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A simple slave-boson representation combined with the Hartree-Fock approximation for Hund'’s rule cou-
pling is introduced for a doubly degenerate narrow band, which bears a direct relation to that introduced
previously in the nondegenerate case. Namely, one keeps the fermion representation of the spin operator to
recover properly the energy of fermionic quasiparticles in the presence of an applied magnetic field. A simple
two-parameter mean-field analysis of the metamagnetism is provided, with the emphasis on the role of Hund’s
rule coupling. We also analyze the appearance of the spin-split effective masses in the applied field and for the
non-half-filled band situation. The Mott-Hubbard boundary is determined at nonzero tempefiatu0g; (it
shifts towards lower interactions with increasiigand the field signaling the precursory localization effects,
explicitly exhibited in the behavior of the magnetic susceptibility calculated in the Appendix. We also formu-
late a more general two-parameter rotationally invariant approach for an arbitrary degethefaeguivalent
orbitals and show that the Mott-Hubbard transition at zero temperature and at any integenfilinig always
discontinuous. A brief overview of the experimental situation is also gil@0163-18208)04616-5

[. INTRODUCTION quently confirmed in the limit of infinite dimension® This
means that this quantum phase transition possesses an upper
In recent years one observes a renewed interest in theritical dimension and the Gutzwiller approach represents a
metal-insulator transitiodMIT) of the Mott-Hubbard type, correct mean-field theory. Also, close to the localization, de-
with a particular emphasis on the effect of orbital degeneracyending on the band filling, one observes metamagngtism
and associated with it Hund's rule coupling, both appearingnetamagnetic behavidr,* spin-split effective massés;*?
as additional factors.This interest is induced by the new and a transition from an antiferromagnetic semimetal to an
works on perovskited NiS, ,Se,, as well as on the ca- antlferromagnetlc insulatdrThe related Gutzwiller approxi-
nonical system Y_y03-4 In most of these compounds one mation scheme for a doubly degenerate Hubbard model pro-

observes an anomalous metallicity even in the paramagnet}edeS a dISCOI’ltInL’IOUS transmo.n aIreadyTatO, a cha’mge
state®>* Among them is the metamagnetism and a relativel nduced by Hund's rule coupling. Obviously, Hund's rule

strong applied magnetic field dependence of thermodynami?:homd make the localization easiee., diminish the critical

properties, in addition to the field induced metal-insulator valueU_ of the intraatomic interactignsince it favors ener-

transition® These phenomena of localization occur in Com_geticglly t'he high-spin atomic state against any normal
‘ € P ) Fermi-liquid state. Hence, we can separate the effects asso-
pounds of various crystal structure and even in the sam

. . ; S@MEjated with the Coulomb interaction from those due to
magnetic phase, as in the case of Nige,. Therefore, it  4,nd’s rule coupling.

seems that the underlying microscopic mechanism is rather The structure of this paper is as follows. In the next sec-
general, neither strongly dependent on a particular crystallogon we introduce a slave-boson approach combined with the
graphic structure, nor on the form of the density of statesyartree-Fock approximation for the Hund's-rule term, which
near the Fermi energy and the type of magnetism. Additionreproduces in a simple manner the similar results of the full
ally, electronic properties of the system NiSSe, are well  slave-boson analysis by Hasegawrathe paramagnetic state
described by considering a half-filleg} band composed of  for zero field and temperature. Additionally, this representa-
3d states(due to NF* ions), which hybridize with com-  tion provides a correct expression of the energy a fermionic
pletely filled p states due to 5 or S~ (the last states are quasiparticles in the applied magnetic field. Within this
believed to play only a passive role near the MIT scheme we determine the magnetic susceptibility, metamag-
The purpose of this paper is to carry out a simplifiednetic properties, spin-dependent effective masses, as well as
analysis for a system composed of orbitally degenerate butetermine the Mott-Hubbard boundary at nonzero tempera-
otherwise equivalent band states that nonetheless addressese, and its shift towards lower temperatures in the applied
some of the principal phenomena in an applied magnetifield. The similarities and differences with the
field and at nonzero temperature. Thus, one can examine thndegenerate-band case are stressed. In the second part we
system behavior as a function of experimentally controllablegropose a simple rotationally invariant formulation of the
parameters. problem for an arbitrary orbital degeneracy of electron states
The analysis of Mott-Hubbard localization in the nonde-and compare it with the Gutzwiller approach. Within this
generate band case was based on the Hubbard model aagproach, a difference between the Hund’s rule and intersite
provides a continuous transition @t=0 (Ref. 8 and a dis- magnetic coupling appears naturally, although the last point
continuous transition alT>0.? These results were subse- is not discussed in detail in the present paper. The correlated
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metal-paramagnetic insulator transition takes place at any in- We employ the slave boson representation of Kotliar and

teger filling n and is discontinuous fan=1. Ruckensteilf in the form
A\ — T

Il. PARAMAGNETIC AND METAMAGNETIC STATES |O'|| >=eil|v>' (6a)

OF THE DOUBLY DEGENERATE HUBBARD MODEL + ] ) ¢t
aj ,|0il)y=lo,il)y=1],pilv), (6b)

A. Slave-boson method combined with the Hartree-
Fock approximation for the exchange term t A1 SN iiv— T T ot

PP 9 O'ai|Uai|;|0,l|>=|2,l|>=0’fi|Uf”;di||v>, (GC)

Doubly degenerate Hubbard model in the situation with . ] )
equivalent orbitals is described by the Hamiltonian: where we introduced new boson-fermion vacuwinstead

of the Fock-space vacuufiO,il)}. So, we have added only
, + Lo the orbital index to the original formulation. The operators
H:% tijailoailoJrU; Migpnyp + (U= EJ)Z Ni1Ni2 e, pi,. andd! are boson operators arfg, is fermion
operator. This representation must be supplemented by the
constraints

—202 815~ 2h> S, M
I I Qito="fil ofilo— Pl oPi1 o~ Ay =0 (7)
whereg; . is the annihilation operator of electron from lat-
tice sitei on orbitall (=1,2) and with spiro(=1,]), nj, IS
the particle number ang, =(S; ,S; ,S;) is the spin opera-
tor, t;; is the hopping integral, assumed for simplicity the Pi,Ee;ﬁe”sz pﬂgp”(,wL dﬁd”—l:O. (8)
same for the two orbitaleve choose alst; =0). Parameters 7
U, U’, andJ are, respectively, the intraband Coulomb, the The relation between originaky,) and new ;) fer-
interband Coulomb, and Hund’s-rule-exchange integrals. For o o

the e, band we have)’=U—2J. Finally, in the last term fion operators is

and

h=3%gugH,, whereH, is the applied magnetic field. Be- a :(e_’rlp” +d”pfr|7)f“ =7y fil0 (9)
cause of the vanishing orbital moment in the first order, the o TR o/ e Hetle

magnetic field affects the spin degrees ofwie neglect also The constraints given by Eq&Z) and(8) can be enforced
the Landau quantization effects for low fields by Lagrange muItipIierS&iﬂl) and?\i(ﬁ)- We obtain the follow-

We make the mean-field approximation for the exchangqng Hamiltonian:
term. Likewise, we decouple in the same manner the inter-
orbital term, sincel’ —3J=U—3J. Therefore, we have Hio=Hu—r + Heon

Ni1Ni2=Ni1(Niz) + (Ni)Niz—(Ni1){Ni2), )
s o e I I :”% tijZiTIonIafiTlafjlzr'{_U; did;

