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Three-point bounds and other estimates for strongly nonlinear composites
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A variational procedure due to Ponte Castan˜edaet al. @Phys. Rev. B46, 4387~1992!# is used to determine
three-point bounds and other types of estimates for the effective response of strongly nonlinear composites
with random microstructures. The variational procedure makes use of estimates for the effective properties of
‘‘linear comparison composites’’ to generate corresponding estimates for nonlinear composites. Several
equivalent forms of the variational procedure are derived. In particular, it is shown that the mean-field theory
of Wanet al. @Phys. Rev. B54, 3946~1996!#, which also makes use of a linear comparison composite, together
with a certain ‘‘decoupling approximation,’’ leads to results that are precisely identical to those that can be
obtained from the earlier variational procedure. Finally, three-point bounds and other estimates are computed
for power-law composites with cell-type microstructures, and the results are compared with random resistor
network simulations available from the literature.@S0163-1829~98!03619-4#
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I. INTRODUCTION

The computation of the effective properties of inhomog
neous media is a classical problem that has attracted th
tention of numerous investigators in many different field
However, most of the efforts to date have concentrated
the effective properties oflinear systems. In particular, the
problem of estimating the effective conductivity~or, analo-
gously, the effective dielectric constant! of a linear compos-
ite conductor~or dielectric! has played a central role in thi
endeavor.1,2 By comparison, the study ofnonlinear hetero-
geneous systems has not received nearly as much atten3

in spite of its relative importance in the context of ma
different physical phenomena, including dielectric brea
down, burning out of fuses, and laser phenomena. Additio
examples could be given in the realms of electric, magne
and other physical and mechanical properties of matter.

The aim of this paper is to make use of avariational
procedure, originally developed by Ponte Castan˜eda and
co-workers,5,4 to obtain three-point bounds and other es
mates for strongly nonlinear composite conductors. T
variational procedure allows the estimation of the effect
energy-density function of a nonlinear composite with
given random microstructure in terms of the effective pro
erties of a fictitious ‘‘linear comparison composite’’ wit
precisely the same microstructure as the nonlinear com
ite. This means thatany estimate for the effective propertie
of the ‘‘linear comparison composite’’ can be used to gen
ate a corresponding estimate for the nonlinear composite
particular, explicit estimates of the Maxwell-Garnett6 ~MGA!
and effective medium7 ~EMA! type have been given5 for
power-law dielectrics with statistically isotropic distribution
of perfectly conducting and insulating inclusions. Similar
MGA-type estimates have also been given4 for two-phase
power-law composites in terms of simple one-dimensio
optimization problems~which are equivalent to the solutio
of one nonlinear algebraic equation!. Because of a well-
known connection between the linear MGA estimates a
Hashin-Shtrikman8 bounds, the nonlinear MGA-type est
570163-1829/98/57~19!/12077~7!/$15.00
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mate corresponding to the Hashin-Shtrikman lower bou
for the effective conductivity could also be interpreted as
rigorous lower bound for the effective nonlinear conductiv
of the class of all two-phase statistically isotropic power-la
composites. In addition, it has been shown5,4 that the varia-
tional procedure is capable of reproducing exactly the e
mates of Zeng, Bergman, Hui, and Stroud10 for weakly non-
linear composites, as well as the Hashin-Shtrikman bou
of Talbot and Willis9 for composites with arbitrary nonlin
earity. However, the variational procedure5,4 is in agreement
only to first order in contrast with the small-contrast pertu
bation results of Blumenfeld and Bergman11 for strongly
nonlinear composites. A general procedure that reprodu
the small-contrast perturbation estimates of Blumenfeld
Bergman11 exactly to second-order in the contrast has be
proposed recently by Ponte Castan˜eda and co-workers.12 Un-
fortunately, this ‘‘second-order’’ procedure cannot be used
obtain bounds.

In this paper, new three-point bounds of the Beran13 type
are given for power-law composites. For this purpose, us
made of a simplified form of the Beran bounds, due
Milton.14 The results are compared with the random resis
network~RRN! simulations of Lee and Yu,15 by making use
of the result of Miller16 to estimate the three-point Milton
parameters for composites withsymmetric cellmicrostruc-
tures, which are akin to the RRN microstructures. Comp
sons with the EMA, MGA and other bounds and estima
are also given.

