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The behavior of the phase transitions is mapped out as a function of the dihedral@nglehe transfer
integral ¢) between donor columns fagktype BEDT-TTF[BEDT-TTF: bigethylenedithigtetrathiafulvalene,
abbreviated as HTsalts involving the serieg-(BEDT-TTF),MM’(SCN), [M=TIl,Rb,Cs,M’'=Co,Zn: ab-
breviated a®-MM '], which we have recently prepared. The electronic correlation parameter ihcreases
by increasing the dihedral anglé). In the phase diagram @FET salts the ground state varies from insulating,
to superconducting, to metallic with decreaségamely,U/t. The serie-MM' is located at the center of
the phase diagram where metallic, paramagnetic insulating, and singlet states are observed at low temperatures.
With applied pressure, the metal-insulator transition temperature rises because the dihedral angle increases,
which is related to the enhancement of the electronic correldt&0163-18208)03919-9

INTRODUCTION have been observed between 20 and 250 K. #Hd M’
series is located between the insulating and metaflic
It has been widely accepted that intermolecular overlagphases, filling a gap in the phase diagram and enabling us to
integrals of HOMO of donor molecules, which are calculatedunderstand the electronic states tfype BEDT-TTF salts
by the extended Huckel method, and band structure calclky & unified phase diagram as a function of electronic corre-
lated using transfer integrals by assuming the tight-bindindation parameterl/t.
model, are important tools for understanding the electronic N this paper, the electrical resistivity and thermoelectric
states of organic conductor€mpirically the Fermi surface Power of 6-RbM’ [M'=Co,Zn] and a”-ET;K; (SCNy,
(FS has been determined by Shubnikov—de Haas, de Haagnagnetic properties of-MZn [M=Rb,Cq measured by a
van Alphen effects, and angular dependence of magnetoréQ_Ul_D_ magnetometer, and pressure dependence o_f electrical
sistance oscillatiof(AMRO),2 which is in agreement with resistivity are presented. In addition, the systematic change

the calculated FS. However, the highly correlated system iglt me metal—énstultator tral_flstltlon t?rgperqturesfand_thtla varrllety
the exception. Though the calculation gives one-0' (N€ ground states are interpreted in view of a singleé phase

or two-dimensional FS, some salts are magnetic insulators
even at room temperature; for example, -ET,AuBr,
[ET=BEDT-TTF],3@ B'-ET,ICI,,*® y'-ET,Aul,,® ¢
ET,Hgslg,*® 6-ET,C(CN)[N(CN),],,*? ¢-ETAgBr3,%©
6-ETAQ,(SCN), 49 6-ETCd, 6 SCN),, 4® and
6-ET,TIZN(SCN) 4.*" In particular, 6-type BEDT-TTF salts -
are mysterious, because they afford a wide variety of elec- ~
tronic states from insulators to a superconduc®ET,l;
with T,=3.6 K> Recently we have prepared the series
0-(BEDT-TTF),MM’(SCN), [M=TI,Rb,Cs,M’'=Co,Zn|.
The crystal structure off-(BEDT-TTF),RbZNSCN), is
shown in Fig. 1. The thick anion sheet of 8.1 A and the
donor layer stack alternately along theaxis [Fig. 1(a)] in

the anion sheet, Zf, is coordinated by four N atoms of (
NCS  tetrahedrally and Rbis surrounded ionically by eight

S atoms of SCN to construct a two-dimensional anion net- .
work [Fig. 4(b)]. The BEDT-TTF molecules form the-type g
donor arrangement. The donor stacks regularly and the cal- [
culated transverse transfer integral})(is larger than the —
stacking one ;). The calculated FS is two-dimensional

[Figs. Xc) and Xd)]. The metal-insulator transitions of FIG. 1. (a) Crystal structure(b) anion arrangementc) band
0-(BEDT-TTF),MM'(SCN), [M=TIl,Rb,Cs, M’'=Co,Zn] structure,(d) donor arrangement dd-(BEDT-TTF),RbZnN(SCN),.
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(b) thermoelectric power forg-(BEDT-TTFH),MM’'(SCN), [M FIG. 3. Temperature dependence of magnetic susceptibility

=TI,Rb,Cs,M’=Co,Zn and a”-(BEDT-TTF),K; ,Co(SCN),. for (a) 6-(BEDT-TTF),CsZnNSCN, and (b) ¢-(BEDT-
TTF),RbZNSCN) ,.

diagram wherdJ/t or the dihedral angfé’ scales the prop- RESULTS AND DISCUSSION

erties.