Si1- Si2= S1(S2) +(S1) S~ (S(Sh). 2
where(A)=Tr(Ae P"n-F) is the average value of operator +> [(3Kn—w)—o(h+ 2 Im)If] fiio+ Heont C,
A with Hamiltonian™_¢ : o
(10
HH*F:%, tijaiTloaon'l'U; nmnnﬁK%n; njy where
C=— 7 KNn?+ 3 JNn?, (11
_Jm%z (rn”U—hE a'n”(,—%Kan-i-%JNmz ! s
ilo ilo and
— mNe. () " "
In this equation we have added the chemical potential part HCOHE; Nii Py +% NiioQilo - (12)
(—wNg), with N being the number of electrons in the sys-
tem. Then andm are defined by equations Note that, using the fermion representation for the spin
operator S;=3(fl,fy;—f} fii), we obtain correctly the
(ni)=13n, (4)  Zeeman term and, also, the Hund'’s rule coupling in the form
of a molecular field. Equivalently, one could utilize the Bose
2(S)=1m, (5)  representatiorS;=3(p};pi;—Pil i), but then only the

z-component is well defined and the result in the saddle-
andN is the number of sites{=U’—3J. The mean values point approximation does not provide the quasiparticle ener-
of n; and S are independent of site and orbital indexesgies with the proper Zeeman tei(see the discussions of this
because of translational symmetry and the equivalence of thgoint in Ref. &b), where the full spin rotation invariant form
orbitals for half- or nearly-half-filled band configuratiois ~ of the SB representation is invoKed
this part we consider mainly the limit af equal to or close The factorz,, is not unique, but when we make the
to two). choice®®
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Zy,— (1—didy—pll ,Pile) Yz (1—ele; - p;ﬁ;p”;)‘l/z,
13

we obtain the correct result in the saddle-point solution.

The patrtition function is given by
JD[ee*]D[p p'1D[d.d"IDLF.FITT dniPaniE

Xexp{ - fﬁﬁ(r)dr ,
0

where 8= 1/kgT is the inverse temperature,

E fllo'[[a

ijl ¢

14

—u—o(h+ % Jm)+a(2

ilo

]6”
+t ZII(TZJ|0']fJ|0'+2 ,|((? +7\| )el|
+Z P (0 NP =MD il

2 A2 +U 2 AP+,

(19

+> dif o, 4\
]
is the system Lagrangian, and

u=p—zKn. (16)

is the effective chemical potential.

Next, we make the saddle-point approximation, i.e., as-
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Differentiation of the free energy with respect to
Lagrange multipliers provides the mean-field version of the
constraints:

JF
)\(2)_0 p(r+d2:_2 nk(r %nrr! (20)
JF
(Nl)=0:>1—e2—2 p2—d?=0, (21)
where
1
Nko= ~ (22)

1+exd B(Exs— )]

is the Fermi-Dirac function. From Eq§4) and (14) we ob-
tain that(n; ,)=3n,=(n+ om)/4. Instead of computing the
derivatives with respect to the remaining fields weeand
p. expressed vid, n, andm into free energy17). Next, we
introduce new variableg3; and B,, such thatA{?=g,
+ 0 B5. We obtain the following free energy:

1 ~=Eiol |, 2
N——szTN% In 1+exp( ot ) | 1 Jm?+2ud
— Bsm+ £ Kn?+ pun. (23

Quasiparticle energy is given by

Ekcr:qaek_o-(h_'— %‘Jm_BS)v (24)

sume that Bose fields and Lagrange multipliers do not de-

pend on timer, number of sitei, and orbital index, so  and the effective chemical potential by
ei(1)—e, pil1—p,, di(r)—d, N\F)—\P), and )\(1)
—\. To obtain the saddle-point solution we must minimize
free energy with respect to boson fields and Lagrange mul-
tipliers. From partition functiori14) we obtain the following

expression for the free energy:

p=n—Bo=p— 3 Kn—pBo. (25)

From Eg.(19) we obtaing,, in a form

~_E - A
F=—kgT> In 1+exp<“k T" + INJIm?+2NUd? I 2
klo
® ( \/1—§n+d2\/n+crm—4d2+d\/n—crm—4d2
—2N> AP (p2+d?)+2NAD| e+ > p§+d2—1) =4 (4—n—om)(n+om) '

(26)
— LNKn?+ uNn. (17)
This factor is the mass enhancement and in the general
case (#2) leads to the spin-dependent effective masses.
One should justify the approximations made. First,dgr
band J=0.2U, and therefore’=U—2.5=0.59U. Hence
one can say that making the Hartree-Fock approximation for
the interorbital-interaction part is qualitatively correct even
for U~W. Below we make this argument more quantitative
(19 by comparing the ground-state energy obtained within differ-
ent approximation schemes. Mixing the slave-boson scheme
with the Hartree-Fock approximation for the Hund’s rule ex-
Thus, one encounters here two molecular fields: one comehange has this advantage: that we can single out what fea-
ing from the Hund’s rule and the othex®—\{?) coming  ture is specifically due to Hund’s rule coupling, as discussed
from the electronic correlations. next.

The Fermi quasiparticle enerds . is given by
Exe=0,ex—o(h+ 3 Im)+r?, (18)
wheree, is bare band enerquo_zzi, and

2 (ep,+dpy)°®
T (1-d?-p))(1-e’-p)
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B. Casen=2, T=0, and h=0: Effect of exchange interaction  ample, for JJU=0.1 we obtain the critical valu&J=U,
on the metal-insulator transition =5.1¢[. The diminution of U, below U, is obviously
We consider first the simplest situation: a paramagneti€aused by the Hund's rule favorlng the high-spin state on
state in the half-filled band case and at zero temperature arfRfch atom.
in zero applied magnetic fiefd.

At temperatureT =0 the distribution functior(22) takes C. Casen=2, T=0, andh=0: Metamagnetic transition
the form We discuss next the homogeneous magnetized state start-
0 — ing from the paramagnetic state B=0. From Eq.(26) we
— @ _ when E,>u, obtain the band narrowing factor in this case in the form
N=0(n—Ey)= — (27
1 when Exspu,
where E,=®y¢e, and ®,=q,=q,=8d?(1—2d?). We ob- o= IVA(1-2d%)°—m?]. (34
tain following expression for the ground-state energy:
Wi2 Thus, the effective mass will not depend on spin for the
=—22 f dep(e) w—Doe)O(u—Doe) half-filled band case.
The average occupancy of each orbital state with spig
+2Ud?+2u > Wiz
_ n,=—2, N ,=2 f d n,
—2d e+ 2Ud2+K, (28) N; ks il EPLOna(€)
where: [,47+zr(h—ﬁ3+Jmn”/4)]qu
_ fW/Z - f—W/Z ep(e),
=2 d n 29
€ i ep(€)en(e) (29 (395

where n,(e)=0(u+o(h— B3+Im4)—q,€e). We choose

is the mean bare-band energye) =0 (u—doe), andp(e) e featurelesérectangular density bare of states:

is density of states. Minimizing the function&8) with re-

spectd? we obtain the solution 1
— for ee[ —W/2W/2],

1 U ple)=1 W (36)
4(1— 8|7> (30 0 otherwise.

which coincides with the results in the nondegenerate-ban

case®’i.e., the metallic state would become unstableUor

=U,=8| €| if the system evolves continuously with growing

U. However, we shall see that in the degenerate system th

instability pointU, is replaced by a critical poitd ;<U,, at

which a discontinuous transition takes place. J,[M”(h Bt Imi4))®
(T W

d2_

d The overall features should be independent of the detailed
shape ofp(€), as we determine global quantities( E,

d?) involving integrals over the filled part of the relevant
gands Putting above density of stat@09) into Eqg. (35)