A secondary aim of this work is to make connections w
the recent work of Hui and collaborators,17 who also devel-
oped estimates for strongly nonlinear composites making
of corresponding estimates for linear composites. Their
proach involves a certain decoupling approximation,18,19 to-
gether with a well-known result2,3 to estimate the secon
moment of the electric field in the linear comparison co
posite. Thus, it is shown that the approach of Hui a
collaborators17,18 in general leads toprecisely the sameesti-
mates as the variational approach of Ponte Castan˜eda and
co-workers5,4 ~and not just to second-order in the contrast,
12 077 © 1998 The American Physical Society



f

he
m
an

n

d
rk

a
r

f

c-

e
e

ty

ve
-

he
i-

er

ard
a-

at
en
ely,
of

ine
vel-

a-
es
for

as-
l

of
h
a-

-

the

12 078 57P. PONTE CASTAÑEDA
noted by Hui and collaborators17!. One distinct advantage o
the variational approach of Ponte Castan˜eda and
co-workers5,4 is that the resulting estimates are given in t
form of bounds for the effective energy function of the co
posite, and thus implicitly contains more information th
the corresponding approach of Hui and collaborators.17,18 In
passing, it is also shown that the approach of Hui a
collaborators17,18 is closely related ~and therefore also
equivalent! to a ‘‘modified secant’’ approach first propose
by Suquet20 for nonlinear elastic systems. Other recent wo
of interest include the papers of Gao and Li,21 as well as the
articles of Levy and Bergman,23,24 Sali and Bergman,25 and
Palenberg and Felderhof.22

The nonlinear composite conductor occupies a region
spaceV, and its constitutive behavior is characterized by
energy-density functionw, depending on the position vecto
x and the electric fieldE, such that the current fieldJ is
given by

J~x!5
]w

]E
~x,E!. ~1!

It is assumed that the composite conductor is made up oN
homogeneous, isotropic phases, so that

w~x,E!5(
r 51

N

u~r !~x!f~r !~E!, ~2!

whereu (r ) andf (r ) denote, respectively, the indicator fun
tion of phaser and its isotropic potential. The functionsu (r )

(r 51, . . . ,N) are such thatu (r )51 if x is in phaser and 0
otherwise. The functionsf (r ) are taken to be convex in th
magnitude of the electric fieldE5uEu and are assumed to b
such thatf (r )(E)>0 and thatf (r )(0)50. A commonly used
form for the phase potentials is

f~r !~E!5
1

n11
x~r !uEun11, ~3!

wherex (r ) is the nonlinear conductivity and the nonlineari
exponentn is taken to be between 0 and̀. The special case
whenn51 corresponds to a linear conductor.

It is known3 that theeffectiveconstitutive behavior of the
composite conductor may be expressed in terms of the a
ages of the fields,J̄5^J& andĒ5^E&, where angular brack
ets are used to denote volume averages overV, via

J̄5
]W̃

]Ē
~Ē!. ~4!

In this relation, the effective energy-density function of t
compositeW̃ is most easily described in terms of the min
mum energy principle

W̃~Ē!5min
EPK

^w~x,E!&5min
EPK

H (
r 51

N

c~r !^f~r !~E!&~r !J , ~5!

whereK is the set of trial electric fields, defined by

K5$EuE52“w~x! in V, and w52Ē•x on ]V%,
~6!
-

d

s

in
n

r-

and wherec(r )5^u (r )& is the volume fraction of phaser and
the symbol^ & (r ) is used to denote a volume average ov
phaser . This variational formulation of the conductivity
problem for the composite is equivalent to the stand
boundary-value-problem formulation in terms of the equ
tions “•J50 and “3E50, together with the uniform
boundary conditionw52Ē•x on ]V, wherew is the elec-
trostatic potential.

The main advantage of the variational formulation is th
the effective behavior of the nonlinear composite is th
characterized in terms of only one scalar variable, nam
W̃. The main difficulty associated with the computation
the effective energy function of the composite~11! lies in the
fact that the exact fields are extremely difficult to determ
in general. However, approximate methods have been de
oped to address this problem in the context oflinear consti-
tutive behavior for the composite. In the following, a vari
tional principle that allows for the use of known estimat
for linear composites to obtain corresponding estimates
nonlinear composites is recalled.

