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Simple treatment of the metal-insulator transition: Effects of degeneracy, temperature,
and applied magnetic field

Andrzej Klejnberg and Jozef Spal”ek
Marian Smoluchowski Institute of Physics, Jagiellonian University, ulica Reymonta 4, 30-059 Krako´w, Poland

~Received 5 September 1997; revised manuscript received 22 December 1997!

A simple slave-boson representation combined with the Hartree-Fock approximation for Hund’s rule cou-
pling is introduced for a doubly degenerate narrow band, which bears a direct relation to that introduced
previously in the nondegenerate case. Namely, one keeps the fermion representation of the spin operator to
recover properly the energy of fermionic quasiparticles in the presence of an applied magnetic field. A simple
two-parameter mean-field analysis of the metamagnetism is provided, with the emphasis on the role of Hund’s
rule coupling. We also analyze the appearance of the spin-split effective masses in the applied field and for the
non-half-filled band situation. The Mott-Hubbard boundary is determined at nonzero temperature (T.0); it
shifts towards lower interactions with increasingT and the field signaling the precursory localization effects,
explicitly exhibited in the behavior of the magnetic susceptibility calculated in the Appendix. We also formu-
late a more general two-parameter rotationally invariant approach for an arbitrary degeneracyd of equivalent
orbitals and show that the Mott-Hubbard transition at zero temperature and at any integer fillingn>1 is always
discontinuous. A brief overview of the experimental situation is also given.@S0163-1829~98!04616-5#
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I. INTRODUCTION

In recent years one observes a renewed interest in
metal-insulator transition~MIT ! of the Mott-Hubbard type,
with a particular emphasis on the effect of orbital degener
and associated with it Hund’s rule coupling, both appear
as additional factors.1 This interest is induced by the ne
works on perovskites,2 NiS22xSex ,3 as well as on the ca
nonical system V22yO3.4 In most of these compounds on
observes an anomalous metallicity even in the paramagn
state.3,4 Among them is the metamagnetism and a relativ
strong applied magnetic field dependence of thermodyna
properties,5 in addition to the field induced metal-insulato
transition.6 These phenomena of localization occur in co
pounds of various crystal structure and even in the sa
magnetic phase, as in the case of NiS22xSex . Therefore, it
seems that the underlying microscopic mechanism is ra
general, neither strongly dependent on a particular crysta
graphic structure, nor on the form of the density of sta
near the Fermi energy and the type of magnetism. Additi
ally, electronic properties of the system NiS22xSex are well
described by considering a half-filledeg band7 composed of
3d states~due to Ni21 ions!, which hybridize with com-
pletely filled p states due to S22 or Se22 ~the last states are
believed to play only a passive role near the MIT!.

The purpose of this paper is to carry out a simplifi
analysis for a system composed of orbitally degenerate
otherwise equivalent band states that nonetheless addr
some of the principal phenomena in an applied magn
field and at nonzero temperature. Thus, one can examine
system behavior as a function of experimentally controlla
parameters.

The analysis of Mott-Hubbard localization in the nond
generate band case was based on the Hubbard mode
provides a continuous transition atT50 ~Ref. 8! and a dis-
continuous transition atT.0.9 These results were subs
570163-1829/98/57~19!/12041~15!/$15.00
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quently confirmed in the limit of infinite dimensions.10 This
means that this quantum phase transition possesses an
critical dimension and the Gutzwiller approach represent
correct mean-field theory. Also, close to the localization, d
pending on the band filling, one observes metamagnetism6 or
metamagnetic behavior,7,11 spin-split effective masses,11,12

and a transition from an antiferromagnetic semimetal to
antiferromagnetic insulator.4 The related Gutzwiller approxi-
mation scheme for a doubly degenerate Hubbard model
vides a discontinuous transition already atT50,1 a change
induced by Hund’s rule coupling. Obviously, Hund’s ru
should make the localization easier~i.e., diminish the critical
valueUc of the intraatomic interaction!, since it favors ener-
getically the high-spin atomic state against any norm
Fermi-liquid state. Hence, we can separate the effects a
ciated with the Coulomb interaction from those due
Hund’s rule coupling.

The structure of this paper is as follows. In the next s
tion we introduce a slave-boson approach combined with
Hartree-Fock approximation for the Hund’s-rule term, whi
reproduces in a simple manner the similar results of the
slave-boson analysis by Hasegawa1 in the paramagnetic stat
for zero field and temperature. Additionally, this represen
tion provides a correct expression of the energy a fermio
quasiparticles in the applied magnetic field. Within th
scheme we determine the magnetic susceptibility, metam
netic properties, spin-dependent effective masses, as we
determine the Mott-Hubbard boundary at nonzero tempe
ture, and its shift towards lower temperatures in the app
field. The similarities and differences with th
nondegenerate-band case are stressed. In the second p
propose a simple rotationally invariant formulation of th
problem for an arbitrary orbital degeneracy of electron sta
and compare it with the Gutzwiller approach. Within th
approach, a difference between the Hund’s rule and inter
magnetic coupling appears naturally, although the last p
is not discussed in detail in the present paper. The correl
12 041 © 1998 The American Physical Society
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12 042 57ANDRZEJ KLEJNBERG AND JOZEF SPAL”EK
metal-paramagnetic insulator transition takes place at any
teger filling n and is discontinuous forn>1.

II. PARAMAGNETIC AND METAMAGNETIC STATES
OF THE DOUBLY DEGENERATE HUBBARD MODEL

A. Slave-boson method combined with the Hartree-
Fock approximation for the exchange term

Doubly degenerate Hubbard model in the situation w
equivalent orbitals is described by the Hamiltonian:

H5( 8
i j l s

t i j ail s
† ajl s1U(

i l
nil ↑nil ↓1~U82 1

2 J!(
i

ni1ni2

22J(
i

Si1•Si222h(
i l

Sil
z , ~1!

whereail s is the annihilation operator of electron from la
tice sitei on orbitall (51,2) and with spins(5↑,↓), nil s is
the particle number andSi l 5(Sil

1 ,Sil
2 ,Sil

z ) is the spin opera-
tor, t i j is the hopping integral, assumed for simplicity th
same for the two orbitals~we choose alsot i i 50). Parameters
U, U8, andJ are, respectively, the intraband Coulomb, t
interband Coulomb, and Hund’s-rule-exchange integrals.
the eg band we haveU85U22J. Finally, in the last term
h5 1

2 gmBHa , whereHa is the applied magnetic field. Be
cause of the vanishing orbital moment in the first order,
magnetic field affects the spin degrees only~we neglect also
the Landau quantization effects for low fields!.

We make the mean-field approximation for the exchan
term. Likewise, we decouple in the same manner the in
orbital term, sinceU82 1

2 J5U2 5
2 J. Therefore, we have

ni1ni25ni1^ni2&1^ni1&ni22^ni1&^ni2&,

Si1•Si25Si1
z ^Si2

z &1^Si1
z &Si2

z 2^Si1
z &^Si2

z &, ~2!

where^A&5Tr(Ae2bHH2F) is the average value of operato
A with HamiltonianHH2F :

HH2F5( 8
i j l s

t i j ail s
† ajl s1U(

i l
nil ↑nil ↓1K 1

2 n(
i l

nil

2Jm 1
4 (

i l s
snil s2h(

i l s
snil s2 1

4 KNn21 1
8 JNm2

2mNe . ~3!