Wwe obtain

The ground-state energy of the metallic state can be ex-
pressed explicitly as

€
wi2

1U%2 3 5 -
Ef'=—2[e- 55 = +5U- 3. (31) wao

32 el 2
_ ) o _ Summation overs of the above equation leads to the
In the Mott-insulating spin-disordered state, i.e., tir condition z=0, but multiplying it by ¢ and then summing

=0, we have over o leads to the expression for the molecular field of the
form

(37)

1 Wo
(h Bzt~ Jm)O"f',u,'f'T}

Ep=K—- 3J=U-3J. (32

. . . =—2dWm+h+ 3Jm. 38
Equating the energie§32) and (28) we determine the Ps N N 39
critical value ofJ=J, andU=U,, for which the transition Becauseb is nonlinear in magnetic moment, the molecu-
from a correlated metal to a paramagnetic Mott insulatotar field 8; depends also om in the same manner. Inserting
takes place: B3 into Eq. (23) for T=0, we obtain

’ F 2 2 1.2
(33 EMENW:—(4—m )P/8+2ud—hm— 5 jm~+Kk,
(39

’ ﬁﬂ( Bl

For J<JC the metallic state is stable. Also, fdt>0 the where the reduced parameters are
transition is of first order, whereas fde=0 it is continuous
and corresponds to that for the nondegenerate case. For ex- u=U/W, j=J/W, k=K/W, h—h/W. (40
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We determine the saddle-point solution minimizikg,
with respectd? and m. Differentiation with respect tam
leads to

d4(m?—16a)+a(16d’>+m?—4)=0, (41)

where a=(h+jm/4)?. The differentiation with respea?
yields

L (u+4d?—1)\4(1-2d%)2—m?— (1—2d?%)%+ i m?

+2d?(1—-2d?)=0. (42)

double occupancy, d’
e
>
L

0.00

2.0

For h=0 and u<2 from Eq. (30) we obtain d?>=
(1—u/2)/4. The change of direction of magnetic fi¢ldloes
not changed?; thus (#d?/9h),_,=0. Next, differentiating
with respect tch, Eq.(41), and taking into account the above
relations, we obtain the following expression for the mag-
netic susceptibility:

0 _<9m
XO=50 2%y

magnetization, m

(43

whereyo=2u3/W is the Pauli susceptibilitycf. the Appen- 0.00 0.02 0.04 0.06 0.08 0.16°
dix). The magnetic susceptibility was derived for the metallic reduced field, A
state, so from taking into account the conditi@3) we ob-
tain the metallic state forj<(1—u/2)’< (1—u/2)/
(1+u/2) <1. From, the last inequality we obtain the condi-

tion for the magnetization in small fields:

FIG. 1. Field dependences of double occupadéyper orbital
(a) and magnetizatiom per atom(b), both forT=0 andn=2.

Field dependences af’> and m are displayed on Figs.

om 4h 4h 1(a),(b), respectively. Close to the transition point the system
m~— h= W>F. (44)  exhibits a metamagnetic behavior, i.e., théh) dependence
h=0 =7 _; J is curved upwards. With the increasing figddthe doubly
2+u occupancy diminishes because of the growing spin polariza-
) . ] tion and at the transition poirli2 jumps to zero, while the
This condition reduces solutions of E@1) to magnetic moment jumps to its saturation value. The magni-
tude of magnetization jumpam and the critical fieldh; de-
d2:—8a+mva(16a+4—m ) 45 pend on the values of and u, as shown in Fig. 2. One

observes here an example of a magnetic-field-induced local-
ization, with a formation of a ferromagnet{éield-induced
insulator. The transition from the metal to the insulator can
be either the first or second kind, depending on valuasd
j. Regimes ofu andj, where the particular kind of a tran-
sition takes place, are displayed in Fig. 3. We mark the area
of the insulating phase in zero field bounded by the curve
determined from Eq(33). The insulator polarizes &t=0 to
a saturated state in an infinitesimal field; the jump of the
magnetization is then equal tom=2. Upon increasing the
critical field h, decreases; likewise the magnetization jump.
From Fig. 2 and Fig. 3 one could seen that for0.5 a
second-order transition does not occur. Obviously, our analy-
(47) sis is valid quantitatively only foy substantially smaller than
u. Also, the critical field for metamagnetic transition be-

From the preceding subsection we know that the metalcomes experimentally accessible only close to MUF{2)
insulator transition take place fgr=(1—u/2)?. From the and reduces gradually to zero with growingThis predic-
expression(43) for the magnetic susceptibility we see that tion could be tested experimentallyee below.
except for the casg=0 andu=2, there is no singularity in
x at the transition This means that the transition fpr-0 is

m?—16a

Substitutingd? into Eq. (42) we obtain the following
equation for magnetization:

—64a3+ 12a°m?— 3am*/4+ m®/64+ 64a2u— m*u/4
—16au?+ 32a%u?+ m2u?+ 12amfu?+ m*u?/8

—16au®—m?ud—4au*+m?u*/4=0. (46)
The pair of solutionsf,d?) determines the ground-state
energy(39). The ground-state energy of a Mott-Hubbard in-
sulator in the spin disordered state is

E,=—2h—j/2+k.

of the first order. Foj =0 we have second-order transition,
as in the nondegenerate band case, whei® singular(cf.
the Appendix.

D. Casen<2 and T=0: Spin-split masses, and MIT forn=1

Consider now briefly the situatiam<2 when the metallic
state is stable. We examine the effect of magnetic field on the
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FIG. 2. Jump of the magnetizatidxm per atom and the critical o UMW=1.98 JW=0.05
magnetic fieldh, both as a function of exchange interactidfW s Z;;::s
and calculated at the metal-insulator transitionTer0 andn=2. E 01000 0.005 0 610 0.015

transition to the saturated state, as a function of the param-
etersu andj. The ground-state energy for a polarized state is

reduced field, h

provided by the expression

F
En(n)=qw=" L q,(4—n—om)(n+om)+2ud?

— $jm?—hm+ 3 kn?.

FIG. 4. Field dependences of magnetizatioper atom, double
occupancyd? per orbital, and the spin-dependent mass enhance-
ment m,/my, all for n<2 (from the top to the bottom, respec-
tively).

E/(n)=—31n(2—n)— 3 jn?2—hn+ :kn?. (49

The energy of the saturated state is obtained by taking

into account Eq(26) and making the substitutiot?— 0 and

m—n in Eq. (48). We have then

In Fig. 4 we display magnetizatiom, doubly occupancy
d?, and the mass enhancem«eﬂt1 as a function of applied

20 i — i magnetic field fou=1.98 andj =0.05, for the band fillings
n=1.86 andn=1.8. The important feature is that the mass
=2 enhancement is spin dependésee the lowest panelAlso,
1.5F . there is a possibility of first- and second-order transitions to
Insulator in zero a satura}tgd state. Regimesw&r)dj, where these twq types
s 10f applied field | of transition are_poss!ble_ for f|II|_ng=_1.8 are shown in Flg.
S | Firstorder 5(a). By comparing this figure with Fig. 3 we see that regime
transition of stability of an insulator fon=2 corresponds here to the
05 - area |b with excluded doubly occupantDO), when the
Second-order system is in a magnetically saturated state in a vanishing
transition field. In the case of one-band model, ije=0, EDO state for
09% 0.2 0. 0.6 Y 10 n#1 is reached fou— +o in h=0. Forj#0, the doubly
W degenerate case, this state is achieved for finite