II. THE VARIATIONAL PRINCIPLE

Following an analogous development for nonlinearly el
tic solids,26 Ponte Castan˜eda5,4 proposed a variationa
method to estimate the effective energy functions ofnonlin-
ear composite conductors in terms of the energy functions
appropriately chosenlinear composite conductors. Suc
‘‘linear comparison composites’’ are defined by the qu
dratic energy-density function

w0~x,E!5 1
2 s0~x!E2, ~7!

wheres0(x) is the conductivity of the fictitious linear com
posite conductor.

Under the hypothesis that the potentialsf (r ) of the non-
linear composite are convex onE2, it can be shown5 that

f~r !~E!5 max
s0>0

$ 1
2 s0E22v ~r !~s0!%, ~8!

where

v ~r !~s0!5max
E

$ 1
2 s0E22f~r !~E!%. ~9!

This representation is based on Legendre duality for
function f (r ) defined byf (r )(E2)5f (r )(E). In fact, f (r )(E)

5( f (r ))** (E2) andv (r )(s0)5 f (r )* ( 1
2 s0), wheref * denotes

the Legendre transform off . Note that if the f (r ) are
smooth, the maximum conditions in Eqs.~8! and ~9! are
attained at the stationarity conditions

1
2 E25

]v ~r !

]s0
and s05

1

E

]f~r !

]E
, ~10!

respectively, which are inverses of each other.
When relation~8! for f (r ) is used in expression~5! for W̃,

and the order of the maximum overs0 is interchanged with
the minimum overE, it follows5,4 that
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57 12 079THREE-POINT BOUNDS AND OTHER ESTIMATES FOR . . .
W̃~Ē!5 max
s0~x!>0

H W̃0~Ē!2(
r 51

N

c~r !^v ~r !
„s0~x!…&~r !J ,

~11!

whereW̃0 denotes the effective energy function of the line
comparison composite, with local energy function~7!, such
that

W̃0~Ē!5min
EPK

^w0~x,E!&. ~12!

Thus, expression~11!, together with Eqs.~9! and ~12!,
provide an alternative variational representation of the eff
tive energy function of thenonlinearcomposite in terms of
the effective energy function of a fictitiouslinear composite
material, the choice of which is determined by Eq.~11!. It is
emphasized that the conductivity coefficients0(x) of the
comparison composite in Eq.~11! is an arbitrary non-
negative function of position. In addition, it is important
note that the minimum principle~11! is valid only under the
hypothesis that the potentialsf (r ) are convex onE2. If, on
the other hand, thef (r ) are concave onE2 @as would be the
case if 0<n,1 in Eq. ~3!#, an analogous result would hold
but with the maximum in Eq.~11! replaced by a minimum
and with the functionsv (r ) redefined such that the maximu
in Eq. ~9! is replaced by a minimum.

III. BOUNDS AND ESTIMATES FOR EFFECTIVE
RESPONSE

A. Composites with generally nonlinear isotropic phases

Even if the properties of the nonlinear phases are assu
to be homogeneous, the solutions for the comparison c
ductivitiess0(x) in the variational principle~11! are not in
general constant over the individual phases, unless the a
fields happen to be constant over the phases. Howeve
lower bound forW̃ may be obtained by restricting the cla
of trial comparison conductivity fields to be constant with
each phase, that is, by letting

s0~x!5(
r 51

N

u~r !~x!s0
~r ! , ~13!

with s0
(r ) constant. This follows from the fact that the max

mum over a set is, in general, larger than the maximum o
any subset of the original set. Therefore, from Eqs.~11! and
~12!, it follows that

W̃~Ē!> max
s0

~r !
.0

H W̃0~Ē!2(
r 51

N

c~r !v ~r !~s0
~r !!J , ~14!

where now

W̃0~Ē!5 1
2 Ē•~s̃0Ē!5min

EPK
H 1

2 (
r 51

N

c~r !s0
~r !^E2&~r !J .

~15!

