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First-order corrections to random-phase approximation GW calculations in silicon and diamond
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We report onab initio calculations of the first-order corrections in the screened interadtioto the
random-phase approximation polarizability and to @&/ self-energy, using a noninteracting Green'’s func-
tion, for silicon and diamond. It is found that the first-order vertex and self-consistency corrections to the
polarizability largely compensate each other. This does not hold, however, for the first-order corrections to the
GW gap. For silicon the compensation between the first-order vertex and self-consistency correction contri-
butions to the gap is only about 35%, while for diamond it is even absent. The resulting gap values are
significantly and systematically too large, the direct gaps for silicon and diamond being 0.4 eV and 0.7 eV
larger than theirGW values, respectively. The success@W in predicting electronic properties of, e.g.,
silicon and diamond can therefore apparently not be understood in terms of “small” correctiGW to first
order inW using a noninteracting Green’s functidis0163-182@8)01819-0

[. INTRODUCTION electron gas, in which, however, a fixed screened interaction
is employed. The resulting bandwidth is found to be appre-
One of the most successful methods of describingciably larger than théassumepimore correct standar@ W
exchange-correlation effects @b initio calculations is the value. A similar result is obtained by von Barth and Hdfm,
random-phase approximatiogfiRPA) GW approach, where who performed a full SCGW calculation by including the
the (irreducible polarizability P is calculated in the RPA screened interaction in the self-consistency procedure.
and the self-energy, is calculated to first order in the dy- Shirley' furthermore reports on a nearly self-consistent cal-
namically screened interactio.>? It is remarkable in this culation to second order in the screened interactni.e.,
connection that non-self-consistent RRAW calculations by incorporating, apart from th&é W diagram, also the first-
lead to quasiparticléQP) band gaps that are in excellent order vertex correction diagram t&W. The employed
agreement with experiment in the case of a large group ofreen’s functionG in this calculation is the one obtained
semiconductors if the starting point is chosen to be thdrom his SCGW calculation, however. The resulting band-
density-functional theoryDFT) in the local-density approxi- width in this latter calculation is found to be very close to the
mation (LDA). Henceforth we will call this non-self- standardGW value. This is indicative of a strong compen-
consistent RPAGW approach “standar@GW.” The inherent  sation betweerV and SC corrections, fully in line with ar-
assumption that higher-order corrections can be neglected iguments put forth in Refs. 13 and 14.
however, far from obvious. Calculations for inhomogeneous systems are much more
The inclusion of vertexV) and so-called self-consistency difficult to perform, which explains that the situation con-
(SO corrections t& andP has been studied by a number of cerning corrections to standa@\W is much less settled for
researchers, mainly for the homogeneous electron gasuch systems. In Ref. 15 a full SCGW calculation was pre-
Hubbard introduced the corrections to the RPA by means ofsented for the relatively simple case of a quasi-one-
a local-field factor(not to be confused with the so-called dimensional semiconducting wire. It resulted in a value for
local-field effects to be introduced later)oin the electron the band gap that is large compared to the standzvd
gas case much effort has gone into obtaining expressions féxand-gap value. The obtained result appears to be completely
local-field factors in the dielectric function; see, for instance,at variance with the much smaller band-gap obtained in the
Refs. 2 and 4. DuBoiswhose work can be considered as anquantum Monte CarldQMC) calculation for this system
extension to the work of Gell-Mann and Brueckfiér, presented in Refs. 16 and 17. The QMC value should for
stresses the importance of taking into account all polarizabilreasons of principle lie close to the “exact” band-gap value;
ity diagrams of the same order in the Wigner-Seitz radius it appears to be close to the stand&@uV value. The appar-
He noticed the significant cancellation betweénand SC ent difference between the SCGW and QMC results strongly
corrections in the high-density limit. Geldart and Ta§lor points to the need of including vertex corrections in the
found a similar compensation for the static polarizability. former type of calculation, like the SCGW result for the
They attempted to construct a local-field factor that includeslectron gas in Refs. 11 and 12. Indeed, in Ref. 18 it was
SC corrections. Mahan and Sernelfussing the local-field found that the band gap is much closer to the stan@d
factor approach, concluded that the effectsVoforrections band gap and the QMC band gap if all first-order corrections
to the bandwidth of the homogeneous electron gas nearlio both the RPA polarizability and th&W self-energy are
cancel when added to both the self-energy and the polarizsystematically included.
ability, as was already predicted by Rit%e. As far as calculations on real semiconductors are con-
In a recent paper of Shirldy a self-consistentGW  cerned, we note that Hanke and SHaincludedV correc-
(SCGW calculation is reported on for the homogeneoustions to the RPA polarizability for a covalent crystalia-

0163-1829/98/5(1.9)/1196412)/$15.00 57 11962 © 1998 The American Physical Society



57 FIRST-ORDER CORRECTIONS TO RANDOM-PHAS. .. 11963
mond, using the bare Coulomb interaction instead of the
dynamically screened interaction. Concerning the impor-

tance of vertex corrections to the self-energy, Daling and van @
Haeringerf® Daling etal,” and Bobbert and van

HaeringeR? conclude that the effect of the first-order vertex

correction to the standa@W self-energy on the direct band SC1
gap at thel’ point of silicon is relatively small. The former +
result%2! were obtained by using the bare Coulomb inter-

action, the latté? by using the dynamically screened inter-

action. Del Sole, Reining, and GodByhave arrived at a

similar conclusion for silicon on the basis of a so-called +

GWI calculation, which incorporates in an approximate way SC3

vertex corrections to the self-energy as well as to the polar-

izability, by means of the functional derivative of the

exchange-correlation potential in DFT with respect to the +

density. Bechstedit al** have shown that dynamical effects

due to vertex corrections and self-consistency corrections to

the strength of the optical absorptidgand correspondingly

P) largely cancel for silicon and diamond. FIG. 1. RPA polarizability plus the first-order corrections to it.
The present work can be seen as an extension of Ref. 18C1-SC4 denote the first-order self-consistency correctidrmiz-

and also of Ref. 22. The aim is to contribute further to thehotes the first-order vertex correction. The solid directed line de-

understanding of the success of standam. In considering notes the LDA Green's function. The cross denote¥"“. The

possible improvements to standa@dw, Hedint argues that wiggly line denotes the RPA dynamically screened interaction.

one should preferably take to nth order inW if P is taken Il. THEORY

to ordern—1 in W, provided bothS and P are taken self-

consistently. In view of the complexity of dealing with self-  The RPA polarizability diagram as well as its first-order

consistency and higher-order corrections, we will restrictcorrection Feynman diagrams are depicted in Fig. 1. The

ourselves to the investigation of the effect of including theGW self-energy diagram as well as its first-order correction

first-order inW corrections to standar@W as well as to the Feynman diagrams are depicted in Fig. 2. Diagrams SC1—