In this equation we have added the chemical potential
(2mNe), with Ne being the number of electrons in the sy
tem. Then andm are defined by equations

^nil &[
1
2 n, ~4!

2^Sil
z &[ 1

2 m, ~5!

andN is the number of sites,K5U82 1
2 J. The mean values

of nil and Sil
z are independent of site and orbital index

because of translational symmetry and the equivalence o
orbitals for half- or nearly-half-filled band configurations~in
this part we consider mainly the limit ofn equal to or close
to two!.
n-

or

e

e
r-

rt

he

We employ the slave boson representation of Kotliar a
Ruckenstein13 in the form

u0,i l &[eil
† uv&, ~6a!

ail s
† u0,i l &[us,i l &[ f i l s

† pil s
† uv&, ~6b!

sail s
† ail s̄

† u0,i l &[u2,i l &[s f i l s
† f i l s

† dil
† uv&, ~6c!

where we introduced new boson-fermion vacuumuv& instead
of the Fock-space vacuum$u0,i l &%. So, we have added onl
the orbital index to the original formulation. The operato
eil

† , pil s
† , and dil

† are boson operators andf i l s
† is fermion

operator. This representation must be supplemented by
constraints

Qil s[ f i l s
† f i l s2pil s

† pil s2dil
†dil 50 ~7!

and

Pil [eil
†eil 1(

s
pil s

† pil s1dil
†dil 2150 . ~8!

The relation between original (ail s) and new (f i l s) fer-
mion operators is

ail s5~eil
† pil s1dil pil s

† ! f i l s5zil s f i l s . ~9!

The constraints given by Eqs.~7! and~8! can be enforced
by Lagrange multipliersl i l

(1) andl i l s
(2) . We obtain the follow-

ing Hamiltonian:

Htot[HH2F1Hcon

5(
i j l s

8 t i j zil s
† zjl s f i l s

† f j l s1U(
i l

dil
†dil

1(
i l s

@~ 1
2 Kn2m!2s~h1 1

4 Jm!# f i l s
† f i l s1Hcon1C,

~10!

where

C[2 1
4 KNn21 1

8 JNm2, ~11!

and

Hcon[(
i l

l i l
~1!Pil 1(

i l s
l i l s

~2!Qil s . ~12!

Note that, using the fermion representation for the s
operator Sil

z 5 1
2 ( f i l ↑

† f i l ↑2 f i l ↓
† f i l ↓), we obtain correctly the

Zeeman term and, also, the Hund’s rule coupling in the fo
of a molecular field. Equivalently, one could utilize the Bo
representationSil

z 5 1
2 (pil ↑

† pil ↑2pil ↓
† pil ↓), but then only the

z-component is well defined and the result in the sadd
point approximation does not provide the quasiparticle en
gies with the proper Zeeman term~see the discussions of thi
point in Ref. 6~b!, where the full spin rotation invariant form
of the SB representation is invoked!.

The factor zil s is not unique, but when we make th
choice,13
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57 12 043SIMPLE TREATMENT OF THE METAL-INSULATOR . . .
zil s→~12dil
†dil 2pil s

† pil s!21/2zil s~12eil
†eil 2pil s

† pil s!21/2,
~13!

we obtain the correct result in the saddle-point solution.
The partition function is given by

Z5E D@e,e†#D@p,p†#D@d,d†#D@ f , f †#)
i l s

dl i l
~1!dl i l s

~2!

3expF2E
0

b

L~t!dtG , ~14!

whereb51/kBT is the inverse temperature,

L~t!5(
i j l s

f i l s
† @@]t2m̃2s~h1 1

4 Jm!1l i l s
~2!#d i j

1t i j zil s
† zjl s# f j l s1(

i l
eil

† ~]t1l i l
~1!!eil

1(
i l s

pil s
† ~]t1l i l

~1!2l i l s
~2!!pil s

1(
i l

dil
† S ]t1l i l

~1!2(
s

l i l s
~2!1U Ddil 2(

i l
l i l

~1!1C,

~15!

is the system Lagrangian, and

m̃5m2 1
2 Kn. ~16!

is the effective chemical potential.
Next, we make the saddle-point approximation, i.e.,

sume that Bose fields and Lagrange multipliers do not
pend on timet, number of sitei , and orbital indexl , so
eil (t)→e, pil s(t)→ps , dil (t)→d, l i l s

(2)→ls
(2), and l i l

(1)

→l. To obtain the saddle-point solution we must minimi
free energy with respect to boson fields and Lagrange m
tipliers. From partition function~14! we obtain the following
expression for the free energy:

F52kBT(
kls

lnF11expS m̃2Eks

kBT D G1 1
8 NJm212NUd2

22N(
s

ls
~2!~ps

21d2!12Nl~1!S e21(
s

ps
21d221D

2 1
4 NKn21mNn. ~17!

The Fermi quasiparticle energyEks is given by

Eks5qsek2s~h1 1
4 Jm!1ls

~2! , ~18!

whereek is bare band energy,qs[zs
2, and

zs
25

~eps1dps!2

~12d22ps
2 !~12e22ps

2 !
. ~19!

Thus, one encounters here two molecular fields: one c
ing from the Hund’s rule and the other (l↑

(2)2l↓
(2)) coming

from the electronic correlations.
-
-

l-

-

Differentiation of the free energy with respect
Lagrange multipliers provides the mean-field version of
constraints:

]F

]ls
~2!

50⇒ps
21d25

1

N(
k

nks5 1
2 ns , ~20!

]F

]l~1!
50⇒12e22(

s
ps

22d250, ~21!

where

nks5
1

11exp@b~Eks2m̃ !#
~22!

is the Fermi-Dirac function. From Eqs.~4! and ~14! we ob-
tain that^nil s&5 1

2 ns5(n1sm)/4. Instead of computing the
derivatives with respect to the remaining fields we sete and
ps expressed viad, n, andm into free energy~17!. Next, we
introduce new variablesb3 and b0 , such thatls

(2)5b0

1sb3 . We obtain the following free energy:

F

N
522kBT

1

N(
ks

lnF11expS m̄2Eks

kBT
D G1 1

8 Jm212Ud2

2b3m1 1
4 Kn21m̄n. ~23!

Quasiparticle energy is given by

Eks5qsek2s~h1 1
4 Jm2b3!, ~24!

and the effective chemical potential by

m̄5m̃2b05m2 1
2 Kn2b0 . ~25!

From Eq.~19! we obtainqs in a form

qs

54
SA12

1

2
n1d2An1sm24d21dAn2sm24d2D 2

~42n2sm!~n1sm!
.

~26!

