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First-order corrections to random-phase approximation GW calculations in silicon and diamond
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Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherland

~Received 21 November 1997!

We report onab initio calculations of the first-order corrections in the screened interactionW to the
random-phase approximation polarizability and to theGW self-energy, using a noninteracting Green’s func-
tion, for silicon and diamond. It is found that the first-order vertex and self-consistency corrections to the
polarizability largely compensate each other. This does not hold, however, for the first-order corrections to the
GW gap. For silicon the compensation between the first-order vertex and self-consistency correction contri-
butions to the gap is only about 35%, while for diamond it is even absent. The resulting gap values are
significantly and systematically too large, the direct gaps for silicon and diamond being 0.4 eV and 0.7 eV
larger than theirGW values, respectively. The success ofGW in predicting electronic properties of, e.g.,
silicon and diamond can therefore apparently not be understood in terms of ‘‘small’’ corrections toGW to first
order inW using a noninteracting Green’s function.@S0163-1829~98!01819-0#
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I. INTRODUCTION

One of the most successful methods of describ
exchange-correlation effects inab initio calculations is the
random-phase approximation~RPA! GW approach, where
the ~irreducible! polarizability P is calculated in the RPA
and the self-energyS is calculated to first order in the dy
namically screened interactionW.1,2 It is remarkable in this
connection that non-self-consistent RPAGW calculations
lead to quasiparticle~QP! band gaps that are in excelle
agreement with experiment in the case of a large group
semiconductors if the starting point is chosen to be
density-functional theory~DFT! in the local-density approxi-
mation ~LDA !. Henceforth we will call this non-self-
consistent RPAGW approach ‘‘standardGW.’’ The inherent
assumption that higher-order corrections can be neglecte
however, far from obvious.

The inclusion of vertex (V) and so-called self-consistenc
~SC! corrections toS andP has been studied by a number
researchers, mainly for the homogeneous electron
Hubbard3 introduced the corrections to the RPA by means
a local-field factor~not to be confused with the so-calle
local-field effects to be introduced later on!. In the electron
gas case much effort has gone into obtaining expression
local-field factors in the dielectric function; see, for instan
Refs. 2 and 4. DuBois,5 whose work can be considered as
extension to the work of Gell-Mann and Brueckner,6,7

stresses the importance of taking into account all polariza
ity diagrams of the same order in the Wigner-Seitz radiusr s .
He noticed the significant cancellation betweenV and SC
corrections in the high-density limit. Geldart and Taylo8

found a similar compensation for the static polarizabili
They attempted to construct a local-field factor that includ
SC corrections. Mahan and Sernelius,9 using the local-field
factor approach, concluded that the effects ofV corrections
to the bandwidth of the homogeneous electron gas ne
cancel when added to both the self-energy and the pola
ability, as was already predicted by Rice.10

In a recent paper of Shirley11 a self-consistentGW
~SCGW! calculation is reported on for the homogeneo
570163-1829/98/57~19!/11962~12!/$15.00
g

of
e

is,

s.
f

for
,

il-

.
s

ly
z-

s

electron gas, in which, however, a fixed screened interac
is employed. The resulting bandwidth is found to be app
ciably larger than the~assumed! more correct standardGW
value. A similar result is obtained by von Barth and Holm12

who performed a full SCGW calculation by including th
screened interaction in the self-consistency proced
Shirley11 furthermore reports on a nearly self-consistent c
culation to second order in the screened interactionW, i.e.,
by incorporating, apart from theGW diagram, also the first-
order vertex correction diagram toGW. The employed
Green’s functionG in this calculation is the one obtaine
from his SCGW calculation, however. The resulting ban
width in this latter calculation is found to be very close to t
standardGW value. This is indicative of a strong compen
sation betweenV and SC corrections, fully in line with ar
guments put forth in Refs. 13 and 14.

Calculations for inhomogeneous systems are much m
difficult to perform, which explains that the situation co
cerning corrections to standardGW is much less settled fo
such systems. In Ref. 15 a full SCGW calculation was p
sented for the relatively simple case of a quasi-o
dimensional semiconducting wire. It resulted in a value
the band gap that is large compared to the standardGW
band-gap value. The obtained result appears to be comple
at variance with the much smaller band-gap obtained in
quantum Monte Carlo~QMC! calculation for this system
presented in Refs. 16 and 17. The QMC value should
reasons of principle lie close to the ‘‘exact’’ band-gap valu
it appears to be close to the standardGW value. The appar-
ent difference between the SCGW and QMC results stron
points to the need of including vertex corrections in t
former type of calculation, like the SCGW result for th
electron gas in Refs. 11 and 12. Indeed, in Ref. 18 it w
found that the band gap is much closer to the standardGW
band gap and the QMC band gap if all first-order correctio
to both the RPA polarizability and theGW self-energy are
systematically included.

As far as calculations on real semiconductors are c
cerned, we note that Hanke and Sham19 includedV correc-
tions to the RPA polarizability for a covalent crystal~dia-
11 962 © 1998 The American Physical Society
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mond!, using the bare Coulomb interaction instead of t
dynamically screened interaction. Concerning the imp
tance of vertex corrections to the self-energy, Daling and
Haeringen,20 Daling et al.,21 and Bobbert and van
Haeringen22 conclude that the effect of the first-order vert
correction to the standardGW self-energy on the direct ban
gap at theG point of silicon is relatively small. The forme
results20,21 were obtained by using the bare Coulomb int
action, the latter22 by using the dynamically screened inte
action. Del Sole, Reining, and Godby23 have arrived at a
similar conclusion for silicon on the basis of a so-call
GWG calculation, which incorporates in an approximate w
vertex corrections to the self-energy as well as to the po
izability, by means of the functional derivative of th
exchange-correlation potential in DFT with respect to
density. Bechstedtet al.24 have shown that dynamical effec
due to vertex corrections and self-consistency correction
the strength of the optical absorption~and correspondingly
P) largely cancel for silicon and diamond.

The present work can be seen as an extension of Re
and also of Ref. 22. The aim is to contribute further to t
understanding of the success of standardGW. In considering
possible improvements to standardGW, Hedin1 argues that
one should preferably takeS to nth order inW if P is taken
to ordern21 in W, provided bothS and P are taken self-
consistently. In view of the complexity of dealing with sel
consistency and higher-order corrections, we will rest
ourselves to the investigation of the effect of including t
first-order inW corrections to standardGW as well as to the
RPA P. Not a self-consistent Green’s function, but the LD
Green’s function will be employed in this investigation. Tw
aspects concerning the screened interactionW are essentia
in an accurate evaluation of QP energies for semiconduc
first, its energy dependence, and, second, the off-diag
matrix elements ofP in the employed plane-wave basis s
giving rise to the so-called local-field effects~LFE’s!. Both
dynamical screening and LFE’s will be included in our c
culations. The energy dependence of the dynamic
screened interaction will be modeled by means of the p
mon pole model~PPM! of Engel and Farid.25 We will con-
sider three kinds of calculations:~i! calculation of the first-
order V1SC correction to the RPA polarizability using th
RPA screening,~ii ! calculation of the first-orderV1SC cor-
rection to theGW self-energy using the RPA screening, a
~iii ! calculation of theGW self-energy and its first-order cor
rections using the corrected screening from~i!. The calcula-
tion of these corrections to standardGW is done for both
silicon and diamond, with emphasis on the energy lev
around the band gap.