RPA P. Not a self-consistent Green'’s function, but the LDA SC4 are the first-order self-consistency diagrams since they

Green's function will be employed in this investigation. Two have self-energy insertions in the Green’s functions, taking

aspects concerning the screened interact\oare essential into account self-consistency effects to first order. The cross

in an accurate evaluation of QP energies for semiconductor#? diagrams SC2 and SC4 denotes minus the LDA exchange-

first, its energy dependence, and, second, the off-diagonabrrelation potentiak-V*. These latter diagrams should be

matrix elements oP in the employed plane-wave basis set, included when the LDA is the starting point becat¥€ can

giving rise to the so-called local-field effedisFE’s). Both ~ be considered as the self-energy in the LDA, which should

dynamical screening and LFE’s will be included in our cal-be canceled out. Diagrams SC3 and SC4 of Fig. 2 are self-

culations. The energy dependence of the dynamicallenergy corrections due to the first-order corrections to the

screened interaction will be modeled by means of the plasvalence charge density. We will henceforth call these latter

mon pole modelPPM) of Engel and Farid® We will con-  diagrams SC Hartree diagrams. Diagrahis the first-order

sider three kinds of calculationg) calculation of the first- vertex correction diagram.

orderV+ SC correction to the RPA polarizability using the  In the evaluation of the corrections to the wave-vector-

RPA screening(ii) calculation of the first-ordev+SC cor-  dependent and

rection to theGW self-energy using the RPA screening, and

(iii ) calculation of theGW self-energy and its first-order cor-

rections using the corrected screening frGm The calcula- @ - _&,

tion of these corrections to standa@W is done for both

silicon and diamond, with emphasis on the energy levels

around the band gap.
The paper is organized as follows. In Sec. Il we will dis- 2/’;;;::5& z:l @
cuss the diagrams that have to be taken into accoun for + + tol o
SC2

[ ]
and3 and we will give a short description of some calcula- SC1 SC3 SC4
tional details. In Sec. Il we will give the results. In Sec.

[l A we will focus on the polarizability. In Sec. Il B results
for the self-energy are given, concentrating on energy levels
around the band gap. A few checks are carried through in v

Sec. V. Section V contains a further discussion concerning

the SC self-energy correction. In Sec. VI we report on a F|G. 2. GW self-energy plus the first-order correctioB¥*SC.
remarkable cancellation between a particular group oOfrhe dotted line denotes the bare Coulomb interaction. The wiggly
second-order corrections to the LDA energy gap. Section Vlline now denotes the dynamically screened interaction obtained
is devoted to the discussion of our results. with either the RPA or the RPAV+SC polarizability; see Fig. 1.
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energy-dependent polarizabiliBg o' (k; w) and self-energy and satisfy the completeness relatioﬁimxqux;,q
36.6'(k; ) in a plane-wave basis3 andG’ are reciprocal =M ~!(q), then the following plasmon pole description for
lattice vectorsk is the wave vector, and is the energyone W5 can be derived®

wave-vector integration can be reduced to an integration

over the k-dependent irreducible wedgg,. The second

wave-vector integration, if present, cannot be reduced and Wséc,rc-:/(q;“’)zé Wm,q(G)Waq(G/)[m

has to be performed over the whole first Brillouin zone

(1BZ). Furthermore, in our calculations, wave-vector inte- 1
grations have been replaced by a discrete sum over the wave T oton(q) -in|’ ®
vectors of the grid
wherewy, q=v (Q)M(Q)Xm, o/ V20 r(). Within this particu-
g=(n1b;+nyby+n3b3)/2Ng  (Nj=—Ng+1,... Ng), lar PPM y is approximated by,
()

N — 2ny -1 1/, — -1
with g reduced to the 1BZ if necessary, whdseare the i(q’w)_{w M (q)+£ (@ 0=0)} . 0
primitive vectors of the reciprocal lattice. A specifiepoint ¢ ,,=0 the model full polarizabilityy obviously coincides
set will be identified by giving the numbedy,. The inte-  ith . Further, the correab— limit can be obtained by
grand pertaining to a particular correction may have a Singurnserting a properly chosen matii. In connection with the

larity if_the wave vector ir_1 an interaction line goes to Zero. gnplication of plasmon pole models it is desirdbf to sat-
Such singularities are all integrable and are handled analyt‘sfy the Johnsonf-sum rule?® When using a local one-

cally in a way described in Appendix B of Ref. 20. electron Hamiltonian, this leads to
The energy-dependent screened interaciiégg: (q; w)
can be written agshorthand notation £2
MG,G'(Q):E(Q+G)'(Q+G’)Pefe', (8
W=v+vyv=v+W< (3]

wherepg are Fourier components of the valence charge den-
where y is the full polarizability matrix andv is the bare ity The Johnsorf-sum rule and, accordingly, E8) are
Coulomb interactionp ¢ (0) =€°3c,c/ /(€|a+G|?). We  not exact, however, if the Hamiltonian contains a nonlocal
use Sl unitse is the electron charge ang is the vacuum jon pseudopotential. This is pointed out in Refs. 26 and 29.
permittivity. The full polarizabilityy is related to thirre-  The resulting violation of the Johnsdasum rule may very

ducible polarizability P by well be of importance in the evaluation of corrections to the
i GW self-energy’® The correct matrixM can easily be ob-
x=P(—-vP)"7, (3 tained by combining Eq3) and(7) for w—s:
wherel denotes the unit matrix.cr\Ne will use a representation Mg,/ (q)= lim w?Pg g/ (q; ) 9)
for the screening part dfv, W%, that is analogous to the w0
Lehmann representation for the noninteractitgDA) . ) o
Green’s functionG®: and extracting thewv— oo behavior of the polarizability. In
this limit the leading term of is proportional to 1. In
d (G)d¥ (G') Sec. Il B we will investigate the effects of the violation of
G (kw)=% ATk 4 the Johnsori-sum rule. The standadW band gap of semi-
G,G ( ! ) ) ( )
’ T o—e(k)+in sgrie (k)= u] conductors calculated with the PPM based on @iy.is in

excellent agreement with experiment for silicon and dia-
mond; see Sec. Il B.
When splitting the screened interactivv into its static
artv and dynamic pafV*® and by taking into account each

where the infinitesimally small positive energyensures the
correct causal behaviog, is the chemical potential, which in
the case of a semiconductor is situated in the energy g

][%gé?]?é arggs'ezpdgl' a(;? t:]hees(tagr?'rr?lesoa:td ‘;Iag?";]v;\./gngofé'rpossible time order of the internal and external points of a
icl  respectively, Ing point wave 1unctions, diagram, specific subdiagrams BfandP can be identified.