This factor is the mass enhancement and in the gen
case (nÞ2) leads to the spin-dependent effective masse

One should justify the approximations made. First, foreg
band J.0.2U, and thereforeU85U22.5J.0.5U. Hence
one can say that making the Hartree-Fock approximation
the interorbital-interaction part is qualitatively correct ev
for U;W. Below we make this argument more quantitati
by comparing the ground-state energy obtained within diff
ent approximation schemes. Mixing the slave-boson sche
with the Hartree-Fock approximation for the Hund’s rule e
change has this advantage: that we can single out what
ture is specifically due to Hund’s rule coupling, as discuss
next.
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B. Casen52, T50, and h50: Effect of exchange interaction
on the metal-insulator transition

We consider first the simplest situation: a paramagn
state in the half-filled band case and at zero temperature
in zero applied magnetic field.1

At temperatureT50 the distribution function~22! takes
the form

nk5Q~m̄2Ek!5H 0 when Ek.m̄,

1 when Ek<m̄,
~27!

whereEk5F0ek and F0[qs5qs58d2(122d2). We ob-
tain following expression for the ground-state energy:

E0522(
s

E
2W/2

W/2

der~e!~m̄2F0e!Q~m̄2F0e!

12Ud212m̄

52F0ē12Ud21K, ~28!

where:

ē[2E
2W/2

W/2

der~e!en~e! ~29!

is the mean bare-band energy,n(e)5Q(m̄2F0e), andr(e)
is density of states. Minimizing the functional~28! with re-
spectd2 we obtain the solution

d25
1

4S 12
U

8u ē u
D , ~30!

which coincides with the results in the nondegenerate-b
case,8,9 i.e., the metallic state would become unstable forU
5U0[8u ē u if the system evolves continuously with growin
U. However, we shall see that in the degenerate system
instability pointU0 is replaced by a critical pointUc,U0 , at
which a discontinuous transition takes place.

The ground-state energy of the metallic state can be
pressed explicitly as

E0
M522u ē u2

1

32

U2

u ē u
1

3

2
U2

5

2
J. ~31!

In the Mott-insulating spin-disordered state, i.e., ford2

50, we have

E0
I 5K2 1

2 J5U23J. ~32!

Equating the energies~32! and ~28! we determine the
critical value ofJ5Jc andU5Uc , for which the transition
from a correlated metal to a paramagnetic Mott insula
takes place:

Jc54u ē uS 12
Uc

8u ē u
D 2

. ~33!

For J,Jc the metallic state is stable. Also, forJ.0 the
transition is of first order, whereas forJ50 it is continuous
and corresponds to that for the nondegenerate case. Fo
ic
nd

d

is

x-

r

ex-

ample, for J/U50.1 we obtain the critical valueU5Uc

55.1u ē u. The diminution of Uc below U0 is obviously
caused by the Hund’s rule favoring the high-spin state
each atom.

C. Casen52, T50, and h>0: Metamagnetic transition

We discuss next the homogeneous magnetized state s
ing from the paramagnetic state atT50. From Eq.~26! we
obtain the band narrowing factor in this case in the form

F[qs5
16d2

42m2
@122d21 1

2 A4~122d2!22m2#. ~34!

Thus, the effective mass will not depend on spin for t
half-filled band case.

The average occupancy of each orbital state with spins is

ns5
2

N(
k

nk,s52E
2W/2

W/2

der~e!ns~e!

52E
2W/2

@m̄1s~h2b31Jmm/4!#qs
der~e!,

~35!

where ns(e)5Q„m1s(h2b31Jm/4)2qse…. We choose
the featureless~rectangular! density bare of states:

r~e!5H 1

W
for eP@2W/2,W/2#,

0 otherwise.

~36!

The overall features should be independent of the deta
shape ofr(e), as we determine global quantities (m, EG ,
d2) involving integrals over the filled part of the releva
bands. Putting above density of states~DOS! into Eq. ~35!
we obtain

ns5
2

WE
2W/2

@m̄1s~h2b31Jmm/4!#/F
de

5
1

WFF S h2b31
1

4
JmDs1m̄1

WF

2 G . ~37!

Summation overs of the above equation leads to th
condition m̄50, but multiplying it bys and then summing
over s leads to the expression for the molecular field of t
form

b352 1
4 FWm1h1 1

4 Jm. ~38!

BecauseF is nonlinear in magnetic momentm, the molecu-
lar field b3 depends also onm in the same manner. Insertin
b3 into Eq. ~23! for T50, we obtain

EM[
F

NW
52~42m2!F/812ud22hm2 1

8 jm21k,

~39!

where the reduced parameters are

u5U/W, j 5J/W, k5K/W, h→h/W. ~40!
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57 12 045SIMPLE TREATMENT OF THE METAL-INSULATOR . . .
We determine the saddle-point solution minimizingEM
with respectd2 and m. Differentiation with respect tom
leads to

d4~m2216a!1a~16d21m224!50, ~41!

where a5(h1 jm/4)2. The differentiation with respectd2

yields

1
2 ~u14d221!A4~122d2!22m22~122d2!21 1

4 m2

12d2~122d2!50. ~42!

For h50 and u<2 from Eq. ~30! we obtain d25
(12u/2)/4. The change of direction of magnetic fieldh does
not changed2; thus (]d2/]h)h5050. Next, differentiating
with respect toh, Eq.~41!, and taking into account the abov
relations, we obtain the following expression for the ma
netic susceptibility:

x~0![
]m

]h U
h50

1

4
x05

x0

22u

21u
2 j

, ~43!

wherex052mB
2/W is the Pauli susceptibility~cf. the Appen-

dix!. The magnetic susceptibility was derived for the meta
state, so from taking into account the condition~33! we ob-
tain the metallic state for j ,(12u/2)2< (12u/2)/
(11u/2) <1. From, the last inequality we obtain the cond
tion for the magnetization in small fields:

m'
]m

]h U
h50

h5
4h

22u

21u
2 j

.
4h

12 j
. ~44!

This condition reduces solutions of Eq.~41! to

d25
28a1mAa~16a142m2!

m2216a
. ~45!

Substitutingd2 into Eq. ~42! we obtain the following
equation for magnetization:

264a3112a2m223am4/41m6/64164a2u2m4u/4

216au2132a2u21m2u2112am2u21m4u2/8

216au32m2u324au41m2u4/450. ~46!

The pair of solutions (m,d2) determines the ground-sta
energy~39!. The ground-state energy of a Mott-Hubbard i
sulator in the spin disordered state is

EI522h2 j /21k. ~47!