One should note that the effect of spin-split masses aris-

FIG. 3. Regimes ofJ/W andJ/W for the half-filled band con- ing in the magnetically polarized state is not associated with
figuration comprising both first- and second-order transition re-the emergence of the spin-dependent density of states in the
gimes in an applied magnetic field. bare band. This can be seen from the fact that the quasipar-
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2.0 : ———— my ( 9 )
—=lim| 1+ —Re () |, (53
i w18 |1 0
1.5r Ia - 0<Am<L.8 | 1 we have thatmy/m*=gq,, i.e., is indeed spin dependent.
Ib Ib - Am=1.8 | This spin dependence, which will lead to the strong field
II - Am=0 dependence of the linear specific heat close to the metamag-
& 1.0f Ia . netic transition(see Spalk et all?) is characteristic of the
= almost localized fermions and should be determined experi-
mentally. Note that it is the same for &lstates.
05} ) One should observe that a discontinuous transition is pos-
II sible also fom=1. In Fig. 5b) we display the double occu-
1 pancyd? as a function ofU/W and show the transition at
0.0 — . L U./W=1.52 for JJU=0.1; the associated with it band-
60 02 04 06 08 10 narrowing-factor change is included in the inset. One sees a
JIw clear difference with the approach in Ref. 1, where the same
transition is continuous. The difference disappears at non-
Y A — ————y zero temperature, where it is always discontinu@fisRef. 9
1o : and the discussion belgwin our case the first-order transi-
0.06 ¥ o5 . tion is driven by the difference in the interorbital Coulomb
N 8 oo term ~Kn?, which is absent in the insulating phase. Thus
:. 0.05 %m . the first-order nature of MIT here is common to batk 1
2 30 1 andn=2 cases. Also, the critical value &f; for n=1 is
§ 0.04 | T P s higher than that fon=2, for the same reason. The field and
8 ook COULOMB INTERACTION, UW | temperature dependences of the physical quantitiesnfor
° ] ] =1 are similar to the those far=2, so we will not repeat
@ oo2f| n=t b) them here.
3 T=0 |
001} [su=0. . IIl. MOTT-HUBBARD BOUNDARY AT NONZERO
000' ] TEMPERATURE

00 02 04 06 08 10 12 14 16
COULOMB INTERACTION, U/W

A. Phase diagram:h=0

In the preceding section we considered the system prop-
FIG. 5. (a) Regimes ofU/W andJ/W of first- and second-order erties at zero temperature. We concentrate now on a more
transitions in applied magnetic field foF=0. (b) The metal- realistic case of nonzero temperature in the half-filled band
insulator transition fon=1, (for JJU=0.1), as exemplified byg? case. The low-temperatufSommerfeld expansioﬂ of the
vs U/W dependence. The band narrowing is exhibited in the insetfree energy(23) for the metallic phase leads to the following
expression for the constant DOS:
ticle energie€, , [cf. Eqg.(24)] lead to the following density

of states: Fvm ) ) 1, 2m?
. W/_ (4—m )®/8+2ud —hm §]m +k 3?7'2,
p,(E)= q_PErO) e— ] . (50 \Iljvgesrer= kgT/W. No higher-order term irr appears for this

Hamiltonian describing the insulating phase can be re-

() i i i
wherep () is the density of bare states per spin. Thus, the ritten in the form

enhancement due to the correlations is distinct from the shiff”
of the density of states caused by the presence of the effec-
tive field. The many-body nature of the enhancement factor H|=KE nilniz—ZJE Sil~Siz—2hE S
can be also seen by writing the quasiparticle energy in the ! ! L

form
=2 [Kninp— (S -1~ 52— 2hs], (55
Evo=exk—0oh+(q,—1)e—o(3 IM—B3) '

o _ whereS§=S;+ S is the total spin per site. The eigenstates

=ekmoh =2 (0=ey, GY o H, are singlet and triplet configurations. The partition
where the self-energy is function is then given by

— —BH
S (w)=—(1-q,)w—o(; Im-B3). (52) Z=Tr(e #™)

o o :efﬁKN[effﬁﬁJ/Z_‘_ ehll2 eBJIZ(eZ,Bh_*_efZBh)]N
Taking into account the well-known definition of the mass
enhancement in the Fermi liquid, =g PKN[@7 3824 eBV2(1 + 2costi2Bh))IN.  (56)
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This expression leads to the free energy for the Mott in- 2%00 0.02 0.04 0.06
sulating state in the following form: : ) :
il In[Z
W/__NWﬂ n[ ] 1.5' 9
£
=k— i|n[e—3ﬁJ/2+ efI(1+ 2costi2ph))] ]
wp T 10F .
=k—rin[e 31?7+ el’27(1+ 2coski2h/ 7))].  (57) ‘é’, :
g o5l =01 i

The result in the limitr— 0 reduces to the expression
(47). The magnetization in this state is

m=2Tr(S e~ A 0.0 + t + 0.10
—BKNQBII2f 5280 _ o—2ph kg T/W=0.02
_5 e FNeP%(e2Ph—e2) UW=1.2
e~ PKN[ @382 eBI2(1 1+ 2 costi2 gh))] Ny ; 10.09
= | JU=0.1
4sinh(2Bh) 2 b i
= =tanhth/7) — , s :
e 2B+ 1+ 2cosli28h) e V-1 i1 3t JU=0.05' 40.08
—_— [1] H
4cosh(h/7) ° : ;
2 JU=0 |
= \
8 S # ' 20.07
For j=0 we obtainm=2tanh{/7), the expression for the !
magnetization of noninteracting spins. Such a situation arises - . i ; . 0.00
because the saddle-point approximation in its essence is a 0.00 0.02 0.04 0.06
single-site approximation(the intersite interaction arises reduced field, h

from the quantum Gaussian fluctuations around it
The field dependences of the magnetization and of the FIG. 6. Field dependences of the magnetization and double oc-
double occupancy are shown in Fig. 6. We see that upofupancy for different values aff/U.
increasingj while keeping fixedu the critical metamagnetic
field is reduced. It indicates, as before o0, a significant  [jmit1° provides only a crossover behavior, not a weakly dis-
role of exchange interaction and, associated with it, Hund’sontinuous retrograde behavior.
rule. Also, the magnetization curve is slightly curved up-  One may ask if the loviF analysis is realistic, since in the
wards in small fields. The upper part of te(h) curve  mean-field slave-boson analysis the low-energy spin fluctua-
reflects magnetization of the localized-moment system. Thugions (quantum Gaussian fluctuations around the saddle point
we have a transition from an itinerafelbeit metamagnetic  herg have been neglected. Those spin fluctuations lead to
to localized-type behavior as a function lof the contribution~T*In(T/6) in the free energy’ This con-
Substituting the expressions for andd? taken from the
Appendix into the free energy54) we can determine the
system behavior in the vicinity di=0. The phase diagram
for casesh=0 and 0.01, for different values @ffU is ex-
hibited in Fig. 7. Upon increasing affU the paramagnetic
insulating(Pl) phase expands at the expense of the paramag-
netic metallic(PM) phase. In the applied field the boundaries - 0.1
shift towards lower temperatures. We see also a typical re- h=0
entrant metallic behavior at high temperatures. Namely, with § 0.08 0.05 000 004 008 |
rising temperature the system evolves from a metal through x . 0.0 kgTW
an insulator back to the metallic state. In the inset we display PI
the temperature dependence of the free energies for PM and 0.04} — h=0.0 T
Pl states. — hm0.01 |
The shape of the phase boundary is essentially the same
as in the nondegenerate-band castowever, it is shifted 000 s 13 16 18 20
remarkably towards lower values bf/W already for rather
small values ofJ/W. The boundary is of first order apart
from the point specified. The upper part of the curve is only  FiG. 7. The PM—PI phase boundaries as a functiol BV for
qualitative, particularly if a realistic DOS is used, as higher-n=2 (thick lines, and their shift in the applied magnetic figlihe
order contribution inT will become important. In fact, the lines). The inset displays the free energies for PM and Pl states as a
solution of the Hubbard model in the infinite-dimension function of temperature.
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5 —— T T T T (SB-HF), and full slave-bosor{SB) results for the ground-
al HE ] state energies foh=0 andn=2. The arrows denote the
position of the Mott-Hubbard boundary in the two latter
3r T schemes. The energy difference diminishes rapidly with
sl i growing h. The difference for physical quantities is only
B SB-HF quantitative, not qualitative, though the SB apprdabhs
a 1 AN j slightly lower energy, since it contains many more varia-
ol SB _ . tional parameters. In the next section we extend the main
n= features of our solution to arbitrad/ W and higher degen-
At Ju=0.1 | . X . o~
eracyd of equivalent orbitals and an arbitrary filling.
-2 1 L 1 1 Il 1