g‘sézn;el’ag?;amgf V\;g?/ligégeah[);allzr;%il ?d rFog:zlriZ\tli%lr} forFor the polarizability diagrariv of Fig. 1 we get a total of 30
P P yl PP ) subdiagrams. This can be seen as follows: There are 3! pos-
the energy dependence of the dynamically screened interag- : . : o
. o . ;o .~ _Sible time orders if the bare Coulomb interactioris taken
tion W5, such that energy integrals occurring in expressions
for the self-energy and the polarizability can be carried ou

: . SC1 plus SC3 of Fig. 1 there areX2 30 subdiagrams, while
analytically. The wave-vector-dependent plasmon energ'eaiagrams SC2 plus SC4 lead to23! subdiagrams. For the
g, in this PPM are obtained from the generalized eigenvalue : '

5 . . . Self-energy diagranV of Fig. 2 there are 38 subdiagrams
problent® (in matrix notation (for more details see Ref. 22For diagram SC1 of Fig. 2
there are also 38 subdiagrams, for diagram SC2 2!
+3! subdiagrams, and for diagrams SC3 and SC432land
2! subdiagrams, respectively.

In the Appendix the contribution pertaining to one spe-
If the eigenvectorsx,, of Eq. (5), with components cific subdiagram of the first-order vertex correction polariz-
Xm,q(G), are normalized according nq}qM(q)xn,qz Smi.n ability diagram, diagranV in Fig. 1, is given as an example.

nd 4! possible time orders W5 is taken. For diagrams

1
i(q;sz)Xm'qz—wz—(q)ﬂ(q)xmyq. (5
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We want to emphasize that the head elemgif) (G=0
and G’=0) and the wing element§WE'’s) (G=0 or G’ Zy =
=0) of the polarizability matrixPg g/(k;w) have to be
treated in a special way far— 0 in the case of semiconduc- and|l k) indicates a LDA state with band indéxand wave
tors. In the case of the RPA polarizability the HE ha&k|d  vectork. In the procedure of obtaining QP energies we will
proportionality and the WE'’s have a lineliproportionality  therefore evaluate both the expectation values
for k— 0, leading to the correct screening behavior of a semi-h<| K2 (k;e/(k))|I,k) and their derivatives,
conductor. Individually, none of the diagrari¥sand SC in
Fig. 1 has the property that the HE is proportionalkg for B 72 (k;w)
k—0. Only the sum of these diagrams fulfills this property. Si(k)=A(l.k| dw
Kohr?! has proved this for the case that the interaction line
represents the bare Coulomb interaction, but it can als@ere #3 will equal either —V**+#3CW or —\V*°+43CW
rather easily be proved for the screened interachinWe  +7#3V*SC depending on whether we are calculat®yV or
have chosen to tackle the evaluation of ¥e SC polariz- GW+V+SC (GW plus its first order i correction$ qua-
ability correction in thek—O0 limit numerically in the fol-  siparticle energies. We will refer to the above method of
lowing way: The HE of theV+SC correction is evaluated calculating QP energies as the “expectation value method.”
for three smalk vectors and then fitted according to This method turns out to work well for th@ W self-energy
) and in Sec. Il B we will check its validity for th&/ +SC

AP o(k—0):=po+palk|+pafK|*. (100 self-energy correction. To this end, the result obtained with
The WE'’s of theV+SC correction are evaluated for four the expectation value method will be compared with the re-

smallk vectors and then fitted according to sult of an exact diagonalization of the nonlocal, energy-
dependent Hamiltoniakl +#3..

k;
1—h<|,k|¥

-1
||,k>) e

o = g(k)

I1,k). (15)
o = g|(k)

APgg1o(k—0):=po+p*ks+ p’k,+pk,. (1)

Herepy, p1, P2, P*, p¥, andp? are fitting parameters. In Eq.
(11) the fitting parameters ai® dependent. _ In the calculations to be reported on below we used ener-
Having obtained the polarizabilit, the calculation of gies and wave functions obtained from a well-converged
the dielectric matrixe can easily be accomplished by evalu- self-consistent LDA calculation carried through in a plane-
atinge=1—uvP. In the calculation of the dielectric matrix for wave basis set with a cutoff of 17 and 45 Ry for silicon and
k— 0 the 1/k|? singularity of the HE of the bare Coulomb diamond, respectively. We used the experimental lattice
interaction is canceled by th&|? behavior of the HE of the constant¥ a=5.43 A anda=3.57 A for silicon and dia-
polarizability. Likewise the singularity of the WE's of the mond, respectively. The implemented parametrization of the
bare Coulomb interaction is canceled. The macroscopic regp initio nonlocal ionic norm-conserving pseudopotentials is
sponse to an applied field is determinedeby rather thare.  that of Bachelet, Greenside, Baraff, and St&id® The
In accordance with Ref. 32, we define a macroscopic dielecexchange-correlation potentis® is represented with the

IIl. RESULTS

tric function (MDF) by Wigner interpolation formuld® Unless indicated otherwise,
L the matrixM of Eq. (8) is used to obtaiW°",
Three cutoffs are to be distinguished in the calculations of
en(q+G): = (12) 9

{e X(q0=0)}g G' P and: (i) the number of plane waves taken into account in

] ) ' ] reciprocal lattice vector summations and used for the size of
The effects of the off-diagonal matrix elements o_f the d'e|ec'dielectric(and polarizability matricesNpy,, (i) the number

tric function are often referred to as the local-field effects.of glectron and plasmon bands taken into account in band
The macroscopic or static Qielectric constagtis. givcn by. summationsN,, and(iii) the fineness of th-space grid in
€x=limg_oe(0). For cubic crystals the static dielectric e grillouin zone integrationsly; see Sec. II. For the po-
constant is independent of the direction in Wh|ch the Wav8arizability as well as the self-enerdyp,, =137 is taken for
vector goes to zero. In the LDA RPA the static dielectric gjjicon and Npw=229 is taken for diamond. For the RPA
constant is generally overestimated in the case of semico'?)‘olarizability and theGW self-energy N, is taken equal to

ductcrs; see, for instance, Refs._29_a_1nd 32. ) Npw. For theV+SC polarizability correction this number is
Since theGW wave functions in silicon and diamond are N, =29 for silicon andN, =30 for diamondthe choice oN,,

practically undistinguishable from the LDA wave functions, ;o rastricted to specific values due to the degeneracy of

it is sufficient to calculate diagonal matrix elements of thebands which has to be properly dealt with for-0). The
GW self-energy in the LDA basis when evaluating QP ¢qntripytions to the expectation values and their energy de-
energies.*In order to account for the fact that the expec- atives s (evaluated at the LDA energies; see Seroflthe

tatli]cn value_s shoulddb((aj eve;_luateddat _thehQPd.;afnergies,btr\?JrSC self-energy correction diagrams have been obtained
self-energy Is expanded to first order in the difference be y usingN,= 65. In the calculation of the RPA polarizability

tween the QP and the LDA energies to obtain the desired Qg k—0, Ng,=6 for silicon andNg,= 4 for diamond is used.