The paper is organized as follows. In Sec. II we will d
cuss the diagrams that have to be taken into account foP
andS and we will give a short description of some calcu
tional details. In Sec. III we will give the results. In Se
III A we will focus on the polarizability. In Sec. III B results
for the self-energy are given, concentrating on energy lev
around the band gap. A few checks are carried through
Sec. IV. Section V contains a further discussion concern
the SC self-energy correction. In Sec. VI we report on
remarkable cancellation between a particular group
second-order corrections to the LDA energy gap. Section
is devoted to the discussion of our results.
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II. THEORY

The RPA polarizability diagram as well as its first-ord
correction Feynman diagrams are depicted in Fig. 1. T
GW self-energy diagram as well as its first-order correct
Feynman diagrams are depicted in Fig. 2. Diagrams SC
SC4 are the first-order self-consistency diagrams since
have self-energy insertions in the Green’s functions, tak
into account self-consistency effects to first order. The cr
in diagrams SC2 and SC4 denotes minus the LDA exchan
correlation potential2Vxc. These latter diagrams should b
included when the LDA is the starting point becauseVxc can
be considered as the self-energy in the LDA, which sho
be canceled out. Diagrams SC3 and SC4 of Fig. 2 are s
energy corrections due to the first-order corrections to
valence charge density. We will henceforth call these la
diagrams SC Hartree diagrams. DiagramV is the first-order
vertex correction diagram.

In the evaluation of the corrections to the wave-vect
dependent and

FIG. 1. RPA polarizability plus the first-order corrections to
SC1–SC4 denote the first-order self-consistency corrections.V de-
notes the first-order vertex correction. The solid directed line
notes the LDA Green’s function. The cross denotes2Vxc. The
wiggly line denotes the RPA dynamically screened interaction.

FIG. 2. GW self-energy plus the first-order correctionsSV1SC.
The dotted line denotes the bare Coulomb interaction. The wig
line now denotes the dynamically screened interaction obtai
with either the RPA or the RPA1V1SC polarizability; see Fig. 1.
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11 964 57R. T. M. UMMELS, P. A. BOBBERT, AND W. van HAERINGEN
energy-dependent polarizabilityPG,G8(k;v) and self-energy
SG,G8(k;v) in a plane-wave basis (G andG8 are reciprocal
lattice vectors,k is the wave vector, andv is the energy! one
wave-vector integration can be reduced to an integra
over the k-dependent irreducible wedgeIk . The second
wave-vector integration, if present, cannot be reduced
has to be performed over the whole first Brillouin zo
~1BZ!. Furthermore, in our calculations, wave-vector in
grations have been replaced by a discrete sum over the w
vectors of the grid

q5~n1b11n2b21n3b3!/2Ngr ~ni52Ngr11, . . . ,Ngr!,
~1!

with q reduced to the 1BZ if necessary, wherebi are the
primitive vectors of the reciprocal lattice. A specificq-point
set will be identified by giving the numberNgr . The inte-
grand pertaining to a particular correction may have a sin
larity if the wave vector in an interaction line goes to ze
Such singularities are all integrable and are handled ana
cally in a way described in Appendix B of Ref. 20.

The energy-dependent screened interactionWG,G8(q;v)
can be written as~shorthand notation!

W5v1vxv[v1Wscr, ~2!

where x is the full polarizability matrix andv is the bare
Coulomb interaction,vG,G8(q)5e2dG,G8 /(e0uq1Gu2). We
use SI units:e is the electron charge ande0 is the vacuum
permittivity. The full polarizabilityx is related to the~irre-
ducible! polarizability P by

x5P~ I 2vP!21, ~3!

whereI denotes the unit matrix. We will use a representat
for the screening part ofW, Wscr, that is analogous to the
Lehmann representation for the noninteracting~LDA !
Green’s functionG0:

GG,G8
0

~k;v!5\(
l

dl ,k~G!dl ,k* ~G8!

v2« l~k!1 ih sgn@« l~k!2m#
, ~4!

where the infinitesimally small positive energyh ensures the
correct causal behavior,m is the chemical potential, which in
the case of a semiconductor is situated in the energy
region, and« l anddl are the energies and plane-wave co
ficients, respectively, of the starting point wave functions,
instance, obtained within the LDA. Engel and Farid25 devel-
oped a PPM that provides an analytical approximation
the energy dependence of the dynamically screened inte
tion Wscr, such that energy integrals occurring in expressio
for the self-energy and the polarizability can be carried
analytically. The wave-vector-dependent plasmon ener
vm in this PPM are obtained from the generalized eigenva
problem25 ~in matrix notation!

x~q;v50!xm,q52
1

vm
2 ~q!

M ~q!xm,q . ~5!

If the eigenvectorsxm,q of Eq. ~5!, with components
xm,q(G), are normalized according toxm,q

† M (q)xn,q5dm,n
n
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and satisfy the completeness relation(mxm,qxm,q
†

5M 21(q), then the following plasmon pole description fo
Wscr can be derived:25

WG,G8
scr

~q;v!5(
m

wm,q~G!wm,q* ~G8!H 1

v2vm~q!1 ih

2
1

v1vm~q!2 ihJ , ~6!

wherewm,q5v (q)M (q)xm,q /A2vm(q). Within this particu-
lar PPMx is approximated byx̃ ,

x̃ ~q;v!5$v2M 21~q!1x21~q;v50!%21. ~7!