From the preceding subsection we know that the me
insulator transition take place forj 5(12u/2)2. From the
expression~43! for the magnetic susceptibility we see th
except for the casej 50 andu52, there is no singularity in
x at the transition. This means that the transition forj .0 is
of the first order. Forj 50 we have second-order transitio
as in the nondegenerate band case, wherex is singular~cf.
the Appendix!.
-

l-

Field dependences ofd2 and m are displayed on Figs
1~a!,~b!, respectively. Close to the transition point the syst
exhibits a metamagnetic behavior, i.e., them(h) dependence
is curved upwards. With the increasing fieldh the doubly
occupancy diminishes because of the growing spin polar
tion and at the transition pointd2 jumps to zero, while the
magnetic moment jumps to its saturation value. The mag
tude of magnetization jumpDm and the critical fieldhc de-
pend on the values ofj and u, as shown in Fig. 2. One
observes here an example of a magnetic-field-induced lo
ization, with a formation of a ferromagnetic~field-induced!
insulator. The transition from the metal to the insulator c
be either the first or second kind, depending on valuesu and
j . Regimes ofu and j , where the particular kind of a tran
sition takes place, are displayed in Fig. 3. We mark the a
of the insulating phase in zero field bounded by the cu
determined from Eq.~33!. The insulator polarizes atT50 to
a saturated state in an infinitesimal field; the jump of t
magnetization is then equal toDm52. Upon increasingj the
critical field hc decreases; likewise the magnetization jum
From Fig. 2 and Fig. 3 one could seen that foru.0.5 a
second-order transition does not occur. Obviously, our an
sis is valid quantitatively only forj substantially smaller than
u. Also, the critical field for metamagnetic transition b
comes experimentally accessible only close to MIT (u→2)
and reduces gradually to zero with growingj . This predic-
tion could be tested experimentally~see below!.

D. Casen<2 and T50: Spin-split masses, and MIT forn51

Consider now briefly the situationn,2 when the metallic
state is stable. We examine the effect of magnetic field on

FIG. 1. Field dependences of double occupancyd2 per orbital
~a! and magnetizationm per atom~b!, both forT50 andn52.
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12 046 57ANDRZEJ KLEJNBERG AND JOZEF SPAL”EK
transition to the saturated state, as a function of the par
etersu and j . The ground-state energy for a polarized state
provided by the expression

EM~n![
F

NW
52 1

16(
s

qs~42n2sm!~n1sm!12ud2

2 1
8 jm22hm1 1

4 kn2. ~48!

The energy of the saturated state is obtained by tak
into account Eq.~26! and making the substitutiond2→0 and
m→n in Eq. ~48!. We have then

FIG. 2. Jump of the magnetizationDm per atom and the critica
magnetic fieldhc both as a function of exchange interactionJ/W
and calculated at the metal-insulator transition forT50 andn52.

FIG. 3. Regimes ofU/W andJ/W for the half-filled band con-
figuration comprising both first- and second-order transition
gimes in an applied magnetic field.
-
s

g

EI~n![2 1
2 n~22n!2 1

8 jn22hn1 1
4 kn2. ~49!

In Fig. 4 we display magnetizationm, doubly occupancy
d2, and the mass enhancementqs

21 as a function of applied
magnetic field foru51.98 andj 50.05, for the band fillings
n51.86 andn51.8. The important feature is that the ma
enhancement is spin dependent~see the lowest panel!. Also,
there is a possibility of first- and second-order transitions
a saturated state. Regimes ofu and j , where these two types
of transition are possible for fillingn51.8 are shown in Fig.
5~a!. By comparing this figure with Fig. 3 we see that regim
of stability of an insulator forn52 corresponds here to th
area Ib with excluded doubly occupancy~EDO!, when the
system is in a magnetically saturated state in a vanish
field. In the case of one-band model, i.e.,j 50, EDO state for
nÞ1 is reached foru→1` in h50. For j Þ0, the doubly
degenerate case, this state is achieved for finiteu.

One should note that the effect of spin-split masses a
ing in the magnetically polarized state is not associated w
the emergence of the spin-dependent density of states in
bare band. This can be seen from the fact that the quas
-

FIG. 4. Field dependences of magnetizationm per atom, double
occupancyd2 per orbital, and the spin-dependent mass enhan
ment ms /m0, all for n,2 ~from the top to the bottom, respec
tively!.
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ticle energiesEks @cf. Eq. ~24!# lead to the following density
of states:

rs~E!5
1

qs
rs

~0!S «2

sS h1
1

4
Jm2b3D

qs

D , ~50!

wherers
(0)(«) is the density of bare states per spin. Thus,

enhancement due to the correlations is distinct from the s
of the density of states caused by the presence of the e
tive field. The many-body nature of the enhancement fac
can be also seen by writing the quasiparticle energy in
form

Eks5«k2sh1~qs21!«k2s~ 1
4 Jm2b3!

[«k2sh2Ss~v5«k!, ~51!

where the self-energy is

Ss~v!52~12qs!v2s~ 1
4 Jm2b3!. ~52!

Taking into account the well-known definition of the ma
enhancement in the Fermi liquid,

FIG. 5. ~a! Regimes ofU/W andJ/W of first- and second-orde
transitions in applied magnetic field forT50. ~b! The metal-
insulator transition forn51, ~for J/U50.1), as exemplified byd2

vs U/W dependence. The band narrowing is exhibited in the in
e
ift
c-
r
e

m0

m*
5 lim

v→m
S 11

]

]v
ReSs~v! D , ~53!

we have thatm0 /m* 5qs , i.e., is indeed spin dependen
This spin dependence, which will lead to the strong fie
dependence of the linear specific heat close to the metam
netic transition~see Spal”ek et al.11! is characteristic of the
almost localized fermions and should be determined exp
mentally. Note that it is the same for allk states.

One should observe that a discontinuous transition is p
sible also forn51. In Fig. 5~b! we display the double occu
pancyd2 as a function ofU/W and show the transition a
Uc /W51.52 for J/U50.1; the associated with it band
narrowing-factor change is included in the inset. One see
clear difference with the approach in Ref. 1, where the sa
transition is continuous. The difference disappears at n
zero temperature, where it is always discontinuous~cf. Ref. 9
and the discussion below!. In our case the first-order trans
tion is driven by the difference in the interorbital Coulom
term ;Kn2, which is absent in the insulating phase. Th
the first-order nature of MIT here is common to bothn51
and n52 cases. Also, the critical value ofUc for n51 is
higher than that forn52, for the same reason. The field an
temperature dependences of the physical quantities fon
51 are similar to the those forn52, so we will not repeat
them here.

III. MOTT-HUBBARD BOUNDARY AT NONZERO
TEMPERATURE

A. Phase diagram:h>0

In the preceding section we considered the system p
erties at zero temperature. We concentrate now on a m
realistic case of nonzero temperature in the half-filled ba
case. The low-temperature~Sommerfeld! expansion9 of the
free energy~23! for the metallic phase leads to the followin
expression for the constant DOS:

FM

NW
52~42m2!F/812ud22hm2

1

8
jm21k2

2p2

3F
t2,

~54!

wheret5kBT/W. No higher-order term int appears for this
DOS.

Hamiltonian describing the insulating phase can be
written in the form

HI5K(
i

ni1ni222J(
i

Si1•Si222h(
i l

Sil
z

5(
i

@Kni1ni22J~Si
22Si1

2 2Si2
2 !22hSi

z#, ~55!

whereSi5Si11Si2 is the total spin per site. The eigenstat
of HI are singlet and triplet configurations. The partitio
function is then given by

Z5Tr~e2bHI !

5e2bKN@e23bJ/21ebJ/21ebJ/2~e2bh1e22bh!#N

5e2bKN@e23bJ/21ebJ/2
„112cosh~2bh!…#N. ~56!

t.
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This expression leads to the free energy for the Mott
sulating state in the following form:

FI

NW
52

1

NWb
ln@Z#

5k2
1

Wb
ln@e23bJ/21ebJ/2

„112cosh~2bh!…#

5k2t ln@e23 j /2t1ej /2t
„112cosh~2h/t!…#. ~57!