Recently we have prepared naitype BEDT-TTF salts,
#-ET,MM’(SCN), [M=TI,Rb,Cs, M’'=Co,Zn: abbrevi-
ated asf-MM ' 1,4®4D:6 which undergo metal-insulator tran-
sitions at 250 K(¢-TICo), 190 K (6-RbM’; M’ =Co,Zn),

Single crystals were obtained by galvanostatic anodic oxiand 20 K(¢-CsM’; M’ =Co,zn),*®408@-69 respectively,
dation of BEDT-TTF(30 mg in a N, atmosphere, using the @s shown in Fig. @). The metal-insulator transition tem-
electrolyte asMSCN[M =TI,Rb,C§ (220 mg, M’(SCN),  Perature strongly depends upbh where the smalleM salt
[M'=Co,Zn] (120 mg, 18-crown-6 ethe(205 mg in 1,1,2-  9Ives rise to the higher transition temperature. We shall call

trichloroethang90 ml) and 10% vol. of ethanall0 ml) ata 1S behavior the chemical pressure effect.
constant current of 0.5A. Figure 2Zb) shows the temperature dependence of thermo-

; e - lectric power. The values at room temperatured-dRbM’
The electrical resistivity was measured by a convention . . .
four-probe method by applying a low ac current of 60 Hz. M’ =Co,Zn] are aboutt 23 and 42uV/K, which are a ittle

. 4 higher than those ofg-CaM’ [M'=Co,Zn|, +19 and
cGrOIsdta\;VI\Iv?tT](F%rll;iyaaggﬁ'cc))il:;rii?%?gr%;l(\:l:{se aﬁgacgggo'fsa 16 uV/K.%® The positive value indicates that the carriers are
y g past&’ ' ' holes and the larger value shows the higher electronic corre-
electrodes. The resistivity under pressure was measured t?

: . Xtion in 6-RbM’ [M’=Co,Zn] compared withf-CsM’
using a pressure cell of clamp type with an @aphne no. M'=Co,Zn]. With lowering temperature, thermopower of

7373 as a pressure medium. The pressure was determined ppn [M'=Co,zn decreases gradually with & linear
by measuring the resistance of a manganin wire at roofyenendence, suggesting normal metal behavior. At the metal-
temperature andl. of Sn at low temperature. Thermoelectric jhsylator transition temperature, 190 K, thermopowergof
power was measured by attaching a single crystal to tW@rpzn drops suddenly and that 6fRbCo decreases gradu-
copper heat blocks with gold paint. The heat blocks wereyjly with crossing zero, which is in good agreement with the
alternately heated to generate a temperature gradient of abosistivity measurement. The thermopower @f-KCo at
+0.5K. room temperature is-30 uV, decreases linearly to 140 K,
Magnetic susceptibility was measured by a SQUID mag-and diverges to the negative region, which is consistent with
netomete(Quantum Design Model MPMSZ7The core con- the metal-insulator transition at 130 K of the resistivity mea-
tribution of components was subtracted by using Pascal’'surement.
law.” In order to investigate the origin of the metal-insulator
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FIG. 4. Temperature dependence of electrical resistivity under pressuée(REDT-TTFH,MM'(SCN), [MM’=(a) RbCo,(b) RbZn,
(c) CsCo, andd) Cszn.

transition, the magnetic susceptibility measurements werspin Peierls state has been observed by NMR
carried out by a SQUID magnetometer with using the unori-measuremerft!

ented powder sample. The susceptibility at room temperature In order to suppress this metal-insulator transition, an ex-
for #-CsZn is 3.310" % emu mol'!, which is the typical ternal pressure is applied in this system. The temperature
value of Pauli paramagnetism of an organic conductor: fodependence of resistance at various pressures is illustrated in
example, 4.610 % emu mol'! in k-ET,CUNCS),.2 The Figs. 4a-4(d) for 6-RbCo, 6-RbZn, 6-CsCo, andé-CsZn,
susceptibility is almost constant down to 20 K and below'€Spectively. The metal-insulator transition temperatures,
that temperature a Curie-tail contribution is observed, so th€0rresponding to the rapid increase or the kink in the tem-
origin of the metal-insulator transition at 20 K is not clear P€rature dependence, are elevated with applying pressure for