For v50 the model full polarizabilityx̃ obviously coincides
with x. Further, the correctv→` limit can be obtained by
inserting a properly chosen matrixM . In connection with the
application of plasmon pole models it is desirable26,27 to sat-
isfy the Johnsonf -sum rule.28 When using a local one
electron Hamiltonian, this leads to

MG,G8~q!5
\2

m
~q1G!–~q1G8!rG2G8 , ~8!

whererG are Fourier components of the valence charge d
sity. The Johnsonf -sum rule and, accordingly, Eq.~8! are
not exact, however, if the Hamiltonian contains a nonlo
ion pseudopotential. This is pointed out in Refs. 26 and
The resulting violation of the Johnsonf -sum rule may very
well be of importance in the evaluation of corrections to t
GW self-energy.30 The correct matrixM can easily be ob-
tained by combining Eqs.~3! and ~7! for v→`:

MG,G8~q!5 lim
v→`

v2PG,G8~q;v! ~9!

and extracting thev→` behavior of the polarizabilityP. In
this limit the leading term ofP is proportional to 1/v2. In
Sec. III B we will investigate the effects of the violation o
the Johnsonf -sum rule. The standardGW band gap of semi-
conductors calculated with the PPM based on Eq.~8! is in
excellent agreement with experiment for silicon and d
mond; see Sec. III B.

When splitting the screened interactionW into its static
partv and dynamic partWscr and by taking into account eac
possible time order of the internal and external points o
diagram, specific subdiagrams ofS andP can be identified.
For the polarizability diagramV of Fig. 1 we get a total of 30
subdiagrams. This can be seen as follows: There are 3!
sible time orders if the bare Coulomb interactionv is taken
and 4! possible time orders ifWscr is taken. For diagrams
SC1 plus SC3 of Fig. 1 there are 23 30 subdiagrams, while
diagrams SC2 plus SC4 lead to 23 3! subdiagrams. For the
self-energy diagramV of Fig. 2 there are 38 subdiagram
~for more details see Ref. 22!. For diagram SC1 of Fig. 2
there are also 38 subdiagrams, for diagram SC2
13! subdiagrams, and for diagrams SC3 and SC4 2!13! and
2! subdiagrams, respectively.

In the Appendix the contribution pertaining to one sp
cific subdiagram of the first-order vertex correction polar
ability diagram, diagramV in Fig. 1, is given as an example
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We want to emphasize that the head element~HE! (G50
and G850) and the wing elements~WE’s! (G50 or G8
50) of the polarizability matrixPG,G8(k;v) have to be
treated in a special way fork→0 in the case of semiconduc
tors. In the case of the RPA polarizability the HE has auku2

proportionality and the WE’s have a lineark proportionality
for k→0, leading to the correct screening behavior of a se
conductor. Individually, none of the diagramsV and SC in
Fig. 1 has the property that the HE is proportional touku2 for
k→0. Only the sum of these diagrams fulfills this proper
Kohn31 has proved this for the case that the interaction l
represents the bare Coulomb interaction, but it can a
rather easily be proved for the screened interactionW. We
have chosen to tackle the evaluation of theV1SC polariz-
ability correction in thek→0 limit numerically in the fol-
lowing way: The HE of theV1SC correction is evaluate
for three smallk vectors and then fitted according to

DP0,0~k→0!:5p01p1uku1p2uku2. ~10!

The WE’s of theV1SC correction are evaluated for fou
small k vectors and then fitted according to

DP0,GÞ0~k→0!:5p01pxkx1pyky1pzkz . ~11!

Herep0, p1, p2, px, py, andpz are fitting parameters. In Eq
~11! the fitting parameters areG dependent.

Having obtained the polarizabilityP, the calculation of
the dielectric matrixe can easily be accomplished by eval
atinge5I 2vP. In the calculation of the dielectric matrix fo
k→0 the 1/uku2 singularity of the HE of the bare Coulom
interaction is canceled by theuku2 behavior of the HE of the
polarizability. Likewise the singularity of the WE’s of th
bare Coulomb interaction is canceled. The macroscopic
sponse to an applied field is determined bye21 rather thane.
In accordance with Ref. 32, we define a macroscopic die
tric function ~MDF! by

eM~q1G!:5
1

$e21~q;v50!%G,G

. ~12!

The effects of the off-diagonal matrix elements of the diel
tric function are often referred to as the local-field effec
The macroscopic or static dielectric constante` is given by
e`5 limq→0eM(q). For cubic crystals the static dielectr
constant is independent of the direction in which the wa
vector goes to zero. In the LDA RPA the static dielect
constant is generally overestimated in the case of semi
ductors; see, for instance, Refs. 29 and 32.

Since theGW wave functions in silicon and diamond a
practically undistinguishable from the LDA wave function
it is sufficient to calculate diagonal matrix elements of t
GW self-energy in the LDA basis when evaluating Q
energies.26,33 In order to account for the fact that the expe
tation values should be evaluated at the QP energies,
self-energy is expanded to first order in the difference
tween the QP and the LDA energies to obtain the desired
energiesEl

QP(k), leading to

El
QP~k!5« l~k!1Zl ,k\^ l ,kuS„k;« l~k!…u l ,k&, ~13!

where Zl ,k is the so-called wave-function renormalizatio
factor, given by
i-

.
e
o

e-

c-

-
.

e

n-

he
-
P

Zl ,k5S 12\^ l ,ku
]S~k;v!

]v U
v 5 « l ~k!

u l ,k& D 21

, ~14!

and u l ,k& indicates a LDA state with band indexl and wave
vectork. In the procedure of obtaining QP energies we w
therefore evaluate both the expectation valu
\^ l ,kuS„k;« l(k)…u l ,k& and their derivativesd,

d l~k![\^ l ,ku
]S~k;v!

]v U
v 5 « l ~k!

u l ,k&. ~15!

Here \S will equal either2Vxc1\SGW or 2Vxc1\SGW

1\SV1SC, depending on whether we are calculatingGW or
GW1V1SC (GW plus its first order inW corrections! qua-
siparticle energies. We will refer to the above method
calculating QP energies as the ‘‘expectation value metho
This method turns out to work well for theGW self-energy
and in Sec. III B we will check its validity for theV1SC
self-energy correction. To this end, the result obtained w
the expectation value method will be compared with the
sult of an exact diagonalization of the nonlocal, energ
dependent HamiltonianH1\S.

III. RESULTS

In the calculations to be reported on below we used en
gies and wave functions obtained from a well-converg
self-consistent LDA calculation carried through in a plan
wave basis set with a cutoff of 17 and 45 Ry for silicon a
diamond, respectively. We used the experimental lat
constants34 a55.43 Å anda53.57 Å for silicon and dia-
mond, respectively. The implemented parametrization of
ab initio nonlocal ionic norm-conserving pseudopotentials
that of Bachelet, Greenside, Baraff, and Schlu¨ter.35 The
exchange-correlation potentialVxc is represented with the
Wigner interpolation formula.36 Unless indicated otherwise
the matrixM of Eq. ~8! is used to obtainWscr.