The result in the limitt→0 reduces to the expressio
~47!. The magnetization in this state is

m[2Tr~Si
ze2bHI !

52
e2bKNebJ/2~e2bh2e22bh!

e2bKN@e23bJ/21ebJ/2
„112cosh~2bh!…#

5
4sinh~2bh!

e22Jb1112cosh~2bh!
5tanh~h/t!

2

e22 j /t21

4cosh2~h/t!
11

,

~58!

For j 50 we obtainm52tanh(h/t), the expression for the
magnetization of noninteracting spins. Such a situation ar
because the saddle-point approximation in its essence
single-site approximation~the intersite interaction arise
from the quantum Gaussian fluctuations around it!.

The field dependences of the magnetization and of
double occupancy are shown in Fig. 6. We see that u
increasingj while keeping fixedu the critical metamagnetic
field is reduced. It indicates, as before forT50, a significant
role of exchange interaction and, associated with it, Hun
rule. Also, the magnetization curve is slightly curved u
wards in small fields. The upper part of them(h) curve
reflects magnetization of the localized-moment system. T
we have a transition from an itinerant~albeit metamagnetic!
to localized-type behavior as a function ofh.

Substituting the expressions form andd2 taken from the
Appendix into the free energy~54! we can determine the
system behavior in the vicinity ofh50. The phase diagram
for casesh50 and 0.01, for different values ofJ/U is ex-
hibited in Fig. 7. Upon increasing ofJ/U the paramagnetic
insulating~PI! phase expands at the expense of the param
netic metallic~PM! phase. In the applied field the boundari
shift towards lower temperatures. We see also a typical
entrant metallic behavior at high temperatures. Namely, w
rising temperature the system evolves from a metal thro
an insulator back to the metallic state. In the inset we disp
the temperature dependence of the free energies for PM
PI states.

The shape of the phase boundary is essentially the s
as in the nondegenerate-band case.9 However, it is shifted
remarkably towards lower values ofU/W already for rather
small values ofJ/W. The boundary is of first order apa
from the point specified. The upper part of the curve is o
qualitative, particularly if a realistic DOS is used, as high
order contribution int will become important. In fact, the
solution of the Hubbard model in the infinite-dimensio
-

es
a

e
n

’s
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s

g-

e-
h
h
y
nd

e

y
-

limit 10 provides only a crossover behavior, not a weakly d
continuous retrograde behavior.

One may ask if the low-T analysis is realistic, since in th
mean-field slave-boson analysis the low-energy spin fluc
tions ~quantum Gaussian fluctuations around the saddle p
here! have been neglected. Those spin fluctuations lead
the contribution;T4ln(T/u) in the free energy.14 This con-

FIG. 6. Field dependences of the magnetization and double
cupancy for different values ofJ/U.

FIG. 7. The PM–PI phase boundaries as a function ofU/W for
n52 ~thick lines!, and their shift in the applied magnetic field~fine
lines!. The inset displays the free energies for PM and PI states
function of temperature.
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tribution is of higher order than theT2 contribution coming
from the quasiparticle excitations across the Fermi surfa
Therefore, the analysis is realistic, but only to the lead
order in low-T expansion, as we have done it.

B. Physical discussion

The evolution of the almost localized fermions discuss
above for the half-filled band case can be explained nic
from a physical point of view. Namely, forU→Uc the renor-
malized band (Fē ) and the correlation (Ud2) energiesal-
most compensate each other.In such a situation, much
smaller entropy (;TS) or applied field (;mBHa) energies
tip the balance towards either the M or I phase. Explicitly,
low temperatures, the spin-disordered magnetic insulator
much larger entropy contribution (2kBTln2, per orbital!
than that of the almost localized Fermi liquid@2g0T2/
(2F), with g05(2/3)p2kB

2r]. This circumstance tips the
balance from the PM state~with EG,0, but small entropy
contribution! towards the PI state~with EG50, but much
larger entropy contribution!. At much higher temperature
the balance is tipped back towards the PM phase, since e
tually the entropy of the metallic state grows and approac
the asymptotic value 2kBln2 per orbital. Thus the reentran
metallic behavior is driven by the entropy. It is observed
both ~V12xCrx) 2O3 ~Ref. 15! and NiS22xSex ~Ref. 3! sys-
tems. It can be applied also to explain the low-temperat
reentrant liquid behavior in liquid3He.16 In our view the
reentrant behavior appearing either as a crossover or
discontinuous transition (3He! is uniquely present in the
Mott-Hubbard systems defined as systems, for which
band and the Coulomb parts of their energy almost comp
sate each other. The intra-atomic exchange contribution
the balance further towards the localized state.

Obviously, the first-order nature of the transition will lea
to the coexistence of the two phases, with localized and i
erant electrons, respectively. However, this mixed phase
be discussed only when the magnetism is included, and
will not elaborate on it here.

As mentioned at the beginning, the present formulat
represents forHa5T50 a simplified version of the full
slave-boson and Gutzwiller treatments1 discussed recently
In Fig. 8 we have compared the Hartree-Fock~HF!, ours

FIG. 8. Comparison ground-state energies forT5h50, n52,
and J/U50.1 obtained from these methods: Hartree-Fock, sl
boson, and slave boson combined with Hartree-Fock. The arr
indicate the position of MIT in the two last approximation schem
e.
g
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t
as

n-
es

re
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~SB-HF!, and full slave-boson~SB! results for the ground-
state energies forh50 and n52. The arrows denote the
position of the Mott-Hubbard boundary in the two latt
schemes. The energy difference diminishes rapidly w
growing h. The difference for physical quantities is on
quantitative, not qualitative, though the SB approach1 has
slightly lower energy, since it contains many more var
tional parameters. In the next section we extend the m
features of our solution to arbitraryJ/W and higher degen-
eracyd of equivalent orbitals and an arbitrary filling.

IV. METAL-INSULATOR TRANSITION FOR ARBITRARY
ORBITAL DEGENERACY AND FILLING: A SPIN

ROTATION INVARIANT MODEL

A. Global „site… representation of the intraatomic interaction

We now generalize the principal features of our argum
to the case of orbital degeneracy. First, we represent the
traatomic part in terms of global~site! representation. For
that purpose we start from the following expression of th
part:

HI5U(
i l

nil ↑nil ↓1
1

2
K ( 8

i l l ss8
nil snil 8s82J( 8

i l l 8
Si l •Si l 8 ,

~59!

where nowl and l 8 assume the values 1,2, . . . ,d, and the
primed summation is taken forlÞ l 8. We introduce the glo-
bal spin and particle number operators through the relati

Si[~Si
1 ,Si

2 ,Si
z![(

l 51

d

Si l , ~60!

and

ni[(
s

nis[(
ls

nil s . ~61!

We have the following relations between global and p
viously introduced operators:

(
l l 8

nil nil 85ni
22ni22(

l
nil ↑nil ↓ , ~62!

and

( 8
l l 8

Si l •Si l 85Si
21

3

2(l
nil ↑nil ↓2

3

4
ni . ~63!