In this last relation,s̃0 is the effective conductivity tensor o
a linear comparison composite with precisely the same
crostructure as the original nonlinear composite.~Note that
s̃0 is in general anisotropic.!
r
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The expression~14! was first given by Ponte Castan˜eda26

in the context of nonlinear elastic composites, and Po
Castañeda and co-workers5,4 for nonlinear conductor com
posites. It is important to note that the above estimates
N-phase nonlinear composites are in the form of low
bounds forW̃. Thus, lower bounds fors̃0 may be used to
generate corresponding lower bounds forW̃, but, on the
other hand, upper bounds fors̃0 may not be used to genera
upper bounds forW̃. In practice, however, one is usuall
only interested in obtaining estimates for the effective co
stitutive relations of a specific type of composite. Becau
bounds forW̃ do not usually translate into bounds for th
constitutive relations~4!, one could ignore the inequality in
relation~14!, and reinterpret it as anapproximateequality to
obtain estimates for the effective potentials of specific typ
of composites. Thus, for example, Ponte Castan˜eda4 sug-
gested the use of the Hashin-Shtrikman bounds~or MGA
estimates! for s̃0 to generate estimates for the effective p
tentialsW̃ of nonlinear composites withparticulate micro-
structures. Alternatively, an EMA estimate fors̃0 was used5

to estimateW̃ for composite materials withgranular micro-
structures.

Denoting byŝ0
(s) the optimal values ofs0

(s) from relations
~14!, it follows, from Eq.~4!, that

J̄5s̃0~ ŝ0
~1! ,...,ŝ0

~N!!Ē1(
r 51

N H 1
2 Ē•F ]s̃0

]s0
~r !

~ ŝ0
~1! ,...,ŝ0

~N!!ĒG
2c~r !

]v ~r !

]s0
~r !

~ ŝ0
~r !!J ]ŝ0

~r !

]Ē
, ~16!

so that, if the maximum in the expression~14! for the general
bound is attained at the stationarity condition

1
2 Ē•F ]s̃0

]s0
~s! ~ ŝ0

~1! ,...,ŝ0
~N!!ĒG

5c~s!
]v ~s!

]s0
~s! ~ ŝ0

~s!! ~s51,...,N!, ~17!

then the effective constitutive relation of the nonlinear co
posite reduces to

J̄5s̃0~ ŝ0
~1! ,...,ŝ0

~N!!Ē. ~18!

Note that, in spite of its appearance, this effective const
tive relation is fully nonlinear because the variabless0

(s) de-
pend nonlinearly on theĒ.

Next, it is observed from its definition~15! that s̃0 is a
homogeneous function of degree onein the conductivity con-
stantss0

(s) of the linear comparison composite, so that,
Euler’s theorem,

(
r 51

N

s0
~r !

]s̃0

]s0
~r ! 5s̃0 . ~19!

It then follows that the expression~14! for W̃ can be rewrit-
ten in the form
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W̃~Ē!> max
s0

~r !
.0

(
r 51

N

c~r !H 1

2

s0
~r !

c~r !
Ē•F ]s̃0

]s0
~r !

ĒG2v ~r !~s0
~r !!J ,

~20!

and, because]s̃0 /]s0
(r ) is homogeneous of degree zero,

follows from relations~8! that

W̃~Ē!>(
r 51

N

c~r !f~r !~Ê~r !!, ~21!

where

Ê~s!5H 1

c~s! Ē•F ]s̃0

]s0
~s! ~ ŝ0

~1! ,...,ŝ0
~N!!ĒG J 1/2

~s51,...,N!.

~22!

It is noted thatÊ(r )5@^E2& (r )#1/2, where^E2& (r ) is the second
moment of the electric field in the linear comparison co
ar

f
a

e
-
-

e
le
-

posite.@This relation is easily demonstrated2,3 by differentia-
tion of Eq. ~15! with respect tos0

(s) .# Also, it is noted that
the stationary conditions~17! for the ŝ0

(s) can be rewritten in
the form

1
2 @Ê~s!#25

]v ~s!

]s0
~s! ~ ŝ0

~s!! ~s51,...,N!, ~23!

which, by the equivalence of the relations~10!, can be in-
verted to give

ŝ0
~s!5

1

Ê~s!

]f~s!

]E
~Ê~s!! ~s51,...,N!. ~24!

Using these expressions in Eq.~22!, the following set of
implicit relations is obtained for the variablesÊ(s):
c~s!@Ê~s!#25Ē•F ]s̃0

]s0
~s! S 1

Ê~1!

]f~1!

]E
~Ê~1!!,...,

1

Ê~N!

]f~N!