Three cutoffs are to be distinguished in the calculations
P andS: ~i! the number of plane waves taken into account
reciprocal lattice vector summations and used for the size
dielectric ~and polarizability! matricesNPW, ~ii ! the number
of electron and plasmon bands taken into account in b
summationsNb , and~iii ! the fineness of thek-space grid in
the Brillouin zone integrationsNgr ; see Sec. II. For the po
larizability as well as the self-energyNPW5137 is taken for
silicon andNPW5229 is taken for diamond. For the RP
polarizability and theGW self-energy,Nb is taken equal to
NPW. For theV1SC polarizability correction this number i
Nb529 for silicon andNb530 for diamond~the choice ofNb
is restricted to specific values due to the degeneracy
bands, which has to be properly dealt with fork→0). The
contributions to the expectation values and their energy
rivativesd ~evaluated at the LDA energies; see Sec. II! of the
V1SC self-energy correction diagrams have been obtai
by usingNb565. In the calculation of the RPA polarizabilit
for k→0, Ngr56 for silicon andNgr54 for diamond is used.
For otherk vectors we useNgr53 for silicon andNgr52 for
diamond. Also, theV1SC polarizability correction is calcu
lated with these latterNgr values for allk vectors. This holds
also for theGW self-energy and its corrections. An exce
tion to this choice ofNgr is made for theV1SC correction in
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the case of theX andL points of silicon, where we assume
that Ngr52 would also be sufficient, as it turned out to b
sufficient to useNgr52 for theV1SC correction in the cas
of the G point of silicon.

Convergence tests have been performed in order to as
the accuracy of calculated QP gaps: For silicon, theV1SC
correction to the RPA polarizability has also been calcula
by taking NPW589 andNb550 (Ngr52!. This led to the
conclusion that the matrix elements of the polarizability c
rections were nicely converged, while the effect on the ba
gap was minor. TheV1SC correction to theGW self-energy
for theG point of silicon and diamond, using RPA screenin
has also been calculated by takingNgr52, together with tak-
ing a smallerNPW (NPW589 and 169 for silicon and dia
mond, respectively! or with more plasmon and electro
bands (Nb589!. For diamond the calculations with RP
screening were also done forNgr53. We claim on the basis
of the above-mentioned convergence tests that the accu
of reported QP gaps is 0.05 eV for silicon and 0.1 eV
diamond. In Tables II and III we nevertheless express nu
bers with three decimal places in order to clarify possi
cancellation effects.

A. First-order corrections to the RPA polarizability

Unless stated otherwise~see Sec. III B!, we use the PPM
described in Sec. II based on the matrixM of Eq. ~8! in
which case we can restrict ourselves to the calculation
PG,G8(k;v50).

In Fig. 3 the RPA,V, and SC contributions to the diago
nal elements of the static polarizability are shown as a fu
tion of the absolute wave vectoruk1Gu. The scattering of
the points in this figure reflects the anisotropy. One obser
that theV and SC contributions compensate each other
very large degree. TheV contribution has the same sign a
the RPA polarizability, while the SC contribution has th
opposite sign. In absolute value both corrections are roug
75% of the RPA. The compensation betweenV and SC is
such that the diagonal matrix elements of the RPA1V1SC
polarizability are in absolute value a little bit larger than t
RPA ones~about 15%!. Also in Ref. 18 this compensatio

FIG. 3. Compensation betweenV and SC corrections to the
diagonal elements of the static polarizability~in Rydberg a.u.! for
silicon and diamond. The constant contributions to the HE of
polarizability matrix fork→0 are also given~the uk1Gu50 axis!.
ess
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was seen for the quasi-one-dimensional semiconduc
wire, although the compensation was less complete there
Fig. 3 the constant terms fork→0 ~G50! for the V and the
SC contributions are also given. They are clearly seen
cancel. This is in agreement with Ref. 31, where it has b
shown that, for insulating crystals,P0,0(k;v) is proportional
to uku2 for small uku.

In Fig. 4 we have plotted the difference between t
RPA1V1SC and the RPA MDF as a function of the abs
lute wave vectoruk1Gu. For the definition of the MDF, see
Eq. ~12!. The correction is negative for smalluk1Gu and
positive for largeruk1Gu. Our obtained RPA1V1SC static
dielectric constant ise`5 10.4 and 5.3 in our best calcula
tion for silicon and diamond, respectively, to be compar
with our RPA values of 12.8 and 5.6 and with experimen
values 11.4,37,38 11.7 ~Ref. 39! and 5.5,39 5.7.40 So by incor-
porating theV1SC polarizability correction, we find a de
crease in the static dielectric constant. This is contrary
previous results in cases in which the local-densi
functional formalism is used to go beyond the RPA, whi
generally show an increase in the static dielectric const
see, for instance, Ref. 32. In Refs. 32 and 41, the MDF in
local-density-functional formalism was compared to t
RPA MDF. In Ref. 32 the QMC exchange-correlation pote
tial as parametrized by Perdew and Zunger42 was used, while
the Slater exchange-correlation potential was used in R
41. Comparing our results for the MDF for silicon with Ref
32 and 41, we observe that ourV1SC correction to the RPA
MDF is about five times smaller.

To conclude the discussion of the polarizability we c
say that the sum of the first-order vertex and self-consiste
corrections to the static polarizability is relatively small, wi
the LDA as the starting point. Our results confirm our pre
ous results for the quasi-one-dimensional semiconduc
wire and results of other authors that theV and SC correc-
tions to the polarizability compensate each other to a la

e

FIG. 4. RPA1V1SC macroscopic dielectric function~MDF! as
well as the difference between the RPA1V1SC and the RPA MDF
for silicon and diamond. The definition of the MDF is given in E
~12!. By eM8 we meaneM

RPA1V1SC. The value ofeM8 2eM
RPA for uk

1Gu→0 is 22.4 for silicon and20.3 for diamond~see the text!.
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TABLE I. GW andGW1V1SC direct gaps~in eV! for RPA screening and RPA1V1SC screening for
silicon (G, X, andL points! and diamond (G point!. The LDA direct gaps and experimental data are a
given.

Method/Source G X L

silicon
GW/RPA ~standardGW! 3.31 4.20 3.38
GW/RPA1V1SC 3.38 4.26 3.44
GW1V1SC/RPA 3.58 4.53 3.65
GW1V1SC/RPA1V1SC 3.67 4.64 3.77
LDA 2.53 3.35 2.61
Expt.a,b 3.40 4.25 3.45
standardGW literature 3.35c 4.43c 3.54c

diamond
GW/RPA ~standardGW! 7.63
GW/RPA1V1SC 7.83
GW1V1SC/RPA 8.08
GW1V1SC/RPA1V1SC 8.36
LDA 5.51
Expt.a 7.3
standardGW literature 7.5,c 7.63,d 7.26e

aReference 34.
bReference 43.
cReference 26.
dReference 44.
eReference 33.
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degree. Our results can be considered to be complemen
to the work of Bechstedtet al.,24 who observed such a com
pensation at finite frequencies, also for silicon and diamo
but without taking LFE’s into account.