energiest; " (k), leading to For otherk vectors we usély,=3 for silicon andNg,= 2 for
EQPK) = £1(K) + Z1 A KIS (k- e (KD K 1 dlamon_d. Also, the/+SC polarizability correction is calcu-
k) =eik)+ 2l KE e ()LK), - (13 lated with these latteN, values for allk vectors. This holds
where Z,  is the so-called wave-function renormalization also for theGW self-energy and its corrections. An excep-
factor, given by tion to this choice oN, is made for the/+SC correction in
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was seen for the quasi-one-dimensional semiconducting
wire, although the compensation was less complete there. In
Fig. 3 the constant terms fér— 0 (G=0) for theV and the

SC contributions are also given. They are clearly seen to
cancel. This is in agreement with Ref. 31, where it has been

E o-o1 oo shown that, for insulating crystalB o(k; w) is proportional

S ool ) to |k|? for small |K|.

'_'c"a ' —o.01 In Fig. 4 we have plotted the difference between the
=, oot | ' RPA+V+SC and the RPA MDF as a function of the abso-
o’ —0.03 lute wave vectotk+ G|. For the definition of the MDF, see

—0.02

| —o.08

Eq. (12). The correction is negative for smak+ G| and
positive for largefk+ G|. Our obtained RPAV+SC static

—0.03

dielectric constant i%,.,= 10.4 and 5.3 in our best calcula-
tion for silicon and diamond, respectively, to be compared
with our RPA values of 12.8 and 5.6 and with experimental
values 11.47%811.7 (Ref. 39 and 5.5° 5.74° So by incor-

diagonal elements of the static polarizabiliip Rydberg a.u.for ~ Porating theV+SC polarizability correction, we find a de-

silicon and diamond. The constant contributions to the HE of thetT€aS€ In the static dielectric constant. This is contrary to

polarizability matrix fork— 0 are also giverthe |k+G|=0 axig. ~ Previous results in cases in which the local-density-
functional formalism is used to go beyond the RPA, which

the case of th& andL points of silicon, where we assumed generally show an increase in the static dielectric constant;
that Ng,=2 would also be sufficient, as it turned out to be see, for instance, Ref. 32. In Refs. 32 and 41, the MDF in the

sufficient to useNy,= 2 for theV+SC correction in the case '0Cal-density-functional formalism was compared to the
of the T poaint of gilicon. RPA MDF. In Ref. 32 the QMC exchange-correlation poten-

Convergence tests have been performed in order to asse%%| as parametrized by Perdeyv and Zur‘f@was used, Wh'le
the accuracy of calculated QP gaps: For silicon, #eSC the Slater gxchange-correlatlon potential was “S?d in Ref.
correction to the RPA polarizability has also been calculated1- Comparing our results for the MDF for S.'I'Con with Refs.
by taking Npw=89 andN,=50 (Ng=2). This led to the 32 and 41, we observe that our-SC correction to the RPA
conclusion that the matrix elements of the polarizability cor-MPF is about five times smaller.

rections were nicely converged, while the effect on the band Toh cor;}clude th? gisgussiog of the pola(rjizat?fility we can
gap was minor. The/+ SC correction to th& W self-energy S8 that the sum of the first-order vertex and self-consistency

for theT" point of silicon and diamond, using RPA Sc:reening,correctlons to the static polarizability is relatively small, with

has also been calculated by takiNg=2, together with tak- the LDA as the starting point. Our results confirm our previ-

ing a smallerNpy, (Npy=89 and 169 for silicon and dia- ous results for the quasi-one-dimensional semiconducting
mond respectiF:/V(\-I:‘Dy OFI)'WWi'[h more plasmon and electron wire and results of other authors that teand SC correc-

bands (N,=89). For diamond the calculations with RPA tions to the polarizability compensate each other to a large
screening were also done fbig,=3. We claim on the basis

_0.04 N L N . _0.07 . L . .
0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

|+ G| [2T/a] |+ G| f2r/a]

FIG. 3. Compensation betweeri and SC corrections to the

of the above-mentioned convergence tests that the accurac [+ 5 *ro o
of reported QP gaps is 0.05 eV for silicon and 0.1 eV for T Si |7° c
. 6 -1 6.0 0.3 -1 3.0
diamond. In Tables Il and Ill we nevertheless express num-
bers with three decimal places in order to clarify possible — **[ - 1%°
cancellation effects. o i T
0.3 - " - 3.0 "u,
. . . . 02 . :.- 4 20 o1 b . \*\— 1.0
A. First-order corrections to the RPA polarizability Ny _ﬁt\ ‘o D --:4.
Unless stated otherwigsee Sec. Ill B, we use the PPM  § _ o[ 3 0.0 gm_saﬁ 00 |—* -
described in Sec. Il based on the mathk of Eq. (8) in P Jae -4
which case we can restrict ourselves to the calculation of = _ , [ 1eo o4l 140
Ps.c (Kiw=0). -0z | 4 -s0 :
In Fig. 3 the RPAV, and SC contributions to the diago- o L 1 uo on b 1 oo
nal elements of the static polarizability are shown as a func- _ - 1 so .
tion of the absolute wave vectdk+ G|. The scattering of o | 1 oo oa | | ao
the points in this figure reflects the anisotropy. One observe or i 170
that theV and SC contributions compensate each other to &

. . . .8 L L —8.0 —-0.4 L L -4.0
very large degree. Th¥ contribution has the same sign as 00 1.0 20 3.0 00 1.0 20 3.0
the RPA polarizability, while the SC contribution has the k+ G [2m/a] k+Gl [2rcfal
opposite sign. In absolute value both corrections are roughly FiG. 4. RPA+V+SC macroscopic dielectric functigMDF) as
75% of the RPA. The compensation betweérand SC is  well as the difference between the RPX+SC and the RPA MDF
such that the diagonal matrix elements of the RRA+SC  for silicon and diamond. The definition of the MDF is given in Eq.
polarizability are in absolute value a little bit larger than the(12). By €, we meanefr ~*V*SC. The value ofe;,— ep * for |k
RPA ones(about 15%. Also in Ref. 18 this compensation +G|—0 is —2.4 for silicon and— 0.3 for diamondsee the tejt
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TABLE I. GW andGW-+V +SC direct gapsin eV) for RPA screening and RPAV+SC screening for
silicon (I', X, andL pointg and diamond [l point). The LDA direct gaps and experimental data are also

given.
Method/Source r X L
silicon

GW/RPA (standardGW) 3.31 4.20 3.38

GW/RPA+V+SC 3.38 4.26 3.44

GW+V+SC/RPA 3.58 4.53 3.65

GW+V+SC/RPA+V+SC 3.67 4.64 3.77

LDA 2.53 3.35 2.61

Expt2P 3.40 4.25 3.45

standardG W literature 3.35 4.4% 3.54
diamond

GW/RPA (standardGW) 7.63

GW/RPA+V+SC 7.83

GW+V+SC/RPA 8.08

GW+V+SC/RPAFV+SC 8.36

LDA 551

Expt? 7.3

standardG W literature 7.5 7.6397.26

8Reference 34.
bReference 43.
‘Reference 26.
dreference 44.
®Reference 33.