; L these salts, so we shall call this phenomenon a pressure-
Fig. . the other h th tibility @RbZ . : - .
[Fig. 3&)]. On the other hand, the susceptibility 6RbZn, . induced metal-insulator transition. A phase diagram under

from which a Curie-tail contribution has been subtracted, Igexternal ressure is shown in Fia. 5. Thouah the oressure
shown in Fig. 8b). The broken line is the calculated suscep- P 9. > 9 P

tibility based upon the one-dimensional Heisenberg amiferdependence 08-RbZn (or 6-CsZn is a lile smaller than
. i . that of &-RbCo (or 6-CsCo, four salts have almost the same
romagnet(Bonner-Fisher mod& with J=—157 K and the ( 0

L ) . . X ressure dependence. This inverse pressure dependence is
solid line is that on the two-dimensional quadratlc—layerp b P P

: ? A observed not onlyi) when external pressure but al§o)
Heisenberg antiferromagritwith J=—100K. In both

RS when chemical pressure is applied(dr) when temperature
cases, the measured susceptibility is smaller than the models

from room temperature to 190 K, the metal-insulator transi-

tion temperature, suggesting that electrons are less localized 300

in this temperature region. The crystal structure analysis 250 |-

shows that the room-temperature regular stacking of donors &

undergoes a lattice modulation at 190 K, where the sudden @ 2%

appearance af* /2 is observed®” Then, the carriers are lo- 2 sl

cated below 190 K. This structural transition induces no g A 9-ET,RbCO(SCN),
abrupt change of magnetic susceptibility, which indicates E 100~ O 6-ET,RbZn(SCN),
that the system is highly correlated even above the transiton =~ | N Zgzgzgg((ggs;4
temperature. Below 190 K the measured susceptibility fol- ‘% 2 4
lows the Heisenberg model down to 50 K. With lowering 0 4 L . . '

0 2 4 6 8 10 12

temperature further, susceptibility decreases rapidly, where Pressure (kbar)

the behavior can be fitted by the singlet-triplet model with
J=—45K at lower temperatures, indicating that the spin FIG. 5. Phase diagram of metal-insulator transition temperature
singlet state is realized. Recently the long-range-order-likeinder pressure.
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TABLE I. The lattice parameters, dihedral angle, unit cell ratio, transfer integral in the transverse direc-
tion (t,), and calculated bandwidth gtET,MM’(SCN), [M =TI,Rb,Cs,M’=2n,Caq.

6-(ET),RbCASCN),  6-(ET),RbCASCN),
6-(ET),TICO(SCN), (300 K) (7 K)
system orthorhombic orthorhombic monoclinic
space group 1222 1222 Cc2
alA 10.3937) 10.1766) 43.311)
b/A 43.161) 43.2584) 10.3112)
c/A 4.50(1) 4.6505) 8.9053)
aldeg 90 90 90
Bldeg 90 90 95.8®)
yldeg 90 90 90
VIA3 20175) 20472) 39551)
dihedral angle/deg 116 111 114
unit cell ratio a/c 231 2.19
unit cell ratiob/(c/2) 2.32
transfer integral in the
transverse direction/10 2 eV —-10.0 -9.9 8.2-14.4
bandwidth/eV 0.82 0.82 0.90
reference 4f 4f,6b Af
6-(ET),RbZNSCN),  6-(ET),CSCASCN),  6-(ET),CsZASCN),
system orthorhombic orthorhombic orthorhombic
space group 1222 1222 1222
alA 10.1759) 9.8044) 9.8164)
b/A 43.3019) 43.4163) 43.4435)
c/A 4.651) 4.8734) 4.8704)
aldeg 90 90 90
Bldeg 90 90 90
yldeg 90 90 90
VIA3 20475) 20743) 20772)
dihedral angle/deg 111 104 105
unit cell ratio a/c 2.19 2.01 2.02
transfer integral in the
transverse directiow/ 10 2 eV -9.4 —-10.6 -10.8
bandwidth/eV 0.78 0.86 0.88
reference 4f,6b 4e,6a 4e,6a

is lowered. When the chemical pressure is applied by changhe bandwidth V) in this system, decreases IiI|<%| =10.8

ing the cation like C$ [2077(2) A (#-CsZn and 20743)
(6-CsCo)[>Rb*

[20475) (6-RbZn

and 20472

(X102 eV) (6-CszZn and 10.6 @-CsCoy>9.4 (6-RbZn)
and 9.9 ¢-RbCo)~10.0 (#-TIC0). In the 6-type salts the