B. First-order corrections to the GW self-energy

Our standardGW results, obtained by applying the expe
tation value method, are shown in Table I. The gap val
for the G, X, andL points of silicon of 3.31, 4.20, and 3.3
eV are observed to compare reasonably with the values 3
4.43, and 3.54 eV of Ref. 26 and excellently with the expe
mental values34,43 of 3.40, 4.25, and 3.45 eV. The result fo
the G point of diamond of 7.63 eV compares well with th
7.5 eV value reported in Ref. 26 and the 7.63 eV value
Ref. 44 and reasonably with the experimental value34 of 7.3
eV. We remark in this connection that if we takeNgr53
instead of Ngr52, our standardGW result for diamond
changes from 7.63 eV to 7.54 eV. In Table I also theGW
gap values with RPA1V1SC screening are given. It is ob
served that the differences between the standardGW and
GW/RPA1V1SC gap values are relatively minor, as cou
be expected from the closeness of the RPA and RP1
V1SC screening~see Sec. III A!.

We now turn to the first-order vertex and self-consisten
self-energy corrections to theGW self-energy. We recall He
din’s argument1 to takeS to nth order inW whenP is taken
to order n21 in W and our restriction of using the LDA
Green’s function. In following this line of reasoning whe
calculating theGW1V1SC self-energy, the resulting ga
values obtained with RPA1V1SC screening should obvi
ously be preferred. From Table I it is observed that both
ary

d,

s

5,
-

f

y

e

GW1V1SC/RPA and theGW1V1SC/RPA1V1SC gap
values, obtained by applying the expectation value meth
differ considerably from the standardGW values. The dif-
ferences with the standardGW values appear to be largest
we take the screening to be RPA1V1SC. For this type of
screening the differences amount to 0.36, 0.44, and 0.39
for theG, X, andL points of silicon, while the difference fo
the G point of diamond is even 0.73 eV. All correction
apparently have the same sign. If RPA screening is u
instead~see also Table I!, the differences from the standar
GW values reduce to roughly 0.3 eV in the case if silic
and to roughly 0.4 eV for diamond. The obvious conclusi
is that, if vertex and self-consistency corrections are includ
to first order, the compensation between them~see also fur-
ther on! is clearly incomplete.

In Table II details of our calculational results are pr
sented. It is seen that we have concentrated on QP ene
of the highest valence band~HVB! and the lowest conduc
tion band~LCB!. The highest valence state and lowest co
duction state at theG point are denoted byG25v8 and G15c ,
respectively. At theX andL points these states are denot
by X4v , X1c , L3v8 , andL1c , respectively. We have given fo
the GW self-energy diagram, minusVxc, as well as for the
respective SC1, SC2, SC3, SC4, andV self-energy diagrams
the expectation values together with the related energy
rivatives d. Results are given for both RPA and RPA1
V1SC screening for both silicon and diamond. The calcu
tion of the contribution of theV self-energy correction to the
difference in expectation value for the LCB and HVB at t
G point for silicon had already been done in Ref. 22. Ho
ever, due to an error in the program code, the result give
Ref. 22 of 0.12 eV is incorrect. The correct value is20.26
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TABLE II. Expectation values of the first-order self-consistency and vertex self-energy corrections
RPA and RPA1V1SC screening, for the HVB and LCB of theG, X, andL points of silicon and for the
HVB and LCB of theG point of diamond~in eV!. Their energy derivativesd are given in parenthese
~— means zero energy derivative!. The expectation values and energy derivatives of theGW self-energy
minusVxc are also given; see column 2.

l,k GW 2Vxc SC1 SC2 SC3 SC4 Total SC V Total V1SC

silicon: RPA screening
G25v8 21.211 23.652 3.513 1.287 21.152 20.004 0.076 0.072

(20.288) (0.231) (20.147) ~—! ~—! (0.084) (20.088) (20.004)
G15c 20.203 22.180 2.734 0.441 20.396 0.599 20.181 0.418

(20.286) (20.130) (0.197) ~—! ~—! (0.067) (20.079) (20.012)
X4v 21.283 23.744 3.424 0.792 20.706 20.234 0.158 20.075

(20.315) (0.338) (20.237) ~—! ~—! (0.101) (20.079) (0.021)
X1c 20.159 21.688 2.174 20.077 0.068 0.477 20.162 0.314

(20.261) (20.101) (0.161) ~—! ~—! (0.060) (20.070) (20.010)
L3v8 21.254 23.675 3.468 1.074 20.957 20.090 0.130 0.040

(20.299) (0.284) (20.194) ~—! ~—! (0.091) (20.089) (0.002)
L1c 20.246 22.211 2.720 0.587 20.524 0.572 20.193 0.378

(20.273) (20.123) (0.187) ~—! ~—! (0.064) (20.076) (20.011)
silicon: RPA1V1SC screening

G25v8 21.310 23.654 3.526 1.292 21.152 0.012 0.017 0.030
(20.290) (0.226) (20.140) ~—! ~—! (0.086) (20.092) (20.006)

G15c 20.217 22.209 2.755 0.444 20.396 0.594 20.181 0.413
(20.288) (20.125) (0.193) ~—! ~—! (0.068) (20.084) (20.016)

X4v 21.365 23.710 3.407 0.805 20.706 20.204 0.073 20.131
(20.317) (0.325) (20.222) ~—! ~—! (0.103) (20.082) (0.020)

X1c 20.161 21.692 2.163 20.078 0.068 0.461 20.130 0.331
(20.263) (20.090) (0.150) ~—! ~—! (0.060) (20.072) (20.012)

L3v8 21.347 23.643 3.455 1.091 20.957 20.054 0.036 20.019
(20.301) (0.271) (20.179) ~—! ~—! (0.093) (20.091) (0.001)

L1c 20.257 22.215 2.708 0.597 20.524 0.566 20.168 0.398
(20.275) (20.111) (0.176) ~—! ~—! (0.065) (20.078) (20.013)

diamond: RPA screening
G25v8 22.083 23.666 3.524 1.725 21.543 0.040 0.109 0.149

(20.191) (0.128) (20.085) ~—! ~—! (0.043) (20.036) (0.007)
G15c 0.445 22.305 2.853 1.055 20.956 0.647 0.019 0.666

(20.187) (20.062) (0.099) ~—! ~—! (0.036) (20.032) (0.005)
diamond: RPA1V1SC screening

G25v8 22.321 23.696 3.567 1.776 21.543 0.104 20.013 0.091
(20.194) (0.125) (20.081) ~—! ~—! (0.044) (20.041) (0.003)