IV. METAL-INSULATOR TRANSITION FOR ARBITRARY
ORBITAL DEGENERACY AND FILLING: A SPIN
FIG. 8. Comparison ground-state energies Terh=0, n=2, ROTATION INVARIANT MODEL
and J/U=0.1 obtained from these methods: Hartree-Fock, sIaveA Global (site) representation of the intraatomic interaction
boson, and slave boson combined with Hartree-Fock. The arrows
indicate the position of MIT in the two last approximation schemes. We now generalize the principal features of our argument
to the case of orbital degeneracy. First, we represent the in-
tribution is of higher order than th& contribution coming traatomic part in terms of globdkite) representation. For
from the quasiparticle excitations across the Fermi surfacghat purpose we start from the following expression of that
Therefore, the analysis is realistic, but only to the leadingpart:
order in low-T expansion, as we have done it.

U/lel

1 ! !
H|:U; niITniIL"_EK 2, NieNiie =32 Si-Syv,

B. Physical discussion il oo i
The evolution of the almost localized fermions discussed (59

above for the half-filled band case can be explained nicel)Ovhere nowl andl’ assume the values 1.2 . d, and the
from a physical point of view. Namely, fdJ — U the renor- 64 symmation is taken for:1’. We introduce the glo-

- 3 - 2 : ; . )
malized band ©¢) and the correlationd<) energiesal- 3| spin and particle number operators through the relations
most compensate each othedn such a situation, much

smaller entropy £ TS) or applied field (- ugH,) energies d
tip the balance towards either the M or | phase. Explicitly, at S=(s",s .H=> S, (60)
low temperatures, the spin-disordered magnetic insulator has (=1
much larger entropy contribution—(kgTIn2, per orbita)
than that of the almost localized Fermi liquid-yoT?/
(2®d), with y0=(2/3)772k§p]. This circumstance tips the
balance from the PM stat@vith Eg<<0, but small entropy n;
contribution) towards the PI statéwith Eg=0, but much
larger entropy contribution At much higher temperatures . ]
the balance is tipped back towards the PM phase, since even- We have the following relations between global and pre-
tually the entropy of the metallic state grows and approache¥iously introduced operators:
the asymptotic value sIn2 per orbital. Thus the reentrant
metallic behavior is driven by the entropy. It is observed in S S o
both (V,_,Cr,) ,05 (Ref. 19 and NiS,_,Se, (Ref. 3 sys- ? Ml =0F =M= 225 Myt 62
tems. It can be applied also to explain the low-temperature
reentrant liquid behavior in liquiHe® In our view the and
reentrant behavior appegaring either as a crossover or as a 3 2
discontinuous transition*He) is uniquely present in the / 2
Mott-Hubbard systems defined as systems, for which the ? Si-Si'=S +§E| Mit i = 72 Ni-
band and the Coulomb parts of their energy almost compen-
sate each other. The intra-atomic exchange contribution tips
the balance further towards the localized state.

Obviously, the first-order nature of the transition will lead 1
to the coexistence of the two phases, with localized and itin- H==K> niz—JE S+ > N » (64)
erant electrons, respectively. However, this mixed phase can 29 [ il
be discussed only when the magnetism is included, and we 3
will not elaborate on it here. wherel =U—K—3J.

As mentioned at the beginning, the present formulation FOr & particular example of the, band we have
represents foH,=T=0 a simplifiee]dnversion of the full
slave-boson and Gutzwiller treatmentdiscussed recently. —1l)_5 2_ N
In Fig. 8 we have compared the Hartree-Fd¢k), ours Hi=2U ZJ)Z i Jzi: SZJFJ; MMy - (69

and

> Nig=2 Nijy. (61)

lo

(63

Hence, up to a constafit, takes the form
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The first term represents charge fluctuations, the second Ee T
the atomic Hund'’s rule. Moreover, unlike in a nondegenerate —=O(A,m)e+ —A—Jm, (72

band the intraorbital intraatomig¢lubbard parameter J) is N 4

much smaller tharJ. Addltlona”y, the first two terms are where now the band narrowing fac@rdepends Oon and?
proportional tod® while the third is~d. Hence, the last term  represent the average band energy for a degenerate system.
can become the smallest, particularly for highly degeneratyithout a loss of generality one can assume gk ,m)
systems. In general, the Hamiltoni&4) expresses the so- = A(m)G(m). In accordance with our simple derivation of

called minimum polarity model of Van Vieckcharge fluc-  the mean-field Gutzwiller) approach in the half-filled band
tuations suppressed by growiky, as well as the separation casé® we make an expansion:

of the dynamic processes into inequivalent charge and spin
degrees of freedom in the effective one-band model intro- AN =1+ N +1,02 (73
duced by Hubbard’ For highly degenerate systems we can

. and
approximate
N G(m)=go+gym+gom?. (74)
I I
I; n”Tn”l:I; FT Fl: azi Ny (66) Note that 0<®=AG=<1. The expansion has the meaning
of a Landau expansion, and the coefficients can be deter-
Noting that mined by calculatindeg explicitly in limiting situations. For

example, in the Hartree-Fock approximation we have
2

n; 5 =G=1 and thus elementary analysis provides us with
niTnu:Z_(Mi'S) , (67) .
=\n= 21—
where w; is unit vector along an arbitrarily oriented spin A=ho=n+nt 1 Zd)’ (79
guantization axis for the spi§,, one has finally and
1= 03 233 S-i3 (S (69 3 n
Tas e A g m=mo=7n| 1= 52/, (76)

whereU=2K +1/d. For a particular case of a nondegeneratewheren is the band filling 6=d corresponds to the half-
band @=1), K=J=0, we recover the earlier resuftavith filling ). Analogously, ford — andJ—, the quantities\,
U=U, andl=U. Ford—o the last term is absent and the andmq will approach their atomic values.. ,m.. :