Hence, up to a constantHI takes the form

HI5
1

2
K(

i
ni

22J(
i

Si
21I(

i l
nil ↑nil ↓ , ~64!

whereI 5U2K2 3
2 J.

For a particular example of theeg band we have

HI5
1
2 ~U2 5

2 J!(
i

ni
22J(

i
Si

21J(
i l

nil ↑nil ↓ . ~65!

e
s

.
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The first term represents charge fluctuations, the sec
the atomic Hund’s rule. Moreover, unlike in a nondegener
band the intraorbital intraatomic~Hubbard! parameter (J) is
much smaller thanU. Additionally, the first two terms are
proportional tod2 while the third is;d. Hence, the last term
can become the smallest, particularly for highly degene
systems. In general, the Hamiltonian~64! expresses the so
called minimum polarity model of Van Vleck~charge fluc-
tuations suppressed by growingU), as well as the separatio
of the dynamic processes into inequivalent charge and
degrees of freedom in the effective one-band model in
duced by Hubbard.17 For highly degenerate systems we c
approximate

I(
i l

nil ↑nil ↓.I(
i l

ni↑
d

•

ni↓
d

5
I

d(i
ni↑ni↓ . ~66!

Noting that

ni↑ni↓5
ni

2

4
2~m i•Si !

2, ~67!

where m i is unit vector along an arbitrarily oriented sp
quantization axis for the spinSi , one has finally

HI.
Ũ

4(
i

ni
22J(

i
Si

22
I

d(i
~m i•Si !

2, ~68!

whereŨ[2K1I /d. For a particular case of a nondegener
band (d51), K5J50, we recover the earlier results18 with
Ũ5U, and I 5U. For d→` the last term is absent and th
correlated paramagnetic state atT50 is described by two
variational parameters:

l[^ni
2&, ~69!

and

m[^Si
2&. ~70!

Note that in this sectionm represent the local-momen
magnitude. The third parameter describing the long-ra
order is obtained by making the Hartree-Fock approxim
tion,

I

d(i
~m i•Si !

2.
I

d(i
~m i•^Si&!m i•Si . ~71!

The collinear magnetic ordering is expressed then thro
^Si

z&5m i•^Si&. Since in this section we consider only a par
magnetic state atT5Ha50, we neglect in our analysis th
last term. Note however, that the present parametersl, m,
and^m i•Si& for arbitraryd correspond directly to the param
etersd2, p↑

2, andp↓
2 in the preceding section (e2 is removed

via the completeness conditione21p↑
21p↓

21d251).

B. Magnitude of local-moment and charge fluctuations:
First-order transition to the insulating state at T50

In direct analogy to the doubly degenerate case discu
in Sec. II, we express the ground-state energy in the for
nd
e

te

in
-

e

e
-

h
-

ed

EG

N
5F~l,m! ē1

Ũ

4
l2Jm, ~72!

where now the band narrowing factorF depends onl and ē
represent the average band energy for a degenerate sy
Without a loss of generality one can assume thatF(l,m)
5L(m)G(m). In accordance with our simple derivation o
the mean-field~Gutzwiller! approach in the half-filled band
case19 we make an expansion:

L~l!5 l 01 l 1l1 l 2l2, ~73!

and

G~m!5g01g1m1g2m2. ~74!

Note that 0<F[LG<1. The expansion has the meanin
of a Landau expansion, and the coefficients can be de
mined by calculatingEG explicitly in limiting situations. For
example, in the Hartree-Fock approximation we haveL
5G51 and thus elementary analysis provides us with

l[l05n1n2S 12
1

2dD , ~75!

and

m[m05
3

4
nS 12

n

2dD , ~76!

wheren is the band filling (n5d corresponds to the half
filling !. Analogously, forŨ→` andJ→`, the quantitiesl0
andm0 will approach their atomic valuesl` ,m` :

m[m`5H 3
4 for n<1

n

2S n

2
11D for n>1,

~77!

and

l[l`5H n for n<1

n2 for n>1.
~78!

Additionally, applying the equilibrium conditions

]EG

]l0
5

]EG

]m0
50, ~79!

we obtain the expression

l5l0F12
Ũ

8l 2l0u ē uG~m!
G , ~80!

m5m0F11
J

2g2m0u ē uL~l!
G . ~81!

As in nondegenerate case, the charge fluctuations are
pressed with increasingŨ. On the contrary, the magneti
moment grows with increasingJ. Additionally, using the
conditionsL(l0)5G(m0)51 we obtain

L~l!511 l 2~l2l0!2, ~82!
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G~m!511g2~m2m0!2. ~83!

The coefficientsl 2 and g2 are determined from the con
dition that for any integer band fillingn>1 we have that
L(l`)50, andG(m`)5ns /n51/2 ~this result is valid for
the paramagnetic configuration only and reflects the P
exclusion!. So, finally we have

L~l!512S l2l0

l`2l0
D 2

, ~84!

and

G~m!512
1

2S m2m0

m`2m0
D 2

. ~85!

Substituting these expressions into the expression~72! for
EG , we obtain the explicit form in the terms of variation
variablesl and m. Making use of the conditions]EG /]m
5]EG /]l50 we arrive at the algebraic equations, whi
may be transformed into the following equations for t
functionsG andL taken at the extremal points:

G32G2F122
Ũ

U0
1S J

Jc
D 2 1

g2
G1G

Ũ

U0
S Ũ

U0
22D 2S Ũ

U0
D 2

50, ~86!

and

L32L2F112
J

Jc
1S Ũ

U0
D 2

1

l 2
G1L

J

Jc
S J

Jc
12D2S J

Jc
D 2

50,

~87!

with U058u ē u, and Jc52u ē u. These two equations can b
transformed into each other by changesL↔G, g2↔ l 2 , and
J/Jc↔2Ũ/U0 . Hence, it is sufficient to solve numericall
one of them and adapt it subsequently for the second e
tion. One should notice that the nondegenerate-band-cas
sult l5l` ~i.e., d250) is recovered forU/U051.

Before going into the numerical analysis let us summar
the above subsection. We have developed a relatively sim
scheme of calculating the magnitudes of local moment^Si

2&
and of the charge fluctuations^ni

2&, which is equivalent to
the Gutzwiller-Brinkman-Rice scheme8 for d51. These
magnitudes are calculated from a relative balance betw
the renormalized band energy from one side, and the co
lation energies@(Ũ/4) l22Jm2# from the other. The method
involves an interpolation between low- and high-correlat
regimes~note that the mean-field slave-boson theory requ
such an interpolation to theU→0 limit13,12!.

C. Numerical analysis for arbitrary degeneracy and filling

We define the reduced variables

lR5
l2l0

l`2l0
, ~88!

and

mR5
m2m0

m`2m0
. ~89!
li

a-
re-

e
le

en
e-

s

In this manner, the valueslR5mR50 corresponds to the
Hartree-Fock approximation, whereas the limit withlR

5mR51 corresponds to the exact atomic limit, which for a
integern>1 corresponds to the Mott-Hubbard insulator.