G15c 0.459 22.356 2.889 1.091 20.956 0.668 0.041 0.709
(20.191) (20.058) (0.096) ~—! ~—! (0.039) (20.037) (0.002)
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eV; see Table II. Concerning the SC self-energy correctio
one can argue that aGW insertion and aVxc insertion have
much in common, such that SC1 and SC2 are likely to co
pensate partially. It is observed that the SC1 and SC2 s
energy diagrams individually lead to relatively large corre
tions to the absolute energies of the HVB and LCB and h
indeed the tendency to compensate each other, though
completely. The SC3 and SC4 self-energy diagrams are
energy corrections to the Hartree diagram, in which the
lence charge density is corrected to first-order inW. As the
valence charge density in DFT is equal to the exact dens
the first-order corrections to the LDA valence charge den
are expected to be minor.33 It is observed that the contribu
tion to the difference in expectation value for the LCB a
HVB due to the SC Hartree diagrams~SC31SC4! is very
s,

-
lf-
-
e

not
lf-
-

y,
y

small indeed as compared to the contribution due to the S
1SC2 self-energy diagrams. The difference in expectat
value for the LCB and HVB of theV and of the total SC
correction can also easily be obtained from the entries
Table II. By doing so, theV correction appears to compen
sate the SC correction to about 45% in the case of R
screening and to about 35% in the case of RPA1V1SC
screening for silicon. For diamond these percentages
about 15% and210%, respectively, so that the term com
pensation is not even appropriate.

The above-mentionedGW1V1SC/RPA1V1SC result
is puzzling in a certain sense: If the sum of all first-ord
corrections to the standardGW gap does not appear to b
negligibly small, the question arises which group of d
grams then have to be considered in order to ‘‘justify’’ th
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standardGW result. Before trying to answer this question
is necessary, however, to be as certain as possible tha
calculations do not contain weaknesses of whatever k
This has led us to the performance of a few checks, wh
are outlined in the next section.

IV. CHECKS

In this section we report on a few checks that we ha
performed concerning theV1SC self-energy corrections
First, for RPA screening, we improved upon the PPM co
cerning the matrixM in accordance with a proposal o
Farid,30 in which he points to the violation of Johnson
f -sum rule if one sticks to the matrixM of Eq. ~8!. Apart
from PG,G8(k;v50) we now also have to calculate the lea
ing term ofPG,G8(k;v→`); see Eq.~9!. In agreement with
Ref. 29, we find that the diagonal elements of the matrixM
of Eq. ~9! are smaller than those given by the Johnsonf -sum
rule and that the off-diagonal elements deviate even m
When applying the correct matrixM , the standardGW direct
band gap of silicon at theG point becomes only 0.015 eV
smaller, however. In fact, this is not unexpected, as the
of Johnson’sf -sum rule~see, for instance, Refs. 26 and 2!
generally leads to excellent agreement between standardGW
and experimental gap values. Furthermore, it is also fo
that theGW1V1SC/RPA direct band gap of silicon atG,
when calculated with the correct matrixM , stays practically
the same: The value becomes only 0.011 eV smaller. It
therefore safely be concluded that the violation of t
Johnsonf -sum rule yields only insignificant deviations i
corrected gap values.

A second point of possible concern is the assumed clo
ness of LDA wave functions andGW1V1SC wave func-
tions. Though it is demonstrated in Refs. 26 and 33 that
LDA wave functions and theGW wave functions are close
it is not a priori certain that this also holds in the presence
the V1SC self-energy corrections. This, however, has to
fulfilled in order to safely apply the expectation valu
method. We therefore carried through an exact diagonal
tion procedure for the HVB and LCB at theG point of sili-
con, using RPA screening. In this procedure only coupl
between states of equal symmetry needs to be conside
leading, among 65 electron bands, to a 636 matrix in the
LDA basis to be diagonalized only. In doing so, both t
standardGW and theGW1V1SC/RPA direct band gap be
come larger by an amount of only 0.001 eV compared to
values obtained within the expectation value method. It
therefore also safely be concluded that the LDA wave fu
tions and theGW1V1SC wave functions are sufficientl
similar.

A third check concerns the LDA starting point. Thoug
the LDA wave functions are to a large extent similar to t
GW wave functions~and to theGW1V1SC wave functions
as shown above!, the conduction-band energy levels in th
LDA are significantly lower than those inGW ~and GW1
V1SC!. Though this is generally not thought to be an im
portant issue, we nevertheless would like to investig
whether a LDA input in which the quasiparticle shift is in
cluded could improve the results. In a sense such an alt
input could be considered to be closer to a ‘‘GW set of wave
functions with accompanying energy levels’’ than the us
our
d.
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LDA input. We therefore applied the so-called scissors o
erator to the LDA by changing the LDA exchang
correlation potentialVxc(k) into Vxc(k)1D(cuc,k&^c,ku,
wherec is meant to indicate conduction bands andD50.8
eV ~for silicon! being about the standardGW conduction-
band shift. Leaving the LDA wave functions unaltered, w
can now construct another Green’s function and insert it i
the RPA polarizability, theGW self-energy, and theV1SC
self-energy correction. In doing so, the~RPA! dielectric con-
stant changes and becomes equal to 10.9 (Ngr56). The new
standardGW direct gap atG ~of silicon! appears to be abou
0.2 eV larger than the value obtained with the LDA as t
starting point, while the newGW1V1SC/RPA direct gap is
about 0.1 eV larger than before. It therefore shows that
kind of change in the LDA starting point in theGW type of
calculations does not improve things. Incidentally, the d
pendence on starting point Hamiltonians forGW or related
types of calculations and, more specifically, the appar
preference for the LDA starting point are interesting in the
selves and not sufficiently settled in our opinion.

V. DISCUSSION ON THE SELF-CONSISTENCY
SELF-ENERGY DIAGRAMS

If we, in spite of the preceding discussion, neverthel
pursue the issue of LDA wave functions andGW wave func-
tions being highly similar, it is tempting to subdivide th
SC11SC2 self-energy subdiagrams. To this end we give
expression for the insertion, in the LDA basis, occurring
the SC11SC2 self-energy correction to the LDA energ
« l(k) ~the electron bandsl 8 and l 9 are summation variable
and the energyv and the wave vectorq are integration vari-
ables!:

^ l 8,q1ku\SGW
„q1k;v1« l~k!…2Vxc~q1k!u l 9,q1k&.

~16!