correlated paramagnetic state &t 0 is described by two

variational parameters: : for n<1
m=m,=19 n/n 7
A=(nf), (69 ~s+1| for n=1, 70
2\2
and and
m=(S). (70 n for n<1
. . . A=N. = 2 (78)
Note that in this sectioim represent the local-moment n° for n=1.
magnitude. The third parameter describing the long-range . ) o .
order is obtained by making the Hartree-Fock approxima- Additionally, applying the equilibrium conditions
tion, JEg JEg -
|2 . |E Mg omy (79
— - = . .S . 71
d4 (ui- )= 3 i (i (SDmi-§ () we obtain the expression
The collinear magnetic ordering is expressed then through U
(S%=p;-(S). Since in this section we consider only a para- A=Nol 1— BingGm) | (80)
magnetic state af =H,=0, we neglect in our analysis the 270
last term. Note however, that the present parametens,
and(u;-S) for arbitraryd correspond directly to the param- m=mg| 1+ ] (81)
etersd?, p%, andpf in the preceding sectioref is removed 2g,mg| e[A(N)

via the completeness conditi@i+ p?+ pf+d?=1). _ _
As in nondegenerate case, the charge fluctuations are sup-
pressed with increasing. On the contrary, the magnetic
moment grows with increasing. Additionally, using the
) _ conditionsA (A g) =G(mp) =1 we obtain
In direct analogy to the doubly degenerate case discussed
in Sec. Il, we express the ground-state energy in the form AN)=1+1,(A—\g)?, (82

B. Magnitude of local-moment and charge fluctuations:
First-order transition to the insulating state at T=0
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G(m)=1+g,(m—mg)2. (83 0.0

The coefficientd, and g, are determined from the con- 0.2
dition that for any integer band filling=1 we have that I
A(N\,)=0, andG(m,,)=n,/n=1/2 (this result is valid for 5-0.4

/Nlgl

the paramagnetic configuration only and reflects the Pauli*
exclusion. So, finally we have E 06
A= XA ) 8y B o
N)= No=Ng) (84) -0.8
and 1.0 . . . . .
00 01 02 03 04 05 06 07 08
1/ m—mg \? COULOMB INTERACTION, U_=U/uU,
G(m)=1-5|{—— (85
2\ m,—mq

FIG. 9. The ground-state energy per site units of |€]) as a
Substituting these expressions into the expres&@nfor  function of the Coulomb interactiod g=0/U,=U/8|€|. A transi-

Es. We obtain the explicit form in the terms of variational tion to the Mott-Hubbard insulating state takes place for eéch

variables\ andm. Making use of the conditionsEg/gm  tegey band fillingn for the value ofU at whichEg=0.

=JEg/oN=0 we arrive at the algebraic equations, which

may be transformed into the following equations for the |, this manner, the valuesg=mg=0 corresponds to the

functionsG and A taken at the extremal points: Hartree-Fock approximation, whereas the limit wilty
~ 2 ~  ~ ~\2 =mg=1 corresponds to the exact atomic limit, which for an
U J\c1 ulu U . .
G -G 1-2—+|—| Zl+—| ——2|-|— integern=1 corresponds to the Mott-Hubbard insulator. In
Uo \Je/ 92 Uo\ Up Uo

Fig. 9 we have plottedEg as a function ofUREU/UO

=0, (86)  =U/8|€], for Jx/Ug=0.1, which corresponds t&U=0.4.
The bare band energy for the featureless density of states is

and _
e=—(W/2)n(1—n/2d). One sees thaE;=0 for a critical
s o J 21 313 2 value ofUg. At this point the value& ., andm,, are reached
A=A 1+2J—C+ Uo) 1, +AJ_C J_c+2 -3 =0, for n>1 in a discontinuous way, as illustrated in Figs.

(87) 10(a),(b). The localization threshold diminishes with This

) ) is because the band energy varies roughlg, while the
with UO:SE[' and Jo=2[¢[. These two equations can be jnteraction energy is~n?. The transition to the localized-
transformed into each other by changes:G, gz«l2, and  moment state is determined by the interplay between the
JJc——UIU,. Hence, it is sufficient to solve numerically exchange and the Coulomb interaction. This is illustrated in
one of them and adapt it subsequently for the second equirigs. 11a),(b), where the band-narrowing factors and G
tion. One should notice that the nondegenerate-band-case fi§5ye peen specified. In most situations the pafm)

_ ; 2_0) i _ :

sultA =\, (i.e., d°=0) is recovered folJ/Uo=1. changes from its Hartree-Fock value only a little. This pro-

Before going Into the numerical analysis let us SUMMANZ&;iqes ana posteriori justification of the Hartree-Fock ap-
the above subsection. We have developed a relatively S|mpI8

h ¢ calculating th tud  local éﬁ roximation for the exchange term. The dominant role of the
scheme ot caicuiating fhe magr21| udes ot loca mon{ b term ~n? over the Hund’s rule term gives some support to
and of the charge fluctuatioq®;), which is equivalent to

. ; . the interpretation of the local-moment formation in the terms
the Qutzwnler-Brmkman-Rlce scheﬁ‘lef_or d=1. These of a nondegenerate Hubbard model. This becomes clear if
magnitudes are calculated from a relative balance between

the renormalized band energy from one side, and the corr& € notices that in that case

lation energie$(U/4) A2~ Im?] from the other. The method

involves an interpolation between low- and high-correlation A=(nd=n+2(n.nY=n+2d2 90
regimes(note that the mean-field slave-boson theory requires (i) (niyniy) ' 0
such an interpolation to thd —0 limit'313,

and hence.=\,.=n correspond to the limiti>=0 (A =0).

C. Numerical analysis for arbitrary degeneracy and filling In the situation depicted in Fig. 14 A~0.6 at the transi-
We define the reduced variables tion. However,_unlike thg nc')ndege.nerate systgm, thg spin-
charge fluctuation coupling is leading to the discontinuous
A—Xp character of this transition far=1.
}\R:)\w_)\o, (89 The discontinuous nature of the metal-insulator transition
induces only a weak enhancement of the effective mass close
and to the transition[the curves in Fig. 1®) are physically

meaningful only below the discontinuity pointshe results
(89) in this respect are valid universally for arbitrady>1 and
m,—mg’ n=1.
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FIG. 10. () The relative magnitude of the charge fluctuations 0-9750o
Ar=(N—Ng)/(Ns—Ag) versusUg. Note a discontinuous nature of ’
the transition to the atomic configuratian=X\ ., at a critical value
of Ug specified for eacln>1. (b) The relative magnitude of the
local momentmg=(m—mg)/(m,—m), as a function olg. The
discontinuous jump im reflects the same behavior asXaf.

0.1 0.2 0.3
COULOMB INTERACTION, Un =0/ Uo

FIG. 11. (@) The band-narrowing partA(\) and G(m) as the
magnitude of the Coulomb interaction. The inset compares the two
narrowing factors, both diminishing with increasitik. (b) The
charge- and spin-fluctuation parts of the band narrowing as a func-
tion of the Coulomb interaction, for the value d§ below the Mott