degree. Our results can be considered to be complementa@W+V+SC/RPA and theGW+V+SC/RPA-V+SC gap
to the work of Bechstedtt al,?* who observed such a com- values, obtained by applying the expectation value method,
pensation at finite frequencies, also for silicon and diamonddiffer considerably from the standaf@W values. The dif-
but without taking LFE’s into account. ferences with the standafalW values appear to be largest if
we take the screening to be RRA+SC. For this type of
screening the differences amount to 0.36, 0.44, and 0.39 eV
for theI", X, andL points of silicon, while the difference for
Our standards W results, obtained by applying the expec- the I' point of diamond is even 0.73 eV. All corrections
tation value method, are shown in Table I. The gap valuesipparently have the same sign. If RPA screening is used
for theI", X, andL points of silicon of 3.31, 4.20, and 3.38 instead(see also Table)| the differences from the standard
eV are observed to compare reasonably with the values 3.35W values reduce to roughly 0.3 eV in the case if silicon
4.43, and 3.54 eV of Ref. 26 and excellently with the experi-and to roughly 0.4 eV for diamond. The obvious conclusion
mental value¥“3of 3.40, 4.25, and 3.45 eV. The result for is that, if vertex and self-consistency corrections are included
theT" point of diamond of 7.63 eV compares well with the to first order, the compensation between th@ee also fur-
7.5 eV value reported in Ref. 26 and the 7.63 eV value ofther on is clearly incomplete.
Ref. 44 and reasonably with the experimental vl 7.3 In Table Il details of our calculational results are pre-
eV. We remark in this connection that if we takg,=3  sented. It is seen that we have concentrated on QP energies
instead of Ng=2, our standardGW result for diamond of the highest valence baritHVB) and the lowest conduc-
changes from 7.63 eV to 7.54 eV. In Table | also g/  tion band(LCB). The highest valence state and lowest con-
gap values with RPAV+SC screening are given. It is ob- duction state at thé&' point are denoted by',5, andI';5,
served that the differences between the stand@W and  respectively. At theX andL points these states are denoted
GW/RPA+V+SC gap values are relatively minor, as could by X,,, Xi¢, L3, , andL,., respectively. We have given for
be expected from the closeness of the RPA and RPA the GW self-energy diagram, minug*°, as well as for the
V+SC screeningsee Sec. Il A. respective SC1, SC2, SC3, SC4, andelf-energy diagrams
We now turn to the first-order vertex and self-consistencythe expectation values together with the related energy de-
self-energy corrections to teW self-energy. We recall He- rivatives . Results are given for both RPA and RPA
din’s argumerttto takeZ to nth order inW whenP is taken  V+SC screening for both silicon and diamond. The calcula-
to ordern—1 in W and our restriction of using the LDA tion of the contribution of th&/ self-energy correction to the
Green’s function. In following this line of reasoning when difference in expectation value for the LCB and HVB at the
calculating theGW+V+SC self-energy, the resulting gap I' point for silicon had already been done in Ref. 22. How-
values obtained with RPAV+SC screening should obvi- ever, due to an error in the program code, the result given in
ously be preferred. From Table | it is observed that both theRef. 22 of 0.12 eV is incorrect. The correct value—$.26

B. First-order corrections to the GW self-energy
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TABLE II. Expectation values of the first-order self-consistency and vertex self-energy corrections, with
RPA and RPA-V+SC screening, for the HVB and LCB of tHe X, andL points of silicon and for the
HVB and LCB of thel" point of diamond(in eV). Their energy derivative$ are given in parentheses
(— means zero energy derivatjveThe expectation values and energy derivatives ofGiW self-energy
minus V*¢ are also given; see column 2.

I,k GW — Ve SC1 SC2 SC3 SC4 Total SC V Total V+SC
silicon: RPA screening
I, —-1.211 —3.652 3.513 1.287 —-1.152 —0.004 0.076 0.072
(—0.288) (0.231) ¢0.147) (—) (—) (0.084) (—0.088) (—0.004)
s —0.203 —2.180 2.734 0.441 -0.396 0.599 —0.181 0.418
(—0.286) (—-0.130) (0.197) (—) (—) (0.067) (—=0.079) (—0.012)
X4y —1.283 —3.744 3.424 0.792 -0.706 —0.234 0.158 —0.075
(—0.315) (0.338) ¢0.237) (—) (—) (0.101) (=0.079) (0.021)
Xic —0.159 —1.688 2174 -0.077 0.068 0.477 -0.162 0.314
(—0.261) (-0.101) (0.161) (—) (—) (0.060) (—0.070) (—0.010)
L3, —1.254 —3.675 3.468 1.074 -0.957 -0.090 0.130 0.040
(—0.299) (0.284) €0.194) (—) (—) (0.091) (—0.089) (0.002)
Lic —0.246 —-2.211 2.720 0.587 -0.524 0.572 —0.193 0.378

(=0.273) (-0.123) (0.187) (—) (—) (0.064) (-0.076) (—0.011)
silicon: RPA+V+SC screening

r), —1.310 —3.654 3.526 1.292 —1.152  0.012 0.017 0.030
(—0.290)  (0.226)  (0.140) (—) (—  (0.086) (-0.092) (~0.006)
I  —0217  —2.209 2.755 0.444 —0.396 0594 —0.181 0.413
(—0.288) (-0.125) (0.193) (—) (—)  (0.068) (-0.084) (~0.016)
Xa, ~-1.365 —3.710 3.407 0.805 —0.706 —0.204  0.073 -0.131
(—0.317)  (0.325) (0.222) (—) (—  (0.103) (-0.082)  (0.020)
X ~0.161  —1.692 2.163 —0.078 0.068 0461 —0.130 0.331
(—0.263) (-0.090) (0.150) (—) (—)  (0.060) (-0.072) (-0.012)
L, ~1.347  —3.643 3.455 1.091 —0.957 -0.054  0.036 —0.019
(—0.301)  (0.271) €0.179) (—) (—  (0.093) (-0.091)  (0.001)
L —-0.257 —2215 2.708 0.597 —0.524 0566 —0.168 0.398

