is the set of trial electric fields, defined by

K={E|[E=-Ve(x) in O, and ¢=—E-x on a0},
(6)

smooth, the maximum conditions in Eg8) and (9) are
attained at the stationarity conditions

v
N 00’0

1 (9¢(r)

12 - _
2B E JE

and

(10

[90]

respectively, which are inverses of each other.

When relation(8) for (") is used in expressiof®) for W,
and the order of the maximum ovey, is interchanged with
the minimum ovelE, it follows®>* that



N
W(E)= max { Wo(E)— >, (v (o))",
0(x)=0 r=1

1y

Where\7vo denotes the effective energy function of the linear
comparison composite, with local energy functigf, such
that

\7V0(E_)= min{wg(X,E)).
EeK

12

Thus, expressiorill), together with Eqs(9) and (12),
provide an alternative variational representation of the effec
tive energy function of theonlinear composite in terms of
the effective energy function of a fictitiolear composite
material, the choice of which is determined by Etj). It is
emphasized that the conductivity coefficiem§(x) of the
comparison composite in Eql1) is an arbitrary non-
negative function of position. In addition, it is important to
note that the minimum principléll) is valid only under the
hypothesis that the potentiads™ are convex orE2. If, on
the other hand, theé("”) are concave oft? [as would be the
case if 0=n<1 in Eq.(3)], an analogous result would hold,
but with the maximum in Eq(11) replaced by a minimum,
and with the functions (") redefined such that the maximum
in Eqg. (9) is replaced by a minimum.

Ill. BOUNDS AND ESTIMATES FOR EFFECTIVE
RESPONSE

A. Composites with generally nonlinear isotropic phases

Even if the properties of the nonlinear phases are assumed
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The expressioril4) was first given by Ponte CaStatet®
in the context of nonlinear elastic composites, and Ponte
Castaeda and co-worke?$ for nonlinear conductor com-
posites. It is important to note that the above estimates for
N-phase nonlinear composites are in the form of lower
bounds forW. Thus, lower bounds fotry may be used to
generate corresponding lower bounds % but, on the
other hand, upper bounds foy, may not be used to generate
upper bounds foW. In practice, however, one is usually
only interested in obtaining estimates for the effective con-
stitutive relations of a specific type of composite. Because
bounds forW do not usually translate into bounds for the
constitutive relationg4), one could ignore the inequality in
relation(14), and reinterpret it as ampproximateequality to
obtain estimates for the effective potentials of specific types
of composites. Thus, for example, Ponte Castih sug-
gested the use of the Hashin-Shtrikman boufms MGA
estimates for o, to generate estimates for the effective po-
tentialsW of nonlinear composites witparticulate micro-
structures. Alternatively, an EMA estimate foy, was uset
to estimateW for composite materials witQranular micro-
structures.

Denoting by the optimal values o&$® from relations

(14), it follows, from Eq.(4), that
(& ,...,agm)#

&
(16)

N
J=0o(oV,....c0E+ D,
r=1

]

&0’0

é’crg)

~(r
c?O'g)

JE

")
o

(
070'g>

&)

to be homogeneous, the solutions for the comparison con-

ductivities o(x) in the variational principlg11) are not in

so that, if the maximum in the expressi@}) for the general

general constant over the individual phases, unless the actuadund is attained at the stationarity condition
fields happen to be constant over the phases. However, a

lower bound forW may be obtained by restricting the class LE. dog ~ (1) S(N\E
of trial comparison conductivity fields to be constant within 2= o (067,00
each phase, that is, by letting ©
v'®
N =c® 5 (55))  (s=1..N) (17
(S) 0 yuee y
ao)=2, 00y, (13 70
r=1

T . . then the effective constitutive relation of the nonlinear com-
with oy’ constant. This follows from the fact that the maxi- posite reduces to

mum over a set is, in general, larger than the maximum over
any subset of the original set. Therefore, from E44) and

J o) AN E
(12), it follows that J=0y(05",...,00 " )E.

(18)
Note that, in spite of its appearance, this effective constitu-
tive relation is fully nonlinear because the variabJragEJ de-
pend nonlinearly on thé&.