(6-RbCo)]>TI* [20175) (#-TICo)], the metal-insulator
transition temperature increases like<2090< 250 K. At the
same time, the axis contracts like 4.878) A (6-CsZn and
4.8734) (6-CsCo)>4.65(1) (6#-RbzZn and 4.6505)
(#-RbCo)>4.50(1) (6-TICo), while thea axis expands like
9.8164) A (6-Cszn and 9.8044) (6-CsCo)<10.175(9)(¢-  the donor molecule and is all the same in thgype BEDT-
RbzZn and 10.176) (6-RbCo0)<10.393(7) (6-TICo) TTF salts, the electronic correlation parameterit, in-
(Table I, Fig. 6. This chemical pressure behavior is sche-creases with decreasing transfer integtldr with increas-
matically illustrated in Fig. 7. Changing froita) to (b) by  ing dihedral angle of donors and makes the metal-insulator
applying pressure; decreases and increases, resulting in (MI) transition temperatureT(,) higher. This is why the
increasing the dihedral angle between donor columns lik@ressure-induced metal-insulator transition occurs when
105° (#-CsZn and 104° p-CsCo)<111(6-RbZn) and 111 chemical pressure is applied. Strictly speaking, the transition
(#-RbCo0)<116 (6-TICo) and the unit cell ratio, a/c, like of §-CsM’ is different from those of-RbM' and 6-TICo.
2.02(6-CsZn and 2.01 ¢-CsCo0)<2.19(6-RbzZn and 2.19 Though the unit cell volume decreases frolaCsM’,
(#-RbCo0)<2.31(6-TICo). Moreover, the calculated transfer §-RbM’, to 6-TICo with regular intervals of about 303
integral in the transverse directior,), which determines the metal-insulator transition temperature is elevated from 20

intracolumnar interactiom, is much smaller tham,, so the
overall bandwidthW is principally determined byt,.
Then, W decreases likeN=0.88 (eV) (#-CsZn and 0.86
(#-CsCo)>0.78 (6-RbZn and 0.82 ¢-RbCo)~0.82 (6-
TICo) (Table I, Fig. 6. SinceU is the characteristic value of
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increases are not equivalent. The transitiong-&8bM’ and
6-TICo are related to the lattice modulation at the transition
temperature. Investigations of temperature dependence of the
lattice constants show that the dihedral angle and the unit
cell ratio for 6-RbM’ increase abruptly at the transition,
leading to a sudden increase of electronic correlation at that
temperaturd” By lowering temperature as well as chemical
pressure, the dihedral angle and the unit cell ratiggf@bCo Transfer Integral (t) (10 2eV)
Isnhc(;\?visien f':'c;rkr)]lelI11V\,/h2e.r::9t?10eob};)n(;(\)/vi$%r? i,s ?é?jzu(c?edK)inaiom- FIG. 8. Phase diagram faktype BEDT-TTF salts as a function
. . ) . . . of a transfer integral in the transverse directiah &nd a dihedral
parison with the on-site Coulomb repulsion by decreasmgemgle of donor columnés).
temperature, the metal-insulator transition is induced. The

same behavior happens when the external pressure is aETAg (SCN),, %@ and ETCHcdSCN),.%® The first two
X ’ . "

plied. 6-ET salts have been confirmed to be ic i
. . - paramagnetic insula-
The phase diagram faf-type BEDT-TTF salts is shown tors. We have prepared the seriéMM’ [M=TI,Rb,Cs,

Lg dF:':?s: 2’ fnv:ciirgnﬂ;? t?]zsgmggrgﬁ—:ﬁ'tigno]tce;;ﬁi;aégﬁr%gc’tm '=Co,Zn|, which is located between the superconducting
d th lculated t for int mF%’A di d ab "> and insulating phases. F6rRbM' [M'=Co,Zn|, they are
and the caiculated transier integral, AS GISCUSSed above, o \hatq)jic phase at room temperature, below 190 K they