(=0.275) (-0.111) (0.176) (—) (—) (0.065) (—=0.078) (—0.013)
diamond: RPA screening

Iy,  —2083 —3.666  3.524 1.725 —1.543  0.040 0.109 0.149
(-0.191)  (0.128) (0.085) (—) (—)  (0.043) (-0.036)  (0.007)
e 0445  —2305  2.853 1.055 —0.956  0.647 0.019 0.666

(—0.187) (—0.062) (0.099) (—) (—) (0.036) (—0.032) (0.005)
diamond: RPA-V+SC screening

Ty,  —2321 —3.696  3.567 1776 —-1.543  0.104 —0.013 0.091
(—0.194)  (0.125) (0.081) (—) (—)  (0.044) (-0.041)  (0.003)
g 0459  —2356  2.889 1.091 —0.956  0.668 0.041 0.709

(—0.191) (-0.058) (0.096)  (—) (—  (0.039) (-0.037)  (0.002)

eV; see Table Il. Concerning the SC self-energy correctionssmall indeed as compared to the contribution due to the SC1
one can argue that@W insertion and &/*¢ insertion have +SC2 self-energy diagrams. The difference in expectation
much in common, such that SC1 and SC2 are likely to comvalue for the LCB and HVB of the/ and of the total SC
pensate partially. It is observed that the SC1 and SC2 selorrection can also easily be obtained from the entries in
energy diagrams individually lead to relatively large correc-Table Il. By doing so, th&/ correction appears to compen-
tions to the absolute energies of the HVB and LCB and haveate the SC correction to about 45% in the case of RPA
indeed the tendency to compensate each other, though nstreening and to about 35% in the case of RRA-SC
completely. The SC3 and SC4 self-energy diagrams are selfcreening for silicon. For diamond these percentages are
energy corrections to the Hartree diagram, in which the vaabout 15% and-10%, respectively, so that the term com-
lence charge density is corrected to first-ordeWinAs the  pensation is not even appropriate.

valence charge density in DFT is equal to the exact density, The above-mentione®W+V+SC/RPA+V+SC result

the first-order corrections to the LDA valence charge densitys puzzling in a certain sense: If the sum of all first-order
are expected to be mindt.It is observed that the contribu- corrections to the standa@W gap does not appear to be
tion to the difference in expectation value for the LCB andnegligibly small, the question arises which group of dia-
HVB due to the SC Hartree diagrantSC3+SC4 is very  grams then have to be considered in order to “justify” the
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standardGW result. Before trying to answer this question it LDA input. We therefore applied the so-called scissors op-
is necessary, however, to be as certain as possible that oerator to the LDA by changing the LDA exchange-
calculations do not contain weaknesses of whatever kindzorrelation potentialV*(k) into V*“(k)+AZX¢[c,k)(c k|,
This has led us to the performance of a few checks, whichvherec is meant to indicate conduction bands ake+0.8
are outlined in the next section. eV (for silicon) being about the standai@W conduction-
band shift. Leaving the LDA wave functions unaltered, we
can now construct another Green'’s function and insert it into
IV. CHECKS the RPA polarizability, th&cW self-energy, and th¥+SC

In this section we report on a few checks that we haveself-energy correction. In doing so, thiRPA) dielectric con-

performed concerning th&/+SC self-energy corrections. Stant changes and becomes equal to 18Q=6). The new

First, for RPA screening, we improved upon the PPM con-StandardsW direct gap af” (of silicon) appears to be about
cerming the matrixM in accordance with a proposal of 0.2 eV larger than the value obtained with the LDA as the

starting point, while the nevd W+V +SC/RPA direct gap is
about 0.1 eV larger than before. It therefore shows that this
kind of change in the LDA starting point in th@W type of
calculations does not improve things. Incidentally, the de-

Farid®° in which he points to the violation of Johnson’s
f-sum rule if one sticks to the matridd of Eq. (8). Apart
from Pg g/ (k; w=0) we now also have to calculate the lead-

ing term OfPGvG’(k;me)i see Eq(9). In agreement Wit_h pendence on starting point Hamiltonians W or related
Ref. 29, we find that the diagonal elements of the ma¥fix ynes of calculations and, more specifically, the apparent

of Eq. (9) are smaller than those given by the Johns@um  preference for the LDA starting point are interesting in them-
rule and that the off-diagonal elements deviate even moreselyes and not sufficiently settled in our opinion.

When applying the correct matrM, the standar& W direct
band gap of silicon at th& point becomes only 0.015 eV V. DISCUSSION ON THE SELF-CONSISTENCY
smaller, however. In fact, this is not unexpected, as the use SELF-ENERGY DIAGRAMS

of Johnson'sf-sum rule(see, for instance, Refs. 26 and) 27
generally leads to excellent agreement between stargaérd

and experimental gap values. Furthermore, it is also fountﬁonS being highly similar, it is tempting to subdivide the
that theGW+V+SC/RPA direct band gap of silicon & 511 52 self-energy subdiagrams. To this end we give the
when calculated with the correct matiik, stays practically  expression for the insertion, in the LDA basis, occurring in
the same: The value becomes only 0.011 eV smaller. It cafhe SCHSC2 self-energy correction to the LDA energy
therefore safely be concluded that the violation of thesl(k) (the electron bands andl” are summation variables

Johnsonf-sum rule yields only insignificant deviations in 544 the energy and the wave vectay are integration vari-
corrected gap values. ables:

A second point of possible concern is the assumed close-
ness of LDA wave functions an@W+V+SC wave func- , oW _ " ,
tions. Though it is demonstrated in Refs. 26 and 33 that the {|"-a+kIAZZ¥(a+k; o+e&/(k))=V*(a+k)[l".q+k).
LDA wave functions and th&W wave functions are close, (16)
it is nota priori certain that this also holds in the presence of
the V+SC self-energy corrections. This, however, has to béThe SCHSC2 self-energy subdiagrams can be subdivided
fulfilled in order to safely apply the expectation value into the “diagonal SC” (DSC and “nondiagonal SC”
method. We therefore carried through an exact diagonalizaNDSC) groups of subdiagrams of Fig. 5. The reason for
tion procedure for the HVB and LCB at tHe point of sili-  doing this is that the DSC group of subdiagrams consists of
con, using RPA screening. In this procedure only couplingsubdiagrams in which the insertion, given by Ed6), is
between states of equal symmetry needs to be consideretdken betweethe sameconduction €) or valence {) states
leading, among 65 electron bands, to & & matrix in the only. The NDSC group of subdiagrams can further be sub-
LDA basis to be diagonalized only. In doing so, both thedivided into the NDSCA and NDSCB group of subdiagrams;
standardGW and theGW+V +SC/RPA direct band gap be- see Fig. 5. The NDSCA and NDSCB groups of subdiagrams
come larger by an amount of only 0.001 eV compared to thare initially expected to be small, the reason being that in
values obtained within the expectation value method. It carthese latter subdiagrams the insertion, given by &6), is
therefore also safely be concluded that the LDA wave functaken betweendifferent states. If we simply ignore the
tions and theGW+V+SC wave functions are sufficiently NDSC contribution and calculate the difference between the
similar. GW+DSC/RPA and the standa@dW gap value, applying