]E
~Ê~N!!D ĒG ~s51,...,N!. ~25!
f-
ler

e-

im-

r a
The form~21! for the effective potentialW̃ and its relation to
the second momentŝE2& (r ) of the electric field in the linear
comparison composite were first given by Suquet20 in the
context of nonlinear elasticity.

Finally, the effective constitutive relation of the nonline
composite conductor can be written in the form

J̄5s̃0S 1

Ê~1!

]f~1!

]E
~Ê~1!!,...,

1

Ê~N!

]f~N!

]E
~Ê~N!!D Ē,

~26!

where the variablesÊ(r ) are obtained from relations~25! as
functions of the applied fieldĒ, the nonlinear properties o
the constituent phases of the composite conductor, and
propriate statistical information about the microstructure.

In conclusion, there are two completelyequivalentways
of expressing the bounds forW̃ and the estimates for th
effective constitutive relation~4! that arise from the varia
tional principle~11!. The first is given in terms of the opti
mal comparison conductivitiesŝ0

(s) , as determined by the
relations ~17!, and it involves expression~14! for W̃ and
expression~18! for the effective constitutive relation. Th
second is given in terms of the second moment variab
Ê(s), defined by relations~25!, and it involves expression
~21! for W̃ and expression~26! for the effective constitutive
p-

s

relation. Note that the first gives a simpler form for the e
fective constitutive relation and the second gives a simp
form for the effective potential.

B. Composites with power-law isotropic phases

An important class of composite conductors is that d
fined by the form~3! for the phase potentialsf (r ). For this
special class of nonlinear composites, it is possible to s
plify further the two equivalent forms~14! and ~21! for W̃.
Thus, from Eqs.~19! and ~22!, note that

(
r 51

N

c~r !s0
~r !@Ê~r !#25Ē•~s̃0Ē!. ~27!

Also, for a power-law composite, it follows, from Eqs.~21!
and ~24!, that

W̃~Ē!>(
r 51

N

c~r !f~r !~Ê~r !!5
1

n11 (
r 51

N

c~r !s0
~r !@Ê~r !#2.

~28!

Putting these two results together, it is concluded that, fo
power-law composite,
W̃~Ē!>
1

n11
Ē•F s̃0S 1

Ê~1!

]f~1!

]E
~Ê~1!!,...,

1

Ê~N!

]f~N!

]E
~Ê~N!!D ĒG . ~29!
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When the microstructure is statistically isotropic, the effe
tive potential of the power-law composite conductor tak
the form

W̃~Ē!5
1

n11
x̃Ēn11, ~30!

which, via Eq.~29!, defines an effective nonlinear condu
tivity x̃ such that

x̃>
1

Ēn21
s̃0S 1

Ê~1!

]f~1!

]E
~Ê~1!!,...,

1

Ê~N!

]f~N!

]E
~Ê~N!!D ,

~31!

wheres̃0 is now the isotropic conductivity of the linear com
parison composite. This is the relation first given by Hui a
co-workers.17 Although these authors derived this result
an estimate~not a bound!, by making use of a certain decou
pling approximation,18,19 it follows from the above deriva-
tion that it is strictly a special case of the variational bou
~14!.

IV. RESULTS FOR TWO-PHASE SYSTEMS

As already noted, for two-phase systems,]s̃0 /]s0
(s) is

homogeneous of degree zero in the variablesŝ0
(1) and ŝ0

(2) ,
so that, from Eq.~22!, the variablesÊ(1) andÊ(2) can depend
on ŝ0

(1) and ŝ0
(2) only through the ratioŝ0

(1)/ŝ0
(2) . This

means that a single nonlinear equation forŝ0
(1)/ŝ0

(2) can be
generated from relations~24!, by taking their ratio, so that

ŝ0
~1!

ŝ0
~2!

5
Ê~2!

Ê~1!

]f~1!/]E~Ê~1!!

]f~2!/]E~Ê~2!!
. ~32!

Thus, given an estimate for the effective conductivitys̃0 of
the linear comparison composite, this equation can be so
numerically for the ratioŝ0

(1)/ŝ0
(2) . Next, the variablesÊ(1)

andÊ(2) can be computed explicitly in terms of this ratio an
the result can be used in relation~21! to obtain a bound for
the effective potentialW̃.