The SC11SC2 self-energy subdiagrams can be subdivid
into the ‘‘diagonal SC’’ ~DSC! and ‘‘nondiagonal SC’’
~NDSC! groups of subdiagrams of Fig. 5. The reason
doing this is that the DSC group of subdiagrams consists
subdiagrams in which the insertion, given by Eq.~16!, is
taken betweenthe sameconduction (c) or valence (v) states
only. The NDSC group of subdiagrams can further be s
divided into the NDSCA and NDSCB group of subdiagram
see Fig. 5. The NDSCA and NDSCB groups of subdiagra
are initially expected to be small, the reason being tha
these latter subdiagrams the insertion, given by Eq.~16!, is
taken betweendifferent states. If we simply ignore the
NDSC contribution and calculate the difference between
GW1DSC/RPA and the standardGW gap value, applying
the expectation value method using standardGW energy de-
rivatives d, we obtain the values 0.32, 0.49, 0.40, and 0
eV for theG, X, andL points of silicon and theG point of
diamond, respectively. Considering the fact that the ver
correctionV to the self-energy yields a gap correction
about20.3 eV for silicon and about20.1 eV for diamond
~see Table II!, we would then find that the totality of theV
plus DSC correction appears to be minor for silicon, wh
the compensation is less pronounced for diamond. Unfo
nately, however, ouractual results on the group of NDSC
subdiagrams do not confirm the above reasoning at all.
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true that we find the contribution to the gap due to t
NDSCA group of Fig. 5 to be very small, but, unfortunate
this does not hold for the remaining group of subdiagram
NDSCB. The discrepancy between the actual contribution
the NDSC subdiagrams and our above reasoning~expecting
them to be insignificant!, however, can be understood as fo
lows. Taking the square of the matrix elemen
^ l ,ku\SGW

„k;« l(k)…2Vxc(k)u l 8,k&, the nondiagonal (l
Þ l 8) values are found to be about two orders of magnitu
smaller than the diagonal (l 5 l 8) ones. This is one of the
reasons for the correction33

(
l 8Þ l

z^ l ,ku\SGW
„k;« l~k!…2Vxc~k!u l 8,k& z2

« l~k!2« l 8~k!
~17!

to the QP energies to be very small, which is related to
high similarity of theGW and LDA wave functions. On the
other hand, in order to calculate the SC11SC2 self-energy
contribution the matrix element itself is required, instead
its square. Furthermore, the energy denominators pertai
to the NDSCB subdiagrams contain one energy differe
consisting only of electron energies, while in the case of
DSC ~and NDSCA! subdiagrams each energy differen
contains a plasmon energy~which is relatively large!.

VI. A REMARKABLE CANCELLATION

We note that it is possible to view upon the orders inW in
a different way by expanding the wave-function renormali
tion factor Zl ,k occurring in Eq.~13!. Z can formally be
written as

FIG. 5. SC11SC2 self-energy correction subdiagrams with
agonal and nondiagonalGW self-energy insertions in the LDA ba
sis. The former subdiagrams are indicated by DSC and the la
subdiagrams are indicated by NDSCA and NDSCB. Time increa
from bottom to top.v stands for a valence-band index andc stands
for a conduction-band index~which have to be summed over!. In
the case of DSC the band indices on both sides of the ellipse
identical.
e

s,
f

e

e

f
ng
e
e

-

Zl ,k511 (
n51

` H \^ l ,ku
]S~k;v!

]v U
v 5 « l ~k!

u l ,k&J n

~18!

such that, in fact, an infinite number of higher-order terms
W are involved via the energy derivative ofS. In doing so,
we observe a remarkable cancellation between correction
the band gap due to theV and SC corrections to the sel
energyS on the one hand and corrections to the band g
due to the energy dependence ofSGW on the other hand. A
cancellation of this particular kind has been reported by v
Haeringen for both the Bloch-Nordsieck model describi
electron-photon coupling45,46and the Fro¨hlich polaron model
describing electron-phonon coupling.47 A cancellation be-
tween self-consistency corrections toS and the energy de
pendence ofS was indicated by DuBois5 and also mentioned
by Rice.10

In order to be able to present the cancellation effect, i
necessary to return to the expectation value method that
introduced in Sec. II. We expand the right-hand side~RHS!
of Eq. ~13! to second order in the screened interactionW by
making a Taylor expansion of the denominator contain
the energy derivative and the resulting expression for
quasiparticle energyEl

QP(k) is

El
QP~k!'« l~k!1^ l ,ku\SGW

„k;« l~k!…2Vxc~k!u l ,k&

1^ l ,ku\SGW
„k;« l~k!…2Vxc~k!u l ,k&d l

GW~k!

1\^ l ,kuSV1SC
„k;« l~k!…u l ,k&. ~19!

We have regrouped our calculational results in accorda
with Eq. ~19!, taking care of correction terms in the ‘‘appro
priate order’’ for both RPA and RPA1V1SC screening. In
doing so, note that the convention of viewing upon orders
W is now different from before: TheGW expectation value
is of ‘‘first order’’ in W, the V1SC self-energy expectatio
value is of ‘‘second order’’ inW, and theGW expectation
value times its energy derivative is also of ‘‘second order’’
W. The above-mentioned cancellation effect concerns
last two terms on the RHS of Eq.~19!. In Table III we
present the values of these terms for the HVB and LCB
the G, X, and L points of silicon and for theG point of
diamond, which can be produced with the data given
Table II. It is observed that no cancellation occurs for t
LCB and HVB separately. A remarkable cancellation is se
to occur, however, for the band-gap values, in all cases le
ing to a gap contribution smaller than 0.1 eV. It should
noted in this connection that a similar result has already b
obtained in the case of the quasi-one-dimensional semic
ducting wire; see Ref. 48.

It will be clear that this result does not as yet contribute
a deeper understanding of the celebrated standardGW result.
This particular cancellation causes theGW1V1SC energies
to be equal to the LDA energies plus theGW self-energy
expectation values calculated at the LDA energy. This
puzzling since in the case of theGW gap, calculating the
GW self-energy expectation value at the LDA energy inste
of at theGW energy, the energy derivative was absolute
required to obtain agreement with experiment. The cance

er
es

re
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TABLE III. Correction contributions due to the last two terms on the RHS of Eq.~19! for HVB and LCB
of silicon and diamond~in eV!, in the case of RPA screening and RPA1V1SC screening~for the latter case
the values are given in parentheses!. With ^GW2Vxc& we mean̂ l ,ku\SGW

„k;« l(k)…2Vxc(k)u l ,k& and with
^V1SC& we mean\^ l ,kuSV1SC

„k;« l(k)…u l ,k&.

l ,k ^GW2Vxc&d l
GW(k) ^V1SC& Total Gap contribution

silicon
G25v8 0.349 (0.380) 0.072(0.030) 0.421 (0.410)
G15c 0.058 (0.062) 0.418(0.413) 0.476 (0.475) 0.055~0.065!