an increase of the dlhedral angle, leads to a 5|gp|f|cgnt lose the metallic character to become a paramagnetic insula-
decr(_ease of transf_er integral in the trans_verse direction, tor, and the singlet state is observed at low temperatures.
that is t(.) sdy, an increase Gijt. Qn the right e?,d o_f the Nakamureet al. reported that the temperature dependence
pk:?llse dlagtrr(]':lm Iﬂ}? su%erqondlljcttlng Phase& Tl teX'StSr'] of the magnetic susceptibility fos-RbM’ (M’'=Co,Zn)
whiie on e [elt_end, insulators are present suc a%trongly depends upon the cooling spé@twith cooling a
6-ETiHgla " ET.CL(CNIN(CN),, ™ ETAgBrs, “ sample slowly(0.8 K/min), magnetic susceptibility follows
the Heisenberg model below the metal-insulator transition
(a) (b) temperature, 190 K, and decreases rapidly as fitted by a
5tp o single-triplet model withJ=—-45K below 40 K [Fig.
b 3(b)].5© In addition, the Curie-tail contribution is observed
c - > at low temperatures. By cooling a sample more rapid§
K/min), the Curie-tail contribution increases, and in the rapid
- cooling condition the magnetic susceptibility follows the
/ Curie-Weiss law at low temperatures without a sudden de-
crease below 40 K. Since the complete lattice modulation is
FIG. 7. Scheme for pressure effect of donors innotperformed in the rapid cooling condition, the singlet state
0-(BEDT-TTFH,MM'(SCN), [M=Rb,Cs,M’'=Co,Zn|. cannot be obtained at low temperatures. Therefore, the
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metal-insulator transition temperature is lowered in the rapicstates of the paramagnetic insulators could be the
cooling condition due to the imperfect lattice modulation, antiferromagnetic-state-like-ET family or the spin-Peierls
and then the ground state might be different from that in thestate like TMTTF family. The ground states in theET
slow cooling condition. In the NMR measurement®iRbzZn  family seem to depend upon cooling speed. In the slow cool-
in the rapid cooling condition, the sudden increasé’pf‘, ing, the behavior of magnetic susceptibility indicates the co-
suggesting the antiferromagnetic fluctuation, has been olexistence of the Curie contribution and the term fitted by the
served at 50 K, whose behavior resembles thad-66Zn at  singlet-triplet model below 50 K, suggesting that the ground
20 K. This observation makes us assume that the metabtate is the spin-Peierls state. In the rapid cooling condition,
insulator transition ob-CsZn at 20 K should not be directly only the Curie contribution is observed and the ground state
related to that off-RbzZn at 190 K in nature, but rather re- might be the antiferromagnetic state. It is important to inves-
lated to the magnetic anomaly 6éfRbZn at 50 K under the tigate the ground states of paramagnetic insulators in the
rapid cooling condition. Thus, the dotted line in the rapidvicinity of the superconducting state in ti#eET family.
cooling condition as shown in Fig. 8 is connected from 50 K In conclusion, the behavior of the phase transition is
of 6-RbZn to 20 K of -CsZn%9 Moreover, the mixed crys- mapped out for ¢BEDT-TTF salts including
tal of -(Rb+C9Zn is recently prepared and the preliminary 6-(BEDT-TTF),MM’(SCN), [M=TI,Rb,Cs,M'=Co,Zn|,
result indicates that the metal-insulator transition temperawhich we have recently prepared, as a function of dihedral
ture is on the dotted line owing to the failure of lattice modu-angle, 6, or transfer integral, between donor columns. The
lation. The transition depicted by the dotted line withoutelectronic correlation parametet(t) increases by increas-
structural transition seems to be mainly driven by the intrin-ing a dihedral angle¢. The ground state o#-BEDT-TTF
sic electronic correlation, while the transition illustrated as asalts varies from insulating, superconducting, to metallic
solid line is related to the lattice modulation, which inducesstate with decreasing, namely,U/t. The series9-MM' is
the electronic correlated state. In the extension of the solitbcated at the center of the phase diagram where metallic,
and dotted lines, there exists a superconducting state in thEaramagnetic insulating, and singlet states are obtained at
0-ET phase diagram. Further study will be reported in alow temperatures. The change of electronic state in the in-
separate papéf. crease of9, in other wordsU/t, is observed not only by the
Finally, we describe a noticeable point in the phase diachemical pressure effect fromCsM’, 6-RbM’, to 6-TICo
gram. As shown in Fig. 8, the behavior of the phase transiand the decrease of temperature, but also by the external
tions in the 6-ET family is mapped out as a function of the pressure. With applying pressure ferMM’, the metal-
electronic correlation parametay/t. This behavior is simi- insulator transition temperature increases, which is related to
lar to that of thex-ET family, which are two-dimensional the enhancement of the electronic correlation. It is important
organic conductors. In the-phase diagram, four phases— to investigate the ground state of the paramagnetic insulator
paramagnetic metal, paramagnetic insulator, superconductasf -ET,MM’(SCN), [M=TI,Rb,Cs, M'=Co,Zn| in the
and antiferromagnetic insulator—exist and their electronicvicinity of an organic superconducting state.
states are also scaled by the electronic correlation parameter,
U/W, whereU is the effective on-site Coulomb energy and
W is the bandwidtH? The metal-nonmetal transition in the ACKNOWLEDGMENTS
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