Next, it is observed from its definitiofiLl5) that o is a
homogeneous function of degree éméhe conductivity con-
stantsUgs) of the linear comparison composite, so that, by

N
W(E)= max{ Wo(E)— >, cPu(al)
r=1

O'g)>0

] . (14

where now

N
~ — — = . 1 ,
Wo(E)=%E- (UOE):E]IE[E 21 c<r>ag><52><r>] . Euler’s theorem,
15 N o
| o | 0 S o) S0 =G, 19
In this last relationg is the effective conductivity tensor of r=1 doy

a linear comparison composite with precisely the same mi- B
crostructure as the original nonlinear compositéote that It then follows that the expressiqi4) for W can be rewrit-
o, is in general anisotropik. ten in the form
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N 10y pra posite.[This relation is easily demonstratetby differentia-
W(E)= max 2 ci = T {ﬁ %—v“)(o(r)) tion of Eq. (15) with respect toor® .] Also, it is noted that
o0 "1 2c¢ dog the stationary condition&l7) for the &§¥ can be rewritten in
(20 the form
and, becausa'&olﬁcrg) is homogeneous of degree zero, it PG
follows from relations(8) that HE® ]2— e (e8) (s=1,..N), (23
N
cMDpM(EM
Z ¢ E ), (1) which, by the equivalence of the relatiofis0), can be in-
verted to give
where
1 (90,0 1/2
EG= E- oV ..o q s=1,..N). . 1 99" .
{c“) dos G0 o) ( ) ag@:%— (E®) (s=1,...N). (24)
(22) E JE

It is noted thaE(r)—[(E2>(’)]1’2 where(E?)(" is the second Using these expressions in E(2), the following set of
moment of the electric field in the linear comparison com-implicit relations is obtained for the variabl&s®):

dog [ 1 ap . 1 9N
: (E jE EM = (:E (E(N)))% (871t 29

The form(21) for the effective potentialV and its relation to  relation. Note that the first gives a simpler form for the ef-
the second momentE€2)(" of the electric field in the linear fective constitutive relation and the second gives a simpler
comparison composite were first given by Sudliét the  form for the effective potential.
context of nonlinear elasticity.

Finally, the effective constitutive relation of the nonlinear B. Composites with power-law isotropic phases

composite conductor can be written in the form An important class of composite conductors is that de-

fined by the form(3) for the phase potentialg("). For this
PRI . special class of nonlinear composites, it is possible to sim-
— (EN) |E, plify further the two equivalent formél4) and (21) for W.

ED gE TTEN GE 28 Thus, from Eqgs(19) and(22), note that

where the variableg(") are obtained from relation®5) as
functions of the applied fiel&, the nonlinear properties of R -~ =
the constituent ph%pses of the composite conpdugtor, and ap- 2‘1 C(r)ag’ [EV]?=E-(5oE). 27
propriate statistical information about the microstructure.

n conclysmn, there are two completeéﬂglvalentways Also, for a power-law composite, it follows, from EqR1)
of expressing the bounds f&W and the estimates for the and (24), that
effective constitutive relatiori4) that arise from the varia- '
tional principle(11). The first is given in terms of the opti-
mal comparison COI’]dUCtIVItIee'(S), as determined by the N N
relations (17), and it involves expressiofi4) for W and \7V(E)>2 cpM(EM)= 2 (NgOEM]2
expression(18) for the effective constitutive relation. The =
second is given in terms of the second moment variables (28)

E®, defined by relationg25), and it involves expression Putting these two results together, it is concluded that, for a
(21) for W and expressiofi26) for the effective constitutive power-law composite,

=z

1 agt . 1 9™

(EN)

ED HE )""W IE

% . (29
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When the microstructure is statistically isotropic, the effec- 2
tive potential of the power-law composite conductor takes Go=1 >, cVe[1+TO (gl gl?)]?
the form r=1
2 -1
W(E):m} n+l, (30) x[le C(S)[|+T(O)(a-gs)— (00))]—1] , (33

which, via Eq.(29), defines an effective nonlinear conduc-

vhich, where o) denotes the conductivity tensor of a reference
tivity x such that

material, andT(®) is an associated tensor characterizing the

1 1 9 . 1 9™ . microstructure of the random composite. For general ellip-
Y= —— 0ol = EW), ..., =—— (EN) soidal symmetry,
En-1 Y ED TUEN GE ’
_ 39 T(O):; & |Z_l§|_3dw (34)
wherea is now the isotropic conductivity of the linear com- 47 detZ Jig=1 §.(a§)0>§) '

parison composite. This is the relation first given by Hui and

co-workers” Although these authors derived this result asand the two different types of MGA estimates are obtained

an estimaténot a boung by making use of a certain decou- by settingo’®) equal to eithewt" or o{?). The correspond-

pling approximation**? it follows from the above deriva- ing EMA estimate is obtained by setting® equal too, and

tion that it is strictly a special case of the variational boundsolving the resulting implicit equation fa,.