A third check concerns the LDA starting point. Though the expectation value method using standal¥ energy de-
the LDA wave functions are to a large extent similar to therivatives 8, we obtain the values 0.32, 0.49, 0.40, and 0.34
GW wave functiongand to theGW+V +SC wave functions eV for thel', X, andL points of silicon and thd" point of
as shown above the conduction-band energy levels in the diamond, respectively. Considering the fact that the vertex
LDA are significantly lower than those iB6W (and GW+ correctionV to the self-energy yields a gap correction of
V+S0O). Though this is generally not thought to be an im-about—0.3 eV for silicon and about0.1 eV for diamond
portant issue, we nevertheless would like to investigatdsee Table IJ, we would then find that the totality of the
whether a LDA input in which the quasiparticle shift is in- plus DSC correction appears to be minor for silicon, while
cluded could improve the results. In a sense such an altergtle compensation is less pronounced for diamond. Unfortu-
input could be considered to be closer to@W set of wave nately, however, ouactual results on the group of NDSC
functions with accompanying energy levels” than the usualsubdiagrams do not confirm the above reasoning at all. It is

If we, in spite of the preceding discussion, nevertheless
ursue the issue of LDA wave functions aBdV wave func-
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diagonal: 93 (K; w)

Jw

Z =1+ 21 |ﬁ<|,k| ||,k>] (18
n= )

o = g|(k

4 DpSC ) such that, in fact, an infinite number of higher-order terms in
W are involved via the energy derivative &f In doing so,
we observe a remarkable cancellation between corrections to
non-diagonal: the band gap due to thé and SC corrections to the self-
energy2 on the one hand and corrections to the band gap

' p \ due to the energy dependenceXff" on the other hand. A
cAe cancellation of this particular kind has been reported by van
f vy v c Haeringen for both the Bloch-Nordsieck model describing

electron-photon couplifg“®and the Fralich polaron model
describing electron-phonon couplifg.A cancellation be-
tween self-consistency corrections Yoand the energy de-
pendence oF, was indicated by DuBotsand also mentioned
—@— =Eq.(16) by Ricel®
_ _ o In order to be able to present the cancellation effect, it is
FIG. 5. SC}SC2 self-energy correction subdiagrams with di- necessary to return to the expectation value method that was
agonal and nondiagon&@W self-energy insertions in the LDA ba- introduced in Sec. Il. We expand the right-hand SiR&iS)
sis. The former subdiagrams are indicated by DSC and the Iatteéf Eq. (13) to second order in the screened interactigrby

subdiagrams are indicated by NDSCA and NDSCB. Time increaseﬁmking a Taylor expansion of the denominator containing

from bottom to topwv stands for a valence-band index andtands the enerav derivative and the resulting expression for the
for a conduction-band indetwhich have to be summed oyein gy 9 P

the case of DSC the band indices on both sides of the ellipse al%uasmartlcle energl~ (k) is
identical.

NDSCA NDSCB

ERP(K) =& (k) +(1,k|AZCW(k; &,(k))— V*(k) |1,k
true that we find the contribution to the gap due to the =i+ (1K (k) (olt.k)

NDSCA group of Fig. 5 to be very small, but, unfortunately, +(1LK|AZ (ks £1(k) = V(k) |1, k) 87M(K)
this does not hold for the remaining group of subdiagrams, V4SCrL .
NDSCB. The discrepancy between the actual contribution of QUL (k;e1 (kD1 k). (19

the NDSC subdiagrams and our above reasoféxgecting
them to be insignificant however, can be understood as fol- \we have regrouped our calculational results in accordance
lows. g\?vkmg the square of the matrix elements i gq.(19), taking care of correction terms in the “appro-
<|'|f|h2 (k;&(K))=V*(K)[I" k), the nondiagonal I( priate order” for both RPA and RPAV+SC screening. In
#1") values are found to be "’,‘bOUt two orders of magnitudgjoing so, note that the convention of viewing upon orders in
smaller than the diagonal €1’) ones. This is one of the \y js now different from before: Th&W expectation value
reasons for the correctigh is of “first order” in W, the V+SC self-energy expectation
value is of “second order” inwW, and theGW expectation
[(1,k|A2CWY(k; e, (k))— V*(k)[I,K)|? value times its energy derivative is also of “second order” in
< &,(K)—8,/(K) (17 W. The above-mentioned cancellation effect concerns the
Il ! I’ last two terms on the RHS of Eq19). In Table Il we
present the values of these terms for the HVB and LCB of
the I', X, andL points of silicon and for thd" point of
to the QP energies to be very small, which is related to theliamond, which can be produced with the data given in
high similarity of theGW and LDA wave functions. On the Table Il. It is observed that no cancellation occurs for the
other hand, in order to calculate the SE3C2 self-energy LCB and HVB separately. A remarkable cancellation is seen
contribution the matrix element itself is required, instead ofto occur, however, for the band-gap values, in all cases lead-
its square. Furthermore, the energy denominators pertainingg to a gap contribution smaller than 0.1 eV. It should be
to the NDSCB subdiagrams contain one energy differenc@oted in this connection that a similar result has already been
consisting only of electron energies, while in the case of thebtained in the case of the quasi-one-dimensional semicon-
DSC (and NDSCA subdiagrams each energy differenceducting wire; see Ref. 48.
contains a plasmon energwhich is relatively largg It will be clear that this result does not as yet contribute to
a deeper understanding of the celebrated stan@aftresult.
This particular cancellation causes B&V+V+SC energies
VI. A REMARKABLE CANCELLATION to be equal to the LDA energies plus t@W self-energy
expectation values calculated at the LDA energy. This is
We note that it is possible to view upon the orderS\inin ~ puzzling since in the case of t8W gap, calculating the
a different way by expanding the wave-function renormaliza-GW self-energy expectation value at the LDA energy instead
tion factor Z; , occurring in Eq.(13). Z can formally be of at theGW energy, the energy derivative was absolutely
written as required to obtain agreement with experiment. The cancella-
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TABLE IIl. Correction contributions due to the last two terms on the RHS of(&8). for HVB and LCB
of silicon and diamondin eV), in the case of RPA screening and RP¥+SC screeningfor the latter case
the values are given in parenthesaith (GW—V*®) we mean(l k|2 W(k;e,(k))— V*(k)|I,k) and with
(V+SC we meani{l,k|ZV*S%k;e,(k))|I,k).