A. General ellipsoidal microstructures

In this section, the special case is considered of two-ph
nonlinear composite conductors withanisotropicrandom mi-
crostructures exhibiting ‘‘ellipsoidal symmetry.’’ Ellipsoida
symmetry is a generalization of statistical isotropy, due
Willis,27 which assumes that the two-point probability fun
tion for the distribution of the two phases in the composite
given by P(rs)(x2x8)5P(rs)

„uZ(x2x8)u…, for some sym-
metric tensorZ. Note that the limiting case whereZ is equal
to the identity tensorI corresponds to statistically isotrop
microstructures. In order to be able to make use of the res
of Sec. III A to obtain estimates for the effective ener
function W̃ of composites with generally nonlinear phase
corresponding estimates for the effective conductivity ten
s̃0 of the linear comparison conductor defined by relat
~15! are required in terms of the phase conductivitiess0

(r )

5s0
(r )I and the microstructure.

A sufficiently general expression,27 from which MGA and
EMA estimates for composites with general ellipsoidal sy
metry may be obtained, is given by
-
s

d

ed

se

o

s

lts

,
r

-

s̃05H (
r 51

2

c~r !s0
~r !@ I1T~0!~s0

~r !2s0
~0!!#21J

3H (
s51

2

c~s!@ I1T~0!~s0
~s!2s0

~0!!#21J 21

, ~33!

where s0
(0) denotes the conductivity tensor of a referen

material, andT(0) is an associated tensor characterizing
microstructure of the random composite. For general el
soidal symmetry,

T~0!5
1

4p det Z E
uju51

j^ j

j•~s0
~0!j!

uZ21ju23dv, ~34!

and the two different types of MGA estimates are obtain
by settings0

(0) equal to eithers0
(1) or s0

(2) . The correspond-
ing EMA estimate is obtained by settings0

(0) equal tos̃0 and
solving the resulting implicit equation fors̃0 .

When one of the phases in the nonlinear composite,
phase 2, is taken to be either perfectly insulating@f (r )(E)
50#, or perfectly conducting@f (r )(E)→`, unlessE50, in
which casef (r )50#, the expressions of Sec. III A can b
shown to simplify further. Thus, the expression~33! for the
effective conductivity of the linear comparison compos
can be shown to take the form

s̃05s0
~1!S, ~35!

where the tensorS depends on the type of estimate~MGA or
EMA!, but not ons (1). It then follows, from Eq.~21!, that
the effective potential for this special class of composites
be written in the form

W̃~Ē!>c~1!f~1!S 1

c~1! Ē•SĒD , ~36!

which depends on the type of estimate~MGA or EMA! via
S. For example, the MGA expressions for the perfectly
sulating and perfectly conducting cases are, respectively

S5c~1!@ I2s0
~1!T~1!#@ I2c~1!s0

~1!T~1!#21

and

S5I1
c~2!

c~1! @s0
~1!T~1!#21.

~37!

The corresponding EMA expressions are more complica
requiring numerical computation in general.

B. Statistically isotropic microstructures

For statistically isotropicnonlinear composites, it is jus
tified to consider only isotropic linear comparison compo
ites withW̃0(Ē)5 1

2 s̃0Ē2, wheres̃0 is now a scalar function
of the nonlinear conductivitiess0

(r ) , the volume fractions
c(r ), and the microstructure. For the special case of tw
phase composites, there are several closely related bo
and estimates for linear composite materials, which can
all characterized in terms of the equation
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FIG. 1. Plots of various bounds and estimates for the effective nonlinear conductivityx̃ of two-dimensional (d52), statistically
isotropic, two-phase, power-law conductors with power exponentsn53 and 5, and conductivity ratiosx (2)/x (1)5100 and 1000.
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~2!2
c~1!c~2!~s0

~1!2s0
~2!!2

c~2!s0
~1!1c~1!s0

~2!1~d21!s0
,

~38!

whered stands for the dimension of the underlying spa
and s0 takes on different values for the different types
estimates, as described below. Assuming thats0

(1).s0
(2) , the

choices s0→` and →0 correspond, respectively, to th
Weiner28 upper and lower bounds. The choicess05s0

(1) and
s0

(2) yield the two MGA approximations for particulate m
crostructures with phases 1 and 2, respectively, in the ma
phase—they also lead to the Hashin-Shtrikman8 upper and
lower bounds. The choicess05z (1)s0

(1)1z (2)s0
(2) and

(z (1)/s0
(1)1z (2)/s0

(2))21 give the upper and lower bounds o
Beran,13 in terms of the three-point parameterz (1)512z (2)

of Milton.14 Finally, the choices05s̃0 gives the EMA ap-
proximation.