X4v 0.404 (0.433) 20.075(20.131) 0.329 (0.302)
X1c 0.041 (0.042) 0.314(0.331) 0.355 (0.373) 0.026~0.071!

L3v8 0.375 (0.405) 0.040(20.019) 0.415 (0.386)
L1c 0.067 (0.071) 0.378(0.398) 0.445 (0.469) 0.030~0.083!

diamond
G25v8 0.398 (0.450) 0.149(0.091) 0.547 (0.541)
G15c 20.083 (20.088) 0.666(0.709) 0.583 (0.621) 0.036~0.080!
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tion rather points to the existence of an apparent ‘‘sum rul
which unfortunately is unexplained as yet. There is a p
sible connection to Ward identities,13 but no reference to a
specific Ward identity has been discussed in the literature
in our case, an identity of the above kind indeed exists,
above results could presumably be considered as an inte
check on the correctness of our calculations rather than
tributing to the identification of the relevant group of di
grams that leads to the same gap results as standardGW.

VII. DISCUSSION AND CONCLUSIONS

The present work was motivated by the idea that the
parent success of standardGW in predicting electronic prop-
erties could possibly be supported by a compensation
tween first-order vertex and self-consistency corrections
the band gap of silicon and diamond. Compensations of
type are occasionally reported on in the literature, mainly
the case of the homogeneous electron gas, but also in
case of a quasi-one-dimensional semiconducting wire
seemed of interest to investigate to what extent such a c
pensation can also be found for a completely realistic ca
The starting point has been a fully converged LDA calcu
tion for both silicon and diamond. Our effort has been
calculate the contribution of complete sets of subdiagra
contributing to both the polarizabilityP ~to first order inW)
and the self-energyS ~to second order inW). We found
large compensations between the first-order vertex and
consistency corrections toP, but the result concerningS and
the related gap value is disappointing in the sense that t
appears to be only a 35% compensation between theV and
SC self-energy corrections~to the difference in their expec
tation value for the LCB and HVB! in the case of silicon,
while such a compensation is in fact absent in the cas
diamond. The resulting corrected gap values appear to
about 0.4 eV and 0.7 eV larger than the standardGW values
for silicon and diamond, respectively. This result therefo
does not give the expected help in understanding the suc
of the standardGW approach. In view of this more or les
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unexpected result, much effort has been put in checking
correctness of a large number of computational steps, s
that we are convinced of the correctness of our final resu
Furthermore, by expanding the wave-function renormali
tion function, we have found a cancellation of particular co
rection terms occurring for theGW1V1SC gap. It is there-
fore worthwhile to speculate on other more refin
compensating mechanisms that possibly could explain
‘‘correctness’’ of standardGW. In this connection we recal
the work of Shirley,11 briefly discussed in earlier section
from which it could be deduced that a possibly more co
plete compensation could be obtained if we would be able
evaluate self-consistently the sum of theGW self-energy dia-

FIG. 6. Vertex correction subdiagram included in the correct
to the polarizabilityPG,G8(k;v). A directed line denotes the LDA
Green’s functionG0 and the dashed line stands forWscr @see Eq.
~2!#. The two dotted, arrowed lines withk1G andk1G8 indicate
the two crystal momenta for which the correctionDP is taken. The
meaning of the labels is explained in the text.
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gram and the vertex correction diagram. In 1965 Hedin1 al-
ready put forth that corrections to standardGW should pref-
erably be included by using a self-consistentG.
Unfortunately, this is a tremendous task, even for the hom
geneous electron gas, but in our opinion its performance
silicon and diamond is considered to be crucial as it co
very well contribute to a better understanding of the succ
of the standardGW approach for these latter materials.
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APPENDIX: THE EXPRESSION
FOR A POLARIZABILITY CORRECTION SUBDIAGRAM

In this appendix we give the worked-out algebraic expr
sion for a vertex correction subdiagram of the polarizabil
in the momentum representation; see Fig. 6. The momen
flow through the subdiagram can be deduced using mom
tum conservation at the interaction vertices. This particu
correction entails summations over conduction bands (l 1 and
l 2), valence bands (l 3 and l 4), plasmon bands (m), and re-
ciprocal lattice vectorsQ1–Q6. The presence of reciproca
lattice vectors is due to the interaction of an electron or h
with the ion lattice. Furthermore, this correction involves
integration over the reduced wave vectorsq1 and q2. As
mentioned in Sec. II, one integration can be performed o
Ik . The expression is
s. In this

linear
e
by Eq.

ors
DPG,G8~k;v!522E
1BZ

d3q1

~2p!3E1BZ

d3q2

~2p!3 (l 1Pc
(

l 2Pc
(

l 3Pv
(

l 4Pv
(
m

S (
Q1

dl 1 ,q11k~Q11G8!dl 2 ,q1
* ~Q1! D

3S (
Q2

dl 4 ,q11q2
~Q2!dl 3 ,q11q21k* ~Q21G! D S (

Q5

dl 1 ,q11k* ~Q5!(
Q3

dl 3 ,q11q21k~Q31Q5!wm,2q2
~2Q3! D

3S (
Q6

dl 2 ,q1
~Q6!(

Q4

dl 4 ,q11q2
* ~Q41Q6!wm,2q2

* ~2Q4! D $@vm~2q2!1« l 1
~q11k!2« l 3

~q11q21k!#

3@vm~2q2!1« l 2
~q1!2« l 4

~q11q2!#@v2vm~2q2!2« l 1
~q11k!1« l 4

~q11q2!#%21. ~A1!

Here« l are LDA energies anddl are LDA plane-wave coefficients;vm are PPM energies andwm are PPM coefficients.c and
v denote the conduction bands and valence bands, respectively. The factor 2 originates from summation over spin
particular example given by Eq.~A1!, the head element (G50, G850) for k→0 has a constant contribution ifl 15 l 2 and
l 35 l 4 because then we have twice an inner product of a wave function with itself, which is unity. The HE also has
contributions ink for k→0 if l 1Þ l 2 or l 3Þ l 4. Also the wing elements (G50 or G850) have a constant contribution. Th
energy denominator contains products of energy differences. For this particular correction to the polarizability given
~A1! the energy denominator consists of three such energy differences. Forv50 there are no vanishing energy denominat
for any subdiagram contributing to the polarizability.
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44M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B48, 17 791

~1993!.
45F. Bloch and A. Nordsieck, Phys. Rev.52, 54 ~1937!.
46W. van Haeringen, Physica~Amsterdam! 26, 289 ~1960!.
47W. van Haeringen, Phys. Rev.137, A1902 ~1965!.
48H.J. de Groot, Ph.D. thesis, Eindhoven University of Technolo

1996.