Ik (GW—V*9) 55W(k) (V+5SC) Total Gap contribution
silicon

T}, 0.349 (0.380) 0.072(0.030) 0.421 (0.410)

T 0.058 (0.062) 0.418(0.413) 0.476 (0.475) 0.G6965

Xay 0.404 (0.433) —0.075(-0.131) 0.329 (0.302)

Xie 0.041 (0.042) 0.314(0.331) 0.355 (0.373) 0.02®71

LS, 0.375 (0.405) 0.040¢ 0.019) 0.415 (0.386)

L. 0.067 (0.071) 0.378(0.398) 0.445 (0.469) 0.G8M83
diamond

T}, 0.398 (0.450) 0.149(0.091) 0.547 (0.541)

e —0.083 (-0.088) 0.666(0.709) 0.583 (0.621) 0.086080

tion rather points to the existence of an apparent “sum rule,”unexpected result, much effort has been put in checking the
which unfortunately is unexplained as yet. There is a poseorrectness of a large number of computational steps, such
sible connection to Ward identitié3,but no reference to a that we are convinced of the correctness of our final results.
specific Ward identity has been discussed in the literature. IfFfurthermore, by expanding the wave-function renormaliza-
in our case, an identity of the above kind indeed exists, théion function, we have found a cancellation of particular cor-
above results could presumably be considered as an intern@ction terms occurring for th& W+V+SC gap. It is there-
check on the correctness of our calculations rather than codere worthwhile to speculate on other more refined
tributing to the identification of the relevant group of dia- compensating mechanisms that possibly could explain the

grams that leads to the same gap results as stai@@ird “correctness” of standar@W. In this connection we recall
the work of Shirleyt! briefly discussed in earlier sections,
VII. DISCUSSION AND CONCLUSIONS from which it could be deduced that a possibly more com-

plete compensation could be obtained if we would be able to

The present work was motivated by the idea that the apevaluate self-consistently the sum of B8V self-energy dia-
parent success of standaBdV in predicting electronic prop-
erties could possibly be supported by a compensation be-
tween first-order vertex and self-consistency corrections to
the band gap of silicon and diamond. Compensations of this
type are occasionally reported on in the literature, mainly in
the case of the homogeneous electron gas, but also in the
case of a quasi-one-dimensional semiconducting wire. It
seemed of interest to investigate to what extent such a com-
pensation can also be found for a completely realistic case.
The starting point has been a fully converged LDA calcula-
tion for both silicon and diamond. Our effort has been to
calculate the contribution of complete sets of subdiagrams
contributing to both the polarizabilit (to first order inW)
and the self-energy, (to second order inV). We found
large compensations between the first-order vertex and self-
consistency corrections @, but the result concerning and
the related gap value is disappointing in the sense that there
appears to be only a 35% compensation between/thad
SC self-energy correctionso the difference in their expec-
tation value for the LCB and HVBIn the case of silicon,
while such a compensation is in fact absent in the case of G 6. vertex correction subdiagram included in the correction
diamond. The resulting corrected gap values appear to bg the polarizabilityPg g/ (k; w). A directed line denotes the LDA
about 0.4 eV and 0.7 eV larger than the standall values  Green’s functionG® and the dashed line stands " [see Eq.
for silicon and diamond, respectively. This result therefore2)]. The two dotted, arrowed lines wittd+ G andk+G' indicate
does not give the expected help in understanding the succesg two crystal momenta for which the correctiai® is taken. The
of the standards W approach. In view of this more or less meaning of the labels is explained in the text.
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gram and the vertex correction diagram. In 1965 Hedin APPENDIX: THE EXPRESSION

ready put forth that corrections to stand&aV should pref- FOR A POLARIZABILITY CORRECTION SUBDIAGRAM
erably be included by using a self-consistert. . . . .
Unfortunately, this is a tremendous task, even for the homo-. In this appendix we give the wprked-out algebralc_exprgs—
geneous electron gas, but in our opinion its performance fopion for a vertex correction sqbd|agram_ of the polarizability
silicon and diamond is considered to be crucial as it could” the momentum representation; see Fig. 6. The momentum
very well contribute to a better understanding of the succesioW through the subdiagram can be deduced using momen-

of the standard5W approach for these latter materials. tum conservation at the interaction vertices. This particular
correction entails summations over conduction bamhgsaiid

I,), valence bandsl{ andl,), plasmon bandsn{), and re-
ciprocal lattice vector®),;—Qg. The presence of reciprocal

It is a pleasure to thank B. Farid and E. Shirley for verylattice vectors is due to the interaction of an electron or hole
valuable discussions. This work was supported by the Nawith the ion lattice. Furthermore, this correction involves an
tional Computing Facilities FoundatidiNCF) for the use of integration over the reduced wave vectars and g,. As
supercomputer facilities, with financial support from the mentioned in Sec. Il, one integration can be performed over
Netherlands Organization for Scientific ReseafihVO). 7. The expression is
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d? d?
APoikiw=—2[ “H[ ZES 3 5 Sy (g dll,ql+k<Q1+e'>dr2,ql<ol>)
1

lBZ(27T)3 BZ(27T)3|16C lec lgev lyev m

X g di, g+ 0( Q)Y g+ g, +1(Qat G) (g drl,ql+k<Q5>§ d.a,ql+q2+k<Q3+Qs>wm,q2<—Q3>)
2 5 3

X g dlz,ql<Q6>§ dr4,ql+q2<Q4+Q6>w:;,_q2<—Q4>){[wm<—q2>+s.l(q1+k)—s|3<q1+q2+k)]
6 4

X[on(—q2) +e,(A1) — &), (At B) [0~ on(—02) — & (A1 +K) +8, (A1 +A2) ]} (A1)

Heree| are LDA energies and, are LDA plane-wave coefficients,,, are PPM energies amd,, are PPM coefficientx and

v denote the conduction bands and valence bands, respectively. The factor 2 originates from summation over spins. In this
particular example given by E¢Al), the head elemeni@=0, G’'=0) for k—0 has a constant contribution lif=1, and

I;=1, because then we have twice an inner product of a wave function with itself, which is unity. The HE also has linear
contributions ink for k—0 if 1;#1, or I;#1,. Also the wing elementsG=0 or G’ =0) have a constant contribution. The
energy denominator contains products of energy differences. For this particular correction to the polarizability given by Eq.
(A1) the energy denominator consists of three such energy differences.=F@rthere are no vanishing energy denominators

for any subdiagram contributing to the polarizability.
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