In this paper we have put an emphasis on the similaritiegransition. The inset displays the different trend as a function of the
and differences of the Mott localization in a degenerate-band/U ratio.
system with the extensive analysis of MIT existing for the ] ] ]
nondegenerate-band case. For that purpose we have madeeferdy. the order parameter is a measurable quantity for this
the first part the Hartree-Fock approximation for the ex-quantum phase transition @=0. In the magnetically or-
change interaction. This approximation is applicable in thedered state the system is additionally characterized by a stag-
limit when J is substantially smaller thad, as is usually the ~gered momentS). In the second part of this paper we have
case for @ bands. This scheme provides us with the physi-shown that even in the paramagnetic state the orbitally de-
cally plausible conclusion that the metal-insulator transitiondenerate system is additionally characterized by the param-
is mainly driven by the intraatomic Coulomb interaction; the eter (S7) describing the local moment magnitude. Thus, in
intraatomic exchange is responsible for the first-order natureur view, the set of the paramete?<(n?), (), and
of the transition already af=0. Also, with this approach u;-(S) compose aminimal set describing the metal-
one can see that the correlated systems, whether orbitalipsulator transition in the degenerate system and associated
degenerate or not, can in the mean-field approximation bwith it the magnetic transitiofin a nondegenerate system
described as systems of fermionic quasiparticles with spin¢s?)=32(1—2d?)]. Obviously, the full slave-boson and
split massegin the magnetically polarized statand a non- ~ Gutzwiller approachésprovide essentially the same qualita-
linear molecular field coming from the correlations, in addi-tive picture, although they contain more parameters, which
tion to the usual exchange field. are eliminated by implementing the constraints appearing as

The fundamental question is whether the present approadatonsistency conditions. In this respect, our simplified ap-
(as well as those listed in Ref) fprovide a proper mean-field proach provides didactical guidance for more complicated
theory of a correlated state near the metal-insulator transianalysis. For example, the effect of quantum Gaussian fluc-
tion. It seems so and the proper order parameter in the orbituations in auxiliary Bose field§ neglected so far will intro-
ally nondegenerate paramagnetic system is eithasr d?, duce intersite exchange interactions, which will not intro-
which are nonzero in the metallic phase and vanish in theluce any additional order parameter, though the detailed
insulating state. What is more important, sincerier2 the  thermodynamic properties will contain the contribution com-
band-narrowing factodd in the PM state can be directly ing from the interaction between the quasiparticles with the
related® to the physical quantitZ(=®) representing the characteristicsq,, B3, Bo), Which appeared on the mean-
discontinuity of the Fermi-Dirac distribution at the Fermi field level.

V. CONCLUSIONS
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The slave-boson approach has been recently extéhtted We see thatb,_,=0. Also, (d?),=0; this is because
describe the antiferromagnetic phase in the half-filled doublyhoth® andd? depend only on even powers of eitheror h.
degenerate Hubbard model. However, the temperature dén that situation
pendence of MIT in the paramagnetic phase is still impor-
tant, since in Nig_,Se, (Ref. 3 one observes a transition to PP ) ) 5 I
the semiconducting phase upon heating the system, whenthe ~ mgy| = 2d°(1—2d%+y1-4d"+4d")mg
system crosses the Blepoint (cf. Fig. 7 forH,=0, where 0

the M—1 transition is observed upon heating the system d2
The detailed analysis requires the discussion of antiferro- -
magnetic insulating and metallic statesTat0 before any v1-4d°+4d

direct comparison with the experiment is made. Also, in the

201 _ 2\2_ A2
case of a quarter-filled band the system undergoes a transi- — 4d*(1—2d%)"—d

!

tion from a ferromagnetic metahs observed in CgSRef. 1-2d? Mo

23)] to a ferromagnetic insulator with an orbital orderfiig.

Therefore, the role of both magnetic ordering near MIT, as d?(4d2—3)(4d%*—1) ,

well as of degeneracfalbeit weak®) must be determined in - 1— 242 Mo- (AS)
detail.

So, we obtain the magnetic susceptibilp=dm/dh in the
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APPENDIX: MAGNETIC SUSCEPTIBILITY AND DOUBLE ea:ﬂ/eer_use also the low-temperature expansiod‘ofierived
OCCUPANCY OF THE METALLIC STATE CLOSE :
TO THE MOTT-HUBBARD LOCALIZATION U 2.2,
T T
We start from the expressiot64) for the free-energy dz:z<1—§)——1 7 (A7)
functional for a constant DOS and in the half-band case: 6( 1- Zu2>
FM 2 2 1 L9 . . . .
f= sz—(4—m )®/8+2ud —hm— gim Expandingm}, to the first order in7? we arrive at the
expression fory in physical units:
2m 2+k Al
30 : (A1) 1 16 ,

X=Xo ﬁ‘f— ?77 u
where® is defined by Eq(34). z

Minimizing above expression with respectrtowe obtain 2+u
2
ot d?m 1 272 v urau—4 2 A8)
0=-—-= ————h——im+ — &, (A—u?)2(—2+u+2j+ju)?
m  V4(1-2d9)*-m 47 302 it]
(A2)
where® .= g®/dm. Differentiating the above equation with wherey, is the susceptibility for noninteracting particles.
respect tch and takingh=0, for whichm=0, we have We see that fou> —2+22~0.83 the susceptibility is
always rising with temperature. Note that for DOS smoothly
d? , 1., 81272 3 varying around the Fermi energy this increase is solely due
1——2d2m0_2_ 5iMo= —5—Pp®y® o to the correlations and corresponds to the approaching the
localization boundary depicted in Fig. 7. In the nondegener-
41212 ate case and for=0, the corresponding Brinkman-Rice for-
+—3 ®pp®~%0=0, (A3)  mula reads:
wheremg=(dm/dh),_o The derivative® for m=h=0 is 2+u
X=Xo5 - (A9)
I 320 201 A1 —oq2_ 2
oaml = (4_m2)2[1_2d +3VA4(1-2d%)"-m7m Now we derived? in small magnetic field and tempera-
0 ture. Because of time reversal symmety/depends only on
8d2 even power oh. We determine nonvanishing termh? at
- 2 m . (A4)  T=0. Substituting into Eq(42) first the expression fam in
(4=m%)y4(1-2d%)"—m h=0 the first order ofh given by(44) and subsequently differen-
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tiating twice, thus obtained formula we see that doubly-

occupancy probability diminishes with growinig and/orh
according to:

1 u 2u 4
d2=—<1 )— T U2 27'2_ - 2h2.
6(1——) (=2+u+2j+ju)
4

(A10)

The decrease of; with T and h signals a precursory
localization effects discussed in Sec. Il E.

We now generalize the results to the case with arbitrary

DOS. We start from the expressignd) for the free energy
with the condition

1Ef

for the chemical potentiak(€) is given by Eq.(22). De-

wi2

p(e)n,(€)de, (A11)

fining H=h+ $Jm— B3, we obtain the following expression

of m to the first order:

1
1+ el b nlkgT)

W/2
m=2 f p(e)X o
—W/2 o

n ! (de—utkgT) T
(1+ (de—wlkgT))2 kgT

or, explicitly

m=2(h+ :Jm— 3;)K,
with
gl¢e—ulkgT)

kgT

p(e)de.
(A14)

wi2 2
ZJ_W,Z (1+ el @ wlkeT))2

Differentiating the above equation with respectht@nd
takingh=0 we have

=2(1+ 2Imy—B3n-o)K(h=0). (A15)

Differentiating the free energy with respect towe ob-
tain the relation

$Im—pz+22 f

W/2
P(E)(q)mE_U%J)nrr(f)zoa

(Al16)
and hence,

Wi2

ep(e)n, (A7)

Ba=20n2 f

which, when differentiated with respect Ip leads to
W/2

Bé,h:0:4q’mh|oJ_W/2 ep(€)no(e), (A18)

where® 1| is given by Eq.(A5). From Eq.(A15) we have

ANDRZEJ KLEJNBERG AND JOZEF SPAEK

dm B K

— =2
dhi, _, 1 __ d?%(4d%2-3)(4d%2-1)
— ZKJ+4Ke(T) +1
2 1—2d?

(A19)

where all quantities on the right-hand side are takenhfor
=0, ande(T) is average band energy per site and orbital.