(14). When one of the phases in the nonlinear composite, say

phase 2, is taken to be either perfectly insulatjiri" (E)

=0], or perfectly conducting¢(”(E)—, unlessE=0, in

_ . which case¢(”=0], the expressions of Sec. Il A can be
As already noted, for two-phase system&,/dol) i shown to simplify further. Thus, the expressit88) for the

homogeneous of degree zero in the variata§3 andof?,  effective conductivity of the linear comparison composite

so that, from Eq(22), the variable€™® andE(® can depend can be shown to take the form

on o and ¢{?) only through the ratios{"/5{?). This

means that a single nonlinear equation &S})/&E,Z) can be '5'02081)2, (39

generated from relation®4), by taking their ratio, so that

IV. RESULTS FOR TWO-PHASE SYSTEMS

where the tensa¥, depends on the type of estim#MGA or

G E@ 5pMoE(EW) EMA), but not ona®. It then follows, from Eq.(21), that
D ED D e e (32 the effective potential for this special class of composites can
@ ED 9¢d19E(E?)

be written in the form
Thus, given an estimate for the effective conductivaty of
the linear comparison composite, this equation can be solved
numerically for the ratioz{"/a§” . Next, the variableg®
andE® can be computed explicitly in terms of this ratio and

the result can be used in relatié21) to obtain a bound for Which depends on the type of estimaldGA or EMA) via
the effective potentia‘W 3. For example, the MGA expressions for the perfectly in-

sulating and perfectly conducting cases are, respectively,

_ — 1 —
W(E)>c<1>¢><1>(W E~EE), (36)

A. General ellipsoidal microstructures
3= C(l)[l — 0.81)1-(1)]“ _ C(l)o.gl)-r(l)]*l
In this section, the special case is considered of two-phase

nonlinear composite conductors wihisotropicrandom mi- and

crostructures exhibiting “ellipsoidal symmetry.” Ellipsoidal (37)
symmetry is a generalization of statistical isotropy, due to c®@

Willis,?” which assumes that the two-point probability func- =1+ [oMT®] 1,

tion for the distribution of the two phases in the composite is
given by P9 (x—x")=P9(Z(x—x")]), for some sym-  The corresponding EMA expressions are more complicated,
metric tensoZ. Note that the limiting case whe#is equal  requiring numerical computation in general.
to the identity tensot corresponds to statistically isotropic
microstructures. In order to be able to make use of the results
of Sec. Il A to obtain estimates for the effective energy
function W of composites with generally nonlinear phases, For statistically isotropicnonlinear composites, it is jus-
corresponding estimates for the effective conductivity tensofified to consider only isotropic linear comparison compos-
o, of the linear comparison conductor defined by relationites withWy(E) = 35,E?, whereo, is now a scalar function
(15) are required in terms of the phase conductivitigd  of the nonlinear conductivities?, the volume fractions
=¢{I and the microstructure. ¢, and the microstructure. For the special case of two-
A sufficiently general expressigi from which MGA and ~ phase composites, there are several closely related bounds
EMA estimates for composites with general ellipsoidal sym-and estimates for linear composite materials, which can be
metry may be obtained, is given by all characterized in terms of the equation

B. Statistically isotropic microstructures
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FIG. 1. Plots of various bounds and estimates for the effective nonlinear condudgivity two-dimensional §=2), statistically
isotropic, two-phase, power-law conductors with power exponest8 and 5, and conductivity ratiogt®/ =100 and 1000.