Fig. 9 we have plottedEG as a function ofUR[Ũ/U0

5Ũ/8u ē u, for JR /UR50.1, which corresponds toJ/Ũ50.4.
The bare band energy for the featureless density of state
ē52(W/2)n(12n/2d). One sees thatEG50 for a critical
value ofUR . At this point the valuesl` andm` are reached
for n.1 in a discontinuous way, as illustrated in Fig
10~a!,~b!. The localization threshold diminishes withn. This
is because the band energy varies roughly;n, while the
interaction energy is;n2. The transition to the localized
moment state is determined by the interplay between
exchange and the Coulomb interaction. This is illustrated
Figs. 11~a!,~b!, where the band-narrowing factorsL and G
have been specified. In most situations the partG(m)
changes from its Hartree-Fock value only a little. This pr
vides ana posteriori justification of the Hartree-Fock ap
proximation for the exchange term. The dominant role of
term ;ni

2 over the Hund’s rule term gives some support
the interpretation of the local-moment formation in the ter
of a nondegenerate Hubbard model. This becomes cle
one notices that in that case

l5^ni
2&5n12^ni↑ni↓&5n12d2, ~90!

and hencel5l`5n correspond to the limitd250 (L50).
In the situation depicted in Fig. 11~a! L'0.6 at the transi-
tion. However, unlike the nondegenerate system, the s
charge fluctuation coupling is leading to the discontinuo
character of this transition forn>1.

The discontinuous nature of the metal-insulator transit
induces only a weak enhancement of the effective mass c
to the transition@the curves in Fig. 10~b! are physically
meaningful only below the discontinuity points#. The results
in this respect are valid universally for arbitraryd.1 and
n>1.

FIG. 9. The ground-state energy per site~in units of u ē u) as a

function of the Coulomb interactionUR5Ũ/U0[Ũ/8u ē u. A transi-
tion to the Mott-Hubbard insulating state takes place for each~in-
teger! band filling n for the value ofUR at whichEG50.
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V. CONCLUSIONS

In this paper we have put an emphasis on the similari
and differences of the Mott localization in a degenerate-b
system with the extensive analysis of MIT existing for t
nondegenerate-band case. For that purpose we have ma
the first part the Hartree-Fock approximation for the e
change interaction. This approximation is applicable in
limit when J is substantially smaller thanU, as is usually the
case for 3d bands. This scheme provides us with the phy
cally plausible conclusion that the metal-insulator transit
is mainly driven by the intraatomic Coulomb interaction; t
intraatomic exchange is responsible for the first-order na
of the transition already atT50. Also, with this approach
one can see that the correlated systems, whether orbi
degenerate or not, can in the mean-field approximation
described as systems of fermionic quasiparticles with s
split masses~in the magnetically polarized state! and a non-
linear molecular field coming from the correlations, in ad
tion to the usual exchange field.

The fundamental question is whether the present appro
~as well as those listed in Ref. 1! provide a proper mean-field
theory of a correlated state near the metal-insulator tra
tion. It seems so and the proper order parameter in the o
ally nondegenerate paramagnetic system is eitherF or d2,
which are nonzero in the metallic phase and vanish in
insulating state. What is more important, since forn52 the
band-narrowing factorF in the PM state can be directl
related20 to the physical quantityZ(5F) representing the
discontinuity of the Fermi-Dirac distribution at the Ferm

FIG. 10. ~a! The relative magnitude of the charge fluctuatio
lR5(l2l0)/(l`2l0) versusUR . Note a discontinuous nature o
the transition to the atomic configurationl5l` at a critical value
of UR specified for eachn.1. ~b! The relative magnitude of the
local momentmR5(m2m0)/(m`2m0), as a function ofUR . The
discontinuous jump inm reflects the same behavior as oflR .
s
d

e in
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e
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re
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e
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e

energy, the order parameter is a measurable quantity for
quantum phase transition atT50. In the magnetically or-
dered state the system is additionally characterized by a s
gered moment̂Si

z&. In the second part of this paper we ha
shown that even in the paramagnetic state the orbitally
generate system is additionally characterized by the par
eter ^Si

2& describing the local moment magnitude. Thus,
our view, the set of the parameters:d2⇔^ni

2&, ^Si
2&, and

m i•^Si& compose aminimal set describing the metal-
insulator transition in the degenerate system and assoc
with it the magnetic transition@in a nondegenerate syste
^Si

2&5 3
4 (122d2)]. Obviously, the full slave-boson an

Gutzwiller approaches1 provide essentially the same qualit
tive picture, although they contain more parameters, wh
are eliminated by implementing the constraints appearing
consistency conditions. In this respect, our simplified a
proach provides didactical guidance for more complica
analysis. For example, the effect of quantum Gaussian fl
tuations in auxiliary Bose fields14 neglected so far will intro-
duce intersite exchange interactions, which will not intr
duce any additional order parameter, though the deta
thermodynamic properties will contain the contribution co
ing from the interaction between the quasiparticles with
characteristics (qs , b3 , b0), which appeared on the mean
field level.

FIG. 11. ~a! The band-narrowing partsL(l) andG(m) as the
magnitude of the Coulomb interaction. The inset compares the
narrowing factors, both diminishing with increasingUR . ~b! The
charge- and spin-fluctuation parts of the band narrowing as a fu
tion of the Coulomb interaction, for the value ofUR below the Mott
transition. The inset displays the different trend as a function of

J/Ũ ratio.
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The slave-boson approach has been recently extended22 to
describe the antiferromagnetic phase in the half-filled dou
degenerate Hubbard model. However, the temperature
pendence of MIT in the paramagnetic phase is still imp
tant, since in NiS22xSex ~Ref. 3! one observes a transition t
the semiconducting phase upon heating the system, whe
system crosses the Ne´el point ~cf. Fig. 7 for Ha50, where
the M→I transition is observed upon heating the system!.
The detailed analysis requires the discussion of antife
magnetic insulating and metallic states atT.0 before any
direct comparison with the experiment is made. Also, in
case of a quarter-filled band the system undergoes a tra
tion from a ferromagnetic metal@as observed in CoS2 ~Ref.
23!# to a ferromagnetic insulator with an orbital ordering24

Therefore, the role of both magnetic ordering near MIT,
well as of degeneracy~albeit weak25! must be determined in
detail.
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APPENDIX: MAGNETIC SUSCEPTIBILITY AND DOUBLE
OCCUPANCY OF THE METALLIC STATE CLOSE

TO THE MOTT-HUBBARD LOCALIZATION

We start from the expression~54! for the free-energy
functional for a constant DOS and in the half-band case:

f 5
FM

NW
52~42m2!F/812ud22hm2

1

8
jm2

2
2p2

3F
t21k, ~A1!

whereF is defined by Eq.~34!.
Minimizing above expression with respect tom we obtain

05
] f

]m
5

d2m

A4~122d2!22m2
2h2

1

4
jm1

2p2

3F2
Fmt2,

~A2!

whereFm5]F/]m. Differentiating the above equation wit
respect toh and takingh50, for whichm50, we have

d2

122d2
m08222

1

2
jm082

8p2t2

3
FmFhF23u0

1
4p2t2

3
FmhF

22u050, ~A3!

wherem085(dm/dh)h50. The derivativeF for m5h50 is

]F

]mU
0

5H 32d2

~42m2!2
@122d21 1

2 A4~122d2!22m2#m

2
8d2

~42m2!A4~122d2!22m2
mJ

h50

. ~A4!
ly
e-
-

the

-

e
si-

s

r.
d

We see thatFm5050. Also, (d2)0850; this is because
bothF andd2 depend only on even powers of eitherm or h.
In that situation

]2F

]m]h U
0

52d2~122d21A124d214d4!m08

2
d2

A124d214d4
m08

5
4d2~122d2!22d2

122d2
m08

5
d2~4d223!~4d221!