As already noted at the beginning of this section, for
special case of two-phase composites, it is possible to ob
an expression forW̃ involving only one nonlinear equatio
for the ratio ŝ0

(1)/ŝ0
(2) . Computing the variablesÊ(1) and

Ê(2) in terms of this ratio, the nonlinear conductivityx̃ for
the power-law composite may then be obtained from
~30!. For illustrative purposes, results forx̃ are presented in
Fig. 1 for two-dimensional (d52), statistically isotropic,
two-phase, power-law conductors withn53 and 5, and
,

ix

e
in

.

x (2)/x (1)5100 and 1000. The various curves are describ
below. The labelsW2 andW1 correspond to the rigorou
upper and lower Weiner bounds for composites with ar
trary microstructures. The labels MGA2 and MGA1 corre-
spond to the Maxwell-Garnett estimates for particulate m
crostructures with fewer and more conducting materi
occupying the matrix phase, respectively. Because
MGA2 estimate for the conductivity of a linear composi
happens to coincide with the Hashin-Shtrikman lower bou
for the set of all statistically isotropic composites, th
MGA2 curve is identical to the rigorous nonlinear Hashi
Shtrikman lower bound, which is denoted HS2 and was first
given by Ponte Castan˜edaet al.4 The label RRN correspond
to the random resistor network simulations of Wanet al.,18

following Lee and Yu.15 The labelB2 corresponds to the
rigorous Beran lower bound5,29 for statistically isotropic mi-
crostructures with the choice of the Milton three-point p
rameterz (1)5c(1). This choice is appropriate for ‘‘symmet
ric cell’’ microstructures,16 which are similar in character to
the discrete RRN microstructures. The labelB1 is used to
denote the estimate~not a rigorous bound! that is obtained by
making use of the Beran upper bound for the linear comp
son composite. Finally, the label EMA is used to describe
effective medium approximation. These estimates are ide
cal to those first given by Wanet al.18 for this case. The
main observations in the context of this figure are as follow
First, as already noted17 the EMA estimates are in goo
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agreement with the RRN simulations, in spite of the fact t
the EMA and RRN estimates correspond to continuum
discrete systems, respectively. Second, the Weiner, Has
Shtrikman, and Beran bound progressively narrow the ra
of possible behavior by introducing first-, second-, and thi
order statistical information, respectively. Although t
MGA and EMA are believed to be good approximations
particulate and granular type microstructures, respectivel
the Beran-Milton nonlinear bounds given in this work pr
vide a way of characterizing more general types of mic
structures, for which the MGA and EMA estimates may n
be appropriate. Implementation of these new bounds wo
of course, require computation of the relevant three-po
parameters, as in Torquato.30

V. CONCLUDING REMARKS

In this work, three-point bounds and other estimates h
been computed for the effective response of strongly non
ear composites by means of the variational procedure
Ponte Castan˜eda and co-workers,5,4 making use of the notion
of a linear comparison composite. The results were co
pared with random resistor network simulations availa
from the literature and found to be very accurate. One wa
f
c-
e

nd

-

.

-

ev
t
d
in-
e
-

r

-
t
d,
t

e
-

of

-
e
to

explain the relatively good accuracy of the procedure is
note that the method is based on a variational approxima
consisting in the use of appropriate trial fields in the cont
of an exact minimum principle for the effective energy
density function of the nonlinear composite. In particul
this means that the variational procedure of Ponte Castan˜eda
and co-workers5,4 ~and the equivalent method of Hui an
co-workers17! provides the ‘‘best’’ possible approximatio
within the context of linear comparison composites with m
crostructures identical to those of the nonlinear composi
According to this variational interpretation, improved es
mates could only be obtained by making use of more sop
ticated linear comparison composites accounting for the
tribution of the electric field within the various phases of t
nonlinear composite. An example of such improved e
mates is provided by the exact estimates given5 for sequen-
tially laminated nonlinear composites, where the distribut
of the electric field is piecewise constant within each pha
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