W@ (gl 522 xP1x™M=100 and 1000. The various curves are described

c(z)ogl)+c(1)a§)2)+(d—l)ao' below. The IabeIsN—_andWJr correspond to Fhe rigorous
(39) upper gnd lower Weiner bounds for composites with arbi-

trary microstructures. The labels MGAand MGA+ corre-

whered stands for the dimension of the underlying spacespond to the Maxwell-Garnett estimates for particulate mi-
and o, takes on different values for the different types of crostructures with fewer and more conducting materials
estimates, as described below. Assuming tat> o2, the ~ occupying the matrix phase, respectively. Because the

choices op— and —0 correspond, respectively, to the MGA— estimate for the conductivity of a linear composite
Weinef® upper and lower bounds. The choiegs= Ugl) and happens to coincide With t_he Has_hin-Sh_trikman IOV\_/er bound
cr(()z) yield the two MGA approximations for particulate mi- for the set of all statistically isotropic composites, the

crostructures with phases 1 and 2, respectively, in the matrif]GA— curve is identical to the rigorous nonlinear Hashin-
phase—they also lead to the Hashin-Shtrikfhapper and Shtrikman lower bound, which is denoted H&nd was first

lower bounds. The Choicesfozg(l)o_(()l)_i_ éV(z)aéz) and given by Ponte Ca_s"t'adaet al? Thg IabeI_RRN correspolr;ds
(£D6D+ £2]52) 1 give the upper and lower bounds of to the random reS|stor5network simulations of Wetral,,

3. 0 . D_1_ /2 following Lee and Yu'® The labelB— corresponds to the
Beran,” in terms of the three-point paramet?)=1-¢ rigorous Beran lower bourd® for statistically isotropic mi-
of Milton.™ Finally, the choiceoo=0y gives the EMA ap-  rostryctures with the choice of the Milton three-point pa-
proximation. rameter,(Y=c®). This choice is appropriate for “symmet-

As already noted at the beginning of this section, for theric cell” microstructures:® which are similar in character to

special case of two-phase composiies, it is possible to Obta'fﬂe discrete RRN microstructures. The laBet is used to

an expression foV involving only one nonlinear equation genote the estimat@ot a rigorous bounkthat is obtained by
for the ratio 6§"/af?. Computing the variable€” and  making use of the Beran upper bound for the linear compari-
E® in terms of this ratio, the nonlinear conductivigyfor ~ son composite. Finally, the label EMA is used to describe the
the power-law composite may then be obtained from Eqeffective medium approximation. These estimates are identi-
(30). For illustrative purposes, results fgrare presented in cal to those first given by Waet al® for this case. The
Fig. 1 for two-dimensional d=2), statistically isotropic, main observations in the context of this figure are as follows.
two-phase, power-law conductors with=3 and 5, and First, as already notéd the EMA estimates are in good

Fo=c VoD + D@
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agreement with the RRN simulations, in spite of the fact thaexplain the relatively good accuracy of the procedure is to
the EMA and RRN estimates correspond to continuum anahote that the method is based on a variational approximation
discrete systems, respectively. Second, the Weiner, Hashigonsisting in the use of appropriate trial fields in the context
Shtrikman, and Beran bound progressively narrow the rangef an exact minimum principle for the effective energy-
of possible behavior by introducing first-, second-, and third-density function of the nonlinear composite. In particular,
order statistical information, respectively. Although the this means that the variational procedure of Ponte Cadtan
MGA and EMA are believed to be good approximations forand co-workerd* (and the equivalent method of Hui and
particulate and granular type microstructures, respectively, co-workers’) provides the “best” possible approximation
the Beran-Milton nonlinear bounds given in this work pro- within the context of linear comparison composites with mi-
vide a way of characterizing more general types of micro-crostructures identical to those of the nonlinear composites.
structures, for which the MGA and EMA estimates may notAccording to this variational interpretation, improved esti-
be appropriate. Implementation of these new bounds wouldnates could only be obtained by making use of more sophis-
of course, require computation of the relevant three-pointicated linear comparison composites accounting for the dis-

parameters, as in Torquald. tribution of the electric field within the various phases of the
nonlinear composite. An example of such improved esti-
V. CONCLUDING REMARKS mates is provided by the exact estimates givien sequen-

tially laminated nonlinear composites, where the distribution

In this work, three-point bounds and other estimates havgy the electric field is piecewise constant within each phase.
been computed for the effective response of strongly nonlin-

ear composites by means of the variational procedure of
Ponte Casfaeda and co-workerd? making use of the notion
of a linear comparison composite. The results were com-
pared with random resistor network simulations available We wish to acknowledge the support of the Office of
from the literature and found to be very accurate. One way ttNaval Research through Grant No. N00014-96-1-0681.
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