122d2
m08. ~A5!

So, we obtain the magnetic susceptibilityx[dm/dh in the
form

m0852S d2

122d2
2

1

2
j 1

p2~4d223!~4d221!

48d2~122d2!3
t2D 21

.

~A6!

We use also the low-temperature expansion ofd2 derived
earlier:

d25
1

4 S 12
u

2D2
t2p2u

6S 12
1

4
u2D 2 . ~A7!

Expandingm08 to the first order int2 we arrive at the
expression forx in physical units:

x5x0S 1

22u

21u
2 j

1
16

3
p2u2

3
u214u24

~42u2!2~221u12 j 1 ju !2
t2D ~A8!

wherex0 is the susceptibility for noninteracting particles.
We see that foru.2212A2'0.83 the susceptibility is

always rising with temperature. Note that for DOS smooth
varying around the Fermi energy this increase is solely
to the correlations and corresponds to the approaching
localization boundary depicted in Fig. 7. In the nondegen
ate case and forT50, the corresponding Brinkman-Rice fo
mula reads:

x5x0

21u

22u
. ~A9!

Now we derived2 in small magnetic field and tempera
ture. Because of time reversal symmetryd2 depends only on
even power ofh. We determine nonvanishing term;h2 at
T50. Substituting into Eq.~42! first the expression form in
the first order ofh given by~44! and subsequently differen
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tiating twice, thus obtained formula we see that doub
occupancy probability diminishes with growingT and/orh
according to:

d25
1

4 S 12
u

2D2
p2u

6S 12
u2

4 D 2 t22
4

~221u12 j 1 ju !2
h2 .

~A10!

The decrease ofh with T and h signals a precursory
localization effects discussed in Sec. II E.

We now generalize the results to the case with arbitr
DOS. We start from the expression~23! for the free energy
with the condition

15(
s

E
2W/2

W/2

r~e!ns~e!de, ~A11!

for the chemical potential;ns(e) is given by Eq.~22!. De-
fining H[h1 1

4 Jm2b3 , we obtain the following expressio
of m to the first order:

m52E
2W/2

W/2

r~e!(
s

sS 1

11e~fe2m/kBT!

1
1

~11e~fe2m/kBT!!2
e~fe2m/kBT!

s

kBT
H D de

~A12!

or, explicitly

m52~h1 1
4 Jm2b3!K, ~A13!

with

K[E
2W/2

W/2 2

~11e~fe2m/kBT!!2

e~fe2m/kBT!

kBT
r~e!de.

~A14!

Differentiating the above equation with respect toh and
taking h50 we have

m0852~11 1
4 Jm082b3,h508 !K~h50! . ~A15!

Differentiating the free energy with respect tom we ob-
tain the relation

1
4 Jm2b312(

s
E

2W/2

W/2

r~e!~Fme2s 1
4 J!ns~e!50,

~A16!

and hence,

b352Fm(
s

E
2W/2

W/2

er~e!ns~e!, ~A17!

which, when differentiated with respect toh, leads to

b3,h508 54Fmhu0E
2W/2

W/2

er~e!n0~e!, ~A18!

whereFmhu0 is given by Eq.~A5!. From Eq.~A15! we have
-

y

dm

dh U
h50

52
K

2
1

2
KJ14K ē ~T!

d2~4d223!~4d221!

122d2
11

,

~A19!

where all quantities on the right-hand side are taken foh
50, andē (T) is average band energy per site and orbita

Next, we expandē (T), d2, and K in the powers ofT.
From Ref. 20 we have that

d25
1

4
~12I !2

2p2

3

Ir

U0
S kBT

F0
D 2

, ~A20!

F5F02
16p2

3

I 2r

U0
S kBT

F0
D 2

, ~A21!

and

ē ~T!52
U0

8
1

1

3
p2rS kBT

F0
D 2

. ~A22!

where I[U/U0 , and U0[8u ē u. Defining m* 5m/F, and
T* 5T/F, we can write

K5E
2W/2

W/2 2

~11e~e2m* /kBT* !!2

e~e2m* /kBT* !

kBT
r~e!de

52
2

FE
2W/2

W/2

f 8S e2m*

kBT*
D r~e!de

52
2

FE
~2W/22m* /kBT* !

~W/22m* /kBT* !
f 8~x!r~xkBT* 1m* !dx

52
2

F(
n

~kBT* !2n
r~2n!~m* !

~2n!! E
2`

1`

x2nf 8~x!dx

~A23!

where f 8(x) is the derivative of the Fermi-Dirac function
Noting that

E
2`

1` d f~x!

dx
dx521, E

2`

1`

x2
d f~x!

dx
dx52

1

3
p2,

~A24!

we arrive at the expression

K5
2

F
@r~m* !1 1

6 p2r9~m* !~kBT* !2# . ~A25!

From Ref. 20 we also have

m* ~T!5eF2
p2

6
~kBT* !2

r8

r
, ~A26!

and thus
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K5
2r

F F12
p2

6 S kBT

F D 2S S r~1!

r D 2

2
r~2!

r D G
52rS 1

F0
1

16p2

3F0
2

I 2

U0
r~kBT* !2D 22r

p2

6F0
~kBT* !2r ,

~A27!

with r 5(r (1)/r)22 (r (2)/r) . We substitute Eqs.~A20!,
~A22!, and ~A27! into Eq. ~A19!. As a result, the suscept
bility x5 (1/4r) x0(dm/dh)h50 is of the form

x5
x0

S F12a
p2~kBT!2

6F0
2S

G , ~A28!

where

S5F0S 12Ur
11I /2

~11I !2D 2Jr, ~A29!
.

v.

-
n

pli

lf,

rro

J.
-

-

G

and

a58I 2~ I 212I 13!~11I !22r22
32I 2r

Uc
1rF0 .

~A30!

Neglecting higher-order contribution inI , the result re-
duces to the usual Stoner formx(T50)5x0@12r(U
1J)] 21. Formula~A28! generalizes the result of Brinkma
and Rice8 obtained for a nondegenerate case atT50, and its
generalization20 to T.0. The Hund’s rule coupling enhance
the susceptibility and can be the source of a ferromagn
instability.

With the help of the expression forF one can determine
the first nontrivial contribution to the specific heat in th
applied field. Namely, one hasCv5(g0 /F0)T1bHa

2T,
whereb is a constant divergent at the localization point. Th
increase is connected with the narrowing of the band w
the growing field.
liar,
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