Next, we expande(T), d?, andK in the powers ofT.
From Ref. 20 we have that

1 27% lp (kgT)\?
2:_ - —_——_— | —
16 |2p kBT
=05 Ty | By (21
Up 1 kgT) 2
E(T)__?‘F 377 p q)o (A22)
where |I=U/U,, and U,=8|¢|. Defining u*=u/®, and
T*=T/®, we can write
wiz 2 ple—u* IkgT*)
= f—w/z (1+e(5’l‘*/kBT*))2 kg T p(e)de
JW/Z
) d
W2 kBT* P(e) €
2 [ (Wi2—pu* IkgT*
- _ (WI2— ™ [kgT™) f’(X)p(XkBT* +M*)dx
D J (—wiz- w* ikgT*)
2 P2V (n*)
_5%: (kBT*)ZnW X2 (x)dx
(A23)

Wheref'(x) is the derivative of the Fermi-Dirac function.
Noting that

o df(x) e di(x) 1
f_m ax =1 J_wx ax =737

(A24)

we arrive at the expression

=—[p(p« w2 (u*)(keT*)?].  (A25)
From Ref. 20 we also have
2 '
* _ ™ * 2P
M (T)_EF_E(kBT ) ry (A26)

and thus



K—Zp 72 (keT\2( [ pD\? p@
TP 6| @ ol p
| L T kT 20 (kT2
=20\ 3, SQJSU_OP(B ) PGTJO(B ),

(A27)

with r=(pWM/p)2— (p®Ip). We substitute Eqs(A20),
(A22), and (A27) into Eqg. (A19). As a result, the suscepti-
bility x= (1/4p) xo(dm/dh),,_, is of the form

2 2
Xo m(kgT)
X=<|l-a——| (A28)
S 6D3S
where
S—Cb(l U 1Hi2 J (A29)
0 Pavnz "
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and

322%p

Uc

a=8I%(12+21+3)(1+1) 2p?~ +rdg.

(A30)

Neglecting higher-order contribution ih the result re-
duces to the usual Stoner formy(T=0)=x[1—p(U
+J)] . Formula(A28) generalizes the result of Brinkman
and Ricé obtained for a nondegenerate cas@ at0, and its
generalizatioff to T>0. The Hund’s rule coupling enhances
the susceptibility and can be the source of a ferromagnetic
instability.

With the help of the expression fd¢ one can determine
the first nontrivial contribution to the specific heat in the
applied field. Namely, one ha§v=(y0/q)0)T+bH§T,
whereb is a constant divergent at the localization point. This
increase is connected with the narrowing of the band with
the growing field.

1J. Binemann and W. Weber, Phys. Rev5B R4011(1997); H.
Hasegawa, J. Phys. Soc. Jp6, 1391(1997); G. Kotliar and H.
Kajueter, Phys. Rev. B4, R14 221(1996.

2Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K.
Kumagai, and Y. lye, Phys. Rev. Lef0, 2126(1993; F. Inaba,

T. Arima, T. Ishikawa, T. Katsufuji, and Y. Tokura, Phys. Rev.

B 52, R2221(1995.
3X. Yao, J. M. Honig, T. Hogan, C. Kannewurf, and J. Syal

Phys. Rev. B54, 17 469(1996, and references therein; A. Hus-
mann, D. S. Jin, Y. V. Zastavker, T. F. Rosenbaum, X. Yao, and

J. M. Honig, Scienc®74, 1874(1996.

4W. Bao, C. Broholm, S. A. Carter, T. F. Rosenbaum, G. Aeppli,

S. F. Trevino, P. Metcalf, J. M. Honig, and J. &galPhys. Rev.

Lett. 71, 766(1993; S. A. Carter, T. F. Rosenbaum, P. Metcalf,

J. M. Honig, and J. Sgek, Phys. Rev. B8, 16 841(1993; For
a review, see T. F. Rosenbaum, Metal-Insulator Transition
Revisited edited by P. P. Edwards and C. N. Rékaylor &
Francis, London, 1995p. 105.

7. Spatk, A. Datta, and J. M. Honig, Phys. Rev. Le®o, 728
(1987; For a review, see J. Sfald, J. Solid State Cheng8, 70
(1990.

0w, Metzner and D. Vollhardt, Phys. Rev. Le@2, 324 (1989;
For a review and detailed discussion, see A. Georges, G. Kotliar,
W. Krauth, and M. Rozenberg, Rev. Mod. Phg8§, 13 (1996.

11p. Korbel, J. Spak, W. Wdcik, and M. Acquarone, Phys. Rev.
B 52, R2213(1995.

123, sp#tk and P. Gopalan, Phys. Rev. Ledt, 2823(1990; J.

Spakk, W. Wdcik, and P. Korbel, Physica B30-232 620

(1997.

183G, Kotliar and A. E. Ruckenstein, Phys. Rev. L&z, 1362
(1986; M. Lavagna, Phys. Rev. B1, 142 (1990.

143. W. Rasul and T. Li, J. Phys. Z1, 5119(1988; P. Wdfle and
T. Li, Z. Phys.78, 45(1990.

15H. Kuwamoto, J. M. Honig, and J. Appel, Phys. Rev2B 2626
(1980.

163, Spékk (unpublishel

173, Hubbard, Phys. Rev. B9, 2626(1979; 20, 4584(1979.

5The metamagnetism is particularly pronounced for almost ferrod8y Korenman, J. Murray, and R. Prange, Phys. Red634032

magnetic almost localized systems, e.g., £95¢ [see G.

(1979; 16, 4048(1977).

Krill, P. Panissod, M. Lahrichi, and M. F. Lapierre-Ravet, J. 1°J. Spatk, A. M. Oles and J. M. Honig, Phys. Rev. B8, 6802

Phys. C12, 4269(1979]; For a theoretical discussion in a non-

degenerate case, see J. 8gaP. Korbel, and W. Wik, Phys.
Rev. B56, 971(1997).

8(a) This has been predicted theoretically fo=0 by D. Voll-
hardt, Rev. Mod. Phy$6, 99 (1984). (b) For T>0 it described
in J. Spékk and W. Wicik, in Spectroscopy of the Mott Insu-
lator and Correlated Metalsedited by A. Fujimori and Y.
Tokura (Springer-Verlag, Berlin, 1995pp. 41-65.

(1983.

20The metal-insulator transition has been discussed along these
lines in N. H. March, M. Suzuki, and M. Parinello, Phys. Rev. B
19, 2027(1979.

213, Spékk, M. Kokowski, and J. M. Honig, Phys. Rev.3®, 4175
(1989.

22H. Hasegawa, Phys. Rev. 55, 1196(1997.

233, Ogawa, J. Appl. Phy&0, 2308(1979.

"H. S. Jarret, W. H. Cloud, R. J. Bouchard, S. R. Butler, C. G.?*K. I. Kugel and D. I. Khomskii, Zh. Eksp. Teor. Fif4, 1429

Frederick, and J. L. Gillson, Phys. Rev. Let, 617 (1968.

8J. Hubbard, Proc. R. Soc. London, Ser281, 401(1964; W. F.
Brinkman and T. M. Rice, Phys. Rev. B 4302(1970; M. C.
Gutzwiller, Phys. Rev137, A1726(1965.

(1973 [Sov. Phys. JETR7, 725 (1973]; S. Inagaki and R.
Kubo, Int. J. Magn4, 139(1973; J. Spatk and K. A. Chao, J.
Phys. C13, 5241(1980.

%5R. Fresard and G. Kotliar, Phys. Rev. 56, 12 909(1997).



